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Abstract

With the increasing capabilities of Large Lan-
guage Models (LLMs), the proliferation of Al-
generated texts has become a serious concern.
Given the diverse range of organizations pro-
viding LLMs, it is crucial for governments
and third-party entities to identify the origin
LLM of a given Al-generated text to enable
accurate mitigation of potential misuse and in-
fringement. However, existing detection meth-
ods, primarily designed to distinguish between
human-generated and LLM-generated texts, of-
ten fail to accurately identify the origin LLM
due to the high similarity of Al-generated texts
from different LLMs. In this paper, we propose
a novel black-box Al-generated text origin de-
tection method, dubbed PROFILER, which ac-
curately predicts the origin of an input text by
extracting distinct context inference patterns
through calculating and analyzing novel con-
text losses between the surrogate model’s out-
put logits and the adjacent input context. Ex-
tensive experimental results show that PRO-
FILER outperforms 10 state-of-the-art baselines,
achieving more than a 25% increase in AUC
score on average across both natural language
and code datasets when evaluated against five
of the latest commercial LLMs under both in-
distribution and out-of-distribution settings.

1 Introduction

As Large Language Models (LLMs) achieve supe-
rior capabilities in understanding and generating
human-like text, they have become deeply inte-
grated into everyday life (Lo, 2023; Guo et al.,
2025). However, this growing reliance on LLMs
has also raised significant concerns regarding the
misuse of Al-generated content (Cotton et al., 2024;
Kreps et al., 2022; Perkins, 2023; Guo et al., 2024b;
Cheng et al., 2025; Zhang et al., 2025). The Eu-
ropean Union’s draft Artificial Intelligence (Al)
Act (Madiega, 2021) highlights the risks posed
by such Al systems, identifying various ‘“high-

risk” scenarios where Al misuse could harm funda-
mental human rights, such as generating phishing
emails (Roy et al., 2024). In response, the Act man-
dates that providers of general-purpose Al models,
including LLMs, and third-party researchers, de-
velop and implement policies to ensure compliance
with copyright laws, aimed at facilitating account-
ability and remediation in cases of severe viola-
tions.

One key aspect of adhering to these emerging
legal and ethical frameworks is the ability to detect
the origin of Al-generated text. A large number of
detection techniques have recently been developed.
Some of these techniques are based on watermark-
ing (Kirchenbauer et al., 2023; Kuditipudi et al.,
2024; Hou et al., 2024; Yang et al., 2023). These
techniques typically involve fine-tuning LLMs or
adjusting their decoding processes to produce text
with a distinctive, model-specific distribution. For
example, after watermarking, text produced by
Gemini (DeepMind, 2024; Dathathri et al., 2024)
would exhibit a different distribution from text gen-
erated by other LLMs. While watermarking can
be effective, it is exclusively controlled by model
providers, creating a potential conflict of interest.
Since providers are the only entities capable of
verifying watermarks, they may be incentivized to
obscure evidence of misuse and avoid admitting
fault, undermining transparency and accountability.

To mitigate this limitation, black-box methods
have gained increasing attention (Bhattacharjee and
Liu, 2024; He et al., 2023; Wang et al., 2023b),
allowing external parties to perform forensic anal-
yses without cooperation from model providers.
These methods operate solely on raw texts, with
surrogate-model-based approaches being the typ-
ical pattern. By feeding partial or full text to a
surrogate model (i.e., an LLM of a relatively small
scale), researchers can analyze its internal states
to infer the likely origin of the text. The underly-
ing rationale is that sufficiently powerful surrogate
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models can capture statistical or representational
differences, which help reveal the source. Existing
approaches along this line largely focus on identi-
fying next-token prediction patterns, referred to as
the roken-level inference pattern. While these tech-
niques have shown promising results in distinguish-
ing human-generated from Al-generated text, they
are less effective in differentiating outputs from var-
ious LLMs, as demonstrated in our evaluation (Sec-
tion 5). Further investigation reveals that, unlike the
clear distinction between human and Al-generated
text (Jawahar et al., 2020; Bakhtin et al., 2019; Guo
et al., 2023), different LLMs often converge on sim-
ilar next-token predictions due to shared linguistic
distributions from large corpora. This similarity
introduces a more subtle variation, making token-
level inference patterns alone insufficient to capture
these nuances (as discussed in Section 3).

Building on this observation, we introduce a
novel approach that incorporates contextual infor-
mation to enlarge the representational differences
between text generated by various LLMs, improv-
ing the precision of text origin detection. Specifi-
cally, rather than relying solely on token-level fea-
tures (e.g., next token prediction commonly used
in existing detection methods), our method broad-
ens the analysis to capture the model’s inference
behavior over a window of surrounding tokens (i.e.,
context), referred to as the context-level inference
pattern. This approach calculates novel context
losses by utilizing the output logits from the surro-
gate model and the adjacent input context tokens
at each output logits position. It then extracts both
independent features (features derived from loss of
each single token) and correlated features (features
derived from pair-wise losses between neighboring
tokens) from these context losses. Based on this,
we develop PROFILER, the first black-box detection
method that leverages rich contextual information
for identifying the origin of Al-generated text. To
further evaluate the effectiveness of PROFILER, we
extend existing datasets by incorporating diverse
text samples generated by multiple recent commer-
cial LLMs across various text domains. Our com-
prehensive evaluation demonstrates PROFILER’s
superior performance in detecting text origin.

Our contributions are summarized as follows:

* We propose a novel Al-generated text origin
detection algorithm that incorporates rich con-
textual information for improved accuracy.

* We introduce a new feature extraction algo-

rithm that effectively captures contextual in-
formation for text origin detection. This algo-
rithm extracts both independent features, i.e.,
output logits for each token, and correlated
features, i.e., pairwise cross-entropy losses
between tokens and their neighbors.

* We introduce a new evaluation dataset for text
origin detection, featuring diverse samples
from recent commercial LLMs across various
tasks, covering four natural language datasets,
one Python dataset, and a newly collected C++
dataset (GCJ).

* We develop a prototype, PROFILER, and eval-
uate it against 10 baselines. PROFILER sig-
nificantly improves text origin detection ac-
curacy, achieving over 45.5% and 12.5%
AUC score increase under in-distribution and
out-of-distribution settings, respectively, par-
ticularly in distinguishing texts and codes
from LLMs such as GPT-3.5-Turbo (OpenAl,
2023), GPT-4-Turbo (Achiam et al., 2023),
Claude3-Sonnet (Anthropic, 2023), Claude-
3-Opus (Anthropic, 2023), and Gemini-1.0-
Pro (Team et al., 2023).

2 Background and Related Work
2.1 Al-generated Text Detection

Existing Al-generated text detection methods can
be broadly categorized into two primary ap-
proaches: watermark-based methods and surrogate-
model-based methods. Watermark-based meth-
ods (Kirchenbauer et al., 2023; Kuditipudi et al.,
2024; Hou et al., 2024; Yang et al., 2023) typically
modify the decoding strategy during the LLM’s
generation process to force or encourage the gen-
erated tokens to fall within a predefined subset of
the model’s vocabulary. However, these require-
ments limit the applicability of watermark-based
methods, making them less practical compared
to surrogate-model-based methods. In contrast,
surrogate-model-based methods can operate in the
black-box setting without requiring prior modifica-
tions to the text generation process, where detectors
only have access to the Al-generated data.
Surrogate-model-based detection methods can
be further divided into zero-shot and supervised-
trained detection:
Zero-shot Detection. Zero-shot detection meth-
ods assign a confidence score to each text sam-
ple and use a predefined threshold to distinguish
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Figure 1: Distribution difference of Figure 2: Text patterns generated by GPT-4-Turbo and Claude-3-Sonnet
Binoculars scores between texts from across different metrics. Bars colored in darker colors in the six subfigures

human and four distinct LLMs.

between human-written and Al-generated texts.
GLTR (Gehrmann et al., 2019) evaluates the aver-
age token rank based on a surrogate LLM’s output
logits, where a higher rank suggests Al generation.
LRR (Su et al., 2023) extends GLTR by incorporat-
ing log-rank and log-probability metrics. Detect-
GPT (Mitchell et al., 2023) identifies Al-generated
texts by comparing the input text to its masked and
reconstructed versions using a pre-trained LLM,
with Fast-DetectGPT (Bao et al., 2024) enhancing
efficiency through rapid text sampling. Binocu-
lars (Hans et al., 2024) leverages cross-entropy dif-
ferences between two surrogate LLMs for more ro-
bust detection across models. Other studies (Yang
et al., 2024; Mireshghallah et al., 2024; Tulchinskii
et al., 2023) further refine zero-shot detection with
advanced metrics.

Supervised-trained Detection. Supervised detec-
tion methods leverage complex features and train
classification models to distinguish human-written
from Al-generated texts. For instance, Solaiman
et al. (2019) fine-tunes a RoBERTa (Liu et al.,
2019) model to detect GPT-2-generated text (Rad-
ford et al., 2019). RADAR (Hu et al., 2023) and
Outfox (Koike et al., 2024) improve detection re-
silience against paraphrasing attacks through ad-
versarial training. Raidar (Mao et al., 2024) differ-
entiates Al-generated content by comparing origi-
nal and LLM-rewritten texts. GhostBuster (Verma
et al.,, 2024) optimizes detection by combining
multiple surrogate LLMs’ output logits. Other
works (McGovern et al., 2024; Guo et al., 2024a)
further refine supervised detection with advanced
feature engineering.

2.2 Black-box Text Origin Detection

Despite the significant advancements in Al-
generated text detection techniques, only a

highlight features tied to next-token prediction.

few methods have demonstrated the capabil-
ity to further identify the origin LLM of a
given Al-generated text. For example, Tur-
ingBench (Uchendu et al., 2021) evaluates
the effectiveness of various methods, including
GLTR (Gehrmann et al., 2019), Grover (Zellers
etal., 2019), and fine-tuning-based approaches (De-
vlin et al., 2019; Yang et al., 2019) using over 160k
samples. However, these methods struggle to keep
up with the rapid evolution of LLMs. Sniffer (Li
et al., 2023) attempts to detect text origin by com-
paring the output logits from multiple surrogate
LLMs using metrics such as the percentage of per-
plexity scores. SeqXGPT (Wang et al., 2023a)
further enhances Sniffer by leveraging a special-
ized detection model based on convolutional and
self-attention networks. Nevertheless, the effective-
ness of these approaches against more advanced
commercial LLMs remains uncertain.

3 Exploring the Limitation of Existing
Detection Methods

The fundamental assumption of existing Al-
generated text detection methods is that Al-
generated texts exhibit unique next-token predic-
tion patterns (Gehrmann et al., 2019; Mitchell et al.,
2023), which can be effectively identified using sur-
rogate LLMs. However, these prediction patterns
are strikingly similar across texts generated by dif-
ferent LLMs, limiting the effectiveness of such
methods in handling text origin detection. Figure 1
illustrates the scores of one latest detector, Binocu-
lars (Hans et al., 2024), on texts from human and
four distinct LLMs. The x-axis represents Binocu-
lars scores, while the y-axis shows the frequency of
samples. Gray bars indicate the score distribution
of human-written texts, whereas colored bars repre-
sent score distributions of texts generated by LLMs.
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Figure 3: Overview of PROFILER. We take context window size W' = 4 as an example.

Although the Binoculars score successfully distin-
guishes between human and Al-generated texts, it
shows limited capability in classifying texts based
on their specific Al sources. This observation vali-
dates our assumption that next-token prediction pat-
terns are highly consistent among different LLM:s.

To address the challenge of uncovering distin-
guishable patterns in Al-generated texts, we pro-
pose PROFILER, which goes beyond next-token
prediction in the output logits. Figure 2 illustrates
the intuition behind our method by comparing text
patterns generated by GPT-4-Turbo and Claude-
3-Sonnet. As a standard practice when generat-
ing texts using LLMs, a prompt is provided to
the model. In this example, both GPT-4-Turbo
and Claude-3-Sonnet are given the same prompt,
“When a three-dimensional object moves relative to
an observer, a change occurs on the observer’s”.
Each model then generates new tokens following
its intrinsic pattern, i.e., the texts in green and or-
ange, respectively. During the detection phase, a
small surrogate model (i.e., GPT-2 in this example)
is used to extract features of the generated texts by
inferring them token-by-token, and PROFILER ana-
lyzes the surrogate model’s output logits of those
tokens and their cross-entropy losses. The figure
shows that given the original prompt (in gray) and
part of the generated text (i.e., “perception of” for
GPT and “ret inal” for Claude), how PROFILER en-
gineers the features. The basic feature (i.e., the bar
charts in the first column) is the raw output logits of
context. For example, the top-left bar chart shows
the output logits of tokens “of”,“the”, and “object”,
given the input inside the green dashed box. Ide-
ally, we hope this feature denotes the likelihoods
that the model stutters and repeats the previous
word “of”, correctly predicts the expected word
“the”, and skips a word and fast-forwards to “ob-
ject”. In contrast, existing techniques (Gehrmann
et al., 2019; Mitchell et al., 2023) only use the logit

value of “the”. Observe from the two bar charts in
the left column that the two features appear simi-
lar, meaning that the probabilities follow a similar
pattern. To reveal more evident signals, PROFILER
computes the cross-entropy losses between the cur-
rent output logits (e.g., the logits for “the”) and the
one-hot encodings of the context (e.g., encodings
of “of”, “the”, and “object”, respectively), yielding
the charts in the second column. Intuitively, this
feature makes the probabilities of stuttering, saying-
the-right-word, and skipping more prominent by
using the ground-truth tokens as a strong reference.
Observe that differences start to emerge. In the last
column, we further enhance the distinguishability
by subtracting neighboring cross-entropy losses. A
visualization of PROFILER feature’s effectiveness
is in Appendix A.

4 Design of PROFILER

4.1 Overview

PROFILER’s pipeline, as shown in Figure 3, con-
sists of three key stages: (1) Surrogate Model In-
ference, (2) Context Loss Computation, and (3)
Inference Pattern Extraction. The primary objec-
tive of PROFILER is to determine whether a given
text is generated by a specific origin (model).
Stage 1: Surrogate Model Inference (Sec-
tion 4.2). In this stage, the tokenized input se-
quence is fed into surrogate model to obtain the
sequence of output logits. At each token position,
output logits are computed based on all preceding
input tokens up to that point.

Stage 2: Context Loss Computation (Section 4.3).
With the sequence of output logits from the first
stage, PROFILER computes the context loss. At
each position, cross-entropy losses between the cur-
rent output logits and adjacent input tokens within a
fixed context window are calculated. These losses,
referred to as context losses, are used in Stage 3.
Stage 3: Inference Pattern Extraction (Sec-
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tion 4.4). Finally, PROFILER extracts inference pat-
terns from the context loss, including independent
patterns (statistical and residual patterns of a single
context loss) and correlated patterns (distribution
similarity between each context loss pair). These
patterns are then either used to train a lightweight
classifier (e.g., random forest) or used for predic-
tion.

We detail the design of each stage in the follow-
ing sections.

4.2 Surrogate Model Inference

Given the input text to be detected, PROFILER first
tokenizes the text and feeds the input tokens into
the surrogate model M. PROFILER then applies the
Teacher Forcing algorithm (Williams and Zipser,
1989; Lamb et al., 2016), allowing the surrogate
model to infer the input tokens and generate the
corresponding output logits sequentially.
Specifically, let the entire input token sequence
be x1.,, and each component 0;(i € {1,--- ,n})
in the output logits sequence o1, is calculated as:

0; = Pyr(e|z1.), (D

where Py (e|z1.;) represents the output logits dis-
tribution over M’s vocabulary list V' at position 7,
given input x1.;.

The output logits sequence o7, reflects the sur-
rogate model M’s next-word or next-few-words
predictions, based on its internal knowledge, prefer-
ences, and also contains the reduced information of
the input tokens up to each position in the sequence.
This sequence of output logits o0y, is then used in
the next stage to compute the context losses, cap-
turing the inference pattern of the surrogate model
with respect to the input text. Notably, though the
surrogate model M differ from the origin model
of the input text in terms of architecture, size, and
training methodology, the potentially overlapping
training data, and the powerful statistical and rep-
resentational understanding capabilities make it a
promising tool for uncovering hidden features em-
bedded within the given text.

4.3 Context Loss Computation

Compared with existing detection techniques that
primarily utilize next-word prediction information
contained in the output logits, PROFILER captures
and analyzes the information of the surrounding
input context at each output position (i.e., inference
pattern) by calculating and comparing the cross-

entropy losses between each component in the out-
put logits with its adjacent input tokens. These
losses are denoted as context losses £. In PRO-
FILER, we use a hyper-parameter W to control the
width of the analyzed context at each component of
the output logits. PROFILER also drops some of the
output logits in o1y, if they lack sufficient context.
For example, the first token lacks context from pre-
ceding tokens, while the last token lacks context
from subsequent tokens. Hence £ € RW*(n=W),
Note that, we expect the context to be symmetric
(an equal number of preceding and subsequent to-
kens) in PROFILER, and thus W is always an even
number.

We denote £/ as a component of the entire con-
text loss, where j € {1,---,W}. It denotes the
context loss calculated with the jth neighboring
input token at each output token position. For ex-
ample, if the text sequence length is 10 and W = 4,
then £? is calculated between o0s.g and xa.7 (we
do not consider 01.2 and 0g.1¢9 due to inadequate
context). Intuitively, it measures how a specific
adjacent input token influences the prediction of
the current token. Specifically, for each context

loss component £/ € £ where j € {1,--- , W},
PROFILER computes its component at each token
positioni € {1,--- ,n — W} as:
' [Vl
J_
I S TR e
v=1

where V' is the vocabulary of the surrogate model
M, and x 1s used as its one-hot format. The cal-
culated context losses £ = [L!,--- , L] are then
used in the next stage to extract the inference pat-
tern.

4.4 Inference Pattern Extraction

With the calculated context losses £, PROFILER
then extracts the inference pattern of the surrogate
model M regarding the input text xi.,, including
(1) independent patterns and (2) correlated patterns.
Independent Patterns. For each context loss
L’ € L, PROFILER first analyzes it independently
from other context losses in £. The features ex-
tracted from a single context loss are referred to
as independent patterns ZP, which include both
statistical and residual features, representing how
each input token in the context is encoded in the
output logits during the surrogate model inference.
The statistical features s7 of each £7 consist of five
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key statistical properties: average, minimum, max-
imum, standard deviation, and median. The resid-
ual features, which are first utilized by PROFILER
in Al-generated text origin detection, present the
second-order central differences (Fornberg, 1988;
Durran, 2013; Quarteroni et al., 2010) of a single
loss sequence. Specifically, the residual features g’
for £7 is calculated as:

Ej _Ej
g£:%, forke {2,---,n—W —1}.
3)

Besides, g{ = .c;' - L‘{, and gfkw = Ezsz —
EZFWA. Thus, the independent patterns of all
the context losses can be represented as ZP =
[st,--- W, g, -, "], where §7 represents the
statistical properties of the residual feature g7, hav-

ing the same size as the corresponding s’ values.
Correlated Patterns. The correlated patterns,
denoted as CP, capture how differently the in-
put tokens in the context are encoded in the out-
put logits during surrogate model inference. In
PROFILER, we formulate the correlated patterns
as the Symmetric Kullback-Leibler (KL) Diver-
gence (Moreno et al., 2003) between each context
loss pair (£7, £), which is calculated as:

Dy = D(LI||LF) + D(L||£7), @

where D represents the KL Divergence (Cover,
1999). Therefore, the correlated patterns CP con-
sists of (V;/) Symmetric KL Divergence values.

PROFILER finally utilizes the complete inference
pattern [ZP, CP] of the input token sequence x1.,
to either train a classifier (e.g., random forest in
PROFILER) during the training phase or predict the
given text’s origin during testing.

5 Evaluation Results

5.1 Experimental Settings

Datasets. To comprehensively evaluate PROFILER,
we use six datasets: two short natural language, two
long natural language, and two code datasets. Two
short natural language datasets include Arxiv (Mao
et al., 2024) (academic texts) and Yelp (Mao et al.,
2024) (casual reviews) dataset. Two long natural
language datasets, Creative (Verma et al., 2024)
and Essay (Verma et al., 2024) dataset, contain
creative writing and student essays, areas prone
to LLM misuse. Two code datasets include Hu-
manEval (Mao et al., 2024; Chen et al., 2021) (short

Python code) and Google Code Jam (GCJ)(Google,
2008-2020; Petrik and Chuda, 2021) (long C++
code) dataset, with GCJ being the first realistic
long C++ dataset in Al text origin detection. Al-
generated texts are sourced from five commercial
LLMs: GPT-3.5-Turbo(OpenAl, 2023), GPT-4-
Turbo (Achiam et al., 2023), Claude-3-Sonnet (An-
thropic, 2023), Claude-3-Opus (Anthropic, 2023),
and Gemini-1.0-Pro (Team et al., 2023). We also
collect paraphrased versions of all datasets follow-
ing Hu et al. (2023) to test detection robustness.
Further dataset details are in Appendix B.
Baselines. We compare PROFILER with 10 state-of-
the-art baselines, including LogRank (Gehrmann
et al.,, 2019), LRR (Su et al., 2023), Detect-
GPT (Mitchell et al., 2023), RADAR (Hu et al.,
2023), OpenAl Detector (Solaiman et al., 2019),
Raidar (Mao et al., 2024), GhostBuster (Verma
et al., 2024), Sniffer (Li et al., 2023), and Se-
gXGPT (Wang et al., 2023a), with Sniffer and Se-
gXGPT officially claiming and evaluating their text
origin detection capabilities. Additional settings
are detailed in Appendix C.

5.2 Main Results

We first evaluate PROFILER against 10 baselines on
natural language datasets, including both the orig-
inal and paraphrased versions of the texts in both
the in-distribution and out-of-distribution (OOD)
settings, shown in Table 1 and Figure 4, respec-
tively. Specifically, under the in-distribution set-
ting, the training and test data are sourced from the
same distribution (e.g., both are non-paraphrased
samples generated by GPT-3.5-Turbo). In contrast,
under the OOD setting, the detectors are trained
on the non-paraphrased data but tested on the para-
phrased data, providing a more realistic evaluation
scenario. Overall, under the in-distribution setting,
PROFILER outperforms all 10 baselines, achieving
an average improvement of more than 0.30 (45% 1)
in AUC score. Under the OOD setting, PROFILER
continues to surpass baselines, demonstrating an
average AUC increase of more than 0.11 (13% 7).
In-distribution Performance. The in-distribution
performance evaluation results on natural language
datasets are presented in Table 1. For each method,
we report the 5-fold cross-validated average AUC
score. We first evaluate PROFILER alongside 10
baselines on the original dataset. The results high-
light the limitations of zero-shot detection methods
in identifying the origin of a text, as all zero-shot
baselines achieve only around 0.5 average AUC
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‘ Normal Dataset - In Distribution

‘ Paraphrased- In Distribution

Method Human GPT-3.5 GPT-4 Claude Claude Gemini ‘ Average ‘ Human GPT-3.5 GPT-4 Claude Claude Gemini | Average
Turbo Turbo  Sonnet Opus 1.0-pro AUC Turbo Turbo  Sonnet Opus 1.0-pro AUC
LogRank 0.8284 0.6295 0.6515  0.4070  0.2533  0.2320 0.5003 0.3308 0.7447  0.6321 04561  0.2287  0.6085 0.5002
LRR 0.1588 04044 03611  0.5894  0.7346  0.7501 0.4997 0.6688 0.3161 03658  0.5346  0.7099  0.4035 0.4998
DetectGPT 0.8543 0.1917  0.2544  0.5364  0.6051  0.5566 0.4998 0.9747 0.1706 02327  0.5858  0.5999  0.4369 0.5001
RADAR 0.1473 0.9229 04402 04297 04561  0.6033 0.4999 0.2030 0.8916 03823  0.5168  0.3835  0.6234 0.5001
= OpenAlI Detector 0.3425 0.7542 03277  0.4064  0.5151 0.6537 0.5000 0.5657 0.8234 03725 03449 03714 0.5213 0.4999
] Binoculars 0.9789 0.4818 0.6073  0.4596  0.2565 0.2111 0.4992 0.7981 0.5908 0.6100  0.3226  0.2246 0.4544 0.5001
< Raidar 0.8558 0.8872 0.7739  0.6270  0.7547 0.6801 0.7631 0.9082 0.9024 0.7255  0.6489  0.8095 0.7306 0.7875
GhostBuster 0.9920 0.9635 0.8878  0.7103 0.7722 0.6873 0.8355 0.9847 0.9765 0.8687  0.7311 0.8255 0.6521 0.8398
Sniffer 09875 09668 09208 0.7296 0.8413  0.7509 | 0.8662 | 09598 09699  0.8733 07552 0.8729  0.7331 | 0.8607
SeqXGPT 09311 09066  0.8763 0.6946 07920  0.7343 | 0.8225 | 0.8854 09054 08146 07591 0.7903  0.6629 | 0.8030
PROFILER | 0.9998 0.9809 09386 07956  0.8815  0.8994 | 0.9160 | 0.9998 0.9861  0.9311 0.8870  0.9238  0.8823 | 0.9350
LogRank 0.6252 0.4341 0.6154 03870  0.3470 0.6025 0.5019 0.4864 0.3792 0.6500  0.5073 0.3871 0.6061 0.5027
LRR 0.4969 0.5827 0.3893  0.5618 0.5851 0.3692 0.4975 0.6812 0.6580 0.3844  0.4318  0.4879 0.3311 0.4957
DetectGPT 0.3187 0.4910 0.3958  0.5959  0.7029 0.4952 0.4999 0.3837 0.4096 0.2946  0.6363 0.6817 0.6105 0.5027
RADAR 0.3255 0.6400 0.3730  0.4556  0.5660 0.6567 0.5028 0.3979 0.7070 0.4029  0.4248  0.5039 0.5754 0.5020
o OpenAl Detector 0.3994 0.6916 0.3021 0.4341 0.5540 0.6329 0.5023 0.5391 0.8226 0.3947  0.3121 0.4235 0.5094 0.5003
E Binoculars 0.7820 0.4216 0.6684  0.4042  0.2627 0.4574 0.4994 0.6705 0.4591 0.7041 0.3961 0.3161 0.4464 0.4987
Raidar 0.9640 0.8468 0.8108  0.7505 0.7172 0.7578 0.8079 0.9667 09117 0.7398  0.8169  0.7287 0.7613 0.8209
GhostBuster 0.8936 0.7251 0.6829  0.6696  0.6951 0.7509 0.7362 0.9123 0.8245 0.7020  0.7618  0.7547 0.6984 0.7756
Sniffer 0.9236 0.7520 0.7654  0.7127 0.7584 0.7238 0.7726 0.9350 0.8410 0.8059  0.7935 0.8196 0.7544 0.8249
SeqXGPT 0.8392 0.7167 0.6940  0.6787 0.7363 0.7110 0.7293 0.8619 0.7873 0.7168  0.7453 0.7609 0.7538 0.7710
PROFILER 09839  0.8563 08595 0.8513 0.8758  0.8471 | 0.8790 | 0.9881  0.9233  0.8847 0.9071 0.8946  0.8511 | 0.9081
LogRank 0.9201 0.1376 0.7439  0.4138 0.2722 0.5147 0.5004 0.7061 0.3084 0.8241 0.4476  0.2733 0.4244 0.4973
LRR 0.1450 0.8646 0.2419  0.5560  0.7225 0.4652 0.4992 0.4944 0.6525 0.1475  0.5242  0.6537 0.5350 0.5012
DetectGPT 0.1949 0.6443 0.3758  0.5760  0.6283 0.5921 0.5019 0.3259 0.4949 0.3564  0.6362  0.5705 0.6489 0.5054
RADAR 0.0364 0.7726 0.3109 0.5614  0.6627 0.6797 0.5039 0.0493 0.7105 0.3266  0.6475 0.6022 0.7093 0.5076
_E OpenAl Detector 0.5389 0.7637 0.1826  0.4189  0.5914 0.5044 0.5000 0.7246 0.4593 0.3379  0.4148  0.4935 0.5880 0.5030
§ Binoculars 0.9978 0.3854 0.7251 0.3346  0.2542 0.2732 0.4950 0.9722 0.3870 0.7394 03519  0.2553 0.2371 0.4905
S Raidar 0.9209 0.8542 0.7478  0.6888 0.6898 0.7479 0.7749 0.8761 0.7833 0.7796  0.7267  0.6795 0.7233 0.7614
GhostBuster 0.9847 0.9066 0.9053  0.6865 0.7807 0.8282 0.8487 0.9768 0.7669 0.9079  0.7286  0.8057 0.7592 0.8242
Sniffer 0.9992 0.9256 09846  0.8369  0.8527 0.9610 0.9267 0.9979 0.9245 0.9673  0.8225 0.8936 0.9461 0.9253
SeqXGPT 0.9682 0.8071 09172 0.7397 0.7601 0.8650 0.8429 0.9642 0.7848 0.8788  0.7812  0.8122 0.8510 0.8453
PROFILER ‘ 0.9999 0.9617 0.9935 09056  0.8837 0.9307 ‘ 0.9458 ‘ 1.0000 0.9558 0.9820 09220  0.8898 0.9139 ‘ 0.9439
LogRank 0.9854 0.1349 0.7635  0.4617 0.2719 0.3711 0.4981 0.8642 0.3144 0.7413 04175 0.1705 0.4911 0.4998
LRR 0.0205 0.8804 0.2333  0.5399  0.7377 0.5964 0.5014 0.2467 0.6752 0.2212  0.5850  0.7938 0.4759 0.4996
DetectGPT 0.0401 0.6341 04332 0.6268 0.6306 0.6486 0.5022 0.1165 0.5152 0.4070  0.6778  0.6382 0.6602 0.5025
RADAR 0.0151 0.8331 0.3317  0.6718 0.6220 0.5303 0.5007 0.0397 0.7092 0.3176  0.7618  0.5910 0.5891 0.5014
z OpenAl Detector 0.6124 0.8426 0.1033  0.4204  0.6024 0.4110 0.4987 0.8874 0.5609 02112 04392 05074 0.3828 0.4982
% Binoculars 0.9999 04192 0.6470  0.2931  0.2918  0.3348 0.4976 0.9872 03682  0.7134 02732 0.1603  0.4980 0.5000
* Raidar 0.9923 0.8843 0.8865 0.7839  0.7646  0.7621 0.8456 0.9698 0.8303  0.8629 0.7670  0.7693  0.7775 0.8295
GhostBuster 0.9986 0.8992  0.8634  0.6585 0.7648  0.8823 0.8445 0.9927 0.7979  0.8662  0.6655  0.8401  0.8741 0.8394
Sniffer 0.9992 0.9389 09938  0.8565 0.8644  0.9398 0.9321 0.9987 0.9306 09769 0.8617 09190  0.9361 0.9372
SeqXGPT 0.9920 0.8258 0.9354  0.7375 0.7273 0.8489 0.8445 0.9674 0.8530 0.8758 0.7616  0.8222 0.8418 0.8536
PROFILER ‘ 1.0000 0.9763  0.9970  0.9297 09176  0.9812 ‘ 0.9670 ‘ 1.0000 0.9622 09748 09445  0.9427  0.9728 ‘ 0.9662

Table 1: In-distribution performance comparison on natural language datasets.
colors indicate supervised-trained baselines, with
that officially claim text origin detection capabilities. Our proposed PROFILER is represented by

baselines, and

across the six text origins, despite occasionally
performing well on specific origins. In contrast,
supervised-trained baselines, which leverage more
complex features, exhibit significantly better aver-
age performance, achieving 0.30 (46% 1) AUC in-
crease on average. Compared to the zero-shot base-
lines, PROFILER achieves more than a 0.43 (85%
1) increase in average AUC score. Additionally,
PROFILER outperforms the four supervised-trained
baselines by more than 0.10 (12% 1) in average
AUC score. Notably, PROFILER surpasses Sniffer
and SeqXGPT—two supervised-trained baselines
specifically designed for text origin detection—by
0.05 (6% 1) and 0.12 (15% 7) higher AUC scores
on average, respectively.

We further evaluate PROFILER and all baselines
on the paraphrased datasets using the same evalu-
ation methodology. Similarly, all zero-shot base-
lines achieve only around a 0.5 average AUC, while

color indicates zero-shot
representing those baselines
color.

supervised-trained baselines reach an average AUC
of 0.31 (44% 7). PROFILER outperforms the zero-
shot baselines by more than 0.44 (78% 7) in aver-
age AUC and surpasses the supervised-trained base-
lines by more than 0.11 (12% 7) on average. While
paraphrasing is typically an effective technique to
test the robustness of detection methods in the bi-
nary Al-generated text detection domain, its impact
is reduced in the text origin detection domain, as
indicated by the consistent results of supervised-
trained baselines and PROFILER across both origi-
nal and paraphrased datasets. We attribute this to
two reasons: (1) all the supervised-trained base-
lines used in the paper claim to be paraphrasing-
robust, and (2) paraphrasing might reveal more
distinctive characteristics of the specific LLM.
The above results emphasize the superior effec-
tiveness of PROFILER in accurately identifying the
origin LLM of texts under in-distribution setting.
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‘ Normal Dataset - In Distribution

‘ Paraphrased- In Distribution

Method Human GPT-3.5 GPT4 Claude Claude Gemini ‘ Average ‘ Human GPT-3.5 GPT-4 Claude Claude Gemini | Average
Turbo Turbo  Sonnet Opus 1.0-pro AUC Turbo Turbo Sonnet Opus 1.0-pro AUC
LogRank 0.5780 04297 04819 04901 04401 05775 0.4995 04049 04371 0.5659  0.7525 04328  0.4084 0.5003
LRR 0.5435 04932 04573 05029  0.5448  0.4610 0.5004 0.2467 0.6752 02212 0.5850  0.7938  0.4759 0.4996
DetectGPT 0.5224 04311 0.4666 04869  0.5347  0.5498 0.4986 0.6482 04490 04074 02810 0.6025  0.6153 0.5006
= RADAR 04960  0.5575 05147 04955  0.4598  0.4709 0.4991 0.3454  0.5278  0.5474  0.7335  0.4546  0.3932 0.5003
i OpenAl Detector | 0.3471 0.6882 0.5901 0.5111 0.5118 0.3526 0.5001 0.4913 0.8077 0.5931 0.2185  0.4561 0.4332 0.5000
£ Binoculars 0.6400 0.3234 0.4175  0.5002  0.5088 0.6134 0.5006 0.7236 0.4116 0.5100 02978  0.4221 0.6403 0.5009
g Raidar 0.7609 0.7944 0.6691 0.4985  0.4619 0.6904 0.6459 0.8438 0.8991 0.7862  0.8563  0.7579 0.7498 0.8155
T GhostBuster 0.7535 0.7547 0.6894  0.5385  0.5510  0.7396 0.6711 0.7078 0.8421 0.7247  0.8527  0.6370 0.6985 0.7438
Sniffer 0.7301 0.7161 0.5404  0.4380  0.4694 0.7117 0.6009 0.7931 0.8039 0.6774  0.8690  0.6641 0.7535 0.7602
SegXGPT 0.8480 0.7542 0.6611 0.5477  0.5296 0.7341 0.6791 0.8534 0.8206 0.6748  0.8496  0.5489 0.7654 0.7521
PROFILER | 09366 0.8349 07149  0.6720 07448  0.9261 | 0.8049 | 1.0000  0.9003  0.8602 0.9458 0.8392  0.9166 | 0.9103
LogRank 0.6131 0.4212 0.5893  0.4434  0.4395 0.4972 0.5006 0.5161 0.3235 0.4853  0.7185  0.5009 0.4592 0.5006
LRR 0.5659 0.4230 03526 0.5620  0.5328 0.5673 0.5006 0.5002 0.7194 0.5376  0.4552  0.2449 0.4445 0.5995
DetectGPT 0.2698 0.5817 0.7597  0.4836  0.4951 0.4108 0.5001 0.3808 0.6300 0.8557  0.2609  0.4318 0.4409 0.5000
RADAR 0.4600 0.6672 0.4148 04724  0.4848 0.4973 0.4994 0.3794 0.5699 0.3801  0.6763  0.5183 0.4778 0.5003
—  OpenAl Detector | 0.5641 0.5268 0.4103 05117  0.5207 0.4640 0.4996 0.6472 0.6490 0.4130  0.2611 0.4721 0.5533 0.4993
8 Binoculars 0.7117 0.2901 0.5866  0.4616  0.4824 0.4721 0.5008 0.7124 0.3899 0.7011 02732 0.4400 0.4863 0.5005
Raidar 0.9898 0.7704 0.7939  0.6999  0.6638 0.8608 0.7965 0.9852 0.8893 0.8203  0.8864  0.7473 0.8630 0.8653
GhostBuster 0.8642 0.7652 0.6992  0.5969  0.5872 0.7497 0.7104 0.8638 0.8024 0.6747  0.8314  0.6931 0.6908 0.7594
Sniffer 0.9679 0.8085 0.7362  0.6382  0.6609 0.7524 0.7607 0.9646 0.8260 0.7876  0.8909  0.7230 0.7200 0.8187
SegXGPT 0.9646 0.7990 0.6658  0.6688  0.6657 0.7329 0.7495 0.9529 0.8515 0.8866  0.9212  0.7099 0.7102 0.8387
PROFILER 0.9966 09218 08509 08119 07340  0.9524 | 0.8780 | 1.0000 09722  0.9804 09702 09011 0.9616 | 0.9642
Table 2: In-distribution performance comparison on code datasets.
Raidar GhostBuster & Sniffer 8 SeqXGPT B Profiler (Ours)
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Figure 4: Detection Performance of PROFILER and four supervised-trained baselines on six datasets in out-of-

distribution (OOD) setting.

Out-of-distribution (OOD) Performance. Fol-
lowing the in-distribution evaluation, we also as-
sess PROFILER and the baselines under a more
realistic out-of-distribution (OOD) setting. Given
the poor performance of zero-shot methods in the
in-distribution setting, we only consider supervised-
trained baselines for the OOD evaluation, shown in
Figure 4. We train PROFILER and the supervised-
trained baselines on the original datasets and test
them on the paraphrased versions of the same
datasets. The OOD experiments aim to evaluate
the robustness of the detectors against customized
prompts (e.g., paraphrasing prompts in our experi-
ments) used during LLM text generation.

PROFILER outperforms all four baselines across
the four natural language datasets, achieving an av-
erage AUC improvement of 0.11 (13% 1). Specif-
ically, under the OOD setting, PROFILER demon-
strates a 0.13 (15% 7) increase in average AUC on
the two short natural language datasets (Arxiv and
Yelp) compared to the baselines, while exceeding
the baselines by more than 0.09 (11% 1) average
AUC on the two long natural language datasets
(Creative and Essay). These results not only high-
light PROFILER’s superior detection performance

across different natural language datasets in the
OOD setting but also show its significant advantage
in handling short text inputs, which are regarded
as more challenging in previous studies. More de-
tailed OOD results are presented in Appendix E.

We also evaluate PROFILER on two code
datasets, HumanEval (short Python) and GCJ (long
C++), under both in-distribution and OOD settings.
As shown in Table 2 and Figure 4, PROFILER con-
sistently outperforms all baselines, achieving over
0.29 (46% 1) higher AUC in-distribution and over
0.10 (12% 1) in OOD. More detailed analysis are
provided in Appendix D. Furthermore, in real-
world deployment, detection systems are expected
to achieve a high true positive rate (TPR) while
maintaining a low false positive rate (FPR). There-
fore, we further present the ROC curves of PRO-
FILER and four supervised-trained baselines under
the OOD setting in Appendix H.

5.3 Ablation Study

To investigate the impact of each hyper-parameter
on PROFILER ’s performance, we conduct several
ablation studies, including the effects of context
window size and the choice of surrogate model.
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The results indicate that the hyper-parameters of
PROFILER have limited impact on its overall perfor-
mance, demonstrating the robustness and compati-
bility of PROFILER across various configurations.
Impact of Context Window Size. We evaluate
PROFILER using different context window sizes,
specifically W = 2,4,6,8, where W = 6 is the
default configuration. The performance of PRO-
FILER fluctuates within a range of 3% across vary-
ing window sizes. When W < 6, a larger window
size generally results in a higher average detection
AUC. However, when W > 6, the detection AUC
begins to degrade. Therefore, we select W = 6
as the default configuration for PROFILER to bal-
ance performance and efficiency. More details are
presented in Appendix F.
Impact of Surrogate Model Selection. We also
evaluate the influence of different surrogate models
on PROFILER ’s performance. While some fluc-
tuation in detection AUC is observed, PROFILER
demonstrates consistent performance across vari-
ous surrogate LLMs. In most cases, using a single
surrogate model achieves at least 95% of the detec-
tion performance of the ensemble version, indicat-
ing PROFILER ’s high generality and compatibility
when applied with different surrogate models. This
flexibility allows PROFILER to be adapted accord-
ing to different configurations and resource con-
straints in real-world deployment scenarios. More
details are presented in Appendix G.

Additional ablations are provided in Appendix [
(more generators), Appendix J (additional SOTA
baselines), and Appendix K (efficiency analysis).

6 Conclusion

In this paper, we propose a novel black-box Al-
generated text origin detection algorithm that lever-
ages the rich contextual information in the surro-
gate model’s output logits (i.e., inference patterns).
Extensive experiments on four natural language
datasets and two code datasets demonstrate the su-
periority of PROFILER, achieving more than a 25%
average increase in AUC compared to 10 baselines
under both in-distribution and OOD settings.

Limitations

A key limitation of PROFILER is its reliance on sur-
rogate LLMs during detection. The effectiveness of
detection may be affected by the scale and quality
of the surrogate, especially when identifying text
from highly capable or closely related models (e.g.,

distilled variants). While PROFILER demonstrates
improved generalization under out-of-distribution
(OOD) settings, performance still degrades on ad-
versarially paraphrased inputs. Additionally, PRO-
FILER currently focuses only on English natural
language datasets and code datasets in Python and
C++; extending support to other languages remains
an future work. Despite these limitations, PRO-
FILER represents a significant step toward scalable
and robust attribution of Al-generated text, a criti-
cal challenge in the era of generative Al.

Ethics Statement

This paper introduces a novel method for detecting
the origin of Al-generated texts and code, enhanc-
ing transparency and accountability in Al usage.
By enabling reliable attribution, our work helps
mitigate risks associated with LLM misuse, such
as misinformation, plagiarism, and unethical appli-
cations. Additionally, our method supports regula-
tory compliance and intellectual property protec-
tion while preserving the flexibility of legitimate
Al applications. We anticipate primarily positive
societal and ethical impacts of this work, as our
research promotes Al safety and ethical deploy-
ment, with no foreseeable negative consequences
requiring specific highlighting here.
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Appendix

To further demonstrate the effectiveness of our pro-
posed PROFILER and evaluate the contribution of
each component in PROFILER, we provide the fol-
lowing supportive materials in the appendix:

* Appendix A presents the visualization of the
classification result of PROFILER.

Appendix B provides additional details about
the process of crafting the Al-generated text,
including the specific prompts used and the
step-by-step procedure. It also presents ba-
sic information about the generated datasets,
such as the number of samples and the average
sample length.

Appendix C presents additional experimental
settings and hyper-parameters used in PRO-
FILER.

Appendix D presents detailed results and anal-
ysis of PROFILER and all the baselines on two
code datasets.

Appendix E presents the detailed performance
comparison of PROFILER and four supervised-
trained baselines in OOD setting.

* Appendix F presents detailed ablation study
results on the context window size W in PRO-
FILER.

Appendix G presents the detailed ablation
study results on different types of surrogate
LLM in PROFILER.

* Appendix H shows the roc curves on all the
six datasets.

Appendix I presents additional results of PRO-
FILER and baselines on more generators.

* Appendix J shows the comparison between
PROFILER and more SOTA baseline detectors.

* Appendix K includes an efficiency analysis of
PROFILER compared to other training-based
baselines.

A Visualization of PROFILER’s Features

To further validate the effectiveness of our ap-
proach, we employ t-SNE (Van der Maaten and
Hinton, 2008) to visualize PROFILER ’s scores on
Essay data in Figure 5. The two axes represent

two most representative features extracted by PRO-
FILER. Gray points denote human-written texts,
while colored points represent texts generated by
different models. Notably, human samples are dis-
tinctly separated from Al-generated texts, similar
to the performance of Binoculars. However, PRO-
FILER further distinguishes texts generated by dif-
ferent source models, which Binoculars can not.
This enhancement is attributed to PROFILER ’s in-
corporation of features that correspond to the con-
textual tokens in the surrogate model’s output log-
its, remaining distinguishable even among various
models.

B Additional Details of Dataset
Construction

In this paper, we used six datasets in total, includ-
ing two short natural language datasets (Arxiv and
Yelp), two long natural language datasets (Essay
and Creative), and two code datasets (HumanEval
and GCJ). In this section, we provide further details
on how we constructed each of these datasets.

Arxiv Dataset. The human-written data is
sourced from (Mao et al., 2024), which includes
350 abstracts collected from papers published at
ICLR between 2015 and 2021. These papers were
published before commercial LLMs became pub-
licly available, ensuring that no Al-generated con-
tent is mixed into the human-written samples. We
utilize the 350 human-written samples to gener-
ate Al-generated abstracts using five commercial
LLMs: GPT-3.5-Turbo (OpenAl, 2023), GPT-4-
Turbo (Achiam et al., 2023), Claude-3-Sonnet (An-
thropic, 2023), Claude-3-Opus (Anthropic, 2023),
and Gemini-1.0-Pro (Team et al., 2023). Each com-
mercial LLM was given the title of the paper and
the first 15 characters of the corresponding human-
written abstract, with the prompt used by (Mao
et al., 2024):

The title is {Paper_Title},
{Human_Abs[0:15]}.

Write a short and concise abstract based
on this:

start with

Each model generated approximately 350 samples,
though some models occasionally refused to gener-
ate due to their output filtering policies. The aver-
age length of both human-written and Al-generated
abstracts is approximately 790 characters.

Yelp Dataset. For the human-written samples,
we use 2,000 Yelp reviews collected from the Yelp
Reviews Dataset as compiled by prior work (Mao
et al., 2024). To generate the Al-generated data,
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Figure 5: Visualization of PROFILER’s inference patterns on texts from both human and four distinct source LLMs.

we utilize five of the latest commercial LLMs, em-
ploying the same prompt as used in (Mao et al.,
2024):

Write a concise review based on this:
{Human_Review}

Each commercial LLM generates ~2,000 corre-
sponding Al-generated samples, with an average
length of fewer than 500 characters. Due to the
short average length of the samples, the Yelp
dataset is considered the most challenging among
all four natural language datasets used in this paper.
Essay and Creative Datasets. The human-
written samples from both the student essay (Es-
say) dataset and creative writing (Creative) dataset
are both sourced from (Verma et al., 2024), each
containing 1,000 human samples. To generate the
corresponding Al samples, we first use the follow-
ing prompt to summarize a title from the human-
written text:
Given the following essay/creative
writing, write a title for it:

{Human_Text}
Just output the title:

Then, we let the LLLM to generate a passage with
the summarized title in similar number of words:
Write an essay/story in {Length} words

to the title:
{Summarized_Title}

The procedure and prompts used to generate the
Essay and Creative datasets are identical to those
used by (Verma et al., 2024) and the average char-
acter length of the samples in these two datasets
exceeds 2,850.

HumanEval and GCJ Datasets. The Hu-
manEval and Google Code Jam (GCJ) datasets are
two code datasets. HumanEval consists of short
Python codes, while GCJ contains long C++ codes.

The human-written samples in the HumanEval
dataset are sourced from (Chen et al., 2021), and
the human-written samples in the GCJ dataset are
selectively collected from (Google, 2008-2020).
We follow the procedure outlined by (Mao et al.,
2024) to first generate a description of the purpose
and functionality of the human-written codes using
the following prompt:

Describe what does this code do,
including the names and descriptions of
all the functions and global variables:
{Human_Code?}

Next, we prompt each of the five commercial LLMs
to generate corresponding Python or C++ code
based on this description:

I want to do this:

{Code_Description}

Help me write the corresponding Python
/C++ code, no explanation, just code:
Typically, the Python codes generated for the Hu-
manEval dataset are fewer than 50 lines, while the
C++ codes generated for the GCJ dataset exceed
100 lines, reflecting their respective complexity and
length differences.

Paraphrased Dataset. To further test the robust-
ness and transferability of PROFILER and other
baselines, we generate six corresponding para-
phrased datasets. Following the same procedure
as described in (Hu et al., 2023), we prompt each
commercial LLM to paraphrase its own samples
using the following prompt:

Enhance the word choices in the sentence
to sound more like that of a human, no
explain.

{AI_Sample}

We provide concrete examples in Figure 6, in-
cluding human-written samples, non-paraphrased
Al-generated samples, and paraphrased Al-
generated samples. Due to the page length limit,
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Human-written Text Al-generated Text w/o Paraphrasing Al-generated Text w/ Paraphrasing

In this study, we demonstrate that deep narrow Boltzmann

machines possess the remarkable ability to serve as
We show that deep narrow Boltzmann machines are  universal approximators of probability distributions on the
universal approximators of probability distributions on the  discrete cube. Specifically, we establish a rigorous proof that
discrete cube. More specifically, we prove that any any probability distribution on the discrete cube can be
probability distribution on the discrete cube can be  approximated to an arbitrary degree of precision by a deep
approximated arbitrarily well by a deep narrow Bol, narrow Boll , provided that it is equipped
machine with a sufficient number of hidden layers. This  with a sufficient number of hidden layers. Notably, this

We show that deep narrow Boltzmann machines are
universal approximators of probability distributions on the
activities of their visible units, provided they have
sufficiently many hidden layers, each containing the same
number of units as the visible layer. We show that, within
certain parameter domains, deep Boltzmann machines can
be studied as feed forward networks. We provide upper and

i . . bl result holds for any fixed width of the hidden layers, result holds true regardless of the fixed width of the hidden
Arxiv lower bounds on the sufficient depth and width of universal . f Y fix . f Loy °8 . ke . f
. . L demonstrating the expressive power of depth in these layers, underscoring the immense expressive power that
approximators. These results settle various intuitions . . 3 5
X . y . models. Our findings contribute to the understanding of the ~ depth confers upon these models. Our groundbreaking
regarding undirected networks and, in particular, they show . P . .- . L o iy
X representational capabilities of deep learning ar es  findings ly the understanding of the
that deep narrow Boltzmann machines are at least as X X X . > POV X X
. . . X X and provide a theoretical foundation for the effectiveness of  representational capabilities inherent in deep learning
compact universal approximators as narrow sigmoid belief " . . e o N .
5 . h deep narrow Boltzmann in various apy ar es and lay a robust theoretical foundation for the
networks and restricted Boltzmann machines, with respect to . N N N . . .
X such as unsupervised learning and generative modeling. impressive effectiveness of deep narrow Boltzmann
the currently available bounds for those models. . . Lo . .
machines across a wide range of applications, including
unsupervised learning and generative modeling.
If you decide to eat here, just be aware it is going to take  Lengthy dining experience with good food This eatery never fails to deliver delectable cuisine, but
about 2 hours from beginning to end. We have tried it unfortunately, it is plagued by sluggish service. Despite
multiple times, because I want to like it! I have been to it's  This restaurant consistently provides good food but suffers — numerous attempts to savor the dining experience, meals
other locations in NJ and never had a bad experience. from slow service. Despite multiple attempts to enjoy the  often span a laborious two hours from the first morsel to the
Yelp dining experience, meals tend to take around two hours from  final bite. While the youthful waitstaff exudes a pleasant

the weekends, in order to be done quicker.

/* C Libs */

using namespace std;

#define REP(i,s,t) for(int _t=t,i=s;i<_t;i++ )
#define REPP(i,s,t) for(int _t=t,i=s;i<=_t;i++)

template<class T>

void check_max( T&a, T b ){
if(a< b)a=b;

}

template<class T>

void check_min( T&a, Tb }{
if(a>b)a=b;

l#define debug

map<int,int> mp;

int ans;

void deal( int v ){
if (mp[v] <= 1) return;

GCJ mp[v-1] ++;

mp[v+1] ++;
mp[v]--mp[v]--;
ans++;
deal(v-1);
deal(v+1);
deal(v);

int main(){
int T;cin>>T;
REP(Case,1, T+1){
int k;cin>>k;
mp.clear();
ans = 0;
REP(i,0,k){
intv,p;
cin >>v >>p;
mp[v] +=p;
deal(v);
}

cout << "Case #"<<Case<<": "<<ans<<endl;

return 0;

The food is good, but it takes a very long time to come out.
The waitstaff is very young, but usually pleasant. We have
Just had too many experiences where we spent way too long
waiting. We usually opt for another diner or restaurant on

start to finish. While the young waitstaff is generally
pleasant, the prolonged wait times have led to diners opting
for alternative restaurants, especially on weekends, when a
quicker meal is preferred. The restaurant's other locations
in NJ seem to offer a better overall experience.

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)

#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a
< b){ a = b; return true; } return false; }

template<class T> inline bool check_min(T& a, T b) { if(a
> b){ a = b; return true; } return false; }

map<int, int> mp;
int ans;

void deal(int v) {
iftmp[v] <= 1) return;
++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
deal(v-1), deal(v+1), deal(v);

}

int main() {
int T;
cin>>T;
REP(1,T){
int k;
cin >> k;
mp clear(), ans = 0;
REP(i, k) {
intv,p;
cin>>v>>p;
mplv] += p;

for(auto& pr : mp) deal(prfirst);

cout << "Case #" << t+1 << ": " << ans << endl;
}
return 0;

}

demeanor, the protracted wait times have compelled diners
to seek out alternative culinary establishments, particularly
on weekends when a more expeditious repast is desired. The
restaurant's other Garden State locales appear to provide a
more satisfying overall experience.

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)

#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a
< b){ a=b; return true; } return false; }

template<class T> inline bool check_min(T& a, T b) { if(a
> b){ a = b; return true; } return false; }

map<int, int> mp;
int ans;

void handle(int v) {
ifimp[v] <= 1) return;
++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
handle(v-1), handle(v+1), handle(v);

}

int main() {
int T;
cin>>T;
REP(1,T){
int k;
cin >> k;
mp.clear(), ans = 0;
REP(i, k) {
intv, p;
cin>>v>>p;
mp[v] += p;

for(auto& pr : mp) handle(pr.first);

cout << "Case #" << t+1 << ": " << ans << endl;
}
return 0;

}

Figure 6: Examples of human-written text, Al-generated text with paraphrasing, and Al-generated text without
paraphrasing from Arxiv, Yelp, and GCJ datasets. We do not show examples from two long natural language

datasets here due to the length limit.

24918



we only present samples from two short natural lan-
guage datasets and one code dataset. Due to space
constraints, we include samples from two short nat-
ural language datasets and one code dataset. It is
evident that distinguishing Al-generated samples
from human-written ones without prior knowledge
is challenging for humans.

C Additional Experimental Settings

We evaluate PROFILER and all baselines in a one-
vs-all setting for each text origin, which is already
a standard evaluation approach in the image origin
detection domain (Wang et al., 2024, 2023c) and is
suitable for existing baselines since most of them
are designed for binary classification tasks.

For our PROFILER, we typically set the context
window size W for PROFILER to 6 in most of the
experiments, except for the ablation studies. In
PROFILER, we employ six open-source LLMs as
surrogate models and explore the contribution of
each: Llama2-7B (Touvron et al., 2023), Llama2-
13B (Touvron et al., 2023), Llama3-8B (Dubey
et al., 2024), Mistral-7B (Jiang et al., 2023),
Gemma-2B (Team et al., 2024b), and Gemma-
7B (Team et al., 2024b). Notably, these surrogate
models are also used by other baseline methods
Jfor comparative analysis, ensuring the fairness of
the comparison.

D Evaluation Results on Code Datasets

Existing detection methods are seldom tested on
code datasets, despite the growing misuse of LLMs
in code generation. We evaluate PROFILER and
all baselines on two code datasets: HumanEval
(short Python codes) and GCJ (long C++ codes),
providing realistic test scenarios. According to the
results presented in Table 2 and Figure 4, PRO-
FILER outperforms existing baselines by more than
0.29 (46% 1) in average AUC score under the in-
distribution setting and achieves more than 0.10
(12% 1) higher average AUC score under the OOD
setting on the two code datasets.

In-distribution Performance. According to the
results presented in Table 2, PROFILER outper-
forms existing baselines by more than 0.26 (49%
1) and 0.32 (43% T) in AUC scores on the origi-
nal and paraphrased datasets, respectively, under
the in-distribution setting. Specifically, PROFILER
surpasses the zero-shot baselines and supervised-
trained baselines by 0.34 (68% 1) and 0.14 (20%
1) in AUC score on the original dataset, respec-

tively. These results confirm the inadequacy of
zero-shot detection scores in the text origin detec-
tion domain, as all zero-shot methods only achieve
around a 0.5 AUC score on the two code datasets.
Furthermore, PROFILER outperforms Sniffer and
SeqXGPT with more than 0.16 (25% 1) and 0.13
(18% 1) higher AUC scores, respectively, demon-
strating its superior effectiveness in detecting the
origin of Al-generated code.

The superiority of PROFILER becomes even
more evident on the paraphrased dataset, where
PROFILER outperforms the zero-shot baselines and
supervised-trained baselines by 0.43 (86% 1) and
0.14 (18% 1) in AUC score, respectively, across the
two paraphrased code datasets. Especially, PRO-
FILER surpasses Sniffer and SeqXGPT with over
0.15 (19% 1) and 0.14 (18% 1) AUC scores, re-
spectively.

Our-of-distribution (OOD) Performance. Sim-
ilar to the OOD evaluation on the natural lan-
guage datasets, we also assess PROFILER and the
baselines under the OOD setting on the two code
datasets, shown in Figure 4. PROFILER outper-
forms all four supervised-trained baselines across
both code datasets, achieving an average AUC im-
provement of 0.10 (12% 7). Specifically, under the
OOD setting, PROFILER demonstrates a 0.09 (12%
1) increase in AUC score on the HumanEval dataset
and a 0.11 (11% 7) increase on the GCJ dataset.
More detailed results are provided in Appendix E.

E Detailed Performance Comparision
under OOD Setting

Table 3 presents the detailed OOD experimental
results of PROFILER on all the six datasets, com-
pared to four supervised-trained baselines. PRO-
FILER outperforms the four baselines in 25 of
36 (70%) cases. Considering the average AUC,
PROFILER always reach the best performance, per-
forming 0.8663, 0.8671, 0.8363, 0.8215, 0.7549,
and 0.8354 on Arxiv, Yelp, Creative, Essay, Hu-
manEval, and GCJ datasets, individually. Addi-
tionally, PROFILER demonstrate great advantage
in short natural language datasets (Arxiv and Yelp)
and code datasets (HumanEval and GCJ), outper-
forming the four baselines in 83% and 75% cases,
respectively.

Specifically, PROFILER outperforms all four
baselines on the Arxiv dataset, achieving an av-
erage AUC of 0.8663 and surpassing the next best
method (GhostBuster) by 5.74%. Its performance
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Paraphrased-OOD

Method Human GPT-3.5 GPT4 Claude Claude Gemini | Average Human GPT-3.5 GPT4 Claude Claude Gemini | Average
Turbo Turbo  Sonnet Opus 1.0-pro AUC Turbo Turbo  Sonnet Opus 1.0-pro AUC
Raidar 0.7963 0.9003 0.6739 05129  0.7663 0.6764 0.7210 0.9474 0.7697 0.7601 0.6444  0.6875 0.6382 0.7412
>  GhostBuster | 0.9806 09772  0.8672 0.7108 0.8113  0.5684 0.8193 z | 09892 07555  0.8741 05694 08149  0.8573 0.8101
% Sniffer 09376 09510  0.6402 0.6215 0.7851  0.5568 0.7487 %2 | 09951 07072 0.5399  0.6637  0.8593  0.7361 0.7502
< SeqXGPT 0.8149  0.8743  0.4900 0.5709  0.6269  0.5340 06518 | ™ | 09774 05512 04743 05556 05685  0.6062 0.6222
PROFILER | 1.0000  0.9815  0.8009 0.6991 09175 0.7991 | 0.8663 | | 10000 06667 06782 0.7796  0.8873 09171 | 0.8215
Raidar 0.9203 0.8814 0.7073  0.5503  0.5661 0.5818 0.7012 = 0.8554 0.9054 0.7081 0.4053  0.5676  0.7627 0.7008
o GhostBuster | 0.8928 0.8068 0.6361  0.6483  0.7280  0.6923 0.7342 i 0.6614 0.8314 0.7279 05175  0.5426  0.6713 0.6587
E Sniffer 0.9931 0.8127 0.7841  0.6698  0.7694  0.6898 0.7865 g 0.8319 0.8243 0.5942  0.6179  0.6467 0.6772 0.6987
SeqXGPT 0.9041 0.7112  0.7097  0.6095  0.6917  0.6863 0.7187 2 0.8735 0.7549  0.6510 03526  0.5191  0.4248 0.5960
PROFILER ‘ 0.9947 0.9079 0.8174 0.8140  0.8828  0.7858 ‘ 0.8671 ‘ ‘ 1.0000 0.8927 0.8410 0.6099  0.6766  0.5093 ‘ 0.7549
Raidar 0.7634 0.7128 0.7394  0.6042  0.4629  0.7139 0.6661 0.9903 0.9266 0.7669  0.4351 0.5847 0.8852 0.7648
2 GhostBuster | 0.9614 0.7085 09043 0.6751  0.7260  0.7533 0.7881 _ 0.8606 0.7257 0.5777  0.4222  0.5675 0.7023 0.6427
§ Sniffer 0.9991 0.8051 0.7589  0.7471 0.7871 0.8930 0.8317 8 0.9934 0.9303 0.8124 03798  0.6881 0.7859 0.7650
S SeqXGPT 0.9400 0.5760 0.5219 05793 0.5965 0.7657 0.6632 0.8569 0.7974 0.8091 0.4230  0.6763 0.7796 0.7237
PROFILER ‘ 1.0000 0.7603 0.8350 0.8294 0.7564  0.8366 ‘ 0.8363 ‘ ‘ 1.0000 0.9548 0.8251 0.5344 0.7939  0.9040 ‘ 0.8354

Table 3: Detailed performance comparison of PROFILER with four supervised-trained baselines in OOD setting.

is particularly strong when detecting Human text
(AUC = 1.0) and maintaining robustness across
various origin LLMs.

On the Yelp dataset, PROFILER demonstrates
its effectiveness by achieving the highest average
AUC of 0.8671, outperforming the closest baseline,
Sniffer, by 9.27%. Its performance remains strong
across various LLMs, with perfect detection for
Human text and high AUC values for GPT-4-Turbo
and Claude-3-Opus.

On the Creative dataset, PROFILER achieves the
highest average AUC of 0.8363, marginally outper-
forming Sniffer by 0.46%. It exhibits consistent
performance across diverse LLMs and excels in
detecting Human text with a perfect AUC score of
1.0. While Sniffer shows competitive results for a
few origin LLMs, its overall lower average AUC
and greater variability indicate lower robustness
compared to PROFILER.

On the Essay dataset, PROFILER demonstrates
its effectiveness by achieving the highest average
AUC of 0.8215, marginally outperforming the next
best baseline, GhostBuster, by 1.41%. It exhibits
stable performance across diverse LLMs, with per-
fect detection for Human text and high AUC values
for Claude-3-Opus and Gemini-1.0-Pro models.

On the HumanEval dataset, PROFILER achieves
the highest average AUC of 0.7549, surpassing the
next best baseline, Raidar, by 7.72%. It demon-
strates robust performance across various origin
LLMs and also excels in detecting Human text
with a perfect AUC score of 1.0. Although Raidar
performs well on GPT-4-Turbo, it struggles sig-
nificantly on Claude 3 models, which underscores
PROFILER’s superior adaptability and reliability.

On the GCJ dataset, PROFILER achieves the high-

est average AUC of 0.8354, surpassing the closest
baseline, Sniffer, by 9.19%. It demonstrates strong
performance across various origin LLMs. Though
baselines like GhostBuster perform competitively
on some models, their overall lower average AUC
and greater variability indicate lower robustness
compared to PROFILER.

Overall, the above detailed results under OOD
setting confirm PROFILER’s superior effectiveness
and adaptability in both the natural language ori-
gin and code origin detection across various origin
LLM:s.

F Detailed Ablation Study on Context
Window Size in PROFILER

Table 4 provides a comprehensive comparison of
PROFILER’s detection performance across differ-
ent context window sizes in the OOD setting. The
results indicate that the size of the context win-
dow significantly influences the system’s effective-
ness. Generally, employing a larger context win-
dow leads to improved AUC scores, especially in
datasets like Arxiv and Yelp, underscoring the im-
portance of incorporating more extensive contex-
tual information into the detection process.

However, this trend is not uniform across all
datasets. In the HumanEval and Essay datasets,
smaller context windows yield comparable or bet-
ter performance than larger ones. The relationship
between context window size and detection perfor-
mance varies depending on the dataset’s character-
istics.

These findings highlight the importance of se-
lecting an appropriate context window size tailored
to the specific dataset. By adjusting the context
window, PROFILER can better capture the most rel-
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‘ Normal Dataset - In Distribution

‘ Paraphrased- In Distribution

Method Human GPT-3.5 GPT-4 Claude Claude Gemini ‘ Average Human GPT-3.5 GPT-4 Claude Claude Gemini | Average
Turbo Turbo Sonnet Opus 1.0-pro AUC Turbo Turbo Sonnet Opus 1.0-pro AUC
PROFILER W=2 0.9998 0.9792 0.9420  0.7938 0.8766 0.9023 0.9156 0.9995 0.9852 0.9360  0.8837 0.9231 0.8759 0.9339
‘2 PROFILER W=4 | 0.9998 0.9793 0.9463  0.8012  0.8807  0.9001 0.9179 0.9998 0.9854  0.9400 0.8863  0.9258  0.8790 0.9360
<  PROFILER W=6 | 0.9998 0.9809 09386 0.7956  0.8815  0.8994 0.9160 0.9998 0.9861 0.9311  0.8870  0.9238  0.8823 0.9350
PROFILER W=8 | 0.9998 0.9801 0.9423  0.7970  0.8851  0.9005 0.9175 0.9999 0.9859 09334 0.8788  0.9224  0.8772 0.9329
PROFILER W=2 0.9840 0.8548 0.8563  0.8437 0.8735 0.8509 0.8772 0.9873 0.9135 0.8810  0.8975 0.8946 0.8459 0.9033
£ PROFILER W=4 | 0.9849 0.8597 0.8619  0.8514  0.8737  0.8507 0.8804 0.9885 0.9240  0.8873  0.9057 0.8916  0.8518 0.9082
> PROFILER W=6 | 0.9839 0.8563 0.8595  0.8513  0.8758  0.8471 0.8790 0.9881 0.9233 0.8847 09071  0.8946  0.8511 0.9081
PROFILER W=8 | 1.0000 0.8953  0.8817  0.9268  0.8873  0.8574 0.9081 0.9873 09222 0.8819  0.9064 0.8923  0.8477 0.9063
o PROFILER W=2 1.0000 0.9576 0.9924  0.8971 0.8848 0.9255 0.9429 1.0000 0.9501 09816  0.9145 0.8914 0.9231 0.9434
% PROFILER W=4 | 1.0000 0.9596  0.9932 09071  0.8839  0.9298 0.9456 1.0000 09572 0.9851  0.9303  0.8956  0.9250 0.9488
5 PROFILER W=6 | 0.9999 0.9617 0.9935 0.9056  0.8837  0.9307 0.9458 1.0000 0.9558 0.9820  0.9220  0.8898  0.9139 0.9439
PROFILER W=8 | 0.9999 0.9618  0.9929 09041  0.8796  0.9325 0.9451 1.0000 0.9557 0.9817  0.9238  0.8881  0.9165 0.9443
PROFILER W=2 1.0000 0.9763 0.9975  0.9258 0.9211 0.9821 0.9671 1.0000 0.9609 0.9786  0.9366 0.9438 0.9729 0.9655
E’ PROFILER W=4 1.0000 0.9769 0.9970  0.9326 0.9187 0.9823 0.9679 1.0000 0.9655 0.9795  0.9451 0.9452 0.9739 0.9682
@  PROFILER W=6 | 1.0000 0.9763 0.9970 09297 09176  0.9812 0.9670 1.0000 0.9622 09748 09445 09427  0.9728 0.9662
PROFILER W=8 | 1.0000 0.9757 0.9967 09271 09144  0.9813 0.9659 1.0000 09612 09746  0.9440  0.9406  0.9729 0.9655
'§ PROFILER W=2 0.9497 0.8186 0.7212  0.6827 0.7749 0.9396 0.8145 0.9972 0.8836 0.8377  0.9257 0.8102 0.9130 0.8946
e PROFILER W=4 0.9423 0.8322 0.7022  0.6694 0.7629 0.9368 0.8076 1.0000 0.9118 0.8472  0.9436 0.8530 0.9219 0.9129
g  PROFILER W=6 | 0.9366 0.8349 07149  0.6720  0.7448  0.9261 0.8049 1.0000 0.9003 0.8602 09458  0.8392 09166 0.9103
%  PROFILER W=8 | 0.9378 0.8261 0.7208  0.6562  0.7401 0.9258 0.8011 1.0000 0.9006  0.8568  0.9465  0.8387  0.9101 0.9088
PROFILER W=2 0.9970 0.8766 0.8173  0.7395 0.7571 0.9068 0.8490 0.9976 0.9624 0.9764  0.9597 0.8870 0.8974 0.9467
3] PROFILER W=4 0.9954 0.9146 0.8480  0.7957 0.7543 0.9317 0.8733 1.0000 0.9729 0.9821  0.9707 0.9014 0.9509 0.9630
O PROFILER W=6 | 0.9966 09218  0.8509 0.8119  0.7340  0.9524 0.8780 1.0000 09722 0.9804 09702 0.9011  0.9616 0.9642
PROFILER W=8 | 0.9949 0.9197 0.8501  0.8082  0.7464  0.9584 0.8796 1.0000 09735 09821 09732 0.9018  0.9650 0.9659

Table 4: Ablation study on context window size of PROFILER.

evant patterns, enhancing its detection capabilities
across diverse types of content.

G Detailed Ablation Study on Surrogate
LLMs in PROFILER

Table 5 presents a detailed ablation study on the
performance of PROFILER across different surro-
gate LLMs, evaluated on both the normal and para-
phrased datasets across various domains. In most
cases, the ensemble results outperform those de-
rived from any single surrogate LLM, indicating
that combining multiple surrogate models leads to
more robust detection performance. However, a
significant portion of the detection capability can
still be preserved when using individual surrogate
models.

Among all the surrogate LLMs, the Llama series
models—including Llama2-7B, Llama3-8B, and
Llama2-13B generally perform the best across dif-
ferent datasets. For instance, on the Arxiv dataset,
Llama2-7B achieves an average AUC of 0.8966 on
the normal dataset and 0.9106 on the paraphrased
dataset, outperforming the Gemma models. Simi-
larly, on the Creative dataset, Llama2-13B attains
an average AUC of 0.9235 on the normal dataset
and 0.9102 on the paraphrased dataset.

In contrast, the Gemma series models tend to
underperform compared to the Llama series. For
example, Gemma-2B achieves an average AUC
of 0.8817 on the Arxiv normal dataset and 0.8858
on the paraphrased dataset, which is lower than

the corresponding results from Llama2-7B and
Mistral-7B. Notably, the performance differences
among surrogate LLMs are not strictly correlated
with model size. For example, on the HumanEval
dataset, Mistral-7B achieves an average AUC of
0.9011, which is higher than both Llama2-7B
(0.8911) and the larger Llama2-13B (0.8962). The
ensemble approach consistently yields better per-
formance across all datasets than individual sur-
rogate LLLMs in most cases. This suggests that
leveraging multiple models can effectively enhance
the detection capabilities of PROFILER.

Overall, PROFILER shows consistent perfor-
mance across different surrogate LL.Ms, demon-
strating the compatibility of our method that PRO-
FILER is able to work with various surrogate mod-
els without significant loss in performance.

H Additional ROC Curves under OOD
Setting

We present the OOD ROC curves of PROFILER
and four supervised-trained baselines in Figure 7
(Arxiv), Figure 8 (Yelp), Figure 9 (Creative), Fig-
ure 10 (Essay), Figure 11 (HumanEval), and Fig-
ure 12 (GCJ) individually.

Specifically, using the results on Yelp dataset as
an example, the ROC curves of PROFILER consis-
tently lie above those of the four supervised-trained
baselines across different text origins, achieving an
average TPR of over 0.5 when the FPR is less than
0.1. Note that these results are tested under the

24921



‘ Normal Dataset - In Distribution

‘ Paraphrased- In Distribution

Method Human GPT-3.5 GPT-4 Claude Claude  Gemini Average Human GPT-3.5 GPT-4 Claude Claude  Gemini Average
Turbo Turbo Sonnet Opus 1.0-pro AUC Turbo Turbo Sonnet Opus 1.0-pro AUC

Gemma-2B 0.9945 0.9653 0.8670  0.7440  0.8427  0.8764 0.8817 0.9862 0.9714 0.8320 0.8364  0.8677  0.8209 0.8858
Gemma-7B 0.9887 0.9715 0.8513  0.7232  0.8366  0.8435 0.8691 0.9706 0.9697 0.8152  0.7788  0.8736  0.7986 0.8678

>  Llama2-7B 0.9995 0.9708 0.9088  0.7777  0.8568  0.8660 0.8966 0.9982 0.9802 0.8919  0.8478 09118  0.8334 0.9106
£ Mistral-7B 0.9996 0.9747 0.9060  0.7808  0.8530  0.8734 0.8979 0.9986 0.9782 0.8943  0.8625  0.9052  0.8309 0.9116
< Llama3-8B 0.9918 0.9704 0.9151 0.7327 0.8532 0.8619 0.8875 0.9633 0.9792 0.8702 0.8199 0.8986 0.8198 0.8918
Llama2-13B 0.9977 0.9704 0.9076 0.7709 0.8467 0.8602 0.8923 0.9944 0.9791 0.8974 0.8630 09116 0.8234 0.9115
Ensemble | 0.9998 ~ 0.9809 09386  0.7956  0.8815  0.8994 | 09160 | 0.9998 09861 09311 0.8870 09238  0.8823 | 0.9350
Gemma-2B 0.8490 0.7783 0.7546  0.7735  0.8125  0.8057 0.7956 0.8762 0.8254 0.7567  0.8424  0.8126  0.7821 0.8159
Gemma-7B 0.9391 0.7799 0.7838  0.7631  0.8150  0.7789 0.8100 0.9345 0.8230 0.7600  0.8219  0.8095  0.7445 0.8155

o Llama2-7B 0.9664 0.8243 0.8182  0.8246  0.8484  0.8118 0.8489 0.9790 0.9100 0.8553  0.8844  0.8784  0.8175 0.8874
B Mistral-7B 0.9539 0.8191 0.8095  0.8313  0.8488  0.7885 0.8419 0.9733 0.8869 0.8460  0.8859  0.8734  0.8143 0.8800
Llama3-8B 0.9564 0.8168 0.8283 0.8166 0.8595 0.7746 0.8420 0.9555 0.8849 0.8427 0.8713 0.8663 0.8071 0.8713
Llama2-13B 0.9744 0.8153 0.8263 0.8269 0.8466 0.8003 0.8483 0.9834 0.9100 0.8583 0.8903 0.8848 0.8142 0.8902
Ensemble | 09839 08563 ~ 08595 08513  0.8758  0.8471 | 0.8790 | 09881  0.9233 08847 0.9071 0.8946  0.8511 | 0.9081
Gemma-2B 0.9935 0.8849 09543 0.7950  0.7664  0.8766 0.8785 1.0000 0.8392 09472 0.8373  0.8123  0.8725 0.8848
Gemma-7B 0.9952 0.9094 09536 0.7878  0.7778  0.8403 0.8774 1.0000 0.8589 09524  0.8253  0.7948  0.8135 0.8741

2 Llama2-7B 0.9998 0.9308 09859  0.8712  0.8354  0.8997 0.9205 1.0000 0.8982 0.9643  0.8652  0.8463  0.8516 0.9043
§  Mistral-7B 0.9999 0.9263 09853  0.8683  0.8296  0.8929 0.9170 1.0000 0.8788 0.9625  0.8628  0.8639  0.8711 0.9065
S Llama3-8B 0.9994 0.9456 0.9809 0.8697 0.8666 0.9140 0.9294 1.0000 0.9372 0.9708 0.8714 0.8715 0.8829 0.9223
Llama2-13B 0.9999 0.9316 0.9872 0.8731 0.8450 0.9043 0.9235 1.0000 0.9156 0.9668 0.8605 0.8582 0.8600 0.9102
Ensemble | 09999 09617 09935 09056  0.8837  0.9307 | 09458 | 1.0000 ~ 0.9558  0.9820 09220  0.8898  0.9139 | 0.9439
Gemma-2B 0.9991 0.9119 09614  0.8438  0.8258  0.9694 0.9186 1.0000 0.8568 0.9415  0.8797  0.8718  0.9445 0.9157
Gemma-7B 0.9991 0.8915 0.9495  0.8146  0.8059  0.9470 0.9013 1.0000 0.8378 0.9204  0.8302  0.8477  0.9417 0.8963

%  Llama2-7B 1.0000 0.9172 0.9913  0.8578  0.8531 0.9307 0.9250 1.0000 0.9166 09572 0.8856  0.9140  0.9138 0.9312
% Mistral-7B 1.0000 0.9513 0.9925  0.8695  0.8643  0.9406 0.9364 1.0000 0.8865 0.9538  0.8863 09183  0.9318 0.9294
= Llama3-8B 1.0000 0.9504 0.9945 0.8805 0.8740 0.9416 0.9402 1.0000 0.9498 0.9668 0.9059 0.9196 0.9341 0.9460
Llama2-13B 1.0000 0.9217 0.9922 0.8572 0.8657 0.9356 0.9287 1.0000 0.9380 0.9624 0.8847 0.9212 0.9342 0.9401
Ensemble | 1.0000 09763 09970 09297 0.9176  0.9812 | 09670 | 1.0000 ~ 0.9622  0.9748 09445  0.9427  0.9728 | 0.9662
Gemma-2B 0.8614 0.7964 0.6753  0.6406  0.6714  0.8606 0.7510 1.0000 0.8549 0.8231 09026  0.8117  0.8841 0.8794

=  Gemma-7B 0.8340 0.7942 0.6720  0.6128  0.6349  0.8559 0.7340 1.0000 0.8660 0.8258  0.9005  0.7900  0.8800 0.8770
@ Llama2-7B 0.9130 0.8186 0.7233  0.6434  0.7227 09149 0.7893 1.0000 0.8808 0.8350  0.9330  0.7982  0.8996 0.8911
E Mistral-7B 0.9297 0.8278 0.7196  0.6338  0.7360  0.9196 0.7944 1.0000 0.8886 0.8487 09438  0.8237  0.9020 0.9011
E] Llama3-8B 0.7709 0.8301 0.6745 0.4534 0.4946 0.7786 0.6670 1.0000 0.8958 0.8102 0.9332 0.8121 0.8775 0.8881
= Llama2-13B 0.9310 0.8192 0.7044 0.6395 0.7335 0.9249 0.7921 1.0000 0.8736 0.8503 0.9375 0.8090 0.9066 0.8962
Ensemble | 09366 ~ 0.8349 07149 06720 0.7448  0.9261 | 0.8049 | 1.0000 ~ 0.9003 08602 0.9458  0.8392  0.9166 | 0.9103
Gemma-2B 0.9734 0.8523 0.7708  0.7609  0.6776  0.8625 0.8163 1.0000 0.9589 09785  0.9557  0.8796  0.9124 0.9475
Gemma-7B 0.9730 0.8658 0.7626  0.7452  0.6849  0.8642 0.8160 1.0000 0.9476 0.9749 09462  0.8743  0.8942 0.9396

—  Llama2-7B 0.9912 0.8913 0.8123  0.7737  0.7010  0.8827 0.8420 1.0000 0.9642 0.9697 09498  0.8593 09161 0.9432
8 Mistral-7B 0.9959 0.8945 0.7931  0.7760  0.7282  0.8956 0.8472 1.0000 0.9679 09733  0.9687  0.8782  0.9128 0.9502
Llama3-8B 0.9687 0.8739 0.7890 0.7757 0.6913 0.9354 0.8390 1.0000 0.9608 0.9564 0.9473 0.8863 0.9228 0.9456
Llama2-13B 0.9913 0.9023 0.8114 0.7960 0.7134 0.8866 0.8502 1.0000 0.9614 0.9644 0.9434 0.8731 0.9185 0.9435
Ensemble | 09966 ~ 09218  0.8509 08119  0.7340 09524 | 08780 | 10000 ~ 0.9722 09804 09702  0.9011  0.9616 | 0.9642

Table 5: Ablation study on surrogate LLMs in PROFILER.

OOD setting; PROFILER would demonstrate even
better performance under in-distribution setting.

Similar to its performance on the Yelp dataset,
PROFILER ranks first or second in 63% of the cases.
Additionally, PROFILER demonstrates a significant
advantage when operating in the low false positive
rate (FPR) mode, achieving over 0.4 true positive
rate (TPR) when the FPR is restricted to just 0.1. It
is noteworthy that these ROC curves are calculated
under the OOD setting. The performance gap of
PROFILER in the low FPR mode would be even
more pronounced under the in-distribution setting,
highlighting its effectiveness in distinguishing the
text origin with minimal false positives.

I Additional Results with More
Generators

To further stress-test PROFILER’S robustness and
generalizability, we incorporate additional state-of-

the-art LLMs and models from the same family
used in our existing datasets as additional dataset
generators, respectively.

Specifically, we first augment our Arxiv dataset
with additional data generated by two cutting-edge
open-source models: Deepseek-V3-0324 (Liu
et al.,, 2024), a non-reasoning model, and
Qwen3-32B (Yang et al., 2025), a reasoning model.
We then re-evaluate PROFILER on this expanded
dataset under the in-distribution setting. As shown
in Table 6, PROFILER maintains its strong per-
formance on previously evaluated models and
achieves over 0.99 detection accuracy on the new
models, highlighting its strong generalizability.

To evaluate the robustness of PROFILER, we eX-
pand the Arxiv dataset by incorporating six ad-
ditional models from the same families as those
used in the original data. GPT-4o (Hurst et al.,
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Figure 7: ROC curves of PROFILER and four supervised-trained baselines on Arxiv dataset in out-of-distribution

(OOD) setting.
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Figure 8: ROC curves of PROFILER and four supervised-trained baselines on Yelp dataset in out-of-distribution

(OOD) setting.
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Figure 9: ROC curves of PROFILER and four supervised-trained baselines on Creative dataset in out-of-distribution

(OOD) setting.
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ROC curves of PROFILER and four supervised-trained baselines on Essay dataset in out-of-distribution

(OOD) setting.
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Figure 11: ROC curves of PROFILER and four supervised-trained baselines on HumanEval dataset in out-of-

distribution (OOD) setting.
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Figure 12: ROC curves of PROFILER and four supervised-trained baselines on GCJ dataset in out-of-distribution

(OOD) setting.

2024) and GPT-4.1" follow GPT-3.5-Turbo and
GPT-4-Turbo, while Claude-3.7-Sonnet”? and

1https://platform.openai.com/docs/models/
gpt-4.1

2https://www.anthropic.com/news/
claude-3-7-sonnet

Claude-4-Sonnet® extend the Claude-3 series.
Similarly, Gemini-1.5-Pro (Team et al., 2024a)
and Gemini-2.5-Pro (Comanici et al., 2025) be-
long to the same family as Gemini-1.0-Pro. As
shown in our results, PROFILER sustains strong per-

3https://www.anthropic.com/news/claude—4
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Dataset Setting ‘ Human GPT-3.5-Turbo GPT-4-Turbo Claude-3-Sonnet Claude-3-Opus Gemini-1.0-Pro DeepSeek-V3-0324 Qwen3-32B

Original 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 — —
Expanded 0.9997 0.9783 0.9439 0.8312 0.9078 09174 0.9988 0.9966
Table 6: Additional results with more types of LLMs.
. GPT-3.5 GPT4 Claude-3 Claude-3 Claude-3.7 Claude-4 Gemini Gemini Gemini
Dataset Setting ‘ Human Turbo  Turbo GPT-40  GPT-4.1 Sonnet Opus Sonnet Sonnet  1.0-Pro 1.5-Pro 2.5-Pro
Original 0.9998 0.9809  0.9386 — — 0.7956 0.8815 — — 0.8994 — —
Expanded 0.9997 0.9631 0.8746  0.8285 0.8572 0.7894 0.9057 0.8656 0.9407 0.9202  0.9850 09177
Table 7: Additional results with more LLMs from the same model family as generators.
‘ Normal Dataset - In Distribution
Method Hum: GPT-3.5 GPT4 Claude Claude Gemini | Average Hum: GPT-3.5 GPT4 Claude Claude Gemini | Average
etho uman Turbo Turbo Sonnet Opus 1.0-pro AUC uman Turbo Turbo Sonnet Opus 1.0-pro AUC
DNA-GPT 0.1414 0.6945 04324 05665  0.6423 0.5214 0.4997 = | 0.2928 0.7231 0.6463  0.4982  0.5104 0.3343 0.5008
=  Fast-DetectGPT 0.0223 0.3797 0.4856  0.5684  0.7903 0.7526 0.4998 5| 04421 0.5803 0.5264  0.4907  0.4702 0.4893 0.4998
£ DeTeCtive 0.9985 0.9807 0.9666  0.8525  0.9077 0.9251 0.9385 g 0.8949 0.6895 0.6006  0.5741 0.6252 0.8264 0.7018
< BiScope 0.9988 0.9398 0.9511  0.7601 0.8584 0.8458 0.8923 5 | 0.8766 0.8246 0.7633  0.4038  0.6352 0.7121 0.7027
Profiler 0.9998 0.9809 0.9386  0.7956  0.8815 0.8994 0.9160 T | 0.9366 0.8349 0.7149  0.6720  0.7448 0.9261 0.8049
Table 8: Comparison with more baseline detectors on Arxiv and HumanEval datasets.
Method ‘ Raidar GhostBuster Sniffer SeqXGPT Profiler neceSSItateS training Of a Surrogate encoder’ PRO_

Time/Sample ‘ 14.98s 0.39s 0.12s 0.10s 0.44s

Table 9: Efficiency comparison.

formance on the original models and achieves an
average detection AUC of around 0.9 on the newly
added models, despite minor drops in a few cases.

J Additional Comparison with More
Baselines

To further compare PROFILER with more recent
baselines, we further conduct the comparison be-
tween our PROFILER with DNA-GPT (Yang et al.,
2024), Fast-DetectGPT (Bao et al., 2024), DeTeC-
tive (Guo et al., 2024c), and BiScope (Guo et al.,
2024a) on both the Arxiv and HumanEval datasets
under the in-distribution setting.

Table 8 presents the detailed results. Consistent
with the observations in our paper’s main text, both
DNA-GPT and Fast-DetectGPT, which are zero-
shot methods relying on a single score, exhibit poor
performance in text origin detection, achieving an
average AUC of approximately 0.5 on both the
Arxiv and HumanEval datasets. As training-based
baselines, DeTeCtive and BiScope perform well on
the natural language dataset, achieving comparable
and even slightly higher performance than PRO-
FILER. However, on the code dataset, PROFILER
significantly outperforms both DeTeCtive and BiS-
cope, with an average AUC improvement of 0.1. It
is important to note that, unlike DeTeCtive, which

FILER does not require any fine-tuning of the surro-
gate model, thereby demonstrating greater practical
applicability.

K Efficiency Analysis

Table 9 presents PROFILER ’s average process-
ing time per sample on the Arxiv dataset, along-
side data from four other training-based baselines.
While PROFILER may not be the most efficient
method, its time efficiency is comparable to that
of the other baselines. Given the significantly
higher performance of our method, we believe that
a marginally increased time cost is acceptable.
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