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Abstract

Language models are trained mainly on mas-
sive text data from the Internet, and it becomes
increasingly important to understand this data
source. Exact-match search engines enable
searching in large text corpora – counting string
appearances and retrieving the enclosing docu-
ments – yet the high storage overhead hinders
their application on Internet-scale data. We
present INFINI-GRAM MINI, an efficient and
scalable system that can make petabyte-level
text corpora searchable. Based on the FM-
index data structure (Ferragina and Manzini,
2000), which simultaneously indexes and com-
presses text, our system creates indexes with
size only 44% of the corpus. INFINI-GRAM
MINI greatly improves upon the best existing
implementation of FM-index in terms of index-
ing speed (18×) and memory use during both
indexing (3.2× reduction) and querying (down
to a negligible amount). We index 83TB of
Internet text in 99 days with a single CPU node
with 128 vCPUs (or 19 hours if using 137 such
nodes). We show one important use case of
INFINI-GRAM MINI in a large-scale analysis
of benchmark contamination. We find several
core LM evaluation benchmarks to be heavily
contaminated in Internet crawls (up to 74.2% in
GSM8K), which could lead to overestimating
the capabilities of language models if trained
on such data. We host a benchmark contamina-
tion bulletin to share the contamination rate of
many core and community-contributed bench-
marks. We also release a web interface and an
API endpoint to serve general search queries
on INFINI-GRAM MINI indexes.

Project Home infini-gram-mini.io

Web Interface infini-gram-mini.io/demo

API Endpoint api.infini-gram-mini.io

Documentation infini-gram-mini.io/docs

Source Code infini-gram-mini.io/code

Contam Bulletin infini-gram-mini.io/bulletin

Figure 1: Overview of INFINI-GRAM MINI. Based on
the FM-index data structure, INFINI-GRAM MINI sup-
ports efficient exact-match search in massive text cor-
pora (n ≃ 1015 bytes) while reducing the index size
down to 7% compared to a canonical suffix array in-
dex. Searching naively in the corpus would have time
complexity of O(n) and is thus impractical; with INFINI-
GRAM MINI, the search time complexity is independent
of n. |Q| is the length of query string and can be arbi-
trarily long, and H0 ≈ 2.1 is the zeroth-order entropy
of the text corpus.

1 Introduction

Modern language models (LMs) are trained mainly
on text datasets downsampled from massive,
petabyte-level text corpora like Common Crawl
(Common Crawl Foundation, 2025). As these LMs
are deployed more broadly, it becomes more press-
ing to understand the training data and its effects on
model behavior (Liu et al., 2025; Han and Tsvetkov,
2022). As a starting point, we want to make these
text corpora searchable; in particular, searching
for exact matches of long sequences has gained in-
creasing interest (Elazar et al., 2024; Merrill et al.,
2024; Lu et al., 2024). The size of these corpora
makes this problem extremely challenging, creat-
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ing demand for more efficient indexing techniques.
Prior systems for exact-match search build in-

dexes several times as large as the text corpora.
Merrill et al. (2024) index 1.3TB of text with a suf-
fix automaton (storage multiplier 29×); Liu et al.
(2024) index 12TB of text with a suffix array (stor-
age multiplier 6×); Elazar et al. (2024) index 35TB
of text with the proprietary ElasticSearch engine
(storage multiplier about 2×). The size of these
indexes renders it impractical to apply them to
petabyte-level corpora.

To address this challenge, we index text corpora
with FM-index (Ferragina and Manzini, 2000), a
compact data structure frequently used in bioinfor-
matics (Guo, 2025; Depuydt et al., 2023; Wang
et al., 2018; Li, 2014), but not yet used for natural
language data at scale. Prior work only applies this
data structure to 13.4 GB dataset (Bevilacqua et al.,
2022). We explain FM-index in detail in §2. For
natural text, the size of FM-index can be made as
small as 0.26× of the corpus; practically, to ensure
low query latency, we build FM-index with a stor-
age multiplier of 0.44×, or 7% compared to the
canonical suffix array.

INFINI-GRAM MINI is the system we developed
for efficiently constructing the FM-index at scale
and answering search queries. For indexing, we
extend and combine components from Liu et al.
(2024), Gog et al. (2014), and Labeit et al. (2017)
into a highly parallelized program, which achieves
a 18× speedup and uses only 32% as much RAM
compared to the best existing implementation by
SDSL (Gog et al., 2014).1 We use INFINI-GRAM

MINI to construct FM-index for two LM pretrain-
ing datasets – the Pile and DCLM-baseline – and 7
recent Common Crawl dumps from January to July
2025. Altogether, we indexed 83TB of text in 99
days with a single CPU node with 128 vCPUs, and
this could have been done in 19 hours if embarrass-
ingly parallelized across 137 such nodes. We esti-
mate that indexing the full Common Crawl would
take 1,200 node-days, or 19 hours if parallelized
across 1,500 nodes. For answering queries, we ex-
tend SDSL to work with on-disk index, reducing
the RAM requirement to a negligible amount. Our
inference engine supports counting the occurrences
of a query string and retrieving documents that con-
tain the query string, both within seconds when
working on the above corpora.

We apply INFINI-GRAM MINI to analyzing con-

1https://github.com/simongog/sdsl-lite

tamination of benchmarks widely used in state-
of-art LM evaluations (§4). INFINI-GRAM MINI

allows us to do the analysis on larger corpora than
prior works and on new benchmarks uploaded.
This would be much more expensive if using other
indexing methods. We find several core bench-
marks to be heavily contaminated (§4.2). INFINI-
GRAM MINI detects exact overlap for question of
contaminated entries in text corpora, among which
a large majority of questions appear together with
the correct answer. This reveals a dire evalua-
tion crisis: as benchmarks get increasingly con-
taminated by Internet crawls and consequently
LM training data, evaluation results may give in-
flated estimates of true model capabilities. As
such, we host a benchmark contamination bulletin
to continually monitor contamination of core and
community-contributed benchmarks on new Inter-
net snapshots, and we call for more community
attention on this matter.

Beyond contamination analysis, INFINI-GRAM

MINI opens up more impactful use cases such as
task-specific dataset construction and pretraining
data curation. We release a web interface and
API endpoint of INFINI-GRAM MINI, so that ev-
eryone can search in the text corpora that we have
indexed. We plan to continue indexing new cor-
pora and share regular updates. We also release our
source code. We hope this tool can enable more
insightful analysis and better use of massive text
corpora.

2 Background: FM-index

The FM-index (Ferragina and Manzini, 2000) is a
full-text index that supports efficient pattern match-
ing, counting, and text retrieval on a highly com-
pressed representation of the text corpus. Com-
pared with a canonical suffix array, FM-index
stores a compact variation of a suffix array and
the text corpus, greatly reducing storage overhead.

2.1 Data Structures and Implementation

On a high level, FM-index has two core compo-
nents: (1) a sampled suffix array and its inverse, and
(2) the Burrows-Wheeler transform represented us-
ing a Huffman-shaped wavelet tree. Below we de-
scribe each component as applied to a single string
(appropriate for our application; see §3). Figure 2
shows a toy example illustrating the data structure.

Suffix array and sampling. The suffix array SA
of a string T of length n is an array of integers
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Figure 2: The FM-index data structure (§2.1) used in
INFINI-GRAM MINI, shown for a toy string with length
n = 7. The suffix array is sampled with a sampling
rate a = 3 and only elements corresponding to bolded
suffixes are stored. The BWT can be derived from the
SA, and is stored in compressed form as a Huffman-
shaped wavelet tree.

representing the starting positions of all suffixes
of T in lexicographic order. Formally, SA[i] = j
if the suffix T [j...n] ranks ith among all suffixes
in lexicographical ordering. The suffix array en-
ables quickly locating the positions where a pat-
tern appears in the string. Canonically, storing the
whole suffix array would take O(n log n) space,
or 5n bytes for strings with length up to one tril-
lion (Liu et al., 2024). To reduce storage overhead,
FM-index samples SA at regular intervals, stor-
ing only every ath entry where a is a parameter.
When querying the index, if we need to access
an unsampled SA entry, we can recover its value
by referencing the BWT data structure, which is
introduced below.

Burrows-Wheeler transform (BWT). BWT
(Burrows et al., 1994) rearranges the string T (with
termination symbol $) into a reversible permuta-
tion L that clusters repeated symbols. The BWT
is defined as a string L where L[i] = T [SA[i]− 1]
if SA[i] > 0, or L[i] = $ otherwise. Intuitively, L
is the concatenation of the symbol preceding each
suffix when the suffixes are sorted in the SA order
(see Figure 2).

A key property of BWT is the Last-to-First (LF)
mapping, which maps the ith occurrence of a sym-
bol c in L to the ith occurrence of it in F , where
F [i] = T [SA[i ]]. The LF mapping is defined as
LF (i) = C[c] + rank(c, i), where C[c] is the num-
ber of symbols in L lexicographically smaller than
c, and rank(c, i) counts the occurrences of c in
L[0...i]. This property allows us to traverse the
string in reverse order, which is essential for finding
patterns in and reconstructing (part of) the string T

from the index.

Huffman-shaped wavelet trees. Given the BWT
L and the sampled SA, we can reconstruct the orig-
inal string T from these data structures so we don’t
need to store T . However, L still takes as much
storage as T . To further compress L, a wavelet tree
is used to represent L by hierarchically partitioning
the alphabet. In the wavelet tree, each leaf node rep-
resents a symbol in the alphabet, and each non-leaf
node stores a bitvector marking whether the symbol
at each position of L belongs to the left or right sub-
tree. A Huffman-shaped wavelet tree (Mäkinen and
Navarro, 2005) optimizes the hierarchy by group-
ing and coding symbols based on their frequencies
in L. Storing it costs (nH0 +2σ log n) bits, where
σ is the alphabet size, and H0 is the zeroth-order
entropy2 of L and H0 ≈ 0.26 log2 σ in our exper-
iments with natural language text; this is smaller
than storing L directly, which is n log2 σ bits. Be-
sides compression, the tree can efficiently support
two operations crucial to LF mapping: rank(c, ℓ)
counts the number of occurrences of a character c
in L[0...ℓ− 1], and select(c,m) finds the position
of the mth occurrence of c in L. Both operations
have a time complexity of O(H0).

Inverse suffix array. To allow reconstructing
part of the original string T from any given po-
sition, FM-index also stores a sampled version of
the inverse suffix array ISA. ISA is the inverse
of the permutation specified in SA and is defined
as ISA[j] = i if SA[i] = j. When reconstructing
T from a given position, ISA is used to identify
the corresponding rank in the suffix array to start
reconstruction. In FM-index, we can use a different
sampling rate for ISA, storing only every bth entry,
where b can be larger than a as ISA is used less.

2.2 Querying the FM-index

There are three basic operations supported by FM-
index: find, locate, and reconstruct. Counting a
pattern can be done with a find operation, and re-
trieving segments containing the pattern from the
original string can be done with a combination of
all three operations. See App. §A for more details.

3 INFINI-GRAM MINI

We develop INFINI-GRAM MINI as a scalable and
efficient implementation of FM-index on natural

2zeroth-order entropy measures the unigram probability
distribution of individual symbols (i.e. UTF-8 characters).
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language data. For indexing, INFINI-GRAM MINI

achieves 18× speedup and reduces RAM usage by
3.2× compared to the previous best existing imple-
mentation in SDSL. This paves way for indexing
petabyte-level text corpora with reasonable time
and compute. For querying, we extended the im-
plementation in SDSL to work with indexes stored
on disk, allowing us to query large indexes on ma-
chines with limited RAM.

In contrast to the original infini-gram which tok-
enizes the text, we construct the index directly on
raw UTF-8 bytes, which saves tokenization time
and allows more flexibility when querying. Tok-
enization is a technique to reduce index size, but
since FM-index is already a compressed index, to-
kenization would not be helpful here.

3.1 Index Construction

Optimizing the indexing steps. We use a paral-
lelized implementation of each indexing step. For
building SA and BWT, we adapt from the parallel
implementation in Liu et al. (2024). For building
the wavelet tree, we use the parallel implemen-
tation in Labeit et al. (2017). For sampling SA
and creating a sampled version of ISA, we par-
allelized the implementation in SDSL. All these
steps were single-threaded in SDSL, and by paral-
lelizing them we achieve significant speedup.

We measured the time and peak RAM usage
for indexing an 8.7 GB corpus (a single file from
DCLM-baseline) using implementation of SDSL
and INFINI-GRAM MINI. Their implementation re-
quired 5,847 seconds and 74,807 MB of peak RAM,
whereas INFINI-GRAM MINI completed indexing
in 324 seconds (18× speedup) and peak RAM of
23,742 MB (3.2× reduction).

Preprocessing. FM-index is designed to work on
a single string. To index a text corpora, which con-
sists of a collection of documents, we encode all
documents with UTF-8 and concatenate all these
byte arrays with the \xff byte (not used by UTF-8)
to mark document boundaries. We then construct
FM-index for this big byte string. We work on
UTF-8 bytes rather than characters to keep the al-
phabet size small (σ = 256). Along with this text
index, we also store a text offset file that records the
starting position of each document, which is useful
for retrieving whole document and metadata. Aside
from the actual text, we also index the metadata
of the documents to make the metadata searchable
while storing it in a similar compressed form.

Partitioning. For large corpora, we partition it
into multiple shards and index each shard indepen-
dently. Searching across multiple shards produces
the same result as searching a single, larger index,
and this allows us to build indexes with limited
RAM per node as well as embarrassingly paral-
lelize across multiple nodes.

Indexed corpora. We have built the index for
the following corpora: the Pile (1.3TB training set,
1.4GB validation set; Gao et al., 2020), DCLM-
baseline (17TB; Li et al., 2024), and the Common
Crawl between January and July 2025 ( “CC-2025-
05” to “CC-2025-30” ; 7 crawls and 65TB total;
Common Crawl Foundation, 2025).3

Indexing time. We use CPU nodes with 128 vC-
PUs and 2TiB RAM to construct indexes, and under
this constraint, each shard can be as large as 700GB
which can be indexed in 12–19 hours. Table 1 re-
ports the time for indexing the above corpora. In-
dexing time shows a slightly super-linear increase
with respect to shard size, and we report detailed
stepwise breakdown in App. §B. If we were to in-
dex the full Common Crawl dataset (about 1PB),
we would split it into 1,500 shards, which can be
indexed in 1,200 node-days.

Index size. We choose the sampling rate empiri-
cally to balance storage savings and query latency.
In our implementation, we sample every a = 32
entries of SA and every b = 64 entries of ISA. This
yields indexes with 0.44× the size of the corpora
(Table 1). Conceptually, if we set a and b to be very
big, then the SA and ISA would have negligible
size, and the index can be as small as 0.26× the
size of the corpus.

3.2 Querying with INFINI-GRAM MINI

Similar to other exact-match search engines,
INFINI-GRAM MINI supports two types of query:
counting the number of occurrences of a string, and
retrieving documents that contain a string. At query
time, INFINI-GRAM MINI keeps all index files on
disk as memory-mapped files, thus requiring only
minimal CPU and RAM (loading all indexes uses
only ∼ 30 MB if RAM and 1 vCPU in our setting).

Querying in INFINI-GRAM MINI is slower and
more complex than in canonical suffix arrays due
to the compressive nature of FM-index. The SA is
subsampled, and the original text is shuffled and

3We extract text from the CC crawls with resiliparse, fol-
lowing Li et al. (2024).
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Dataset Original Size Indexing Time Index Size Num. Shards
(TB) (CPU node-days) (TB)

Pile-validation 0.0001345 0.00057 0.000602 (0.45×) 1
Pile-train 1.308 1.31 0.588 (0.45×) 2
DCLM-baseline 16.666 12.6 7.523 (0.45×) 25
CC-2025-05 9.079 11.8 3.972 (0.44×) 15
CC-2025-08 8.163 10.6 3.574 (0.44×) 15
CC-2025-13 10.393 13.6 4.563 (0.44×) 17
CC-2025-18 10.498 13.7 4.664 (0.44×) 17
CC-2025-21 9.221 12.1 4.302 (0.46×) 15
CC-2025-26 8.724 11.4 3.835 (0.44×) 15
CC-2025-30 9.006 11.7 3.952 (0.44×) 15

Total 83.059 98.8 36.884 (0.44×) 137

Table 1: Text corpora we indexed with INFINI-GRAM MINI, along with indexing time and index size. The reported
numbers only include actual document content and do not include metadata.

compressed, both requiring additional random disk
reads to recover. The latency of queries is largely
determined by the disk I/O performance.

Counting a string. We use FM-index’s find op-
eration to count the number of occurrences of a
query string. We parallelize this operation across
all k shards, and report the sum of counts across all
shards. The total number of random disk reads is
O(k|Q|H0), where |Q| is the length of the query
string. If the disk’s I/O throughput is high enough,
the query latency can be as low as O(|Q|H0).

Retrieving documents. We first use the find op-
eration to get the range in the SA that corresponds
to the query string. Each element in this range indi-
cates one appearance of the query string in the text
corpus. If the index has multiple shards, we will
have one range for each shard. For each element in
this range, we can use the locate operation to find
the position of the match in the original text T , then
get the boundaries of the enclosing document with
a binary search in the text offset file, and finally
use the reconstruct operation to get the document
text. The number of random disk reads for locate
is O(aH0), and for reconstruct is O((b + d)H0)
where d is the document length. We parallelize
reconstruct operation by dividing document text
into up to t = 10 chunks, or chunks of length
100 if d < 1000. Retrieving a single document is
parallelized across t threads, and it can be further
parallelized for retrieving multiple documents.

Query latency. INFINI-GRAM MINI presents
second-level latency on both types of query. We
benchmark the query latency with the index files

stored on Google Cloud Platform (GCP) SSD disks
with 80,000 IOPS and 1200 MB/s throughput. We
measure the average latency over 100 queries for
each query type and setting. For counting, short
queries (|Q| ≤ 10) can be handled within 0.4
seconds for all corpora we indexed, while longer
queries (|Q| = 1000) are handled in 8 seconds for
CC-2025-05 and 25 seconds for DCLM-baseline.
The difference in query latency is caused by the
different number of shards in the corpora. For doc-
ument retrieval, retrieving a snippet of d = 100
bytes can be done within 2 seconds for all corpora,
and retrieving d = 3000 bytes takes up to 4.5 sec-
onds. See App. §C for benchmarking details.

3.3 Web Interface and API Endpoint

We host a Hugging Face interface for easy access
to counting and document retrieval with 83 TB
corpora (App. §E). We also release an API endpoint
that allows programmatically submitting requests.

4 Analyzing and Monitoring Benchmark
Contamination with INFINI-GRAM
MINI

In this section, we showcase how INFINI-GRAM

MINI can be used to analyze benchmark contam-
ination at scale. INFINI-GRAM MINI allows us
to search in the largest body of text ever in the
open-source community with minimal storage over-
head, enabling large-scale benchmark contamina-
tion analysis at low cost. Our work also supports
analyzing new benchmarks uploaded later.

By identifying lexical overlap between 24
widely-used evaluation benchmarks and three ma-
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jor corpora, we find non-trivial contamination
across 12 benchmarks (§4.2). We then retrieve doc-
uments accounting for contamination for further
analysis (§4.3). Powered by INFINI-GRAM MINI,
we develop a monitoring system with a bench-
mark contamination bulletin, where we continu-
ously monitor new crawls and report benchmarks’
contamination status over time (§4.4). We also
invite the community to contribute by suggesting
additional benchmarks or uploading new ones for
analysis.

INFINI-GRAM MINI has further potential applica-
tions where exact-match search is needed, includ-
ing (1) task-specific dataset construction, where
creation of those datasets requires retrieving docu-
ments containing specific terms or phrases, and (2)
data curation, where INFINI-GRAM MINI can assist
in identifying and removing duplicate, low-quality,
or sensitive text and documents. We leave these
directions for future exploration.

4.1 Setup
Contamination detection method. We check
contamination of test examples by measuring lex-
ical overlap with the text corpus, following stan-
dard practice in the literature (Brown et al., 2020;
Llama Team, 2024). Given a text entry, we extract
all 50-character substrings S with a stride of one
word, and determine entry contamination based
on the proportion of substrings that appear at least
once in the corpus:

η =

∑
s∈S I

[
count(s) > 0

]

|S| .

We classify an entry into three contamination
levels using the same thresholds with different nam-
ings as Touvron et al. (2023):

• Clean, if η < 20%

• Suspicious, if 20% ≤ η < 80%

• Dirty, if η ≥ 80%

Benchmarks. To comprehensively evaluate con-
tamination, we analyze a broad range of bench-
marks widely used to evaluate state-of-the-art LMs.
We categorize benchmarks into five groups based
on their primary focus: (1) knowledge and reason-
ing, i.e., understanding and reasoning over factual
and conceptual knowledge; (2) math, i.e., mathe-
matical reasoning ability; (3) code generation and
modification abilities; (4) commonsense under-
standing, i.e., commonsense knowledge and rea-
soning abilities; and (5) reading comprehension

of textual context. In total, we analyze 24 bench-
marks; see App. §F for the full list and citations.

For benchmarks with question-answering format,
we specifically check the question entries for con-
tamination. Questions are usually longer and con-
tain sufficient contextual information to uniquely
identify the benchmark example, whereas answers
can be short, such as a multiple choice option or
a number. For language understanding tasks that
involve reading a context or paragraph before an-
swering, we check the context entries for contami-
nation.

We evaluate on only the test set of benchmarks.
For benchmarks with large test set, we downsam-
ple to 1,000 entries for efficiency. For benchmarks
with multiple subtasks, we sample proportionally
from each subtask to maintain representative distri-
bution.

4.2 Results

Table 2 reports the percentage of dirty entries in
benchmarks against the Pile (knowledge cutoff in
2020), DCLM-baseline (knowledge cutoff in 2022),
and seven CC crawls (knowledge cutoff in January-
July 2025). The detailed count of dirty and suspi-
cious entries can be found in App. §G.

Many widely-used benchmarks are highly
contaminated. When checking against DCLM-
baseline, MMLU has 27.70% dirty entries, MMLU-
Pro has 16.20%, ARC-Challenge has 32.6%, and
ARC-Easy has 32.3%. These benchmarks, espe-
cially MMLU, have been used to evaluate virtually
every new LM in recent years. We believe that the
observed contamination levels are a strong signal
that many recently reported results may overesti-
mate language model abilities on truly new, unseen
evaluation items.

Larger and newer corpora show greater contam-
ination. Compared with Pile-train, most bench-
marks show a higher dirty rate on DCLM-baseline.
For example, ARC-Challenge has 17× more and
MMLU has 1.1× more dirty entries. However, CC-
2025-05 has lower contamination rate than DCLM-
baseline on most benchmarks, which is likely be-
cause DCLM-baseline corpus is larger and is a
high-quality subset of crawls spanning a decade,
while CC-2025-05 is an unfiltered single crawl.

Contamination level varies by domain. Bench-
marks in historically-significant domains, such
as commonsense understanding (e.g., ARC,
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OpenbookQA) and reading comprehension (e.g.,
SQuAD, CoQA), tend to show higher dirty rates
on all corpora, while those in emerging domains
like math (e.g., GSM8K, MATH-500) and code
(e.g., HumanEval, LiveCodeBench) remain rela-
tively clean at this writing.

New benchmarks are gradually getting contam-
inated in recent corpora. Newer benchmarks
are initially clean on earlier corpora. For example,
AIME-2024 is uncontaminated on Pile-train and
DCLM-baseline, but show 40.00% dirty rate on the
more recent CC-2025-21; similarly, GPQA shows
2.70% dirty rate on CC-2025-26. GSM8K is very
clean on Pile-train, DCLM-baseline, and earlier
CC-2025 crawls, but has 74.2% dirty entries on
CC-2025-21.

4.3 Analysis
With INFINI-GRAM MINI, we can retrieve docu-
ments from the corpus that contain contaminated
examples for further analysis. We use LLM-as-a-
judge to categorize all dirty instances in Pile-train,
DCLM-baseline, and CC-2025-05 into following
scenarios (see App. §I for more details), with ex-
amples shown in Table 3:

• Type 1: Question and answer appear as-is in
corpus. The question and correct answer appear
in the corpus in the exact format as in bench-
mark entry. The model may memorize entirely
from these data instead of performing capabili-
ties examined in benchmarks. This accounts for
72.5% of all dirty entries in Pile-train, 82.6% on
DCLM-baseline, and 58% on CC-2025-05.

• Type 2: Question appeared, answer in natural
language. The answer is expressed in natural
language rather than the exact benchmark for-
mat, and model may directly infer the correct an-
swer from it. This accounts for 4.5% of all dirty
entries in Pile-train, 2.1% on DCLM-baseline,
and 6.2% on CC-2025-05.

• Type 3: Question appeared, no corresponding
answer. The question (and maybe the multiple-
choice options) appeared in the corpus, but
correct answer is missing. This accounts for
18.1% of all dirty entries in Pile-train, 10.9% on
DCLM-baseline, and 30.2% on CC-2025-05.

• Type 4: False positives. There are documents
that superficially match the question but are un-
related to the benchmark example. This happens
on entries with a very short question. This ac-
counts for 3.1% of all dirty entries in Pile-train,

1% on DCLM-baseline, and 3% on CC-2025-05.

We show 7 contamination examples in App. §H
and their source of contamination. We found that
contamination is caused by (1) the benchmark is
sourced from the Internet (e.g., AIME-2024, Fig-
ure 6; SWE-bench, Figure 8), (2) there are other
benchmarks or online quizzes that are sourced from
the benchmark (e.g, GSM8K, Figure 10), (3) blogs
and papers cite a benchmark entry as example (e.g,
GPQA, Figure 9; BigBenchHard, Figure 11; Open-
bookQA, Figure 12), and (4) benchmark entry co-
incide with online source (e.g., MMLU, Figure 7).

Contamination could cause LLM to overperform
on evaluation benchmarks by enabling models to re-
trieve memorized answers from training data rather
than performing task-specific reasoning. Our find-
ing shows that a large majority of dirty entries con-
tain exact matches of both question and answer,
though even subtler forms of contamination such
as question-only matches and paraphrased answers
could inflate benchmark scores. As training cor-
pora grow, the risk of benchmark contamination
and the potential for rote memorization increase,
making it more important to decontaminate training
corpora and construct contamination-free bench-
marks to avoid overestimating model capabilities.

4.4 Benchmark Contamination Bulletin

Using INFINI-GRAM MINI, we implement a bench-
mark contamination monitoring system that tracks
benchmark contamination. In the future, we will
keep indexing the latest crawl in Common Crawl
and update contamination results to track bench-
mark contamination as corpora evolve. The system
also allows anyone to add or upload new bench-
marks to be monitored, fostering collaboration in
benchmark monitoring. See App. §J for system
interface.

5 Related Work

Exact-match search in large text corpora. Prior
work has used different techniques to enable exact-
match full-text search in large text corpora, includ-
ing suffix arrays, suffix automata, and proprietary
search engines. Below we survey the largest-scale
implementation of each technique known to us.
Merrill et al. (2024) apply a suffix automaton to
1.3TB of text. Liu et al. (2024) apply a suffix array
to 12TB of text. Elazar et al. (2024) use the pro-
prietary ElasticSearch to index and analyze 35TB
of text. All these methods have significant storage
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Test Pile DCLM CC CC CC CC CC CC
Size train baseline 2025-05 2025-08 2025-13 2025-18 2025-21 2025-26

Knowledge and Reasoning
MMLU 1000 13.20 28.40 13.50 9.00 12.10 11.50 11.70 9.20
MMLU-Pro 1000 5.50 16.20 7.10 5.40 6.00 6.30 7.40 6.90
BigBenchHard 1000 0.00 0.10 1.40 1.40 3.20 2.30 1.80 1.70
AGIEval 1000 0.80 3.10 2.70 3.60 3.00 7.00 9.40 4.60
GPQA 448 0.00 0.00 0.90 2.00 1.30 0.70 0.90 2.70
HLE 881 0.00 0.30 0.10 0.00 0.10 0.00 0.00 0.00

Math
AIME-2024 30 0.00 0.00 10.00 3.30 6.70 40.00 40.00 13.30
GSM8K 1000 0.00 5.00 5.00 0.80 6.90 0.70 74.20 7.30
MATH-500 500 0.60 3.20 0.60 7.80 0.80 0.80 0.80 8.20
MGSM 250 0.00 0.00 5.60 1.60 35.60 0.80 72.80 6.00

Code
HumanEval 164 0.00 0.00 0.00 0.60 0.60 0.60 0.00 0.00
HumanEval+ 164 0.00 0.00 0.00 0.60 0.60 0.60 0.00 0.00
LiveCodeBench 880 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SWE-bench 500 0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.00
MBPP 500 0.00 0.40 1.00 1.40 1.20 1.80 1.00 1.40

Commonsense Understanding
ARC-Challenge 1000 1.80 34.10 11.90 4.00 3.10 3.80 4.20 4.80
ARC-Easy 1000 1.30 31.70 5.40 9.50 5.50 5.50 6.10 6.20
CSQA 1000 0.10 1.00 0.10 0.10 0.20 0.10 0.00 0.10
HellaSwag 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
OpenbookQA 500 10.80 15.60 14.60 30.20 13.20 13.40 13.20 12.20
Social IQa 1000 0.00 0.50 0.20 4.40 0.20 0.30 0.20 0.10
WinoGrande 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reading Comprehension
CoQA 500 8.00 18.40 7.40 8.80 8.60 7.20 7.60 8.80
SQuAD 1000 2.80 40.10 2.70 33.00 10.10 1.50 2.00 8.50

Table 2: Dirty rates for benchmarks across the Pile, DCLM-baseline, and Common Crawl from January to July,
2025. Full result is reported in Table 7. For benchmark entries with over 1000 entries, we report dirty rate on
the downsampled subset. Cell background color indicates benchmark cleaniness, with more redness representing
increasing levels of contamination.

multiplier wrt the size of text indexed, ranging from
ElasticSearch’s 2× to suffix automata’s 29×. In
contrast, our FM-index-based index has a storage
multiplier as small as 0.26×, allowing us to index
the largest body of text ever in the open-source
community.

Benchmark contamination. Benchmark con-
tamination appeared as a critical concern in LLM
evaluations in recent studies. Prior works has quan-
tified benchmark contamination on open-sourced
models using various matching strategies, includ-
ing n-gram or token overlap (Soldaini et al., 2024;
Llama Team, 2024; Soldaini et al., 2024; OLMo
et al., 2025), longest substring match (Singh et al.,
2024), skipgram match (Touvron et al., 2023), and

full-text exact match (Elazar et al., 2024). Sainz
et al. (2024) reports data contamination from multi-
ple sources through shared efforts. However, index-
ing large-scale pretraining corpora and performing
exhaustive searches is computationally expensive,
and prior studies on open corpora are limited in
their scale (up to RedPajama-1T and Dolma, 12TB).
To the best of our knowledge, our work conducts
contamination analysis on the largest open corpora
to date.

6 Conclusion

We introduce INFINI-GRAM MINI, an efficient sys-
tem for indexing text with 0.44× their original size,
enabling efficient counting and searching in mas-
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Figure 3: Examples of four contamination types. Violet text is the text overlap between benchmark entry and corpus.
Magenta text is the mapping of answers.

sive text corpus, and we show its scalability to a
petabyte-scale corpus. We showcase INFINI-GRAM

MINI’s application on benchmark contamination
analysis at scale.

Limitations

Although INFINI-GRAM MINI shows significant im-
provements on text compression rate, document
retrieval latency remains higher than a canoni-
cal suffix array. For example, reconstructing a
3000-character document takes 1.8 seconds on Pile
and 4.5 seconds on DCLM-baseline, compared to
millisecond-level retrieval in system like Infini-
gram (Liu et al., 2024). This is a trade-off with
INFINI-GRAM MINI’s compression rate: INFINI-
GRAM MINI does not store the original text in a
contiguous block. To retrieve a document, we need
to reconstruct it character-by-character, leading to a
large number of reads in random addresses. These
process takes long time since the entire index is
kept on disk at inference time. The high latency
can potentially be reduced using techniques like
disk page prefetching.

Identifying co-occurrences of multiple patterns
is inefficient with the FM-index, since mapping
every match from the suffix array range back to

its position in original text takes very long time
thus making this operation impractical. In contrast,
the original infini-gram supports this operation effi-
ciently.

INFINI-GRAM MINI only supports exact-match
searches. As a result, our benchmark contami-
nation analysis is limited to case-sensitive exact
matching, which may fail to detect contamination
of instances with minor textual discrepancies.

As the text corpora may contain biased or toxic
content, document retrieval output may contain
content that can be perceived as ethically problem-
atic, and may contain sensitive information. The
output of INFINI-GRAM MINI does not reflect au-
thors’ views.
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A Querying the FM-Index

This section introduces in details three operations
supported by FM-index: find, locate, and recon-
struct.

Find. Each occurrence of a pattern string Q in
the haystack string T corresponds to an element in
the SA, and all these occurrences live in a consecu-
tive range in the SA. The find operation computes
this range with backward search: starting with the
full range, it iterates through the symbols in Q in
reverse order, with each iteration narrowing the
range using the character table C and the rank oper-
ation of the BWT’s wavelet tree. The length of the
final range is the count of Q in T . Figure 4 (left)
illustrates finding pattern “ana” in string “banana”.
The time complexity of find is O(|Q|H0), where
|Q| is the length of the pattern.

Locate. The locate operation maps any position
in the SA to its corresponding position in T . Since
the SA is sampled at interval a, for an unsampled
position i, the algorithm applies LF mapping at
most a times to locate the nearest sampled SA en-
try. Figure 4 (middle) illustrates locating the two
occurrences of “ana” in “banana”. The time com-
plexity of locating each position is O(tSA), where
tSA is the complexity of accessing an SA entry,
which is O(1) for sampled entries and O(aH0) for
unsampled entries.

Reconstruct. After getting the position of a pat-
tern occurrence in T , we can reconstruct a sub-
string of T enclosing that occurrence with some
additional context. Starting at the end position of
the desired substring, we apply the LF mapping to
traverse through the BWT and use ISA to recover
the symbol, and reconstruct symbols in reverse
order until reaching the start position of the de-
sired substring. Figure 4 (right) shows reconstruct-
ing the second occurrence of “ana” with context
length of 1. The time complexity of reconstruct
is O(dH0 + tISA), where d is the length to recon-
struct, and tISA is the complexity of accessing an
ISA entry, which is O(1) for sampled entries and
O(bH0) for unsampled entries.

B Indexing Time

Table 3 presents indexing time for each shard of
text corpora with stepwise breakdown. Suffix ar-
ray construction scales super-linearly depending
on the level of duplication (Lee et al., 2022). Con-

structing alphabet, wavelet tree, and sampling are
linear operations. Indexing time also varies across
similar-size shards originated from different text
corpora, showing the time also depend on text cor-
pora properties. For example, over 60% duplicate
documents in the Pile (Elazar et al., 2024) causes
SA construction to take significantly longer com-
pared to DCLM-baseline.

C Benchmarking Query Latency

We benchmark the query latency of INFINI-
GRAM MINI, and report results in Table 4. For
counting, we experiment with query lengths
|Q| ∈ {1, 2, 5, 10, 50, 100, 500, 1000}, and for
each length, randomly sample the query strings
from the corpus. For retrieving documents, we
use queries of length 10 sampled from the cor-
pus, and reconstruct text surrounding the query
with total length of d ∈ {10, 50, 100, 500, 1000}.
For each corpus and parameter setting, we repeat
with 100 random queries and report the average
latency. For benchmarking, we store the indexes
on pd-balanced SSD disks on GCP which has a
max IOPS of 80,000 and max throughput of 1200
MB/s, and we experiment on an n2-highcpu-64
node where the max disk I/O performance can be
achieved.

D Query Latency Comparison with Prior
Works

Table 5 reports query latency on Pile-train corpus
using our method compared to prior work by Liu
et al. (2024).

E INFINI-GRAM MINI Web Interface

We host web interface for easy access to counting
(Figure 5 left) and document retrieval (Figure 5
right) with the indexes we have built.

F Details for Benchmarks in
Contamination Analysis

Table 6 shows the benchmarks we analyze under
each category with citation and source.

G Detailed Benchmark Contamination
Result

Table 7 reports the number of suspicious and dirty
entries of each benchmark.
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Figure 4: Illustration of operations on FM-index (§2.2, App. §A). Left: find operation computes the SA range
corresponding to all occurrences of the pattern. Middle: locate operation computes the position of pattern occurrence
in the original string for each position in the SA range. Right: reconstruct operation gets a substring of the original
string enclosing the second pattern occurrence with a context length of 1. The occurrence ranking is based on its
order in SA.

Step Pile-val Pile-train DCLM-baseline CC-2025-05
(1.4 GB) (653 GB) (667 GB) (654 GB)

SA+BWT 29 s 41710 s 29543 s 55692 s

alphabet 4 s 2584 s 2895 s 2580 s

wavelet tree 13 s 5773 s 6257 s 5325 s

sample SA 1 s 2540 s 2232 s 2013 s

sample ISA 2 s 3975 s 2659 s 2313 s

Total 49 s 15.7 h 12.1 h 18.9 h

Table 3: Index construction time for each shard of the text corpora, with stepwise breakdown. The size of text in
each shard is noted at the top. To get the indexing time of the full corpus on a single node, roughly multiply by
the number of shards; though this can be embarrassingly parallelized across multiple nodes. Metadata size and
metadata indexing time are excluded.

Figure 5: The web interface of INFINI-GRAM MINI. Left: counting a string. Right: retrieving documents.
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Pile-train DCLM-baseline CC-2025-05 Time
(n = 1.3T) (n = 16.7T) (n = 9.1T) Complexity

(S = 2) (S = 25) (S = 15)

Counting a query of length |Q| O(|Q|H0)
. . . (|Q| = 1) 0.004 s 0.005 s 0.032 s
. . . (|Q| = 2) 0.015 s 0.017 s 0.094 s
. . . (|Q| = 5) 0.061 s 0.207 s 0.206 s
. . . (|Q| = 10) 0.106 s 0.402 s 0.350 s
. . . (|Q| = 20) 0.182 s 0.868 s 0.638 s
. . . (|Q| = 50) 0.393 s 1.743 s 1.063 s
. . . (|Q| = 100) 0.696 s 2.857 s 1.642 s
. . . (|Q| = 200) 1.281 s 5.699 s 2.753 s
. . . (|Q| = 500) 2.763 s 12.46 s 4.626 s
. . . (|Q| = 1000) 4.808 s 25.47 s 7.957 s

Retrieving a text of length d O((a+ b+ d)H0)
. . . (d = 10) 0.426 s 0.895 s 1.101 s
. . . (d = 50) 0.634 s 1.549 s 1.302 s
. . . (d = 100) 0.734 s 1.991 s 1.326 s
. . . (d = 500) 0.874 s 2.363 s 1.609 s
. . . (d = 1000) 0.94 s 2.385 s 1.705 s
. . . (d = 2000) 1.213 s 3.464 s 2.849 s
. . . (d = 3000) 1.858 s 4.456 s 3.330 s

Table 4: Inference time latency of INFINI-GRAM MINI. Average latency of each query is reported. Notations: n =
number of bytes in the text corpus, S = number of shards for the index, |Q| = length of query in bytes, d =
length of text (in bytes) to reconstruct from the index, a = sampling rate of SA, b = sampling rate of ISA, H0 =
zeroth-order entropy of the corpus.

|Q| = 10 bytes |Q| = 20 bytes |Q| = 100 bytes

infini-gram (Liu et al., 2024) 13 ms 14 ms 13 ms
INFINI-GRAM MINI 106 ms 182 ms 696 ms

Table 5: Text retrieving latency comparison between infini-gram and INFINI-GRAM MINI on Pile-train corpus.
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Benchmark Citation Source

Knowledge and Reasoning

MMLU Hendrycks et al., 2021 https://huggingface.co/datasets/cais/mmlu
MMLU-Pro Wang et al., 2024 https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro
BigBenchHard Suzgun et al., 2022 https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh
AGIEval Zhong et al., 2023 https://github.com/ruixiangcui/AGIEval/tree/main/data/v1_1
GPQA Rein et al., 2023 https://huggingface.co/datasets/Idavidrein/gpqa
HLE Phan et al., 2025 https://huggingface.co/datasets/cais/hle

Math

AIME-2024 of Problem Solving, 2024 https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
GSM8K Cobbe et al., 2021 https://huggingface.co/datasets/openai/gsm8k
MATH-500 Lightman et al., 2023 https://huggingface.co/datasets/HuggingFaceH4/MATH-500
MGSM Shi et al., 2022 https://huggingface.co/datasets/juletxara/mgsm

Code

HumanEval Chen et al., 2021 https://huggingface.co/datasets/openai/openai_humaneval
HumanEval+ Liu et al., 2023 https://huggingface.co/datasets/evalplus/humanevalplus
LiveCodeBench Jain et al., 2024 https://huggingface.co/datasets/livecodebench/code_generation

(code generation)
SWE-bench Jimenez et al., 2024 https://huggingface.co/datasets/princeton-nlp/SWE-bench_Verified
MBPP Austin et al., 2021 https://huggingface.co/datasets/google-research-datasets/mbpp

Commonsense Understanding

ARC-Challenge Clark et al., 2018 https://huggingface.co/datasets/allenai/ai2_arc
ARC-Easy Clark et al., 2018 https://huggingface.co/datasets/allenai/ai2_arc
CSQA Talmor et al., 2019 https://huggingface.co/datasets/tau/commonsense_qa
HellaSwag Zellers et al., 2019 https://huggingface.co/datasets/Rowan/hellaswag
Openbook QA Mihaylov et al., 2018 https://huggingface.co/datasets/allenai/openbookqa
Social IQa Sap et al., 2019 https://huggingface.co/datasets/allenai/social_i_qa
WinoGrande Sakaguchi et al., 2019 https://huggingface.co/datasets/allenai/winogrande

Reading Comprehension

CoQA Reddy et al., 2019 https://huggingface.co/datasets/stanfordnlp/coqa
SQuAD Rajpurkar et al., 2016 https://huggingface.co/datasets/rajpurkar/squad

Table 6: Citation and source of each benchmark analyzed in this paper.
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H Contamination Examples

Figure 6 to Figure 12 shows example dirty entries
in seven benchmarks and its contamination source
retrieved from one of three corpus using INFINI-
GRAM MINI. We also present the original webpage
that is responsible for the contamination.

I Dirty Entry Categorization using
LLM-as-a-judge

We use gpt-4o-mini to categorize all dirty entries
into one of four categories described in §4.3. For
each dirty entry, we extract the 50-character sub-
string that has least occurrence in the corpus. We
then retrieve text snippet with context length of
400 characters (850 characters in total). We prompt
gpt-4o-mini by providing both the dirty entry and
the text snippet and let the model decide which cat-
egory the dirty entry belongs. We use the following
prompt:

You are an expert in evaluating benchmark
contamination. Given an entry and detected
overlap in the corpus, categorize how the en-
try is contaminated in corpus into one of four
categories:
1. You can find exact match of question stem
and the correct answer (correct choice if mul-
tiple choices, or answer matching exactly the
answer field) in corpus.
2. You can find exact match of question stem,
and the correct answer appears, though not in
exact match.
3. You can find exact match of question stem,
but you cannot find the correct answer in any
form.
4. False positive
Output only the category number.

J Interface of the Benchmark
Contamination Monitoring System

Figure 13 shows the interface of the system. It
consists of two tabs: (1) Benchmark Contamination
Bulletin, and (2) submission page for community to
contribute. Benchmarks analyzed in this paper are
reported in “core” table, and submitted benchmarks
will be added to “community” table.

K License of Corpora Used in the Paper

Pile and DCLM are licensed under the MIT Li-
cense. Common Crawl is licensed under its cus-
tomized Limited License. We followed the listed
intended use.
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(a) Left upper: An entry in the AIME-2024 benchmark. Right: A document contaminating this entry, retrieved from CC-2025-
05 by INFINI-GRAM MINI. This example belongs to Category 1, where the correct answer can be found in the document.

(b) The original webpage responsible for the contamination.

Figure 6: AIME dirty entry example in CC-2025-05. The contamination source is the official AOPS website, where
AIME exams are published.
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(a) Left upper: An entry in the MMLU benchmark. Right: A document contaminating this entry, retrieved from CC-2025-05
by INFINI-GRAM MINI. This example belongs to Category 1, where the correct answer presents (though choices are not in the
exact same order).

(b) The original webpage responsible for the contamination.

Figure 7: MMLU dirty entry example in CC-2025-05. The contamination source is a website containing multiple-
choice question in related fields.
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(a) Left upper: An entry in the SWE-bench benchmark. Right: A document contaminating this entry, retrieved from CC-2025-
05 by INFINI-GRAM MINI. This example is Category 3, where only question appears but not the answer.

(b) The original webpage responsible for the contamination.

Figure 8: SWE-bench dirty entry example in CC-2025-05. The contamination source is a website recording pull
requests for software developing.
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(a) Left bottom: An entry in the GPQA benchmark. Right: A document contaminating this entry, retrieved from CC-2025-05
by INFINI-GRAM MINI. This example belongs to Category 3, where only the question appears, not the answers.

(b) The original webpage responsible for the contamination.

Figure 9: GPQA dirty entry example in CC-2025-05. The contamination source is a blog post citing a test set
example.

24977



(a) Left bottom: An entry in the GSM8K benchmark. Right: A document contaminating this entry, retrieved from CC-2025-05
by INFINI-GRAM MINI. This example is Category 3 because the correct answer is not present.

(b) The original webpage responsible for the contamination.

Figure 10: GSM8K dirty entry example in CC-2025-05. The contamination source is a HuggingFace dataset
sourcing from GSM8K examples, and is the major source for GSM8K dirty entries. This new dataset contains
erroneous “steps” field and final answer to examine LLM’s ability to identify errors, so the correct answers do not
appear.

24978



(a) Left bottom: An entry in the BigBenchHard benchmark. Right: A document contaminating this entry, retrieved from
CC-2025-05 by INFINI-GRAM MINI. This example is Category 3 because the correct answer is not present.

(b) The original webpage responsible for the contamination.

Figure 11: BigBenchHard dirty entry example in CC-2025-05. The contamination source is a HuggingFace commit
history that list it as few-shot example.

24979



(a) Left bottom: An entry in the OpenbookQA benchmark. Right: A document contaminating this entry, retrieved from
Pile-train by INFINI-GRAM MINI. This example is Category 2 where the correct answer appears in natural language.

(b) The original webpage responsible for the contamination.

Figure 12: OpenbookQA dirty entry example in Pile-train. The contamination source is a paper citing an example
from OpenbookQA benchmark.
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Figure 13: Upper: A screenshot of our online Benchmark Contamination Bulletin. Lower: We invite the community
to add new benchmarks or upload new ones for contamination analysis, which will be added to the bulletin.
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