
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25130–25157
November 4-9, 2025 ©2025 Association for Computational Linguistics

WebMMU: A Benchmark for Multimodal Multilingual Website
Understanding and Code Generation

Rabiul Awal1,2,3* Mahsa Massoud1,2,4* Aarash Feizi1,2,4† Zichao Li1,2,4†

Suyuchen Wang1,2,3 Christopher Pal1,2,6 Aishwarya Agrawal2,3 David Vazquez1

Siva Reddy1,2,4 Juan A. Rodriguez1,2,5 Perouz Taslakian1

Spandana Gella1 Sai Rajeswar1,2

1ServiceNow, 2Mila, 3Université de Montréal, 4McGill University,
5École de Technologie Supérieure (ETS), 6 Polytechnique Montréal

Abstract

We present WebMMU, a multilingual bench-
mark that evaluates three core web tasks: (1)
website visual question answering, (2) code
editing involving HTML/CSS/JavaScript, and
(3) mockup-to-code generation. Unlike prior
benchmarks that treat these tasks separately,
WebMMU unifies them using expert-annotated,
real-world web data to assess models’ abili-
ties in complex multi-step reasoning, precise
element grounding, and functional UI compre-
hension and coding. Our evaluation shows
that while multimodal large language models
(MLLMs) perform well on basic information
extraction, they struggle with reasoning and
grounding, editing code to preserve function-
ality, and generating design-to-code that main-
tains hierarchy and supports multilingual con-
tent. These findings reveal key limitations in
current MLLMs and underscore the need for
improved multimodal and cross-lingual rea-
soning to build future web agents capable of
automating diverse web development tasks.
The dataset is publicly available at webmmu-
paper.github.io.

1 Introduction

The web is vital to daily life, enabling information
access, shopping, and communication. Multimodal
large language models (MLLMs) (Wang et al.,
2024b; Hurst et al., 2024) that understand the
Visual Web can help users extract information,
support tasks like budget-conscious shopping,
and handle multiple languages (Deng et al.,
2024). They also show promise in automating
web design and development, including front-end
layout creation, user interface (UI) editing, and
code generation (Anthropic, 2024). Unlike tasks
focused only on text or images (Wang et al.,
2024c; Yue et al., 2024), visual web understanding

*Co-first authors † Co-second authors

requires combining UI structure, layouts, text,
interactivity, and visuals.

Existing benchmarks target specific aspects of
web tasks but remain fragmented and lack com-
prehensive coverage. Website VQA datasets like
WebQA (Chang et al., 2022) and WebSRC (Chen
et al., 2021b) mainly focus on text retrieval, over-
looking reasoning over UI structure, interactivity,
and multilingual content. Recent web agent
benchmarks evaluate online task completion (Koh
et al., 2024; Deng et al., 2024; He et al., 2024),
showing promise for agentic AI but are limited
to artificial websites or lack fine-grained catego-
rization (e.g. grounding, understanding, multi-step
reasoning). In web development, design-to-code
datasets such as Pix2Code (Beltramelli, 2018) and
Web2Code benchmarks (Yun et al., 2024), as well
as sketch-based datasets like Sketch2Code (Li
et al., 2024b), cover a limited variety of UIs
and often fail to capture real web variability
due to automated creation. Furthermore, current
benchmarks lack multilingual and cross-domain
generalization, limiting applicability beyond
English and specific domains. These gaps motivate
a unified benchmark integrating multiple web tasks
with multimodal, reasoning, and cross-lingual
capabilities for effective evaluation of AI in web
development and advanced web understanding.

To address these challenges, we introduce Web-
MMU (Figure 1), a multimodal, Multilingual, and
MUlti-task benchmark for evaluating MLLMs on
the Visual Web in four languages: English, Span-
ish, German, and French. It spans 20 real-world
website domains such as shopping, booking, sports,
and technology. WebMMU covers three core
tasks: Website VQA (WebQA), which tests func-
tional understanding, visual comprehension, and
multi-step reasoning via visual question-answering;
Mockup2Code Generation, assessing design-to-
code alignment for UI mockups and sketches,
including both simple and complex nested lay-

25130

https://webmmu-paper.github.io/
https://webmmu-paper.github.io/

Benchmark Tasks

Complex Reasoning
Multi- step logical reasoning

Functional
UI Elements functions

General Understanding
General visual comprehension

HTML Generation
Generate HTML code
from mockups

Sketch2Code
Generate HTML code
from hand sketches

From Source to Target
Predict target HTML code
from edit instruction

Data & Annotation Example

Multilingual
(English, Spanish, French, German)

WebMMU Benchmark

Human Annotated
Annotated and Verif ied Samples

Multi-Doman Websites
Shopping, Booking, Marketplace, ...

Website VQA
Understanding 1

Mockup2Code
Generation

2
Web

Code Edit ing
3

Predict Code Diff
Predict diff that will patch
source into target HTML

Comprehensive TasksKey Features

<ht ml >
 <head>
 <met a char set =" ut f - 8" / >
 <met a cont ent =" wi dt h=devi ce- wi dt h,
i ni t i al - scal e=1. 0" name=" vi ewpor t " / >
 </ head>
 <body>
 <di v c l ass=" cont ai ner " >
 <nav c l ass=" navbar " >

 <di v c l ass=" navbar - i t em
has- dr opdown i s- hover abl e" >

 <a c l ass=" navbar - l i nk
i s- act i ve" >Sear ch </ a>
. . .

</ body>
</ ht ml >

 HTML Code HTML Code Edit ing Task

Instruction
Update the HTML code to create a header
with navigation elements for "Search Jobs"
and "Post a Job"

 Website Design Mockup

Mult i-Step Reasoning
Visual and Numerical

Content Layout Understanding
Image, Layout, Infographics, Tables,
Charts, Listing

Code Generation & Edit ing:
Generate HTML, CSS, JS and
Perform Edits

+ <nav r ol e=" navi gat i on" >
+ <ul i d=" mai n- nav" c l ass=" menu" >
+ <l i >
+ <a>Sear ch Jobs</ a>
+ </ l i >
+ <l i >
+ <a>Post a Job</ a>
+ </ l i >

Question: Welche Gemeinsamkeiten lassen sich zwischen
den Themen \u201eFinanzen\u201c und \u201eJob\u201c
erkennen, die im Bild dargestellt werden?

 Answer: Beide Themen helfen Familien, Ressourcen
und Zeit besser zu verwalten. ?Finanzen? fokussiert auf
Planung und Beratung, ?Job? auf die Balance zwischen
Beruf und Familie ? für ein harmonisches Familienleben.

Question: What main categories are visible in the
navigation menu at the top of the image?

 Answer: The main categories in the navigation menu
include "Desire to Have Children," "Pregnancy," "Baby,"
"Child," "Trips," "Leisure," "Health," and "Life." These
categories cover a wide range of topics related to family
and parenting.

Question: What steps must a user take, according to the
screenshot, to get more information about vacation ideas
for families in the winter?

 Answer: They must independently recognize that the
relevant section is in the right sidebar, marked with an
image and the label "Family Vacations in Winter" in
{"x1":620.77,"x2":940.96,"y1":479.91,"y2":601.26},
and describe this in their own words.

 General Image Understanding Complex Reasoning Functional Understanding

Figure 1: WebMMU Benchmark Overview. WebMMU evaluates models on diverse web-based tasks: WebQA,
Mockup2Code, and Web Code Editing. Covering 20 domains and four languages, it challenges models to answer
visual questions requiring multi-step reasoning and action grounding. It also assesses design-to-code generation
from website layouts of varying complexity and evaluates code editing for automated web development.

outs; and Web Code Editing, evaluating precise,
context-aware HTML/CSS/JavaScript code editing
for feature additions, UI tweaks, and bug fixes.

We benchmark state-of-the-art MLLMs across
three core tasks, evaluating both open-source and
closed-source models. Our results reveal signifi-
cant challenges in action grounding and complex
reasoning in the WebQA task, along with difficul-
ties in structured layout understanding and accurate
code generation for web development. While mod-
els (in particular, closed-source ones) exhibit strong
general image understanding in WebQA, they strug-
gle with complex reasoning, with most scoring
below 50% and some as low as 2% (e.g., Fuyu-
8B in English), alongside notable multilingual per-
formance drops (Figure 2). In Web Code Edit-
ing, top-performing models like Gemini-2.0-Flash
and Claude-3.5-Sonnet outperform open-source
counterparts, yet still struggle with maintaining
logical structure and syntactic correctness, high-
lighting the need for more structure-aware code-
editing techniques, particularly for complex modifi-
cations. Similarly, in Mockup2Code, models such
as OpenAI-o1 and Claude-3.5 achieve a high LLM-
as-Judge score (4/5) on simple layouts but fail with

nested element structures, revealing limitations in
UI hierarchy comprehension. These findings em-
phasize the need for improved multimodal align-
ment, UI-aware modeling, and cross-lingual robust-
ness to bridge the gap between vision-language
models and real-world web interaction.

Our contributions are as follows:

• Comprehensive Multi-Task Benchmark: A
unified evaluation suite encompassing website
VQA, web design-to-code generation, and code
editing tasks.

• Diverse, Expert-Annotated Multilingual Data:
Fine-grained question-answer pairs, code edits,
and UI design annotations across four languages,
enabling comprehensive evaluation.

• Findings: MLLMs face challenges in multi-step
reasoning and grounding for WebQA, precise
code editing, UI hierarchy understanding in web
development, and multilingual generalization.

2 Related Work

Web Understanding and Agentic MLLMs.
Multimodal learning has become central to web
UI understanding, integrating visual, textual, and

25131

structural modalities to support both web com-
prehension and agentic navigation. Early work,
such as Screen2Words (Wu et al., 2021), parsed
web screenshots into UI elements, later influenc-
ing MLLM pretraining(Lee et al., 2023). Recent
advances leverage patching strategies(Baechler
et al., 2024), grounding(Cheng et al., 2024), text-
structural alignment(Xu et al., 2024; Bai et al.,
2021), and context-aware UI representations(Kil
et al., 2024). These innovations have expanded
MLLM applications in web agents, enabling mod-
els to navigate and manipulate websites based on
user instructions (Zheng et al.; Yoran et al., 2024;
Cheng et al., 2024). However, existing benchmarks
often rely on limited artificial websites(Deng et al.,
2024; Zhou et al., 2023) or focus solely on En-
glish data(He et al., 2024; Lù et al., 2024; Zhang
et al., 2024; Chen et al., 2024a), lacking diversity
and real-world complexity. WebMMU addresses
these gaps by incorporating real-world websites
and multilingual queries, requiring models to per-
form complex reasoning and UI grounding, making
it a more comprehensive evaluation framework for
MLLM-driven web understanding and navigation.

Visual Question Answering for Web. Progress
in web-based VQA has been driven by benchmarks
like WebSRC (Chen et al., 2021b), WebQA (Chang
et al., 2022), WebQuest (Wang et al., 2024a), Vi-
sualWebBench (Liu et al., 2024), and WebWalk-
erQA (Wu et al., 2025) covering tasks such as
captioning, webpage QA, and element ground-
ing. Compared to traditional VQA on natural im-
ages (Yue et al., 2024), web-based VQA addition-
ally requires understanding structured webpage lay-
outs, the relationships between UI elements, and
their functional roles within web environments.
However, these benchmarks cover limited tasks,
domains and languages. WebMMU addresses this
gap by covering 20 domains in four languages and
adding fine-grained categories like action ground-
ing, multi-step reasoning, and general understand-
ing for more thorough evaluation.

Automatic Web Design and Development.
Code generation and editing have been widely stud-
ied across programming languages, with bench-
marks evaluating code generation (Chen et al.,
2021a; Jimenez et al., 2024; Rodriguez et al.,
2024b,a) and code editing based on natural lan-
guage instructions (Guo et al., 2024; Tian et al.,
2024). However, most previous studies focus on
general-purpose programming, neglecting web de-

sign and development. To bridge this gap, Gui et al.
(2024) and Yun et al. (2024) explore generating
HTML/CSS from web screenshots. In contrast,
WebMMU introduces Web Code Editing, which
involves multilingual tasks for modifying a web-
site’s visual and functional features based on user
instructions, better reflecting real-world web de-
velopment use cases. Additionally, WebMMU in-
cludes Mockup2Code; unlike prior work (Jain et al.,
2019; Barua et al., 2022) that relies on simplistic
and artificial sketches drawn by researchers, our
sketches are extracted from real-world websites,
preserving complex element hierarchies through
expert annotation.

3 WebMMU Benchmark

In this section, we introduce WebMMU, detailing
its data collection, annotation, and task overview.

3.1 Data Collection and Annotation

Website Selection and Data Capture. To con-
struct WebMMU, we curated a diverse set of web-
page URLs from the FineWeb dataset (Penedo
et al., 2024) and applied domain-specific heuris-
tics to ensure coverage across 20 popular, content-
rich, and feature-rich web domains (e.g., shopping,
booking, technology). We selected webpages in
four languages: English, German, French, and
Spanish – considering linguistic diversity, anno-
tator availability, and budget constraints. To cap-
ture full browsing sessions on a single webpage,
we generated collages combining multiple snap-
shots taken at different scroll depths and interaction
states within the page. A viewport-specific snap-
shot was retained alongside relevant HTML and
assets (e.g., CSS, JavaScript). Selection strictly ad-
hered to web crawling policies (e.g., robots.txt).

Annotation Process. Annotators were provided
with webpage screenshots, corresponding HTML,
and asset files and were tasked with three objec-
tives: (1) generating open-ended and multiple-
choice questions that capture real-world usage, in-
cluding highlighting, clicking, and multi-step rea-
soning; (2) creating UI mockups of varying com-
plexity and formats to support design-to-code work-
flows; and (3) formulating code edit requests that
require programming expertise. A structured train-
ing phase ensured annotation consistency and qual-
ity. Further details on annotator guidelines are
given in the Appendix A.

25132

Quality Control and Annotator Demographics.
A 100% quality assurance framework was imple-
mented in three stages: Trainer Review, where ex-
perienced annotators performed initial annotations;
Primary QA (QA1), where independent specialists
verified accuracy, completeness, and adherence
to guidelines; and Secondary QA (QA2), ensuring
consistency with expert-level annotation criteria.
The dataset was annotated by 127 professionals
across North America, South America, Europe,
Africa, and Asia, representing diverse linguistic
and domain expertise. English annotators primarily
came from Asia, German and French from Europe,
and Spanish from Latin America. Annotators
held qualifications ranging from bachelor’s to
advanced degrees for specialized tasks and were
compensated above fair market wages, ensuring
ethical labor practices and high-quality results.

3.2 Tasks Overview

3.2.1 Web Question Answering (WebQA)

The WebQA task in WebMMU evaluates models’
ability to extract, integrate, and ground structured
UI elements, numerical data, and graphical compo-
nents from web screenshots while reasoning over
hierarchical layouts, predicting actions, and ensur-
ing spatial grounding. It consists of three cate-
gories: Agenctic Action, which focuses on web
navigation and action execution without feedback
from the environment, requiring models to under-
stand UI elements like buttons, menus, and hyper-
links, identify elements (e.g., “Where can I find
the coaching plans?”), and execute actions (e.g.,

“How can I save this drill?”) while handling spatial
grounding and distinguishing static vs. interactive
elements across multilingual UIs; many of these
tasks also require coordinate-based reasoning to
localize UI components accurately. Multi-step
Reasoning involves multi-step inference, numeri-
cal calculations, and comparisons across UI com-
ponents (e.g., “If a customer were to buy all the
camera models mentioned on the bottom of this
page in Ëxpert Camera Reviewsẗable, what would
be the grand total?”), requiring models to integrate
text, numerical values, and layout structures from
structured web content, where hierarchical reason-
ing is essential despite being constrained to single-
frame snapshots; and General Visual Comprehen-
sion, which assesses a model’s ability to extract and
synthesize structured and unstructured data from
web screenshots, including OCR-extracted text, im-

ages, graphical elements, and UI components (e.g.,
“How many brand logos are in the Featured Brands
section?”), emphasizing semantic comprehension
beyond standard OCR-based extraction.

While existing web VQA benchmarks such as
WebSRC (Chen et al., 2021b), WebQA (Chang
et al., 2022), and VisualWebBench (Liu et al.,
2024) provide useful tasks for information
extraction or element grounding, they often focus
on isolated subtasks, rely on static screenshots or
HTML-only views, and primarily target English
content. In contrast, WebMMU integrates action
understanding, spatial grounding, and multi-step
reasoning across four languages, making it a more
comprehensive testbed for evaluating multilingual
and agentic capabilities of MLLMs in real-world
web environments. Unlike prior benchmarks, Web-
MMU includes questions with coordinate-based
UI element localization, logical reasoning across
DOM hierarchies, and multilingual UI semantics;
all within a single benchmark and on realistic,
domain-diverse web data.

3.2.2 Mockup2Code
The Mockup2Code task in WebMMU advances
design-to-code by translating hand-drawn wire-
frames and high-fidelity digital mockups into struc-
tured code. Unlike text-based UI generation, it
evaluates a model’s ability to interpret spatial hi-
erarchies and UI structures from visual inputs.
The dataset includes low-fidelity sketches and digi-
tally created mockups, challenging models to gen-
eralize across abstraction levels in web design
while tackling component recognition, spatial align-
ment, and structured code synthesis. Unlike prior
design-to-code datasets, WebMMU incorporates
real-world web layouts, ensuring models gener-
ate syntactically correct and semantically mean-
ingful code aligned with modern web develop-
ment practices. Prior design-to-code efforts like
Pix2Code (Beltramelli, 2018), Sketch2Code (Jain
et al., 2019), and WebSight (Laurençon et al., 2024)
typically rely on synthetic or simplified UI inputs,
often in English, and lack the layout depth and
language variation present in real-world designs.
WebMMU advances this space by incorporating
expert-verified mockups drawn from real websites,
supporting multilingual content, and emphasizing
nested UI hierarchies. While prior datasets assess
UI generation in isolation, our task evaluates mod-
els’ ability to handle real, noisy design inputs and
produce web-standard HTML/CSS outputs under

25133

spatial and structural constraints, providing a more
realistic and multilingual benchmark for layout-to-
code modeling.

3.2.3 Web Code Editing

Web Code Editing is a novel task, which evalu-
ates a model’s ability to modify webpage code
while preserving functional and structural integrity,
given a screenshot, source code, and a user edit
request. To perform well, models must complete
three sub-tasks: (1) understand the provided in-
puts, including the webpage codebase, visual ele-
ments in the screenshot, and the requested modifi-
cation; (2) identify the relevant code snippets that
require modification; and (3) generate the appropri-
ate HTML, CSS, or JavaScript edits to implement
the requested change. These sub-tasks require an
advanced understanding of webpage development
and realistic code editing capabilities. The modi-
fication requests span a broad range of visual and
functional changes. Visual edits include adjusting
font size and colors, repositioning elements, and
adding headers or footers. Functional modifica-
tions involve adding interactive components such
as buttons or forms and enhancing user experience
with dynamic UI elements. The task is multilin-
gual, aligning with the broader scope of WebMMU.
Given the length of webpage source code, models
are prompted to output only the necessary code dif-
ferences rather than rewriting the entire codebase.
This improves both practicality and efficiency, en-
suring that the generated edits remain concise and
targeted. More details on the prompt formulation
are provided in Appendix C.2. Existing bench-
marks such as CodeEditorBench (Guo et al., 2024),
InstructCoder (Li et al., 2023), and CanItEdit (Cas-
sano et al., 2023) evaluate general-purpose code
editing in languages like Python or JavaScript, of-
ten lacking visual context or domain specificity.
In contrast, WebMMU focuses on precise modifi-
cations to HTML/CSS/JS code grounded in user-
facing web interfaces. It uniquely incorporates
multilingual edit instructions and aligns edits with
visual page cues, simulating realistic web develop-
ment workflows. Unlike benchmarks driven purely
by unit test correctness, WebMMU emphasizes
functional and structural preservation within ex-
isting codebases, thereby offering a more targeted
and practical benchmark for UI-aware and multi-
lingual web code editing.

En Es De Fr Total
Website Images 834 418 416 391 2059
WebQA 1976 1521 1201 1404 6102
Mockup2Code 180 93 85 78 436
Web Code Editing 886 252 226 238 1602

Table 1: Dataset Statistics. Language-wise dataset
breakdown across tasks. We report the number of web
images per language. English (En), Spanish (Es), Ger-
man (De) and French (Fr).

Task Metric Evaluation Details

WebQA LLM-as-
Judge

Accuracy; 0 (incorrect) / 1 (cor-
rect).

Mockup2Code LLM-as-
Judge

Layout fidelity on a 1-5 scale
(layout, spacing, grid).

Code Editing
BLEU, Tree-
BLEU

Design and structural correct-
ness.

LLM-as-
Judge

Functional correctness on a 1-5
scale.

Table 2: Evaluation Metrics used in WebMMU.

3.3 Dataset Statistics

WebMMU covers four languages: English, Span-
ish, German, and French (see Table 1). It con-
tains 2059 webpage images from domains like e-
commerce, education, news, and finance. It in-
cludes 6102 WebQA samples, 436 Mockup2Code
instances, and 1602 Web Code Editing cases. Un-
like previous datasets that focus on predefined UI
layouts, WebMMU uses full-page snapshots, in-
cluding dynamic content, nested structures, and
multimodal dependencies. A small portion of im-
ages consist of multiple panels combined into a sin-
gle image, capturing dense information and repli-
cating browsing sessions.

4 Evaluation

We evaluate state-of-the-art MLLMs across
both closed-source and open-source categories.
Model inference for WebQA, Mockup2Code, and
Web Code Editing follows standardized prompts
(Appendix D). Evaluation combines LLM-as-
Judge (Zheng et al., 2023) scoring with established
automatic metrics, as summarized in Table 2.

LLM-as-Judge is used to evaluate WebQA,
where model responses receive binary correctness
scores (0 or 1) based on predefined criteria for se-
mantic accuracy and reasoning completeness (Ap-
pendix D.3). This structured approach ensures con-
sistency and prevents arbitrary grading. Inspired
by automated evaluation in image synthesis (Ku
et al., 2023), Mockup2Code uses LLM-as-Judge,

25134

Model
English French German Spanish

Claude3.5 Sonnet 48.1 2.9 47.1 48.2 14.6 46.3 34.7 16.0 41.0 62.4 16.1 49.3
Gemini-2.0-Flash 44.3 1.6 47.6 41.4 10.8 42.1 29.8 12.1 41.7 51.1 11.1 44.2
OpenAI-o1 68.2 4.9 72.7 55.5 12.3 69.6 46.4 14.9 49.6 66.0 15.3 60.9

Phi3.5-VI-4b (Abdin et al., 2024) 8.0 0.8 15.7 2.0 6.2 21.6 6.9 10.9 21.4 9.9 4.1 23.7
UI-Tars-7b (Qin et al., 2025) 17.3 0.5 42.3 9.4 4.1 38.0 9.6 5.6 38.5 11.9 2.3 33.2
Molmo-7b (Deitke et al., 2024) 16.5 0.0 40.6 6.4 4.2 49.6 5.1 9.6 29.1 6.5 4.3 27.7
Qwen2VL-7B (Wang et al., 2024b) 19.3 1.3 43.4 14.9 8.5 37.7 19.4 11.0 36.4 17.2 8.4 38.9
Llava-OV-7B (Li et al., 2024a) 18.9 2.3 39.9 8.7 8.3 36.3 12.0 10.6 35.6 7.5 6.8 33.2
Qwen2.5VL 7B (Bai et al., 2025) 35.2 30.8 51.4 27.2 25.4 41.6 23.6 22.7 40.6 32.6 20.5 44.8

Fuyu-8b (Bavishi et al., 2023) 0.7 0.3 5.7 0.0 0.6 5.1 0.2 0.6 2.5 0.2 0.2 3.3
Internvl2.5-8b (Chen et al., 2024b) 23.3 1.4 36.2 13.1 6.0 30.5 15.7 10.9 34.8 14.2 6.2 33.8
Pixtral-12b (Agrawal et al., 2024) 24.5 2.9 38.5 19.2 10.1 53.5 12.8 14.2 26.4 21.6 13.7 32.3
Llama-3.2-11B-Vision (Dubey et al., 2024) 29.9 1.8 38.8 11.0 8.0 33.3 17.9 12.2 36.6 20.3 5.8 34.7

Llava-OV-72B (Li et al., 2024a) 31.7 1.9 40.2 16.4 8.2 39.0 23.6 11.7 42.4 23.3 7.4 39.2
Molmo 72B (Deitke et al., 2024) 25.8 1.1 40.1 18.5 7.1 40.4 23.3 12.0 36.1 26.0 7.5 38.6
Qwen2VL-72B (Wang et al., 2024b) 33.7 1.0 44.2 28.1 11.6 42.0 28.2 11.8 42.9 37.5 10.3 43.6
Internvl2.5-38b (Chen et al., 2024b) 33.6 1.4 45.0 30.2 9.9 47.9 28.1 13.4 42.5 36.7 11.8 45.7
Qwen2.5VL 72B (Bai et al., 2025) 43.4 37.1 52.8 36.8 36.5 47.9 31.2 28.7 44.5 44.9 41.4 49.5

Table 3: WebQA Performance. Model accuracy (%) by question type and language. : Multi-step Reasoning,
: Agenctic Action, : General Visual Comprehension. Best models per size category are in bold. Model sizes:

blue (<8B params), orange (8–12B), green (>12B), gray proprietary.

assessing the alignment between input sketches
and rendered outputs across three key dimensions:
layout structure, spacing, and grid consistency (Ap-
pendix D.2). Each aspect follows well-defined scor-
ing guidelines, ensuring reproducible and fair as-
sessments. For Web Code Editing, we evaluate
both structural correctness and functional accu-
racy. The former is measured using BLEU (Pap-
ineni et al., 2002) and TreeBLEU (Gui et al., 2024),
ensuring syntactic validity and adherence to coding
conventions. The latter relies on LLM-as-Judge,
where functional equivalence between reference
and predicted edits is rated on a 1-5 scale. To avoid
arbitrary scoring, rating criteria explicitly define
correctness levels based on functional preservation
and intended user modifications. Since web func-
tionalities can be implemented in multiple ways,
the evaluation accounts for semantically valid alter-
natives, preventing undue penalization of syntacti-
cally different but functionally correct edits. For all
LLM-as-Judge evaluations, we use GPT4o-1120,
which has demonstrated strong alignment with hu-
man judgment and diverse scoring behavior (Feizi
et al., 2025), ensuring robustness across tasks.

5 Results

5.1 WebQA Performance

Table 3 presents model accuracy for three ques-
tion types. Closed-source models, such as Gemini
2.0 Flash and Claude 3.5 Sonnet, outperform open-
source alternatives across all tasks but still struggle
with agentic action, particularly in predicting spa-
tial coordinates for interactive elements. Among
open-source models, larger architectures (>30B
parameters) like Qwen2.5VL-72B and Internvl2.5-
38B perform better in general image understanding
and UI recognition, while smaller models (<8B)
exhibit poor generalization across tasks.

Performance varies by question type. General
image understanding is easiest, relying mainly on
visual recognition. Complex reasoning is harder,
with most models scoring below 50% and some
as low as 2% (e.g., Fuyu-8b in English), show-
ing difficulties in retrieving and reasoning over
structured webpage content. Agentic action is the
hardest, with top models rarely surpassing 10%
accuracy, as it requires precise spatial ground-
ing, such as recognizing interactive elements (e.g.,
“About Me” in a menu) and predicting approxi-
mate bounding boxes. While many models detect
interactive parts, they struggle with localization,

25135

From the information provided in the screenshot, if one product has 11
recent reviews and another has 34 recent reviews, both priced at $20 per
unit, what is the revenue difference after applying the sales uplift for
reviews, assuming each sold 100 units before the reviews?
Based on the information from the eighth point at the top of the article, businesses
with more than 9 recent reviews (posted within the past 90 days) earn 52% more
than average, the first product fits this statement. Again, the same list's ninth point
mentions that products with more than 25 recent reviews (posted within the past
90 days) earn 108% more than average, the second product fits this description.
Therefore, assuming both products initially had 100 products sold at $20 each
(resulting in $2000 initial revenue each), the first product would see a revenue
increase of $1040 (52% of $2000), totaling $3040, and the second product with 34
reviews would see an increase of $2160 (108% of $2000), totaling $4160. The
difference in revenue between the two would be $1120 ($4160-$3040).

How many people are seen sitting in the image of the article titled "First
"Tumo" Center to open in South America: Zhanna Andreasyan receives
the Minister of Education of Buenos Aires" in the screenshot? A. 5, B. 4, C.
1, D. 6
D. 6

If the viewers are done reading the
article in this screenshot and want to
move to the next article, where can
they guide themselves? If the viewers
are done reading the article and want to
move to the next article, they can guide
themselves to the option "next post"
{"x1":442.03,"x2":820.94,"y1":127.54,"y2":252.09}
at the top-right of the webpage.

How can the user text in real-time with this website officials for information
on this provided screenshot?
The user can go towards the bottom right corner of this site and click the chat icon
located in {"x1":1163.5, "x2":1241.02, "y1":1240.31, "y2":1300.47} coordinates.

Model Response: To text in real-time with the website officials for
information, the user can use the chat feature located at the bottom right of
the screenshot. The bounding box coordinates for the chat icon are [930,
830, 970, 870].

From the information on this webpage, how much of each ingredient will I need
with 4lb of cooked pasta?
The original recipe , found under the \"You will need:\" heading in the main body of the
post, is for 1lb of cooked pasta. To make it for 4lb, you'll need to multiply each ingredient
by 4. Here's the breakdown: Cooked pasta: 1 lb * 4 = 4 lb. Pasta sauce: 1 jar * 4 = 4 jars.
Ground beef: 1 lb * 4 = 4 lb. Cream of mushroom soup: 1 can * 4 = 4 cans. Milk (or water):
1/4 cup * 4 = 1 cup. Shredded cheese: 1/2 cup * 4 = 2 cups. Therefore, for 4lb of cooked
pasta, you will need 4 lb of cooked pasta, 4 jars of pasta sauce, 4 lb of ground beef (or
chicken/turkey), 4 cans of cream of mushroom soup, 1 cup of milk (or water), and 2 cups
of shredded cheese.

Multi-Step Reasoning Multi-step Reasoning

Functional General Image Understanding

Model Response: B. 4

Model Response: To navigate to the next
article, the viewers should look for the "Next
Post" link located at the top of the page,
near the "Previous Post" link. This link is
typically positioned just below the article's
title and above the main content.

Model Response: To make the pasta bake with 4lb of cooked pasta, you will
need the following ingredients:
- 1 jar of pasta sauce (make your own pasta sauce with this simple recipe)
- 1lb ground beef, browned (use ground chicken or turkey)
- 1 can cream of mushroom soup (make this simple substitute from A Simple
Frugal Life)
- 1/4 milk (use water if you prefer to leave out the milk or can't do dairy)
- 1/2 cup shredded cheese, approximately (you can omit the cheese if you like)
The bounding box coordinates for the ingredient list are [148, 644, 346, 828].

Model Response: To solve this problem, we need to extract the following
information from the screenshot:1. The number of recent reviews for each
product: Product 1: 11 recent reviews Product 2: 34 recent reviews 2. The
sales uplift percentage for businesses with more than 25 recent reviews:
108% uplift Now, let's calculate: 1. Revenue before reviews: Product 1: 110
units * $20 = $2,200 Product 2: 134 units * $20 = $2,6802. Revenue after
applying the sales uplift: Product 1: $2,200 * 1.108 = $2,437.60 Product 2:
$2,680 * 1.108 = $3,004.64 3. Revenue difference: $3,004.64 - $2,437.60 =
$567.04 Therefore, the revenue difference after applying the sales uplift for
reviews is $567.04. bounding box coordinates: [44.9, 8.1, 45.3, 15.1]

Figure 2: Failure Cases in WebQA for one of the top-performing open-source model (InternVL-38B). Most
prominent errors occur in grounding actions (e.g., identifying clickable link coordinates) and multi-step reasoning
tasks, such as detailed step-by-step calculations.

resulting in low scores.
Error Analysis. Figure 2 reveals common fail-

ures: models often miscalculate numbers or fail
in multi-step reasoning. In agentic action, inac-
curate bounding boxes hurt performance. Multi-
lingual generalization also remains weak despite
resource-rich languages. These issues highlight the
need for better spatial reasoning, numerical under-
standing, and cross-lingual adaptation to close the
gap between vision-language models and real web
interaction.

5.2 Mockup2Code Generation

Figure 3 evaluates the Mockup2Code task,
reporting scores for each dimension and overall
performance. Open MLLMs such as Phi3.5-VI,
Fuyu-8B, and GLM4V-9B generally perform
poorly across all metrics. Notably, Phi3.5-VI and
Fuyu-8B score nearly 1 across all dimensions, indi-
cating a complete failure on this task. Nevertheless,
performance improves with model scale. For
instance, Qwen2VL’s score rises from 1.90 to 3.39
when scaling from 7B to 72B, while InternVL2.5
improves from 2.34 to 3.61 when scaling from
8B to 38B. Additionally, Pixtral-12B outperforms
all 7B/8B models. Still, even the best open
MLLMs struggle, especially with complex designs
– InternVL2.5-38B, the highest performer, scores
only 2.98 out of 5. In contrast, proprietary models
like Claude-3.5, Gemini-2.0-Flash, and OpenAI-o1
perform significantly better, particularly on simple
UI designs, where they achieve LLM-as-Judge
scores above 4. However, their performance
declines in complex variants, with top scores

reaching only 3.4 out of 5. Across all evaluation
dimensions, both proprietary and large-scale
open MLLMs struggle most with spacing, which
requires accurately setting element dimensions and
margins based on sketch input.

Case Analysis. Figure 5 shows both success
and failure cases of the top model OpenAI-o1 on
Mockup2Code. OpenAI-o1 handles simple, flat
layouts well, even with moderate element variety
and count. However, it struggles with nested struc-
tures, often misaligning and failing to preserve ele-
ment hierarchy and spacing, especially when <p>
and <a> tags are nested within <div>. Similar is-
sues occur in other samples and models, as seen in
Figures 14 and 16.

5.3 Code Editing Performance

Figure 4 shows Web Code Editing results evaluated
by LLM-as-Judge (metrics in Table 7). Propri-
etary models achieve the highest functional accu-
racy, but only marginally outperform large open-
source models, indicating both struggle to pre-
serve functional correctness alongside syntactic
consistency. Smaller models like Phi3.5-VI and
Fuyu-8b perform worst, often failing to generate
valid code (score <1.5). Performance improves
with size; Qwen2VL-72B and InternVL2.5-38B
rival closed-source models. Yet, even the strongest
exhibit clear limitations producing structurally cor-
rect edits that fully preserve functionality. Multilin-
gual performance is stable for top models but more
variable for smaller ones, reflecting challenges in
adapting edits across languages. Crucially, all mod-
els – especially open-source – fail to automatically

25136

Figure 3: Mockup2Code Performance. LLM-as-Judge evaluation scores for simple and complex UI mockups
across three key dimensions: alignment, layout, and spacing, along with overall performance. Higher scores indicate
better fidelity between the generated and reference web designs. Closed-source models outperform open-source
alternatives, particularly in complex cases, yet challenges remain in high-fidelity code generation.

generate valid patch files for seamless source in-
tegration. Despite access to full source files, none
produced patch content directly usable without
manual fixes, making human oversight essential
and highlighting a core challenge in automating
web code edits.

5.4 Metric-Human Alignment

We sampled 100 examples per task and enlisted
PhD students and researchers as annotators to
evaluate alignment between human judgments and
the automatic metric (LLM judge). For WebQA,
humans agreed with the LLM judge in 89% of
cases. Most disagreements involved functional
questions, where the judge required exact bounding
boxes, but humans were more lenient – accepting
answers that correctly identified the clickable link
location without a precise bounding box (e.g., the
“about us” link in the navbar). We consider the
judge’s stricter criteria correct since models were
prompted to provide exact bounding boxes for such
questions (see Appendix C.1). For Mockup2Code
Spearman correlations were 0.39 (layout), 0.33
(spacing), and 0.46 (alignment), averaging 0.43
overall. Pearson correlations were slightly higher:
0.42 (layout), 0.41 (spacing), 0.48 (alignment),
with an overall average of 0.50. These correlations,
while moderate, reflect the task’s subjectivity and
support the reliability of the automatic evaluation.
For Web Code Editing, expert annotators validated

the LLM judge’s assessments with 91% accuracy,
demonstrating both the reliability of the evaluation
and the validity of the associated judge’s rationales
assigned.

6 Conclusion

WebMMU evaluates MLLMs on a real-world, chal-
lenging web question answering task and two code
generation tasks: front-end design and code edit-
ing. Our tasks cover four languages and a wide
variety of domains, sourced from human annota-
tors. Our results show that Web VQA models strug-
gle with interpreting complex UIs, reasoning, and
multilingual generalization. Code editing models
often generate syntactically correct but logically
inconsistent code. UI generation models face a
trade-off between precise element placement and
preserving the original design’s meaning. These
challenges underscore the need for enhanced multi-
modal alignment, UI-aware architectures, and ro-
bust cross-lingual adaptation to develop future web
agents capable of effectively performing a wide
range of human tasks on the web.

Limitations While WebMMU provides a com-
prehensive evaluation of web-based AI reasoning
and code generation, it has several limitations.
First, it is restricted to single-screenshot web rea-
soning, capturing static snapshots rather than sup-
porting interactive environments or multi-turn nav-

25137

1

2

3

4

LL
M

-a
s-

Ju
dg

e
Sc

or
e

1.01 1.05

1.60

2.34
2.19

2.86

2.04

3.85

2.20

3.37

4.26

4.62

3.26

1.01 1.00

1.55

2.31

1.93

2.66

1.72

3.61

1.95

3.22

4.35 4.39

3.45

1.00 1.00

1.39

2.07

1.65

2.33

1.85

3.54

1.94

3.05

4.28

4.45

3.43

1.00 1.02

1.46

2.18

1.80

2.72

1.90

3.62

1.96

2.99

4.39
4.47

3.79

Phi3.5 VI
Fuyu-8B

Molmo-7B
Glm-4V-9B

LLaVa-OV-7B
Pixtral-12B

InternVL-8B
InternVL-38B

Qwen2VL-7B
Qwen2VL-72B

GPT-4o
Claude 3.5

Gemini 2.0 Flash

Languages
English French German Spanish

Figure 4: Performance on Code Edits. LLM-as-Judge metric, on a scale of 1-5, used to evaluate functional
correctness of code edits. All models, including closed-source models, struggle with the Web Code Editing task of
WebMMU. Refer to Table 7 for full results, including BLEU and TreeBLEU scores, of all models.

OpenAI-o1

Original Page Mockup Image Generation

LLM-as-Judge Evaluation

Alignment: 5. The rendered design achieves perfect
alignment with the sketch - text elements and
sections are centered and positioned exactly
as specified.

Layout: 5. The structure mirrors the input sketch
flawlessly.

Spacing: 5. Spacing and proportions are consistent and
balanced.

Overall Score: 5

Original Page Mockup Image Generation

LLM-as-Judge Evaluation

Alignment: 2. Key elements (e.g., input box)
misaligned , deviating from intended grid.

Layout: 2. Two -column structure poorly represented ,
essential sections missing/merged.

Spacing: 2. Uneven element distribution results in
inconsistent spacing and imbalance.

Overall Score: 2

Figure 5: Success (top) and failure (bottom) cases for Mockup2Code Generation from OpenAI-o1.

igation. Although multi-step reasoning tasks are
included, they rely solely on single-image (includ-
ing multiple panels of a browsing session), limiting
evaluation in dynamic web exploration. Second,
linguistic coverage is constrained to four languages:
English, French, German, and Spanish; due to an-
notator availability, which may limit generaliza-
tion to underrepresented languages and regional
web structures. Third, while Mockup2Code and
Web Code Editing cover core web technologies
such as HTML, CSS, and JavaScript, modern fron-
tend frameworks like React, Angular, and Vue.js
are not explicitly evaluated. Finally, the automatic
LLM judge metric, though reliable and fast, does
not fully replicate human evaluation. Future work
could explore improved automatic metrics or hy-
brid evaluation approaches to better capture nu-
anced human judgments.

Ethical Considerations WebMMU is a bench-
marking resource designed strictly for research pur-
poses in multimodal and multilingual web under-
standing and generation. All tasks are created by
human annotators using everyday web content and
undergo thorough validation, so we do not antici-
pate misuse or harmful content. Compared to prior
work, WebMMU expands evaluation across mul-
tiple languages, though coverage remains limited
by annotator availability. To the best of our knowl-
edge, the dataset contains no NSFW or harmful
content. We commit to promptly removing any
data upon valid requests once publicly released.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat

25138

Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly ca-
pable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna,
Baptiste Bout, Devendra Chaplot, Jessica Chud-
novsky, Diogo Costa, Baudouin De Monicault,
Saurabh Garg, Theophile Gervet, Soham Ghosh,
Amélie Héliou, Paul Jacob, Albert Q. Jiang, Kartik
Khandelwal, Timothée Lacroix, Guillaume Lample,
Diego Las Casas, Thibaut Lavril, and 23 others. 2024.
Pixtral 12b. Preprint, arXiv:2410.07073.

AI Anthropic. 2024. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3(6).

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and 1 oth-
ers. 2021. Uibert: Learning generic multimodal rep-
resentations for ui understanding. arXiv preprint
arXiv:2107.13731.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, and 1 others. 2025. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923.

Somoy Subandhu Barua, Imam Mohammad Zulkar-
nain, Abhishek Roy, Md Golam Rabiul Alam, and
Md Zia Uddin. 2022. Sketch2fullstack: Generating
skeleton code of full stack website and application
from sketch using deep learning and computer vision.
arXiv preprint arXiv:2211.14607.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne,
Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. 2023. Introducing our multimodal
models.

Tony Beltramelli. 2018. pix2code: Generating code
from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI symposium on engi-
neering interactive computing systems, pages 1–6.

Federico Cassano, Luisa Li, Akul Sethi, Noah
Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Car-
olyn Jane Anderson, and 1 others. 2023. Can it
edit? evaluating the ability of large language models
to follow code editing instructions. arXiv preprint
arXiv:2312.12450.

Yingshan Chang, Mridu Narang, Hisami Suzuki, Gui-
hong Cao, Jianfeng Gao, and Yonatan Bisk. 2022.
Webqa: Multihop and multimodal qa. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16495–16504.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang,
Liuyi Chen, Yilin Bai, Zhigang He, Chenlong Wang,
Huichi Zhou, Yiqiang Li, and 1 others. 2024a. Gui-
world: A dataset for gui-oriented multimodal llm-
based agents. arXiv preprint arXiv:2406.10819.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021a. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xingyu Chen, Zihan Zhao, Lu Chen, Jiabao Ji, Danyang
Zhang, Ao Luo, Yuxuan Xiong, and Kai Yu. 2021b.
Websrc: A dataset for web-based structural reading
comprehension. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4173–4185.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, and 1 others. 2024b. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185–24198.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
Jiasen Lu, Taira Anderson, Erin Bransom, Kiana
Ehsani, Huong Ngo, YenSung Chen, Ajay Patel,
Mark Yatskar, Chris Callison-Burch, and 32 others.
2024. Molmo and pixmo: Open weights and open
data for state-of-the-art multimodal models. arXiv
preprint arXiv:2409.17146.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, and et al. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Aarash Feizi, Sai Rajeswar, Adriana Romero-Soriano,
Reihaneh Rabbany, Spandana Gella, Valentina Zant-
edeschi, and João Monteiro. 2025. Pairbench: A
systematic framework for selecting reliable judge
vlms. arXiv preprint arXiv:2502.15210.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang,
Yi Su, Shaoling Dong, Xing Zhou, and Wenbin Jiang.
2024. Vision2ui: A real-world dataset with layout
for code generation from ui designs. arXiv preprint
arXiv:2404.06369.

25139

https://arxiv.org/abs/2410.07073
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,
Ruibo Liu, Yue Wang, and 1 others. 2024. Codeedi-
torbench: Evaluating code editing capability of large
language models. arXiv preprint arXiv:2404.03543.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024. Webvoyager: Building an end-to-
end web agent with large multimodal models. arXiv
preprint arXiv:2401.13919.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh
Kapoor, and Shashwat Gulyani. 2019. Sketch2code:
transformation of sketches to ui in real-time
using deep neural network. arXiv preprint
arXiv:1910.08930.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In ICLR.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang
Deng, Yu Su, and Wei-Lun Chao. 2024. Dual-view
visual contextualization for web navigation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14445–14454.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. 2024. Visualwebarena: Evaluating mul-
timodal agents on realistic visual web tasks. arXiv
preprint arXiv:2401.13649.

Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and
Wenhu Chen. 2023. Viescore: Towards explainable
metrics for conditional image synthesis evaluation.
arXiv preprint arXiv:2312.14867.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset. arXiv preprint
arXiv:2403.09029.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi-
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur-
vashi Khandelwal, Peter Shaw, Ming-Wei Chang,
and Kristina Toutanova. 2023. Pix2struct: Screen-
shot parsing as pretraining for visual language under-
standing. In International Conference on Machine
Learning, pages 18893–18912. PMLR.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang,
Yanwei Li, Ziwei Liu, and 1 others. 2024a. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Kaixin Li, Qisheng Hu, Xu Zhao, Hui Chen, Yuxi Xie,
Tiedong Liu, Qizhe Xie, and Junxian He. 2023. In-
structcoder: Instruction tuning large language models
for code editing. arXiv preprint arXiv:2310.20329.

Ryan Li, Yanzhe Zhang, and Diyi Yang. 2024b.
Sketch2code: Evaluating vision-language models for
interactive web design prototyping. arXiv preprint
arXiv:2410.16232.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam,
Graham Neubig, Yuanzhi Li, and Xiang Yue. 2024.
Visualwebbench: How far have multimodal llms
evolved in web page understanding and grounding?
arXiv preprint arXiv:2404.05955.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, and 1 others. 2025. Ui-
tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326.

Juan Rodriguez, Xiangru Jian, Siba Smarak Panigrahi,
Tianyu Zhang, Aarash Feizi, Abhay Puri, Akshay
Kalkunte, François Savard, Ahmed Masry, Shravan
Nayak, Rabiul Awal, Mahsa Massoud, Amirhossein
Abaskohi, Zichao Li, Suyuchen Wang, Pierre-André
Noël, Mats Leon Richter, Saverio Vadacchino, Shub-
bam Agarwal, and 24 others. 2024a. Bigdocs: An
open and permissively-licensed dataset for training
multimodal models on document and code tasks.
arXiv preprint arXiv:2412.04626.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal,
Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Ped-
ersoli. 2024b. Starvector: Generating scalable vec-
tor graphics code from images and text. Preprint,
arXiv:2312.11556.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan
Liu, Zhiyuan Liu, and 1 others. 2024. Debugbench:
Evaluating debugging capability of large language
models. arXiv preprint arXiv:2401.04621.

Maria Wang, Srinivas Sunkara, Gilles Baechler, Jason
Lin, Yun Zhu, Fedir Zubach, Lei Shu, and Jindong

25140

https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://arxiv.org/abs/2312.11556
https://arxiv.org/abs/2312.11556

Chen. 2024a. Webquest: A benchmark for multi-
modal qa on web page sequences. arXiv preprint
arXiv:2409.13711.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024b.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others.
2024c. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In
The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P
Bigham. 2021. Screen parsing: Towards reverse en-
gineering of ui models from screenshots. In The 34th
Annual ACM Symposium on User Interface Software
and Technology, pages 470–483.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang,
Zekun Xi, Runnan Fang, Deyu Zhou, Pengjun
Xie, and Fei Huang. 2025. Webwalker: Bench-
marking llms in web traversal. arXiv preprint
arXiv:2501.07572.

Linhui Xu, Yawen Zhang, Yawen Li, Yawen Zhang,
and Yawen Li. 2024. Hierarchical multimodal fine-
grained modulation for visual grounding. In Proceed-
ings of the 32nd ACM International Conference on
Multimedia, pages 1–9. ACM.

Ori Yoran, Samuel Amouyal, Chaitanya Malaviya, Ben
Bogin, Ofir Press, and Jonathan Berant. 2024. Assis-
tantbench: Can web agents solve realistic and time-
consuming tasks? In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8938–8968.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, and 1 others. 2024.
Mmmu: A massive multi-discipline multimodal un-
derstanding and reasoning benchmark for expert agi.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9556–
9567.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mo-
hammad Qazim Bhat, Yongxin Wang, Zutao
Jiang, Mingkai Deng, Jinhong Wang, Tianhua Tao,
Junbo Li, and 1 others. 2024. Web2code: A
large-scale webpage-to-code dataset and evaluation
framework for multimodal llms. arXiv preprint
arXiv:2406.20098.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu.
2024. Mmina: Benchmarking multihop multimodal
internet agents. arXiv preprint arXiv:2404.09992.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. Gpt-4v (ision) is a generalist web agent, if
grounded. In Forty-first International Conference on
Machine Learning.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, and 1 others.
2023. Webarena: A realistic web environment
for building autonomous agents. arXiv preprint
arXiv:2307.13854.

A Human Annotator Instruction

A.1 WebQA Annotations Guideline
You will be provided with screenshots of websites.
Your task is to create challenging questions that test
deep understanding and reasoning about the image
content. Each question should fall into one of the
three categories described below, and be designed
to encourage a detailed analysis of the screenshot.
Important Note: If a screenshot lacks sufficient
content or context for creating questions in any
of the categories, mark the image as “Not enough
content” and move to the next.

Agenctic Action Purpose: Focus on the interac-
tive elements and navigation aspects of the website.
These questions should prompt the viewer to inter-
pret or locate specific functional elements, like but-
tons, menus, or links, and understand their purpose.
Example: “Where would a user click to access
their saved items?” Guidelines: Create questions
that require the viewer to understand how different
elements work or what actions they might trigger.
Avoid overly simple questions that don’t involve
interaction or navigation. Do provide the bounding
box location or hint on how to navigate.

Multi-step Reasoning Purpose: These questions
should require multi-step thinking, involving the
analysis of multiple parts of the image, compar-
isons, or drawing inferences from the content. Ex-
ample: “How does the timing of updates in dif-
ferent news sources on this page provide insights
into the event’s coverage?” Guidelines: Formulate
questions that connect elements across the image
or require interpretation of trends, relationships, or
content hierarchy. These should not be answerable
from a single part of the image. If answerable, then

25141

https://doi.org/10.1145/3664647.3681071
https://doi.org/10.1145/3664647.3681071

should be difficult e.g. solving a math question (see
example) or asking what will happen if the cart is
doubled (see example).

General Visual Comprehension Purpose: As-
sess the viewer’s ability to identify and comprehend
basic information displayed in the image, such as
titles, labels, or the overall structure. Example:
“What is the main title or header of this page?”
Guidelines: Keep these questions straightforward,
focusing on textual or visual elements that convey
the primary purpose or information displayed. Aim
for questions that require attention to specific de-
tails rather than general impressions. Highlight
the region of answer with bounding box if needed
(upto your choice).

A.2 Performing Code Editing on Websites

Understanding the Scope of Edits Before start-
ing, identify the specific task or issue with clarity
and precision. Ensure you fully understand the
requested visual or functional changes before pro-
ceeding. Examples of tasks by difficulty are out-
lined below

Basic Changes

• Change the button color from blue to green.

• Fix a typo in the homepage headline.

• Remove the underlined style from all hyper-
links.

• Add a border to images in the gallery section.

Intermediate Enhancements

• Replace the navigation bar font with ’Roboto’
and ensure it matches the design mockup.

• Add a hover effect to all buttons, changing
their background to light gray.

• Update the footer links to open in a new tab
and add appropriate ARIA labels for accessi-
bility.

• Create a consistent color scheme for all head-
ings on the page.

Advanced Functional or Design Tasks

• Add a new section to the homepage to show-
case recent blog posts, styled to match the
website theme.

• Refactor the JavaScript for the carousel to im-
prove performance and fix the sliding bug.

• Optimize the CSS for faster page load times
by combining redundant rules and removing
unused classes.

• Implement a lightbox feature for viewing im-
ages in the gallery.

• Create a visually engaging header with a full-
width background image and overlay text for
the homepage.

• Design a custom 404 error page with an ani-
mated illustration and a link back to the home-
page.

• Develop a visually interactive pricing table
with hover effects to highlight selected op-
tions.

• Redesign the "About Us" section using a card
layout for team member profiles, including
images and bios.

• Update the contact form with a modern design,
including floating labels and inline validation.

• Animate the scrolling experience for anchor
links to smoothly transition between sections
of the page.

Key Principles: a) Focus on Instructions. b)
Only address the requested tasks and avoid unre-
lated changes unless explicitly instructed. c) Docu-
ment Changes Clearly and d) For every modifica-
tion, provide a clear record that includes:

• What was changed?

• Why was it changed?

• The location of the change (e.g., file name and
line numbers, or element location in the inline
HTML).

A.3 Performing Sketch Task
The distinction between simpler and more com-
plex sketches typically depends on the number of
components and the level of detail in the specifi-
cations. Simpler sketches usually have fewer ele-
ments (e.g., basic shapes, minimal labels), while
complex sketches include multiple, interrelated
components and detailed instructions (e.g., spec-
ifying dimensions, class names like ‘div nav,’ or

25142

explicit layout details). To differentiate, consider:
Simple: Basic wireframes or mockups with min-
imal annotations (e.g., a rectangle representing
a button). Complex: Detailed designs specify-
ing attributes (e.g., ‘button 200px wide, div with
class=“nav”’) or involving hierarchical or nested
components.

B Task Samples

Tables 4, 5, and 6 present representative exam-
ples from the WebMMU dataset, covering WebQA,
Mockup2Code, and Web Code Editing tasks. The
WebQA task (Table 4) evaluates a model’s ability
to interact with webpage elements, recognize vi-
sual content, and perform complex reasoning based
on structured UI components. The Mockup2Code
task (Table 5) illustrates how webpage screenshots
are converted into structured HTML representa-
tions, distinguishing between basic layout sketches
and detailed UI component mappings. The Web
Code Editing task (Table 6) demonstrates auto-
mated HTML modifications, providing before-and-
after visual transformations based on functional
and design-driven prompts. These task samples
comprehensively showcase the challenges in web-
page understanding, layout structuring, and auto-
mated UI refinement within the WebMMU bench-
mark.

C Model Output Generation Prompts

C.1 WebQA Task Completion Prompt

We present the prompt used for the WebQA task in
Figure 6. The prompt instructs the model to analyze
a website screenshot and provide a concrete answer
to the given question. When the question requires
identifying or interacting with specific elements
on the screen, the model is asked to include the
bounding box coordinates in its response.

Web QA Inference

Analyze the website screenshot and provide a
detailed answer to the question. If the question
involves locating or interacting with specific el-
ements on the screen, include the bounding box
coordinates [x_min, y_min, x_max, y_max] in
your response.

Figure 6: Prompt for Generating Output of WebQA task

C.2 Web Code Editing Task Completion
Prompt

This prompt guides a model in modifying the
source code based on a modification instruction
given by the user. The model outputs changes us-
ing the git diff format, highlighting additions
and deletions with ‘+’s and ‘-’s respectively. This
ensures clear and structured documentation of code
edits. The prompt template can be seen in Figure
7.

C.3 Mockup2Code Task Completion Prompt

The Mockup2Code task involves generating HTM-
L/CSS code from an input sketch (see Figure 8).
Given a visual layout, the model must produce ac-
curate, well-structured HTML and CSS that repli-
cate the design. The prompt guides the model to
interpret elements, hierarchy, and styling for faith-
ful image-to-code conversion.

D Evaluation Prompts

This section provides details on the prompt formu-
lations used throughout this work. These prompts
guide the multimodal large language models in gen-
erating and evaluating responses across different
tasks. The prompts are categorized based on their
usage, including code modification, VQA evalua-
tion, and UX scoring.

D.1 WebQA Evaluation Prompt

These prompts are used for evaluating model re-
sponses in VQA tasks. The model rates answers as
1 (Correct and Complete) or 0 (Incorrect or Irrele-
vant) based on factual accuracy and completeness.
Example cases are provided to guide the evaluation.
The prompt template can be seen in Figure 9.

D.2 Mockup2Code Evaluation Prompt

The Mockup2Code evaluation task involves assess-
ing the accuracy of an MLLM-generated website
based on an input sketch (see Figure 10). The eval-
uation prompt directs the annotator to compare the
AI-generated HTML/CSS output with the given
visual layout, ensuring that the generated website
accurately replicates the design in terms of struc-
ture, styling, and layout. The evaluation criteria
focus on layout structure, spacing, proportions, and
alignment, allowing for a detailed assessment of
how closely the generated output matches the in-
tended design. The goal is to evaluate the model’s

25143

How can I find more information about
the player A.J. Dybantsa?
Answer: Click on the "RIVALS150
ranking" at the lower left and se-
lect "A.J. Dybantsa" at (x1:230.34,
x2:297.32, y1:1049.92, y2:1083.07).

How many players are visible in the 4th
image on the left side?
A) 2 B) 1 C) 4 D) 3
Answer: D) 3

Which user pays less when subscribing
annually vs. monthly?
Answer: - Yearly: $99.95 - Monthly:
$9.95 × 12 = $119.40 - Savings: $19.45

¿En qué área puede el usuario hacer clic
para ver publicaciones anteriores?
A) Categorías B) Lo más visto C)
Archivo del blog
Respuesta: C) Archivo del blog.

¿A qué tipo de público está dirigido este
blog de recetas?
Respuesta: Personas interesadas en re-
postería y cocina casera.

¿Cuál sería el efecto en la navegación si
la sección "Lo más visto recientemente"
estuviera al inicio?
Respuesta: Aumentaría la accesibilidad
de los artículos populares.

Je cherche un soin pour le visage. Où
dois-je aller ?
Réponse: Dans la barre latérale sous
"Soins visage par type de peau".

Quel est le prix total des articles si l’on
exclut celui avec 5 étoiles ?
A) 58,70 C B) 62,85 C C) 45,50
C D) 51,90 C
Réponse: B) 62,85 C.

Avec un budget de 15 C, quels produits
puis-je acheter ?
Réponse: - Masque Argile verte et
menthe poivrée bio (5,90 C) - Masque
Argile rose bio - Peaux sensibles (5,90
C)

Comment filtrer les hôtels qui acceptent
les animaux ?
Réponse: Dans la section "Ausstat-
tung", cliquez sur "Haustiere erlaubt".

Combien de chaises sont visibles dans
l’image de "Sunflower Santa Maria
Novella" ?
Réponse: 4 chaises.

Quelles sont les meilleures options
d’hébergement près de Via Faenza ?
Réponse: "Sunflower Santa Maria
Novella" avec une note de 8.9.

Table 4: WebMMU VQA Task Samples. This table presents diverse Visual Question Answering (VQA) task
samples from the WebMMU dataset, categorized into three types: (1) Functional (interaction with webpage ele-
ments), (2) General Understanding (visual recognition within webpage images), and (3) Complex Reasoning (logical
inference and numerical computation). Each row showcases an input webpage image alongside representative
questions and answers.

ability to interpret and transform the sketch into a
functional, visually consistent website.

D.3 Code Edit Evaluation Prompt

This prompt is used to evaluate model responses
in code edition tasks. The model rates answers as
1-5 (5 refers to the most correct and complete, and
1 refers to incorrect or irrelevant) based on factual
accuracy and completeness. Example cases guide
the evaluation. The prompt template can be seen in
Figure 11.

E Case Studies of Model Performance

E.1 Case Studies for the Web Code Editing

We present case studies for the Web Code Edit-
ing task illustrating both success and failure exam-
ples. Figure 12 shows a success case where the
Claude-3.5 model generates code that accurately
follows the user’s instructions. In contrast, Fig-

ure 13 highlights a failure case for the Gemini-2.0-
Flash model, which overlooks key modifications
requested by the user.

E.2 Case Studies for the Mockup2Code
We provide several examples illustrating the perfor-
mance of different models on the Mockup2Code
task, including both the input mockups and the
generated outputs. Figure 14 shows failure cases
where both the best closed-source model (OpenAI-
o1) and the best open-source model (Internvl2.5-
38b) struggled to accurately reproduce the designs.
In contrast, Figure 15 highlights success cases for
the OpenAI-o1 model, demonstrating its ability
to handle both simple and complex mockups ef-
fectively. Additionally, Figures 16 and 17 present
failure cases specifically for the open-source model
Internvl2.5-8b and closed-source model OpenAI-
o1, emphasizing areas where it underperforms on
varying mockup complexities.

25144

Web Code Editing Generation Prompt

You are an expert web developer specializing in identifying and applying modifications to web code.
You will receive a website’s screenshot and a combination of it’s HTML, CSS, and/or JavaScript code,
formatted as follows:

• HTML Code: html_code
• CSS Code: css_code
• JavaScript Code: javascript_code

You will also receive a modification prompt describing the required changes. Your task is to produce
the necessary code modifications using ‘git diff’ format, even if some or all sections are missing.
Follow these guidelines:

1. Input code: <input_code>
2. Modification Prompt: <edit_prompt>
3. Output Diff:

• Use ‘+’ for additions and ‘-’ for deletions.
• Modify only the relevant parts while preserving structure.
• In case the code is missing, generate the necessary block of code from scratch.
• Ensure readability and correctness in the modifications.

Only output the necessary diff; do not repeat the input code.

Figure 7: Web Code Editing generation prompt

25145

Input Image Basic Layout Sketch Detailed UI Representation

Table 5: Mockup2Code Task Samples. This table showcases examples from the Mockup2Code task, illustrating the
transformation of webpage images into structured representations. Each row includes: (1) an Input Image (webpage
screenshot), (2) a Simple Sketch (basic layout structure), and (3) a Complex Sketch (detailed UI components and
text placements).

25146

Input Image Task Description Rendered Image

Comment faire pour afficher les différentes sec-
tions de l’article “La fête de la prune” en colonne
et agrandir les images ?

Which changes should be made in the HTML
code to improve the UI of the login form and
navbar?

How can I fix the header element by adding a
black overlay over the image, changing the font
color to white, and setting the font family to
“Lucida Sans”?

For a visually appealing design, enhance the
navbar with hover and shadow effects, add hover
interactions to buttons and links, and apply a
card effect to containers.

Mache die drei Felder “link-next" auffälliger,
indem du ihre Farbe, Größe oder Schriftstil an-
passt.

Table 6: Web Code Editing Task Samples. Code edition before and after screenshot of webpage.

25147

Mockup2Code Generation Prompt

You are an expert website developer. Analyze the provided webpage sketch and generate a single,
fully structured HTML file with embedded CSS that accurately reflects the design.
The output must be a self-contained HTML document with internal <style> tags for CSS. Ensure all
elements are structured exactly as seen in the sketch—no extra elements, no missing elements.
HTML Requirements:

• Components: Include all necessary components such as headers, paragraphs, buttons, forms,
and images, maintaining the correct hierarchy and placement.

• Images: Use images generated from https://placehold.co/ with exact dimensions match-
ing the sketch, a neutral background color, and centered “Image” text. For example:

• Placeholder Text: Use Lorem Ipsum for placeholder text where needed.

CSS Requirements:

• Implement CSS directly within the HTML file (inside a <style> block) to match the sketch,
covering spacing, font sizes, colors, alignments, and element positioning.

• Use CSS Grid or Flexbox where appropriate to replicate the exact design layout.
• Apply styling for readability and interactive elements (e.g., fonts, button appearance).
• Ensure placeholder images maintain proper dimensions and design consistency.

Code Output:

• Provide a single, complete HTML file with internal CSS (do not separate them into different
files).

• Do not include explanations, comments, or any extra formatting outside the code itself.

Figure 8: Mockup2Code Generation Prompt: It takes input sketch and outputs HTML/CSS code of the given input

Model
English French German Spanish

BLEU TreeBLEU LLM-as-Judge BLEU TreeBLEU LLM-as-Judge BLEU TreeBLEU LLM-as-Judge BLEU TreeBLEU LLM-as-Judge

QwenVL-7B 7.89 22.1 2.2 5.34 15.92 1.95 5.15 19.54 1.94 5.07 17.65 1.96
Molmo-7B 1.25 5.99 1.6 2.0 8.98 1.55 1.14 8.97 1.39 2.03 6.38 1.46
Phi-3.5-VI 0.01 0.0 1.01 0.0 0.0 1.01 0.03 0.0 1.0 0.03 0.0 1.0
Llava-OV-7B 7.78 20.34 2.19 3.66 13.6 1.93 5.14 19.26 1.65 3.54 14.8 1.8
Fuyu-8B 0.01 0.14 1.05 0.01 0.14 1.0 0.0 0.04 1.0 0.03 0.0 1.02
InternVL-2.5-8B 8.21 17.02 2.04 5.18 14.64 1.72 6.02 19.3 1.85 5.62 14.03 1.9
Glm-4v-9B 4.65 13.9 2.34 4.25 18.03 2.31 3.09 12.82 2.07 3.83 11.67 2.18
Pixtral-12B 11.88 21.78 2.86 5.88 12.8 2.66 6.5 18.74 2.33 6.32 13.33 2.72
InternVL-2.5-38B 13.71 26.86 3.85 9.51 24.75 3.61 11.29 27.46 3.54 8.95 23.08 3.62
QwenVL-72B 12.8 26.47 3.37 11.08 22.88 3.22 10.23 30.27 3.05 9.17 18.22 2.99

Claude 3.5 Sonnet 15.14 24.4 4.62 16.25 19.3 4.39 17.16 34.6 4.45 13.53 16.21 4.47
Gemini-2.0-Flash 17.02 28.54 3.26 11.34 13.32 3.45 11.98 23.08 3.43 11.09 17.46 3.79
GPT-4o (1120) 13.95 22.94 4.26 10.32 9.93 4.35 12.87 22.63 4.28 11.15 12.81 4.39

Table 7: Results of Web Code Editing on different languages.

25148

https://placehold.co/

Web QA Evaluation Prompt

examples = [
{

"INPUT": {
"question": "What is the capital of France?",
"model_answer": "Paris",
"ground_truth": "Paris",

},
"OUTPUT": {

"rating": 1,
"rationale": "The model’s answer matches the reference answer exactly."

}
},
{

"INPUT": {
"question": "What is in the left of the image?",
"model_answer": "A bus is in the left of the image.",
"ground_truth": "A dog is in the left of the image.",

},
"OUTPUT": {

"rating": 0,
"rationale": "The model’s answer is incorrect because the reference answer is ’A dog’."

}
},
{

"INPUT": {
"question": "Where is the burger on the table? Tell me the coordinates.",
"model_answer": "The burger is on the table.",
"ground_truth": "The burger is on the table at (50, 10, 150, 60).",

},
"OUTPUT": {

"rating": 0,
"rationale": "The predicted answer is incomplete because it does not provide the

coordinates as requested in the question."
}

}
]
test_case = {

"INPUT": {
"question": question,
"model_answer": model_answer,
"ground_truth": ground_truth

}
}

You are evaluating a Visual Question Answering (VQA) system’s response. Compare the model’s answer with the ground
truth and rate its accuracy.
Rating Scale (1 or 0):
1 - Correct and Complete: - The predicted answer fully matches the ground truth. - No factual errors or missing details. -
Addresses the question with the correct level of specificity.
0 - Incorrect or Irrelevant: - Any factual errors or mismatches with the reference answer. - Does not address the question
properly. - Provides misleading or irrelevant information.
Examples for reference: json.dumps(examples, indent=4)
Question, Model Answer, and Ground Truth: json.dumps(test_case, indent=4)
You must provide your evaluation in the following JSON format (without any extra text): json.dumps("rating": 0 or 1,
"rationale": "[Brief explanation of why this rating was chosen]") """

Figure 9: LLM-as-judge prompt for WebQA task using few-shot examples

25149

Mockup2Code Evaluation Prompt

Task Overview: Your task is to evaluate the accuracy of an AI-generated website by comparing it against a provided input
sketch. The AI-generated website is provided as an image rendering of the HTML/CSS output. Your goal is to assess how
well this rendered image replicates the intended layout from the sketch.
Provided Inputs: You will receive two images:

1. Input Sketch – A wireframe illustrating the intended layout.
2. Predicted AI-Rendered Website Image – A screenshot of the website generated from AI-created HTML/CSS based

on the sketch.

Since the AI-generated website is provided as an image, your evaluation must be based entirely on visual accuracy,
disregarding the underlying code implementation.
Step 1: Detailed Description of Both Images
For each image (Input Sketch and AI-Rendered Website), provide a highly-detailed breakdown based on the following
categories. Ensure that descriptions follow the same format for both images to facilitate a precise comparison.
1. Identify All Structural Sections:
Describe in detail the overall structure of the webpage layout, covering the following:

• Header – Does it contain a logo, navigation menu, search bar, or other elements?
• Navigation Bar – Describe the menu items. How many items are there? Is the navigation horizontal or vertical?
• Main Content Area – Identify distinct sections such as hero banners, text areas, images, or interactive components.
• Sidebars (if applicable) – Is there a sidebar for additional navigation, filters, or widgets?
• Footer – What content is present (e.g., links, social icons, contact information)?

For the AI-rendered website, note any differences compared to the sketch (e.g., missing sections, extra sections, missing
items, misplaced content).
2. List and Describe All Elements:
List all key elements present in the Input Sketch and AI-Rendered Website:

• Text Elements – Titles, paragraphs, labels, lists, captions.
• Images & Icons – Identify all image placeholders and their intended placement.
• Buttons & Links – Describe all interactive elements like CTAs, navigation links, or form buttons.
• Forms & Inputs – Search bars, text fields, dropdowns, checkboxes, radio buttons, etc.
• Tables & Lists – If present, describe their structure and formatting.

For the AI-rendered website, specify any elements that are missing, added, or incorrectly placed.
3. Layout & Positioning Details:
Describe and analyze the spatial arrangement of elements in both images:

• Column Structure – Is the design single-column, multi-column, or grid-based?
• Alignment – Are elements aligned left, center, right, or justified?
• Spacing & Proportions – Are elements evenly spaced? Are margins, padding, and gaps consistent?
• Relative Proportions – Are certain sections (e.g., hero banners, sidebars) larger than others?

For the AI-rendered website, describe any deviations from the sketch (e.g., elements’ size differences, elements too
large/small, uneven spacing, misalignments).
Step 2: Evaluation of the AI-Rendered Website
After describing both images, evaluate the AI-generated website’s accuracy using the following criteria. Assign a score from
1 to 5 for each.
1. Layout Structure Accuracy (1-5):
Does the generated HTML structure strictly follow the wireframe in layout, hierarchy, and element grouping? This includes
the correct placement, nesting, and semantic usage of standard structural elements: <header>, <nav>, <main>, <section>,
<aside>, <article>, <footer>, <div>, and content containers like , <p>.

• 5 → 100% match. All elements are correctly placed, properly nested, fully grouped, and semantically accurate. No
missing, misplaced, or extra elements.

• 4 → Mostly accurate, but minor structural inconsistencies exist (e.g., an unnecessary wrapper, slightly misplaced
section, or minor redundancy). No missing elements.

• 3 → Some structural errors — at least one missing or misused element, multiple misplaced sections, or noticeable
grouping issues.

• 2 → Major deviations — multiple missing, misplaced, or incorrectly nested elements, affecting hierarchy and
readability.

• 1 → Severe structural failure — multiple core sections are absent or completely misstructured, making the output
unrecognizable compared to the wireframe.

25150

2. Spacing & Proportions (1-5):
Do margins, paddings, and element dimensions (e.g., width, height, max-width, min-width, max-height, min-height,
gap for flex/grid layouts) precisely match the wireframe?

• 5 → 100% correct. All elements have precise margins, paddings, widths, heights, and spacing. No deviations.
• 4 → Minor inconsistencies exist (e.g., slightly incorrect padding/margin values or minor width/height variations).
• 3 → Noticeable discrepancies — some elements are too large, too small, or unevenly spaced, affecting visual balance.
• 2 → Significant spacing issues — multiple elements have incorrect dimensions, margins, or paddings, leading to a

visibly distorted layout.
• 1 → Severe inaccuracies — most elements have incorrect proportions or spacing, making the layout visually broken

and inconsistent with the wireframe.

3. Alignment & Grid Consistency (1-5):
Are elements precisely aligned according to the wireframe, following the expected grid/flex structure and ensuring uniform
positioning?

• 5 → Perfect alignment. Every element follows the wireframe’s grid, flex, or positioning structure exactly. No
misalignments.

• 4 → Mostly aligned, but minor deviations exist (e.g., slightly off-center text or small pixel variations in placement).
• 3 → Some clear misalignments — at least one noticeably off-grid or misplaced element that affects overall balance.
• 2 → Major alignment issues, with multiple elements misaligned, overlapping, or not following the expected structure.
• 1 → Severe disorganization — the output fails to follow the wireframe’s grid or positioning, making the layout appear

chaotic.

Final Score Calculation:
Final Score = (Layout Structure Accuracy + Spacing & Proportions + Alignment & Grid Consistency) / 3
Output Format:
Your response must follow this JSON structure:

{
"descriptions": {

"input sketch": "provide the description of sketch here",
"AI-rendered website": "provide the description of website here"

},
"scores": {

"layout_structure_accuracy": [1-5],
"spacing_proportions": [1-5],
"alignment_grid_consistency": [1-5]

},
"final_score": [calculated average score],
"reasoning": "[Concise evaluation highlighting key strengths and weaknesses]"

}

Figure 10: LLM-as-Judge input prompt: It evaluates the model output and the ground truth among some detailed
criteria given in the prompt.

25151

Web Code Editing Evaluation Prompt

You are evaluating a system that generates HTML code based on a given task. Compare the predicted code with the ground
truth code and rate its correctness based on functionality rather than exact syntax. If the code performs the intended task
correctly, even if formatted differently or using a different approach, it should receive a high score.
Rating Scale:

• 5 - PERFECT - Fully achieves the required functionality as described in the reference output. - May have differences
in syntax or structure, but effectively performs the same task with no missing elements.

• 4 - CORRECT BUT WITH MINOR ISSUES - Achieves the intended functionality but has small flaws (e.g., slightly
different behavior, minor inefficiencies).

• 3 - PARTIALLY CORRECT - Achieves part of the intended functionality but is missing key aspects or has notable
issues.

• 2 - MOSTLY INCORRECT - Fails to accomplish most of the required functionality but shows some partial effort.

• 1 - COMPLETELY INCORRECT - The solution does not fulfill the required functionality or is entirely off-target.

Examples for reference:
examples = [

{
"INPUT": {

"question": "Change the header’s background color to blue.",
"model_answer":"+<style>header{background-color:blue;}</style> <header>Welcome</header>",
"ground_truth": "<header style=’background-color: blue;’>Welcome</header>"},

"OUTPUT": {
"rating": 5,
"rationale": "The model answer correctly implements the change by ensuring the header

displays with a blue background. Despite using a style tag in the model answer versus inline
styling in the ground truth, both approaches deliver the exact intended functionality." }

}]

Task for Evaluation:
{

"INPUT": {
"question": "<question>",
"model_answer": "<model_answer>",
"ground_truth": "<ground_truth>"

}
}

Provide your evaluation in the following JSON format (using json delimiters, do not include any extra text):
{

"rating": "1 or 2 or 3 or 4 or 5",
"rationale": "[Brief explanation of why this rating was chosen]"

}

Figure 11: LLM-as-judge prompt for Web Code Editing task using few shot examples.

25152

Figure 12: Code edit case study: Success (Claude-3.5). The generated code accurately addresses the instructions
given as input.

Figure 13: Code edit case study: Failure (Gemini-2.0-Flash). The generated answer by the model skips main
modifications requested by the user.

25153

OpenAI-o1

Original Page Mockup Image Generation

GPT Score Evaluation

Alignment: 2. Key elements (e.g., input box) misaligned , deviating from intended grid.
Layout: 2. Two -column structure poorly represented , essential sections missing/merged.
Spacing: 2. Uneven element distribution results in inconsistent spacing and imbalance.
Overall Score: 2

InternVL-38B

Original Page Mockup Image Generation

GPT Score Evaluation

Alignment:
2. The main content is misaligned; also , key elements like the aside and buttons are missing.

Layout: 2. The intended two -column structure is replaced by a single -column layout , significantly
deviating from the sketch.

Spacing: 2. Inconsistent spacing and proportions arise from the absence of the aside and smaller
placeholders.

Overall Score: 2

Figure 14: Examples of the failure cases on the Mockup2Code task for the best closed-source model (OpenAI-o1)
and the best open-source model (InternVL2.5-38B).

25154

OpenAI-o1

Original Page Mockup Image Generation

GPT Score Evaluation on Simple sketch

Layout: 5. Structure perfectly replicated.
Spacing: 4. Minor inconsistencies in spacing.
Alignment: 5. Precise alignment maintained.
Overall Score: 4.67

OpenAI-o1

Original Page Mockup Image Generation

GPT Score Evaluation on Complex Sketch

Layout: 5. Structure and sections perfectly replicated.
Spacing: 5. Spacing and proportions are consistent.
Alignment: 5. Alignment is precise and matches the sketch.
Overall Score: 5

Figure 15: Examples of the success cases on the Mockup2Code task for the best closed-source model (OpenAI-o1)
for both simple and complex mockups.

25155

Internvl2.5-8b

Original Page Mockup Image Generation

GPT Score Evaluation on Simple Sketch

Layout: 2. Many key sections , headers , and lists are missing , leading to a poor structural match with
the sketch.

Spacing: 2. Uneven gaps and inconsistent spacing cause improper grouping and distorted proportions.
Alignment: 2. Misaligned elements and an irregular grid result in a disorganized layout.
Overall Score: 2

Internvl2.5-8b

Original Page Mockup Image Generation

GPT Score Evaluation on Complex Sketch

Layout: 4. Two -column layout is largely reproduced with most elements accurately placed , though an
extra image placeholder appears.

Spacing: 3. Inconsistent spacing leads to uneven gaps that affect the overall balance.
Alignment: 3. Some elements are misaligned , disrupting the intended grid structure.
Overall Score: 3.33

Figure 16: Examples of the failure cases on the Mockup2Code task for the open-source model (Internvl2.5-8b)
for both simple and complex mockups.

25156

OpenAI-o1

Original Page Mockup Image Generation

GPT Score Evaluation

Alignment: 2. Key elements (e.g., input box) misaligned , deviating from intended grid.
Layout: 2. Two -column structure poorly represented , essential sections missing/merged.
Spacing: 2. Uneven element distribution results in inconsistent spacing and imbalance.
Overall Score: 2

OpenAI-o1

Original Page Mockup Image Generation

GPT Score Evaluation

Alignment:
2. The main content is misaligned; also , key elements like the aside and buttons are missing.

Layout: 2. The intended two -column structure is replaced by a single -column layout , significantly
deviating from the sketch.

Spacing: 2. Inconsistent spacing and proportions arise from the absence of the aside and smaller
placeholders.

Overall Score: 2

Figure 17: Examples of the failure cases on the Mockup2Code task for the best closed-source model (OpenAI-o1)
for both simple and complex mockups.

25157

