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Abstract

Robust evaluation is critical for deploying trust-
worthy retrieval-augmented generation (RAG)
systems. However, current LLM-based eval-
uation frameworks predominantly rely on di-
rectly prompting resource-intensive models
with complex multi-stage prompts, underuti-
lizing models’ reasoning capabilities and in-
troducing significant computational cost. In
this paper, we present RAG-Zeval (RAG-Zero
Evaluator), a novel end-to-end framework that
formulates faithfulness and correctness evalua-
tion of RAG systems as a rule-guided reason-
ing task. Our approach trains evaluators with
reinforcement learning, facilitating compact
models to generate comprehensive and sound
assessments with detailed explanation in one-
pass. We introduce a ranking-based outcome re-
ward mechanism, using preference judgments
rather than absolute scores, to address the chal-
lenge of obtaining precise pointwise reward
signals. To this end, we synthesize the rank-
ing references by generating quality-controlled
responses with zero human annotation. Experi-
ments demonstrate RAG-Zeval’s superior per-
formance, achieving the strongest correlation
with human judgments and outperforming base-
lines that rely on LLMs with 10− 100× more
parameters. Our approach also exhibits supe-
rior interpretability in response evaluation1.

1 Introduction

Retrieval-Augmented Generation (RAG) systems
(Lewis et al., 2021; Gao et al., 2024; Li et al.,
2024) have become a cornerstone for building
knowledge-intensive NLP applications, such as
question answering and fact-checking in various
domains (Zhao et al., 2025; Pipitone and Alami,
2024). By integrating external knowledge retrieval
with large language models (LLMs), RAG enables
more accurate and contextually relevant responses

* Equal contribution.
1Code and checkpoints are available here.

(Li et al., 2025; Asai et al., 2024), especially for
queries that go beyond the static knowledge en-
coded in model parameters. As RAG systems are
increasingly deployed in real-world scenarios, ro-
bust and comprehensive evaluation is essential to
assess their performance and guide further devel-
opment (Yu et al., 2025).

However, evaluating the response quality of
RAG systems remains challenging due to the open-
ended nature of responses, particularly when gen-
erated by LLM-based models. Traditional metrics
such as BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004), mainly used for surface-form compar-
isons between phrase- or sentence-length responses
and references, are often coarse-grained and fail to
capture semantic fidelity or factual consistency in
open-ended tasks. To overcome these limitations,
recent work has explored model-based evaluation
strategies, particularly leveraging LLMs as auto-
matic judges (Gu et al., 2024). Frameworks such
as RAGAS (Shahul et al., 2023) and RAG-Checker
(Ru et al., 2024) have demonstrated that LLMs
can provide scalable and automated assessments
of metrics such as context relevance and faithful-
ness, thereby reducing the reliance on costly human
annotation and enabling efficient large-scale evalu-
ation.

These LLM-based approaches (Shahul et al.,
2023; Ru et al., 2024) predominantly prompt LLMs
to operate in pipelines with multiple isolated stages,
e.g., claim decomposition and then supportiveness
judgment between claims. Although showing su-
perb performance in evaluation, they rely on large-
scale LLMs with advanced capabilities (e.g., GPT-
4 (OpenAI et al., 2024), Llama3-70B (Grattafiori
et al., 2024)), introducing significant computational
costs. On the other hand, recent studies reveal
that with sufficient reasoning, remarkable problem
solving competences can emerge even in compact
LLMs (with < 10 billion parameters) (Qi et al.,
2025; DeepSeek-AI et al., 2025). Building on these
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insights, we study whether compact LLMs can be
transformed into robust evaluators through end-to-
end reasoning chains that incorporate prerequisite
analytical steps aforementioned.

In this work, we present RAG-Zeval (RAG-Zero
Evaluator), a novel framework that formulates
faithfulness and correctness evaluation as a rule-
guided reasoning task with zero human annota-
tion. Our approach enables the evaluators to gener-
ate comprehensive assessments end-to-end under
the instruction of predefined rules, systematically
performing (1) claim decomposition, (2) evidence
grounding, and (3) supportiveness judgment. Dis-
tinguished from previous multi-stage pipelines, this
end-to-end evaluation ensures assessment consis-
tency through holistic reasoning and captures the
interdependence between different steps. More-
over, evaluation through generation enables us to
employ Reinforcement Learning with Verifiable
Rewards (RLVR) (DeepSeek-AI et al., 2025) to fur-
ther enhance the evaluators, in which the complete
evaluation trajectories serve as the rollouts. To
overcome the challenge of acquiring precise point-
wise verifiable rewards, we introduce a ranking-
based outcome reward mechanism, which operates
on more easily obtainable preference judgments
instead of absolute scores (Guan et al., 2025). Rec-
ognizing that high-quality rewards in open-ended
generation tasks typically require expensive human
annotations (Liu et al., 2025a), we further synthe-
size the ranking reference using Context-Aware
Decoding (Shi et al., 2023) to generate quality-
controlled response candidates. Combining the
above together, RAG-Zeval trains compact LLMs
to achieve superior evaluation capabilities with zero
human annotation.

We assess RAG-Zeval on both faithfulness and
correctness benchmarks to analyze its performance
in deriving interpretable and reliable evaluations.
Experimental results demonstrate that RAG-Zeval
achieves strong alignment with human judgments,
maintaining transparent and interpretable decision-
making through its rule-guided reasoning process.

2 Related Work

With the rapid advancement of Retrieval-
Augmented Generation (RAG) systems (Fan
et al., 2024; Li et al., 2025), effective and robust
evaluation methods beyond traditional metrics
have become increasingly important.

A significant line of work evaluates the retrieval

and generation components separately. For re-
trieval, traditional information retrieval metrics
such as precision, recall, MRR, and MAP are
widely used (Yu et al., 2024; Tang and Yang, 2024).
For the generation component, metrics like BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), and
BERTScore (Zhang et al., 2020) are commonly
used, alongside human evaluation.

Recent research on the evaluation of RAG sys-
tems has moved beyond traditional component-
wise metrics, proposing a variety of frameworks
that leverage large language models (LLMs) as
evaluators. LLM-based evaluation frameworks
such as TruLens (Ferrara et al., 2024) and ARES
(Saad-Falcon et al., 2024) adopt direct prompting
to score responses without decomposing them into
individual claims. Other approaches, including RA-
GAS (Shahul et al., 2023), RAG-Checker (Ru et al.,
2024), and OpenEval (Ispas et al., 2025), introduce
claim-level decomposition, enabling LLMs to as-
sess the faithfulness and correctness of each factual
statement for finer-grained and more interpretable
evaluation.

Despite these advances, most current LLM-
based evaluation frameworks rely on direct prompt-
ing of large, resource-intensive models, often in-
volve complex multi-stage prompting, and treat
LLMs as black-box scorers without fully leverag-
ing their reasoning abilities. Recent progress in re-
inforcement learning and reward modeling, such as
Deepseek-R1 (DeepSeek-AI et al., 2025) and gen-
erative reward modeling (GRM) (Liu et al., 2025a),
demonstrates that rule-driven, interpretable evalu-
ators trained via rule-based RL can provide more
transparent and scalable assessments with stronger
reasoning ability. These developments motivate
our approach to construct RAG evaluators using
similar RL-based, rule-guided techniques.

3 Methodology

3.1 Problem Formulation

The majority of evaluation tools for assessing the
response quality of RAG systems adopt a claim-
based paradigm (Ru et al., 2024; Shahul et al.,
2023; Ispas et al., 2025; Manakul et al., 2023).
In this paradigm, the responses are decomposed
into individual claims, each declarative sentence
that conveys an atomic piece of information. The
claims are then evaluated for supportiveness—the
degree to which they are grounded on the provided
reference context (e.g., ground-truth answer for
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Figure 1: An overview of RAG-Zeval. We synthesize training data using Context-Aware Decoding, generating yαi

with αi. The complete prompt is presented in Fig.5. The ground-truth ranking of y’s depends on the value of α.

correctness or retrieved passages for faithfulness).
In a RAG setting, a response is considered 1) cor-

rect if the ground-truth answer supports its claims,
or 2) faithful if the retrieved passage supports its
claims. Based on this, following prior work (Ru
et al., 2024; Ispas et al., 2025; Shahul et al., 2023),
given a response, we define its correctness as

# Claims supported by ground-truth answer
# Claims , (1)

and faithfulness as

# Claims supported by retrieved passage
# Claims , (2)

indicating the precision rate of claims in the re-
sponse that are supported by the ground-truth
answer and the retrieved passage respectively.
These formulations consolidate the evaluation
paradigms for both correctness and faithfulness,
allowing for the development of a unified eval-
uator that assesses the two quality dimensions.
Therefore, our approach is able to assess responses
in correctness and faithfulness with different ref-
erence (i.e., ground-truth answers for correctness
and retrieved passages for faithfulness evaluation).

3.2 Prompting for Rule-Guided Reasoning

Different from previous claimed-based work,
which runs in a multi-stage pipeline, we develop a
novel approach for end-to-end claim-based evalu-
ation, through generation of complete evaluation
trajectories, guided by our defined rules.

To this end, we adopt the prompt shown in Fig. 5,
which elaborates the rules and format that the gen-
eration should follow. In detail, given a question q
and the reference c, and the set of responses to eval-
uate {y}, LLM is prompted to give a comprehen-
sive evaluation process—decomposing a response
into claims, and then determining those claims’
supportiveness as well as finding the grounding

evidence in the reference. In addition, the genera-
tion is required to represent the evaluation process
in a JSON format. After parsing the generated
JSON-formatted string into a Python list object
using json.loads, we can readily extract the inter-
mediate results (e.g., # claims (un)supported by the
reference) by accessing the resulting list object.

Casting the evaluation process into generation
of evaluation trajectory not only streamlines the
pipeline, but also facilitates further finetuning of
the model.

3.3 Reinforcement Learning with Ranking
Objective

Finetuning models with valid evaluation trajec-
tories as outlined in §3.2 presents a non-trivial
challenge due to the prohibitive cost of manual
annotation—particularly for claim decomposition
and supportiveness judgment. To address this, we
use Reinforcement Learning with Verifiable Re-
wards (RLVR) (DeepSeek-AI et al., 2025) to fine-
tune our model, bypassing the need for annotation
of the whole trajectories.

Nonetheless, it remains necessary to curate the
data labeled with the final evaluation result for
the outcome rewards. A naive way would be to
annotate the score according to Eq.1 or 2. How-
ever, this way still relies on the claim decomposi-
tion and supportiveness judgment as the intermedi-
ate results. To circumvent this, our reinforcement
learning method introduces a novel optimization
paradigm that trains the model to perform rela-
tive ranking of responses based on their degree of
supportiveness w.r.t. the reference, rather than pre-
dicting absolute scores. Specifically, first, given
question q and reference c, we synthesize a set of
responses {y} with controlled groundness degree
w.r.t. c (§3.3.1), which varies across {y}. During
this process, the ground-truth rank of {y} can be
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obtained naturally. Subsequently, based on q and c,
we adopt {y} as the responses to rank and apply RL
to reinforce the model’s ranking ability by advanc-
ing the generated evaluation trajectories (§3.3.2).
Note that the RL objective is to rank the responses
instead of predicting their exact scores. For the
training, this can mitigate the adverse effects of
bias introduced during data synthes.

3.3.1 Responses Synthesis with Ranking
Relation

With Context-Aware Decoding (Li et al., 2022; Shi
et al., 2023) , the i-th token of a response y is
sampled as

yi ∼ softmax[(1 + α)LogitLLM (∗ | q, c,y<i)

− αLogitLLM (∗ | q,y<i)].
(3)

LogitLLM (∗ | q,y<i) denotes the logits of yi pre-
dicted by an LLM with the input of q and y<i. The
weight α controls the extent to which the genera-
tion of yi is conditioned on c (which is the passage
in this case), and a larger one translates into y that
is more reference-conditioned. Note that α can be
negative and α < −1 leads to reference-resistant
generation of y (App. A.1).

For each question, we synthesize a set of re-
sponses {yai} with different degrees of ground-
ness by varying α. The ground-truth ranking of
these responses can be obtained naturally as

∀αi, αj ∈ R, αi > αj =⇒ yαi ≻ yαj . (4)

For implementation, LogitLLM (∗ | q, c,y<i)
and LogitLLM (∗ | q,y<i) are modeled using in-
context learning. We use a third-party LLM for
sampling responses prior to the RL stage.

3.3.2 Reinforcement Learning with Verifiable
Rewards

We fine-tune the model using reinforcement learn-
ing with verifiable rewards. Particularly, we adopt
Group Relative Policy Optimization (GRPO, Shao
et al., 2024) with rule-based outcome rewards. Dur-
ing rolling out, with the question q, the reference c,
and the set of synthesized responses {yai} as input,
the model generates complete evaluation trajecto-
ries according to the rules specified in the prompt.

Reward Design We define three types of rewards,
including format reward, evidence reward, and ac-
curacy reward. The rewards for a rollout of evalua-
tion trajectory are defined as follows.

• Format reward assesses the completeness of
the evaluation trajectory. rf is 0 if the string of
evaluation trajectory satisfies all the following
requirements: 1) it can be parsed into a Python
List object using json.loads; 2) the items
in the list correspond exactly to the set of re-
sponses to evaluate; 3) each item within the
List is a Dict object containing all required
fields as specified in the prompt (the circled
region in Fig.5); 4) each supported claim has
at least one evidence. Otherwise, a penalty of
−0.5 is applied.

• Evidence reward measures how verbatim ex-
tracted evidence spans are cited from the ref-
erence. The reward for each span is defined as
the length of its longest common substring
with the reference text, normalized by the
span’s length2. An evidence span of length
less than 10 receives reward 0. The evidence
reward of an evaluation trajectory re is the av-
erage over all evidence spans in the trajectory.

• Accuracy reward evaluates whether the
ranking based on the evaluation scores in-
ferred by the model is correct. The
evaluation score is derived as S(y) =
# Claims of y supported by c

# Claims of y .The accuracy reward
ra is 1 if the ranking aligns with the ground-
truth ranking, or 0 otherwise. Formally,

ra =





1, if S(yαi) > S(yαj ),∀ yαi ,yαj ∈ {y} and
yαi ≻ yαj

0, otherwise
(5)

The intermediate results required for obtaining the
reward a rollout can be accessed by visiting the
object obtained after parsing. In particular, for
each response, we apply Python operations to enu-
merate all entries in its atomic_claims list and
verify their is_supported values. The JSON-
formatted output demonstrates superior precision
in results extraction, compared to traditional regu-
lar expression-based approaches.

Taking together above three rewards, the com-
bined reward r for a rollout is

r =





1 + 0.5 ∗ re, if rf = 0 and ra = 1,
0, if rf = 0 and ra = 0,
−0.5, otherwise.

(6)

2The length of a sequence is computed as its total token
count
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The reward function encourages the model to rank
the responses more accurately through optimizing
the evaluation trajectories.

Curriculum Learning Intuitively, it is more chal-
lenging to rank a larger set of responses. In the
spirit of curriculum learning (Bengio et al., 2009;
Narvekar et al., 2020), to facilitate smooth and in-
cremental learning, we gradually escalate the com-
plexity of the ranking task by increasing the number
of responses to evaluate, as the RL training process
advances.

4 Experiment Settings

4.1 Benchmarks and Metrics

Faithfulness We assess the faithfulness judgment
performance of different evaluation approaches on
WikiEval dataset (Shahul et al., 2023), which con-
tains question-context-answer triples with human-
annotated judgments. The questions are formu-
lated from 50 Wikipedia pages, and for each ques-
tion, ChatGPT generates two answers: one with
Wikipedia context and one without. Two human an-
notators then judge which answer is more faithful
to the source, reaching 95% agreement.
For each WikiEval instance, the evaluators are re-
quired to identify the more faithful answer between
two candidates. Evaluator performance is then mea-
sured as the percentage of cases where the evalua-
tors’ preference aligns with the human annotators’
judgment (Shahul et al., 2023; Ispas et al., 2025).
We follow Shahul et al. (2023) to handle possible
ties with three scenarios (see App. A.3 for more
details):

• Best-Case: Measures the frequency of eval-
uators assigning greater or equal faithfulness
scores to good answers over poor ones.

• Worst-Case: Computes the frequency of
strictly greater faithfulness scores assigned
to good answers.

• Middle-Case: Adopts ternary scoring with a
partial point of 0.5 for ties.

Correctness To assess different correctness eval-
uation approaches, we use the Meta Evaluation
Dataset constructed by Ru et al. (2024). The dataset
contains 280 instances from 10 domains. Each
instance includes a question, the ground-truth an-
swer, and a pair of responses generated by two

RAG systems3. Two human annotators assess the
responses, assigning preference labels from five
relative choices: significantly better, slightly bet-
ter, tie, slightly worse and significantly worse. We
adopt human-annotated correctness preferences as
the references to benchmark evaluation methods.
Following Ru et al. (2024), we convert the human-
annotated correctness preference labels (five rela-
tive choices) into a numerical score difference for
each response pair, i.e., hi = H(r2i ) − H(r1i ) ∈
{−2,−1, 0, 1, 2}. A normalized score difference
is computed as ei = f(E(r2i ) − E(r1i )) for each
evaluation approach, where E(·) is the correctness
score measured by the evaluator and f(·) is a linear
normalization function. To assess the performance
of different evaluation methods, we compute three
correlation coefficients between human judgments
hi and system scores ei: Pearson’s r, Spearman’s
ρ, and Kendall’s τ .

4.2 Implementation Details
Responses Synthesis We use the corpus of Nat-
ural Question (Kwiatkowski et al., 2019) to syn-
thesize the responses, where each question is ac-
companied by a grounding passage. 5,500 in-
stances are selected randomly for response syn-
thesis. For each α ∈ {0,−0.5,−1,−1.4}, we
synthesize a response according to Eq.3, us-
ing Qwen2.5-7B-Instruct (Qwen, 2024). See
App. A.1 for more details.
Training We fine-tune our model
based on Qwen2.5-7B-Instruct and
Llama-3.1-8B-Instruct respecetively. For
RL training, the sample number is 8 and tempera-
ture is 1 during rollout. The KL coefficient in the
learning objective is 0.015. We train the model
for a total of 2 epochs. To achieve curriculum
learning for RL, we use 3 candidate responses for
ranking in the first epoch and increase this to 4 in
the second epoch. More details can be found in
App. A.2.
Inference For test instances on both datasets de-
scribed in §4.1, similar to rolling out at training
stage, the evaluator model takes as input the ques-
tion, the reference text (ground-truth answer for
correctness and retrieved passage for faithfulness),
and two candidate responses; During the generation
of evaluation trajectory, we use nucleus sampling
(Holtzman et al., 2019) with p = 0.9 and tempera-
ture = 0.1. For those generated sequence that fails

3https://github.com/amazon-science/RAGChecker/
blob/main/data/meta_evaluation/
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Method Model (-Instruct) Best Middle Worst

BLEU – 0.860 0.860 0.860
RougL – 0.900 0.900 0.900
BERTScore – 0.900 0.900 0.900

ARES
llama-70b 1.000 0.920 0.840
qwen-72b 1.000 0.928 0.856
gpt-4o 1.000 0.956 0.912

TruLens
llama-70b 1.000 0.860 0.720
qwen-72b 0.984 0.830 0.676
gpt-4o 1.000 0.940 0.900

RAGAS
llama-70b 0.960 0.910 0.860
qwen-72b 0.960 0.922 0.884
gpt-4o 0.980 0.940 0.900

RAG-Checker
llama-70b 1.000 0.962 0.924
qwen-72b 0.976 0.936 0.896
gpt-4o 0.973 0.933 0.893

OpenEval* llama-70b 0.960 0.950 0.940

SFT qwen-72b 0.828 0.828 0.828

RAG-Zeval
w/o RL

llama-70b 0.980 0.960 0.927
qwen-72b 0.993 0.957 0.883
gpt-4o 0.987 0.970 0.953
qwen-7b 0.932 0.930 0.858
llama-8b 0.620 0.590 0.560

RAG-Zeval
w/ RL

qwen-7b 1.000† 0.992† 0.984†

llama-8b 1.000 0.987 0.973

Table 1: Performance on faithfulness evalu-
ation. We assess different methods using
Llama3.1-70B-Instruct, Qwen2.5-70B-Instruct,
GPT-4o and/or Qwen2.5-7B-Instruct. Non-GPT
results are averaged over five trials to mitigate
randomness. Due to API cost, we ran GPT-4o three
times for each method. We cite results of OpenEval
from the original paper (Ispas et al., 2025). † indicates
the result is statistically significant at the level of 0.01.

to parse, we utilize regular expressions to extract
the required results. The correctness/faithfulness
score for a response y is computed as S(y) (Eq.5,
see Fig.7 for an example).

4.3 Baselines

We compare our approach with a comprehensive
set of baseline evaluation methods, including
non-LLM based and LLM-based paradigms.
For non-LLM based methods, we report BLEU
(Papineni et al., 2002) and ROUGE-L (Lin,
2004) as representative n-gram based metrics,
as well as BERTScore (Zhang et al., 2020)
for embedding-based metric. For LLM-based
evaluation, we include recent frameworks that
all use iterative prompting with large language
models as evaluators. ARES (Saad-Falcon et al.,
2024) and TruLens (Ferrara et al., 2024) are
non-claim-based, directly prompting the LLM for
overall or aspect-based scores. RAGAS (Shahul

Method Model (-Instruct) Pearson Spearman Kendall

BLEU – 0.302 0.305 0.236
RougL – 0.395 0.428 0.335
BERTScore – 0.350 0.437 0.341

ARES
llama-70b 0.350 0.328 0.296
qwen-72b 0.423 0.396 0.360
gpt-4o 0.382 0.370 0.333

TruLens
llama-70b 0.428 0.453 0.366
qwen-72b 0.428 0.446 0.360
gpt-4o 0.396 0.390 0.312

RAGAS embedding 0.411 0.432 0.283

RAG-Checker
llama-70b 0.463 0.425 0.337
qwen-72b 0.495 0.465 0.375
gpt-4o 0.499 0.459 0.369

SFT qwen-72b 0.359 0.350 0.320

RAG-Zeval
w/o RL

llama-70b 0.492 0.443 0.351
qwen-72b 0.521† 0.482† 0.388†

gpt-4o 0.585† 0.554† 0.452†

qwen-7b 0.427 0.367 0.312
llama-8b 0.370 0.342 0.280

RAG-Zeval
w/ RL

qwen-7b 0.501 0.452 0.354
llama-8b 0.498 0.435 0.342

Table 2: Performance on correctness evaluation. Corre-
lation between different methods and human judgments
are reported. We assess RAGAS (Shahul et al., 2023)
with Text-Embedding-Ada-002 model (Neelakantan
et al., 2022) following the original setting. Other set-
tings are the same as Tab.1. Following Ru et al. (2024),
we only show the metric with the best correlation for
each baseline framework. See more details in App. A.4.
† indicates the result is statistically significant at the
level of 0.01.

et al., 2023), RAG-Checker (Ru et al., 2024), and
OpenEval (Ispas et al., 2025) are claim-based,
decomposing responses into factual claims for in-
dividual assessment. All LLM-based baselines are
re-implemented with Llama3.1-70B-Instruct,
Qwen2.5-70B-Instruct, GPT-4o as the
evaluator backbone. In addition, we con-
sider standard SFT, which directly fine-tunes
Qwen2.5-7B-Instruct to replicate the relative
ranking of responses, using the same synthetic data
described in Section 3.3.2 (see App. A.4 for more
details).

5 Main Experiments

Comparison with Baselines Table 1 and 2 present
the performances of RAG-Zeval and baseline eval-
uators. Generally, the claim-based methods out-
perform non-claim-based ones. For both bench-
marks, RAG-Zeval has the strongest correlation
with human preference in terms of almost all met-
rics. RAG-Zeval shows elevating performance with
larger backbone models. On the other hand, even
with compact architectures (7 or 8 billion param-
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Figure 2: The density distribution of the scores assigned by the faithfulness evaluators.The distribution of the
faithful and unfaithful responses are marked with red and blue, respectively. TruLens, RAGAS and RAG-Checker
are all implemented with Qwen2.5-72B-Instruct as the backbone LLM. RAG-Zeval is obtained by finetuning
Qwen2.5-7B-Instruct with RL.

eters), RAG-Zeval w/ RL demonstrates superior
performance over most baselines built on large-
scale LLMs with 10-100× more parameters. This
result validates the effectiveness of our approach
for enhancing evaluation capabilities in compact
LLMs.

For in-depth comparison, Fig. 2 visualizes the
distribution of scores assigned by RAG-Zeval w/
RL (qwen-7b) and some baselines that give numer-
ical (instead of categorical) predictions for faithful-
ness evaluation, where we can see the distribution
of faithful and unfaithful responses4. While Tru-
Lens has the most concentrated distribution near 1
for faithful responses, its distribution for unfaith-
ful responses disperses evenly across the X-axis,
indicating its inability to distinguish unfaithful re-
sponses. For faithful responses, RAG-Zeval, RAG-
Checker and RAGAS demonstrate similar distri-
butional shapes, particularly showing comparable
peakedness near 1. However, RAG-Zeval shows
superior discriminative capacity, maintaining clear
separation between faithful and unfaithful response
distributions.
Comparison with Ablated Variants As shown
in Tab. 1 and 2, SFT solely on the ground-truth
ranking exhibits the worst performances among the
LLM-based methods. In contrast, even without fur-
ther training, the non-RL version of our approach
maintains robust evaluation performance. This sug-
gests the significance of intermediate reasoning.
RAG-Zeval, which generates the complete reason-
ing trajectories for evaluation, can effectively har-
ness the LLMs’ reasoning capabilities to achieve
superior performance. With the identical back-
bone models, RAG-Zeval w/ RL significantly out-

4We do not use the correctness evaluation benchmark here,
as the human annotators only provide relative assessment (e.g.,
preference ranking) rather than absolute categorical judgments
(correct/incorrect labels).

performs the counterpart w/o RL. It can be inferred
that the reasoning ability for evaluation has been
enhanced through RL. More discussion on this is
in § 6.1 and § 6.3.

More experiment results on different backbone
models and data splits can be found in App. B.

6 Analysis

In this section, the following problems are dis-
cussed: 1) How reinforcement learning stimulates
the model’s evaluation ability. 2) What is the ef-
fect of the task complexity represented by training
objective and data. 3) What is the effectiveness
of the rule-guided reasoning. Throughout this sec-
tion, we utilize the correctness benchmark for our
evaluation due to its greater challenge, and use
Qwen2.5-7B-Instruct as the backbone model.

6.1 Self-Evolution of Evaluation Abilities
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Dynamics of RAG-Zeval abilities during training

Figure 3: (a) shows the changes of decomposed claim
count, while (b) presents the evolution of abilities of ev-
idence extraction and supportiveness judgment through-
out the RL training process. The statistics are based on
the rollout samples during training.

To investigate how the model abilities evolve
over the RL training process, we continuously mon-
itor the model’s behaviors in claim decomposition,
supportiveness judgment, and evidence extraction.
Their dynamics is plotted in Fig. 3.
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Objective Pearson Spearman Kendall

Ranking (Ours) 0.501† 0.452† 0.354†

Predicting the best 0.406 0.393 0.311

Table 3: Comparison of two training objectives. The
results are obtained by averaging across 5 runs.

Data configuration Pearson Spearman Kendall

Curriculum learning
(first 3 and then 4 responses)

0.501† 0.452† 0.354†

Static (3 responses) 0.457 0.433 0.339

Static (4 responses) 0.450 0.402 0.314

Table 4: Comparison of different data configuration.
The results are obtained by averaging across 5 runs.

The blue line depicts the average number of
claims decomposed from a response, which ini-
tially exhibits a sharp increase and ends at a sta-
ble level. As finer-grained claim decomposition
enables more discriminative comparisons among
candidate responses, the model learns increasingly
comprehensive claim decomposition for enhanced
ranking performance. This is evidenced by the case
study in Fig. 6 and 7, in which the trained check-
point (at step 343) provides a more comprehensive
decomposition, whereas some claims by the un-
trained checkpoint (at step 0) amalgamate atomic
claims that should have been addressed separately.

For each supported claim generated by the
model, we quantify the degree of textual entailment
between its corresponding evidence and the claim
itself, using AlignScore (Zha et al., 2023)5. For
each extracted evidence, we measure its ground-
ing degree in terms of the normalized length of
its longest common substring (similar to evidence
reward definition in §3.3.2). The entailment (green
line) degrees and grounding (red line) both experi-
ence a notable growth, implying that the model’s ca-
pabilities of supportiveness judgment and evidence
extraction get improved through the RL training.

Overall, reinforcement learning effectively incen-
tivizes the development of reasoning capabilities
essential for responses evaluation, consequently
improving the final evaluation performance.

5The evidence is input as context, and the claims is as
claim. context and claim are two arguments for AlignScore
which measures how likely context would entails claim.

6.2 Effect of Task Complexity

Ranking-based Objective We simplify the
ranking-based accuracy reward (Eq. 5) as

ra =





1, if S(yαi) > S(yαj ), αi = max{α},
∀yαj ∈ {y} and yαi ̸= yαj

0, otherwise
(7)

indicating that an accuracy reward of 1 is earned if
the model assigns the highest evaluation score to y
with the largest α value. This simplified formula-
tion, similar to the one used by Liu et al. (2025b),
does not require an correct ranking over the entire
set of responses to evaluate. The comparative re-
sults between the two formulation are shown in
Tab. 3. The model trained with the simplified ac-
curacy reward suffers a notable performance drop.
This implies that reducing task complexity may
diminish the incentive for the model to develop
enhanced evaluation capabilities. Because a com-
plete ranking of all responses requires a more gran-
ular and discriminative assessment than merely pre-
dicting the top-ranked one.
Curriculum Learning During the RL training, we
organize the training data in a way that the com-
plexity of the ranking task escalates as the train-
ing advances. To study the effect of this practice,
we also train models with the following two static
data organization—the training instance across all
epochs consistently contains 3 or 4 responses for
ranking. As illustrated in Tab. 4, the curriculum
learning-based configuration has the best perfor-
mance. Its improvement over the static one with 3
responses further corroborates above finding that
increased task complexity helps ability acquisition.
On the other hand, the static configurations with 4
response performs worst. We found it earns a much
lower average combined reward than the curricu-
lum learning-based configuration in the first epoch
(seen in App.C). Employing overly challenging
task objective in the initial training stage may sup-
press model learning, as it is less possible to find
a valid rollout and the model then hardly receives
positive feedback during the training.

6.3 Effectiveness of Rule-Guided Reasoning

Results in § 5 demonstrates that RAG-Zeval out-
performs direct SFT on ground-truth ranking of re-
sponses. To better illustrate the significance of our
rule-guided reasoning, we further introduce an in-
termediate variant between the above two methods–
remove the requirement to provide supporting evi-
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Method Generation Pearson Spearman Kendall

Ours Complete reasoning trajectories specified in Fig.5 0.501† 0.452† 0.354†

w/o evidence Reasoning trajectories without evidence and analysis 0.489 0.452 0.353

SFT Only response ranking result 0.359 0.350 0.320

Table 5: Results of methods with different evaluation pattern, obtained by averaging across 5 runs.

dence and corresponding analysis, while maintain-
ing all other settings consistent with RAG-Zeval.

As shown in Tab. 5, their performances are pos-
itively correlated with the level of detail of their
generation, which substantiates the advantage of
the rule-guided reasoning. Analogues to Chain-
of-Thought (Wei et al., 2022), RAG-Zeval benefits
from the stepwise reasoning in its evaluation tra-
jectories. Also, detailed evaluation processes offer
better interpretability behind the model predictions.

6.4 Case Study

In Fig. 6 and 7, RAG-Zeval w/ RL and RAG-Zeval
w/o RL generate evaluations for the same input. For
this question “price of PS3 when it first came out”,
human annotators judge response B as significantly
better than response A. RAG-Zeval w/o RL assigns
response A 1 point, while response B 1/3 point,
resulting in an incorrect ranking A ≻ B, which
contradicts human preference. Additionally, its fi-
nal claim is a verbatim copy of the original answer
sentences, failing to perform atomic claim decom-
position. In contrast, RAG-Zeval assigns response
A 0 point and response B 3/4 point, owing to its
finer-grained claim decomposition and more accu-
rate supportiveness judgments, ultimately yielding
a correct ranking that aligns with human evalua-
tion.

7 Conclusion

In this work, we introduce RAG-Zeval, a novel eval-
uation framework that performs end-to-end, inter-
pretable assessment of RAG system responses. Our
approach significantly improves compact LLM-
based evaluators via reinforcement learning with a
novel ranking-based objective, bypassing the re-
quirement for human-annotated data. Through
comprehensive experiments on benchmarks of
faithfulness and correctness evaluation, we demon-
strate that our approach achieves strong align-
ment with human judgments, outperforming cur-
rent large-scale LLM-based baselines while main-
taining a much smaller model scale. The result
highlights the potential of compact, reasoning-

driven evaluators for scalable and transparent RAG
evaluation.
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Limitations

This work has several limitations that point to av-
enues for future improvement. Although our ap-
proach employs smaller models compared to direct
use of large LLMs, the RL training process still
requires considerable computational resources and
access to high-performance hardware, which may
not be available to all researchers. In addition,
our current experiments are primarily conducted in
English and on general-domain datasets; the gen-
eralizability of the evaluator to other languages
or specific domains remains to be explored. Fur-
ther validation on multilingual and domain-specific
benchmarks would strengthen the robustness and
applicability of our method.

Additionally, our experiments run on static
datasets, which may not capture real-world dy-
namic interactions well (e.g., adversarial inputs,
evolving user preferences). Further investigation
of its performance in real-world environments is
essential prior to deployment, to ensure unbiased
and accurate judgments.

Ethical Considerations

Our RL-based RAG evaluation framework also
raises several ethical considerations. The com-
putational requirements, though reduced com-
pared to large LLMs, may still create barriers
for less-resourced groups, potentially exacerbat-
ing inequities in access to advanced evaluation
tools. Moreover, automated evaluation should not
be viewed as a substitute for human oversight, espe-
cially in high-stakes or sensitive applications, as it
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may overlook nuanced ethical or contextual factors.
Besides, if the synthetic or training data used for
evaluator construction contains biases or unrepre-
sentative patterns, these biases may be propagated
in the evaluation results. Responsible deployment
requires ongoing attention to these issues and a
commitment to transparency and fairness
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A Implementation Details

A.1 Response Synthesis

Starting from Natural Question dataset
(Kwiatkowski et al., 2019), we first filter
out the instances with a passage that has
more than 6,000 tokens. We then randomly
select 5,500 instances from the remaining in-
stances. For each α ∈ {0,−0.5,−1,−1.4},
we synthesize a response according to Eq. 3,
using Qwen2.5-7B-Instruct (Qwen, 2024).
LogitLLM (∗ | q, c) and LogitLLM (∗ | q) are
modeled using in-context learning, and the
in-context prompts are shown in Tab.11. Greedy
search is used for sampling tokens.

Context-resistant response generation Eq. 3 can
be rewritten as

yi ∼ softmax[LogitLLM (∗ | q,y<i)

− βLogitLLM (∗ | q, c,y<i),

β = (1 + α)/α.
(8)

We have α < −1 ⇒ β > 0, leading to generation
that is more parametric knowledge-conditioned
and context-unfaithful. On the other hand, one
may question whether this holds if the model pos-
sesses the corresponding parametric knowledge of
the question with high confidence, in which case
both two logits (w/ and w/o c) can lead to cor-
rect responses. Our method implicitly assumes
that for token yi conveying key answer informa-
tion, the logits LogitLLM (yi | q, c,y<i) are gen-
erally higher—or at least comparable—when sup-
porting passages are provided than when they are
absent LogitLLM (yi | q,y<i) (Bi et al., 2025).
Therefore, for α < −1, even if the parametric-
knowledge response is correct—for key token yi,
LogitLLM (yi | q,y<i) is ranked top, the com-
bined logit for key token yi by Eq. 8 is signifi-
cantly suppressed by subtracting LogitLLM (yi |
q, c,y<i), finally leading to outputs unfaithful to
the passages c.

A.2 RAG-Zeval
We utilize VERL (Sheng et al., 2024), a open-
source library, to apply RL training to the models.
The training runs on 8 H20 GPUs and takes ap-
proximately 20 hours. The hyperparameters for the
training are listed in Tab. 6.

Hyperparameters
Training batch size 32
Optimizer AdamW

(Loshchilov and Hutter, 2017)
Learning rate 1e-6
Warmup step 10
Gradient accumulation step 1
Learning rate scheduler Linear
KL coefficient 0.015
Rollout temperature 1
Rollout number 8
Rollout maximum length 8192
Total epoch 2

Table 6: The settings of hyperparameters used in the RL
training.

A.3 Faithfulness Metrics
When assessing the faithfulness evaluation perfor-
mance of different methods, we follow Shahul et al.
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(2023) to handle possible ties with three scenarios:

• Best-Case: Measures the frequency of eval-
uators assigning greater or equal faithfulness
scores to good answers compared to poor
ones.

best =
1

n

n∑

i=1

I [F(goodi) ≥ F(poori)]

• Worst-Case: Computes the frequency of
strictly greater faithfulness scores assigned
to good answers.

worst =
1

n

n∑

i=1

I [F(goodi) > F(poori)]

• Middle-Case: Adopts ternary scoring with a
partial point of 0.5 for ties.

middle =
1

n

n∑

i=1

{I[F(goodi) > F(poori)]

+0.5 · I[F(goodi) = F(poori)]}
A.4 Baselines
For standard SFT baseline, we enhance model
generalizability across varying number of candi-
date answers by randomly partitioning the train-
ing data (described in §3.3.2) into three subsets:
pairwise (2 responses), triplet (3 responses) and
quadruplet (4 responses) ranking tasks. Each sub-
set contains approximately equal data volume as
reported in Tab.7. The model is trained to repro-
duce the relative ranking of responses based on
their faithfulness with respect to the grounding pas-
sage.

Pairwise Triplet Quadruplet Total

Question 647 970 3883 5500
Instance 3877 3874 3883 11634

Table 7: Data statistics for standard supervised fine-
tuning. Each original question includes four generated
responses in different faithfulness levels, yielding six
pairwise, four triplet, and one quadruplet ranking in-
stance per question. The final row reports deduplicated
instance counts.

For correctness evaluation, not all baseline eval-
uation framework has a direct correctness metric.
For RAG-Checker (Ru et al., 2024), we report
the performance using the precision metric, which
aligns with our definition of correctness. For base-
lines without a direct correctness metric, we fol-
low the setting in Ru et al. (2024) to report the
best correlation among all metrics in Tab.2. Tab.8
shows the complete results of Trulens (Ferrara et al.,

2024) and ARES (Saad-Falcon et al., 2024) using
Qwen2.5-72B-Instruct.

Method Model Pearson Spearman Kendall

ARES
Relevancy 0.423 0.396 0.360
Faithfulness 0.372 0.356 0.320

Trulens
Relevancy 0.368 0.320 0.289
Faithfulness 0.428 0.446 0.360

Table 8: Complete results of Trulens and ARES
with Qwen2.5-72B-Instruct on correctness evalua-
tion. Performance is averaged over five trials to mitigate
randomness.

B Supplemental Experiment Results

B.1 RAG-Zeval with Different Backbone
Models

Besides Qwen2.5-7B-Instruct and
Llama-3.1-8B-Instruct used in Tab. 1 and
2, we also apply RAG-Zeval (w/ and w/o RL)
to different backbone models with varying
parameter scales or from distinct model families,
namely Ministral-8B-Instruct-2410, and
Qwen2.5-3B-Instruct.

As shown in Tab. 10, across various backbone
models, the RL versions of RAG-Zeval consistently
outperform the non-RL counterparts, verifying the
general efficacy of our RL-based approach. Further-
more, a comparison of the results between Qwen-3B
and Qwen-7B demonstrates that the performance
gains achieved by RAG-Zeval with RL get more
pronounced when applied to larger backbone mod-
els.

B.2 Performance on Evaluation beyond Wiki
The meta evaluation dataset of correctness evalua-
tion by Ru et al. (2024), used in our experiments,
contains samples from four established datasets of
various domains. The details of each split (includ-
ing its domain and proportion in RAG-Checker’s
correctness benchmark) are as follows:

• ClapNQ (Rosenthal et al., 2025) (28/280)
from Wikipedia;

• KiwiQA (Xu et al., 2024) (28/280) is specif-
ically designed to evaluate factual consis-
tency in retrieval-augmented generation sys-
tems within the scientific domain. The pas-
sages are sourced from peer-reviewed papers
published in top-tier NLP conferences such as
ACL, EMNLP, and NAACL;
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Method Backbone Model RobustQA KiwiQA NovelQA

Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

BLEU - 0.278 0.317 0.242 0.203 0.179 0.139 0.407 0.275 0.230
RougL - 0.350 0.391 0.301 0.516 0.409 0.322 0.461 0.432 0.356
BERTScore - 0.335 0.459 0.362 0.581 0.462 0.354 0.450 0.450 0.363

ARES
4o 0.351 0.340 0.307 0.352 0.331 0.292 0.754 0.738 0.692
llama-70b 0.382 0.361 0.320 0.289 0.271 0.245 0.668 0.650 0.605
qwen-72b 0.386 0.364 0.332 0.350 0.318 0.283 0.753 0.739 0.692

TruLens
4o 0.286 0.224 0.202 0.409 0.406 0.374 0.542 0.587 0.505
llama-70b 0.307 0.211 0.192 0.278 0.273 0.251 0.750 0.679 0.618
qwen-72b 0.341 0.278 0.252 0.303 0.298 0.273 0.584 0.559 0.516

RAGAS embedding 0.279 0.290 0.224 0.381 0.338 0.265 0.705 0.684 0.576

RAG-Checker
4o 0.462 0.442 0.350 0.093 0.256 0.223 0.833 0.765 0.691
llama-70b 0.399 0.358 0.280 0.260 0.346 0.275 0.750 0.772 0.678
qwen-72b 0.453 0.431 0.342 0.260 0.304 0.260 0.880 0.840 0.751

SFT qwen-7b 0.402 0.395 0.363 0.242 0.240 0.220 0.464 0.447 0.412

RAG-Zeval
w/o RL

4o 0.553 0.533 0.433 0.386 0.391 0.305 0.853 0.846 0.782
llama-8b 0.415 0.371 0.303 0.393 0.317 0.260 0.428 0.409 0.365
llama-70b 0.522 0.489 0.400 0.438 0.462 0.367 0.816 0.780 0.706
qwen-7b 0.437 0.392 0.334 0.025 -0.010 -0.010 0.704 0.657 0.593
qwen-72b 0.541 0.520 0.432 0.575 0.581 0.472 0.839 0.796 0.717

RAG-Zeval
w/ RL

llama-8b 0.547 0.480 0.378 0.539 0.440 0.341 0.562 0.528 0.442
qwen-7b 0.535 0.500 0.391 0.277 0.247 0.193 0.770 0.721 0.721

Table 9: Performance of RAG-Zeval on evaluation datasets beyond Wikipedia

RAG-Zeval Model (-Instruct) Best Middle Worst

w/o RL
qwen-3b 0.740 0.707 0.633
ministral-8b 0.960 0.867 0.773

w/ RL
qwen-3b 0.980 0.973 0.967
ministral-8b 1.000 0.993 0.987

RAG-Zeval Model (-Instruct) Pearson Spearman Kendall

w/o RL
qwen-3b 0.326 0.278 0.234
ministral-8b 0.468 0.420 0.349

w/ RL
qwen-3b 0.401 0.358 0.278
ministral-8b 0.502 0.429 0.344

Table 10: Performance on faithfulness (upper) and
correctness (lower) evaluation, assessed with differ-
ent backbone models. The results are averaged over five
trials to mitigate randomness.

• RobustQA (Han et al., 2023) (196/280) cov-
ers seven diverse domains, including Biomed-
ical, Finance, Lifestyle, Recreation, Technol-
ogy, Science, and Writing. The paper claims
that none of these domains rely on Wikipedia
as a source;

• NovelQA (Wang et al., 2025) (28/280) fo-
cuses on question answering over long-form
fiction, with each question associated with a
specific novel.

The last three splits present content entirely dis-
tinct from Wikipedia or encyclopedic content. We
report the results for these three splits individu-

Figure 4: Reward dynamics of RL training with dif-
ferent data configuration. The red line represents the
curriculum learning settings, while the green and blue
lines are for static 3 and 4 responses, respectively.

ally. Tab. 9 corroborates the generalization of
RAG-Zeval with RL across diverse data domains,
despite being trained solely on Wikipedia content.

C Training Dynamics

Figure 4 presents the reward progression during
RL training under different data configurations (de-
tailed in Tab.4). The static 4-response configuration
initially yields significantly lower average rewards
compared to other conditions, attributable to its
greater task complexity. The curriculum-based ap-
proach (red series) experiences an expected per-
formance dip at Step 175 during the transition to
4 candidate responses, yet maintains superior av-
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erage rewards over the static 4-response baseline
throughout subsequent training.

D Prompt

The prompt used in reinforcement learning is
shown in Fig.5, elaborating the rules that the evalu-
ator should conform to. Given a question, the con-
text and K candidate answers to be assessed, the
model should generate a JSON-formatted output
containing detailed evaluation for each candidate
answer. Each answer evaluation should involve
claim decomposition, claim supportive judgment,
grounding evidence generation and analysis.
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Answer the following questions based on the given passages.

Question: What was the purpose of designing and building the Fiat Ecobasic concept car?

Passage: The Fiat Ecobasic is a concept car designed by the Italian manufacturer Fiat and presented in December 1999 at the Bologna
Motor Show and exhibited in March 2000 at the Geneva Motor Show. The purpose of this concept was to prove that it was possible to
design and build a car capable of transporting four adults in a structure made of fully recyclable composite materials and whose production
and operating costs were ultra-low.

Answer: The purpose of designing and building the Fiat Ecobasic concept car was to prove that it was possible to create a car that could
transport four adults using fully recyclable composite materials. Additionally, the car aimed to have ultra-low production and operating
costs.

Question: When did Pope Benedict XVI become the head of the Catholic Church and sovereign of the Vatican City State, and when did he
resign?

Passage: PPope Benedict XVI (Latin: Benedictus PP. XVI; Italian: Benedetto XVI; German: Benedikt XVI; born Joseph Aloisius
Ratzinger; 16 April 1927 – 31 December 2022) was the head of the Catholic Church and sovereign of the Vatican City State from 19
April 2005 until his resignation on 28 February 2013. Benedict’s election as pope occurred in the 2005 papal conclave that followed
the death of Pope John Paul II. In 1981, he was appointed Prefect of the Congregation for the Doctrine of the Faith, one of the most
important dicasteries of the Roman Curia. From 2002 until he was elected pope, he was also Dean of the College of Cardinals. Before
becoming pope, he had been "a major figure on the Vatican stage for a quarter of a century"; he had had an influence "second to none
when it came to setting church priorities and directions" as one of John Paul II’s closest confidants.Benedict’s writings were prolific and
generally defended traditional Catholic doctrine, values, and liturgy. He was originally a liberal theologian but adopted conservative views
after 1968. During his papacy, Benedict advocated a return to fundamental Christian values to counter the increased secularisation of many
Western countries. He viewed relativism’s denial of objective truth, and the denial of moral truths in particular, as the central problem of
the 21st century. Benedict also revived several traditions, including the Tridentine Mass. He strengthened the relationship between the
Catholic Church and art, promoted the use of Latin, and reintroduced traditional papal vestments, for which reason he was called "the
pope of aesthetics". He was described as "the main intellectual force in the Church" since the mid-1980s.On 11 February 2013, Benedict
announced his resignation, citing a "lack of strength of mind and body" due to his advanced age. His resignation was the first by a pope
since Gregory XII in 1415, and the first on a pope’s initiative since Celestine V in 1294. He was succeeded by Francis on 13 March 2013
and moved into the newly renovated Mater Ecclesiae Monastery in Vatican City for his retirement.

Answer: Pope Benedict XVI became the head of the Catholic Church and sovereign of the Vatican City State on April 19, 2005. He held
this position until his resignation on February 28, 2013.

Question: {question}

Passage: {Passage}

Answer:

Answer the following questions.

Question: What was the purpose of designing and building the Fiat Ecobasic concept car?

Answer: The purpose of designing and building the Fiat Ecobasic concept car was to prove that it was possible to create a car that could
transport four adults using fully recyclable composite materials. Additionally, the car aimed to have ultra-low production and operating
costs.

Question: When did Pope Benedict XVI become the head of the Catholic Church and sovereign of the Vatican City State, and when did he
resign?

Answer: Pope Benedict XVI became the head of the Catholic Church and sovereign of the Vatican City State on April 19, 2005. He held
this position until his resignation on February 28, 2013.

Question: {question}

Answer:

Table 11: Prompts used to model LogitLLM (∗ | q, c) and LogitLLM (∗ | q), respectively, for Context-Aware
Decoding approach. The in-context examples are also sourced from Natural Question.
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You are an answer evaluator for a RAG system. Given %s candidate answers, your task is to analyze 
the degree to which each answer is supported by the given reference context.

### **Task:**  
Conduct a strict, evidence-based evaluation of answer support using the given context.  

### **Input:**
Question: <current_question>
Context: <given_context>
Answers: <K candidate_answers>

### **Evaluation Steps:** 
For each answer (indexed with letters), follow this structured analysis:

1. Decompose the Answer into Atomic Claims
  - Break down the answer into one or more atomic claims—clear, standalone sentences that each 
convey a single, distinct piece of information.
  - Ensure no pronouns are used; each claim must be self-contained.
  - Avoid overlap between claims; together, they should cover all necessary information without 
gaps or repetition.

2. Assess Claim Support Using Context
  - For each claim, determine whether it is:
    - Supported (directly inferable from the context),
    - Unsupported (contradicted by or unrelated to the context).

3. Provide Grounding Evidence (if Applicable)
  - If a claim is supported or contradicted, extract all relevant verbatim sentences from the 
context as grounding evidence that may either support or contradict it. Output the grounding 
evidence as a list that is comprised of the verbatim sentences.
  - If a claim is unrelated, leave the list of grounding evidence empty.
  
4. Analyze Claim Support
  - For each claim, assess how clearly the context supports or contradicts it.

5. Output Valid JSON (Parsable in Python)
  - Output the analysis result in JSON format. It should be in the schema:

  ```json
  [
    {
      "id": <candidate answer id>,
      "answer": <candidate answer>,
      "atomic_claims": [
        {
          "claim": <atomic_claim>,
          "is_supported": <true/false>,
          "grounding_evidence": [
            <sentence>, ...
            ],
          "analysis": <analysis on the relation between the claim and context>
        }, ...
        ]
    },...
  ]
  ```

Figure 5: The complete prompt used in training the evaluator. Given the current question, context, and K candidate
answers, the evaluator outputs a JSON-formatted string containing detailed evaluation for each candidate answer.
Each evaluation follows the four key steps (highlighted in purple) to assess answer quality.
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[
  {
    "id": "A",
    "answer": <response A>,
    "atomic_claims": [
      {
        "claim": "The specific price of the PlayStation 3 when it first came out is not mentioned 
in the provided content.",
        "is_supported": true,
        "grounding_evidence": ["PlayStation3 had two hardware configurations announced: a 20 GB 
model and a 60 GB model, priced at US $499 (\u20ac499) and US $599 (\u20ac599)."],
        "analysis": "The context does not explicitly state that the specific price is not 
mentioned, but it does provide the prices for the two hardware configurations. Therefore, the claim 
is supported by the absence of a direct statement about the price not being mentioned."
      }
    ]
  },
  {
    "id": "B",
    "answer": <response B>,
    "atomic_claims": [
      {
        "claim": "The text does not explicitly mention the price of PS3 when it first came out.",
        "is_supported": true,
        "grounding_evidence": ["PlayStation3 had two hardware configurations announced: a 20 GB 
model and a 60 GB model, priced at US $499 (\u20ac499) and US $599 (\u20ac599)."],
        "analysis": "The context does not explicitly state that the price is not mentioned, but it 
does provide the prices for the two hardware configurations. Therefore, the claim is supported by 
the absence of a direct statement about the price not being mentioned."
      },
      {
        "claim": "The PS3 was initially criticized for its high price and lack of quality games.",
        "is_supported": false,
        "grounding_evidence": [],
        "analysis": "The context does not mention any criticism regarding the price or the quality 
of games. This claim is unsupported."
      },
      {
        "claim": "If you're looking for the price of PS3 at launch, according to other sources, the 
20 GB model was priced at $499 and the 60 GB model was priced at $599 in the US when it was 
released on November 17, 2006.",
        "is_supported": false,
        "grounding_evidence": [],
        "analysis": "The context does not provide this information. This claim is unsupported."
      }
    ]
  }
]

Question: price of PS3 when it first came out

Ground-truth: PlayStation3 had two hardware configurations announced: a 20 GB model and a 
60 GB model , priced at US $499 ( € 499 ) and US $599 ( € 599 ).

Response A: The specific price of the PlayStation 3 when it first came out is not 
mentioned in the provided content.

Response B: The text does not explicitly mention the price of PS3 when it first came out. 
However, it does mention that the PS3 was initially criticized for its high price and 
lack of quality games. If you're looking for the price of PS3 at launch, according to 
other sources, the 20 GB model was priced at $499 and the 60 GB model was priced at $599 
in the US when it was released on November 17, 2006.

Figure 6: Case study (Part-1): Human annotators judge Response B as significantly better than Response A for the
given question. RAG-ZEval w/o RL assigns response A 1 point, while response B 1/3 point, misaligning with
human preference. Additionally, the final claim produced by RAG-ZEval w/o RL is a direct copy of the original
answer sentences, lacking atomic claim decomposition.
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[
  {
    "id": "A",
    "answer": <response A>,
    "atomic_claims": [
      {
        "claim": "The specific price of the PlayStation 3 when it first came out is not 
mentioned.",
        "is_supported": false,
        "grounding_evidence": [],
        "analysis": "The context does mention the specific prices of the PS3 models, which 
contradicts this claim."
      }
    ]
  },
  {
    "id": "B",
    "answer": <response B>,
    "atomic_claims": [
      {
        "claim": "The text does not explicitly mention the price of PS3 when it first came 
out.",
        "is_supported": true,
        "grounding_evidence": ["PlayStation3 had two hardware configurations announced: a 
20 GB model and a 60 GB model , priced at US $499 ( \u20ac 499 ) and US $599 ( \u20ac 599 
)."],
        "analysis": "The context provides the prices of the PS3 models, but it does not 
explicitly state that these are the prices when it first came out."
      },
      {
        "claim": "The PS3 was initially criticized for its high price and lack of quality 
games.",
        "is_supported": false,
        "grounding_evidence": [],
        "analysis": "This claim is not supported by the context and is an additional piece 
of information not present in the given context."
      },
      {
        "claim": "The 20 GB model was priced at $499 in the US when it was released on 
November 17, 2006.",
        "is_supported": true,
        "grounding_evidence": ["PlayStation3 had two hardware configurations announced: a 
20 GB model and a 60 GB model , priced at US $499 ( \u20ac 499 ) and US $599 ( \u20ac 599 
)."],
        "analysis": "The context directly supports this claim by providing the exact prices 
of the PS3 models."
      },
      {
        "claim": "The 60 GB model was priced at $599  in the US when it was released on 
November 17, 2006..",
        "is_supported": true,
        "grounding_evidence": ["PlayStation3 had two hardware configurations announced: a 
20 GB model and a 60 GB model , priced at US $499 ( \u20ac 499 ) and US $599 ( \u20ac 599 
)."],
        "analysis": "The context directly supports this claim by providing the exact prices 
of the PS3 models."
      }
    ]
  }
]

Figure 7: Case study (Part-2): For the same question and responses (shown in Fig. 6), RAG-Zeval assigns response
A 0 point and response B 3/4 point, producing a ranking consistent with human judgment.
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