
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 24835–24848
November 4-9, 2025 ©2025 Association for Computational Linguistics

Subjective Behaviors and Preferences in LLM: Language of Browsing

Sai Sundaresan1 Harshita Chopra2† Atanu R. Sinha1

Koustava Goswami1 Nagasai Saketh Naidu1 Raghav Karan1† N Anushka1†

1Adobe Research
2University of Washington, Seattle

atr@adobe.com

Abstract

A Large Language Model (LLM) offers versatil-
ity across domains and tasks, purportedly ben-
efiting users with a wide variety of behaviors
and preferences. We question this perception
about an LLM when users have inherently sub-
jective behaviors and preferences, as seen in
their ubiquitous and idiosyncratic browsing of
websites or apps. The sequential behavior logs
of pages, thus generated, form something akin
to each user’s self-constructed "language", al-
beit without the structure and grammar imbued
in natural languages. We ask: (i) Can a small
LM represent the "language of browsing" better
than a large LM? (ii) Can an LM with a single set
of parameters (or, single LM) adequately cap-
ture myriad users’ heterogeneous, subjective
behaviors and preferences? (iii) Can a single LM
with high average performance, yield low vari-
ance in performance to make alignment good at
user level? We introduce clusterwise LM train-
ing, HeTLM (Heterogeneity aware Training of
Language Model), appropriate for subjective
behaviors. We find that (i) a small LM trained
using a page-level tokenizer outperforms large
pretrained or finetuned LMs; (ii) HeTLM with
heterogeneous cluster specific set of parame-
ters outperforms a single LM of the same family,
controlling for the number of parameters; and
(iii) a higher mean and a lower variance in gen-
eration ensues, implying improved alignment.

1 Introduction

Large Language Models (LLMs) fuel expectations
that a single trained model can effectively align
with preferences of myriad users for a given task
within a domain. We term a single LM as a specific
LM with a single set of parameters, regardless of its
size. Examples of tasks in the domain of natural
language are question-answer, summarization, etc.;
and in the business domain - prediction of business

†Work done while authors were at Adobe Research

Figure 1: Language of Browsing: A user’s 4 succes-
sive sessions are shown; 3 form the Input, 4th is Actual,
used to compare generation. ([BOS], [EOS]) demarcate
sessions. Sequential page browsing is seen; sequence-
length varies by sessions, and by users. Session’s struc-
ture is a combination of Category Page, Product Page,
and Outcome if it occurs. Outcome: Cart (Basket) or
Purchase, is a firm desired target label, and occurs only
in a few sessions.

metrics such as conversion, etc. Domain-mapping,
task-calibration and preference alignment, can be
presumably conquered through provisioning of spe-
cific context, instructions, examples, in-context
learning, prompting, learning from human prefer-
ence, finetuning or pretraining on domain-specific
data, retrieval augmented generation, applied to a
single LM. We question the paradigm of a single
LM satisfying alignment for subjective behaviors of
myriad users for a given task and domain.

Users’ everyday interactions with websites and
apps occur in an idiosyncratic manner, generating
a language of sequence of webpages (or, pages),
termed language of browsing. Fig 1 shows an ex-
ample of this. This language exemplifies subjec-
tive behaviors and preferences, which are heteroge-
neous and crucially do not conform to oracle like
behavior nor oracle-preference. Even if a single LM
produces good average performance in generation
across users, the variance in performance across
users may be weak, making user level alignment
weak. Thus, alignment with some ideal oracle or
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with the average across users, is less meaningful.
The language of browsing is ubiquitous in the form
of pageurl-logs that online firms collect. We study
users’ heterogeneity of behaviors to examine the
effectiveness of a single LM. Domain adaptation of
LM addresses aspects of heterogeneity in domains
and tasks, but none of these works tackle the impor-
tant problem of heterogeneity in users’ subjective
behaviors and preferences, embodied in the sequen-
tial pages browsed. We learn the language intrinsic
to such sequences, using decoder LM. For online
firms, prediction of outcomes such as user conver-
sion is of utmost importance. We thus consider
three goals: (a) average performance in generation
of pages, (b) variance of performance in generation
of pages across users, and (c) performance on out-
come prediction, where (b) and (c) are unattended
in LM prior art.

We find that small LMs, pretrained using a page-
level tokenizer, outperform GPT4o with prompt-
ing, and fine-tuned versions of LLaMa-3-8B,
Mistral-7B, Gemma-7B. The small LMs, are then
finetuned clusterwise through our proposed HeTLM
(Heterogeneity aware Training of Language
Model), where both the number of clusters K and
assignment of users to clusters are endogenously
determined as finetuning progresses. The average
performance in generation across users for HeTLM
is better than the single LM of larger size in the
same family, and the variance in performance is
lower. Also, HeTLM performs well on prediction
of outcomes available in the data–add to cart and
purchase. These show that HeTLM improves per-
formance for both page generation and outcome
prediction.

Our contributions are: (i) Drawing attention
to Language of Browsing for LLMs; (ii) Showing
that a small model can outperform a large model
for outcome prediction with effective pretraining;
(iii) Introducing heterogeneity of users’ subjective
behaviors and preferences in LLMs; (iv) Offering a
network architecture to train LLM clusterwise.

2 Related Work

Heterogeneity: Heterogeneity of subjective prefer-
ences inspires our inquiry (Lu et al., 2022b). Het-
erogeneity drives research in clustering. Clustering
algorithms have evolved with online data (Aljal-
bout et al., 2018; Chen et al., 2017; Ezenkwu et al.,
2015; Alkhayrat et al., 2020) - unsupervised and
supervised (Shin et al., 2019; Ghasemi et al., 2021).

However, our goal is not to cluster purely based
on the user browsing sequence. (Lee and van der
Schaar, 2020) learn discrete representations of time-
series data by minimizing the KL divergence be-
tween individual and cluster-level outcome distri-
butions. We extend this method to an LLM-based
setting, where we train multiple cluster-specific
LLMs so that at inference time, any arbitrary user’s
input can be given more accurate generation by
invoking the LLM of the nearest cluster. To our
best knowledge, such endogenous clusterwise LLM
training and its use is not present in prior art.
Recommendation: A growing body of work apply
LLMs to recommendation tasks (Wu et al., 2024;
Yang et al., 2023). Their focus is on improving
recommendations, but not on training LLMs for het-
erogeneous users with subjective preferences.
Domain Adaptation: Extensive research has ad-
dressed domain adaptation by pretraining LLMs
on large, domain-specific datasets (i.a., Alsentzer
et al., 2019; Lu et al., 2022a; Lee et al., 2019),
BioBERT (Lee et al., 2020), BlueBERT (Peng et al.,
2019) , BioClinicalBERT (Alsentzer et al., 2019),
diseaseBERT (He et al., 2020), SciFive (Phan
et al., 2021) and BioBART (Yuan et al., 2022). Sub-
sequent work has explored fine-tuning these pre-
trained models on downstream tasks (Wang et al.,
2023; Mishra et al.). Chen et al., (Chen et al., 2020)
pointed out the complexity of adopting general lan-
guage models blindly to downstream tasks by fine-
tuning. Another line of research employs prompt
learning for domain adaptation (Goswami et al.,
2023). More recently, methods that infuse task-
relevant information from related sources, rather
than adapting to an entire domain, have shown
promise (Borgeaud et al., 2022; Dai et al., 2023;
He et al., 2023; Izacard et al., 2022; Lewis et al.,
2020). He et al. (He et al., 2023) proposed LLM
based reasoning by decomposing tasks into multi-
ple reasoning steps.

3 Datasets

We show implementation on two public datasets*,
each containing pageurls of consumer interactions.
The pageurls are sequence of page-names browsed
by each consumer, in each session, and sequenced
by timestamp. To conserve space, all results for
and the description of Dataset II are available in
Appendix A.3. Now, we confine to Dataset I.

Dataset I (Google, 2018). Train : Test split =

*The processed datasets are provided here (link)

24836

https://github.com/saisundaresan01/pageurl_prediction_emnlp


47,274 : 5,253 samples. Number of unique pages =
1,123. We filter out very short sessions, incomplete
data and extremely long sessions based on a per-
centile cutoff to create the dataset for experiments.

Fig. 1 shows an example of Input data from
Dataset I, as a sequence of pages. Category Level,
Product Level, and Outcome pages form the to-
kens we use. Outcomes available in pageurls are:
Cart (Basket, in Dataset I) and Purchase; these Out-
come pages are generated by the LM and also used
as target labels to evaluate Outcome prediction
against ground truth of the Actual (next) session.

4 Model

4.1 Small LM and Tokenization

To study our thesis, we want an open, small LM
which has larger sized variants available, as an
open LM allows pretraining. To create a just com-
parison of the small variant, which when trained
in a clusterwise manner has its total number of pa-
rameters increase by the multiple of the number
of clusters, we need a large variant having at least
the same number of total parameters. Since archi-
tectures differ by families of LM, it makes sense
to select small and larger sized LMs of the same
decoder family for a careful comparison. Also, the
growing importance of the inference phase (Snell
et al., 2024) calls for a small LM with relatively
few number of finalized clusters, so that the total
number of parameters needed for inference does
not blow up in HeTLM. Finally, a small, open LM
allows for use of a custom tokenizer with a reduced
vocabulary size, which can improve adherence to
the desired output format. For this, we employ
a custom tokenizer that performs page-level tok-
enization, including only the unique pages in the
vocabulary. For HeTLM clusterwise training we use
three small LMs: OPT-350M, QWEN-2.5-500M, and
SmolLM2-360M.

4.2 Exogenous Clusterwise Training: Kmeans

User sessions are clustered using their SBERT em-
beddings, with fixed K, using the Kmeans algo-
rithm. Then, cluster-wise, K different small LMs
of the same family are finetuned. This approach,
which also recognizes the heterogeneity of users,
is straightforward and a useful baseline. The lim-
itations are that K is fixed and user sessions are
assigned to clusters based purely on embeddings,
and are not re-assigned endogenously as proposed
in HeTLM, which is described next.

4.3 Endogenous Clusterwise Training: HeTLM

We propose HeTLM (Heterogeneity aware Training
of Language Models). Fig. 2 shows the architec-
ture of HeTLM which integrates embedding-based
clustering and fine-tuning endogenously, where
clustering is informed by fine-tuning and fine-
tuning is guided by clustering. By clustering user
session embeddings and fine-tuning a dedicated LM
for each cluster, it captures user-specific patterns
more effectively than a single-model or exogenous
methods like K-means. We use an Actor–Critic
framework to iteratively refine both the clustering
and the number of clusters, K, based on prediction
quality. The theoretical basis for our method is
given in A.1. The model has three components: the
Encoder (SBERT (Reimers and Gurevych, 2019)),
the Selector (MLP), and the Predictor (Zhang et al.,
2022)). A small-LM serves as the Predictor.
(1) The Encoder processes a batch of user sessions
(xb) and generates embedding representations (zb)
for each sample. These embeddings serve as input
to the Selector. We choose SBERT for the encoder
due to its efficiency in generating high-quality em-
beddings for sentence-level data.
(2) The Selector takes these embeddings and gen-
erates a probability distribution over K clusters for
each user session. It is pretrained to mimic Kmeans
cluster assignments. Based on these probabilities,
the user sessions are grouped and passed to the
corresponding Predictor models. The Selector, an
MLP, efficiently maps session embeddings to clus-
ters, where the number of clusters is endogenous.
(3) The Predictor consists of K instances of the
small LM model, each pretrained on the entire
dataset. We use a custom tokenizer with a vocabu-
lary constrained to the set of pages in the dataset,
resulting in better adherence to the output format.
Each Predictor is then fine-tuned only on the user
sessions assigned to its corresponding cluster by
the Selector. By allowing a different set of pa-
rameter weights for each cluster, we allow each
cluster-wise LM to specialize in behavior patterns of
its assigned users, improving predictive accuracy.
(4) The Selector is the Actor, and the Predictor
is the critic. The Selector’s cluster assignments
are refined through three loss functions, defined
in Sec 4.4 and 4.5. Loss L1, is the negative log-
likelihood (NLL) of each Predictor on its assigned
sessions, which encourages assignments that yield
strong specialization. Loss L2, is the NLL of the
cluster assignment probabilities which encourages
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Figure 2: HeTLM Architecture

a sharper probability distribution. Loss, L3, is ob-
tained from the Manhattan distance between cen-
troid embeddings of pairwise clusters, promoting
separation between the clusters. Description of the
losses and training procedure follow next.

4.4 LLM Loss
Each sequence of user sessions consists of pages
separated by delimiters. Given a target sequence of
pages x = a1 − a2 − · · · − am, we define its token
representation as T = t1, t2, . . . , tn, where n is
the number of tokens. The corresponding one-hot
encoded matrix is given by O = [O1, O2, . . . , On],
where Oi is one-hot vector of length equal to the
vocabulary size, representing the token ti, and n is
the token sequence length.

A language model generates probability distri-
butions corresponding to each token, represented
as P = [P1, P2, . . . , Pn], where each Pi is a prob-
ability distribution for the next token over the vo-
cabulary. The loss function is computed as the
sum of negative log-likelihoods (NLL) between the
one-hot encoded Oi and the generated probability
distribution Gi: LLLM = −∑n

i=1Oi logPi

4.5 HeTLM: Actor-Critic
Our proposed HeTLM method follows an Actor-
Critic paradigm, where an Encoder first extracts
user representations, and then an Actor (Selector)
and Critic (LLM) operate on these embeddings. Let
X represent the user sessions in the dataset and Z
represent the embedding space of the Encoder. Let
V be the vocabulary size of the model.

Encoder fθ : X → Z maps a user’s session
sequence x ∈ X to a session embedding z ∈ Z .
We utilize the SBERT model to produce these em-
beddings. The hidden vector z represents the latent

ℒ!

ℒ" ℒ#

ℒ$

Figure 3: Dataset I. Validation losses for α = 5, β = 9

tendency of a user, and is used for clustering. The
Encoder weights are kept frozen.

Selector hψ : Z → ∆K−1 is a MLP that assigns
z to one of K clusters, computing a probability
distribution π where π(k) is the probability of as-
signing z to cluster k.

Predictor gkϕ : X → Rn×V is an LLM which
maps a user session corresponding to cluster k to
a matrix, where each row represents a probability
distribution Pi ∈ ∆V−1 for each token.

Embedding Dictionary E : stores the centroids
of the session embeddings of K clusters. Given a
cluster assignment ck, it stores the corresponding
centroid embedding eck ∈ H.

4.6 Losses and Training

The following steps are used:
1. Generate Encoder embeddings z for all x ∈ X
2. Initialize the cluster embeddings using

K-means on the embeddings z and pre-train
the Selector to mimic K-means

3. Pretrain each of the Predictors on all x ∈ X
4. Perform Actor-Critic Finetuning to iteratively

improve the Selector and the Predictors
The overall selector loss LO(θ, ϕ, ψ) = L1 +

αL2 + βL3 combines the 3 losses as described
below, with α and β as hyperparameters.

The loss term L1 ensures effective specialization
within the predictors. We take the weighted average
over the cluster probabilities of the LLM loss for all
x ∈ X to allow for backpropagation.

L1(θ, ϕ, ψ) =
∑

k∈K
πk

[
lk1
]

(1)

where, lk1 = LLLM , is the negative log likelihood
of the LLM gkϕ. The critic’s loss, which is the loss
for each of the Predictors, is:
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Lkc (ϕ) = 1{argmax(π)=k}
[
lk1
]

(2)

The loss term L2 promotes sparse cluster assign-
ment such that each user belongs to one cluster
with high probability. It is given by:

L2(θ, ψ) = −
∑

k∈K
πk log πk (3)

Further, to promote well-separated cluster cen-
troids in embedding representation, the loss L3

is used, which is the negated sum of Manhattan
distance between pairwise cluster centroid embed-
dings passed through a sigmoid function,

L3(θ, ϕ, ψ) = σ

(
−

∑

k ̸=k′
∥eck − eck′∥1

)
(4)

For efficiency, training is performed in batches.
The validation losses over steps are shown in Fig. 3
and the training steps are shown in Algorithm 1.
Training hyperparameters are included in A.4.

Algorithm 1 Actor-Critic Fine-Tuning
1: Generate: embeddings z = fθ(x) for all x ∈ X
2: Initialize: Selector hψ with K-means clusters
3: Pretrain: Predictors gkϕ on all x ∈ X
4: Train hψ , gkϕ using Actor-Critic Finetuning
5: while not converged do
6: sample batch xb ∈ X
7: Compute embeddings zb = fθ(xb)
8: Compute cluster probs πb = hψ(zb)
9: Assign clusters Cb = argmax(πb)

10: Critic loss: LC = L1

11: Update ϕ via gradient descent on LC
12: Selector loss: LO = L1 + αL2 + βL3

13: Update ψ via gradient descent on LO
14: end while

5 Empirical Strategy for Experiments

We adopt a 2-step empirical strategy.
Step 1: Compare single LMs - small vs. large.
On Dataset I, as appropriate, each LM is–pretrained,
or finetuned, or prompt-tuned–as the case may be,
and compared on Mean performance metrics con-
forming to both Page Generation and Outcome Pre-
diction for the Next session, across all users in test
data. The performance of the small LMs is checked.
Step 2: Compare HeTLM clusterwise, small LM vs.
larger, single LM. Using Dataset I, each small LM is
pretrained with the HeTLM architecture (Fig. 2) to
produce K clusterwise versions of this LM, where
both K and assignment of users to clusters are

endogenously determined. We get K different sets
of parameters for K LMs, meant to better align
overall with users in K clusters. Fetch an LM of the
same family as the small LM, but one with a larger
size, so that its number of parameters is larger than
the total number of parameters of K small LMs.
Pre-train the large LM with a page-level custom
tokenizer on Dataset I. Compare performance of
HeTLM clusterwise, small LMs with the larger single
LM in average performance metrics, as well as, in
Variance of performance in Page Generation across
all users in test data. For indepth comparison, we
use an expanded set of metrics.

5.1 Evaluation Metrics for Step 1

All evaluations are performed by comparing page
generation in next session against the pages in the
Actual next session (e.g., Fig. 1). We use a broad
set of metrics to support three key aspects of our ap-
proach. (1) Variance metrics in page generation are
introduced to capture variability across users—an
aspect overlooked in prior work but central to our
premise of subjectivity in user heterogeneity. This
aligns with our thesis of clusterwise LMs and is de-
scribed in 5.2.2. (2) Page generation metrics are
aligned with prior work on language models and
allow standard benchmarking. (3) Outcome pre-
diction metrics (Accuracy, Precision, Recall, F1)
are widely used in prior art and are essential for
evaluating business impact. We further disaggre-
gate these by outcome type (e.g., cart vs. purchase)
to give the reader a more complete view of model
behavior. Rather than reducing to a minimal set,
we provide comprehensive metrics so readers can
interpret results according to their own priorities.
To aid in comparison across models, we also in-
clude composite metrics in Sec. 5.3. In Step 1, our
first level comparison, we use 6 evaluation metrics.
In Step 2, we use 14 additional metrics to deep
dive for detailed comparisons.

5.1.1 Page Generation - Mean across Users

A common objective for LLMs, we use the following
2 metrics in Step 1, which are defined per user. We
report the Mean across all users, higher is better.
[IoA] Intersection over Actual: Ratio of number of
correctly generated pages to that of actual pages;
same as, 1 minus False Negative.
[IoP] Intersection over Predicted (Generated): Ra-
tio of number of correctly generated pages to that of
generated pages; same as, 1 minus False Positive.
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5.1.2 Outcome Prediction - Mean across Users
Important business Outcomes of interest are: Add-
to-cart and Purchase. For each consumer we check
whether generated pages in the Next session con-
tain either Cart or Purchase page, and evaluate
against the Actual session pages containing them.
We use 4 outcome metrics, defined as Mean across
all users. While F1 is a composite, recall and preci-
sion provide useful, incremental information and
thus we use them. Higher is better.
[Acc] Accuracy for Cart / Purchase.
[Rec] Recall for Cart / Purchase.
[Prec] Precision for Cart / Purchase.
[F1] F1-score for Cart / Purchase.

5.2 Additional Evaluation Metrics for Step 2
5.2.1 Page Generation - Mean across Users
We use the following 4 additional metrics in Step 2.
Each metric is computed per user and then reported
as Mean across all users. Higher is better.
[HR] Hit Rate: Per user, at least one common page
in generation and actual is scored 1; 0, otherwise.
[IoU] Intersection over Union: Per user, ratio of the
number of correctly generated pages to the union
of the number of generated and actual pages.
[Val-P] Valid Page Score: Per user, ratio of the
number of valid pages to the number of all pages
in generation, per user. This cautions about hallu-
cination, by having a score closer to 1.
[New-P] New Page Score: Per user, ratio of the
number of pages not in input to the number of valid
pages in generation. Indicating a degree to which
pages generated are outside of the pages in input, it
captures new generation instead of merely retrieval.

5.2.2 Introducing Variance in Page
Generation metrics for User alignment

Per user, we can measure alignment since the
Ground truth of Next session is available in the
Language of Browsing. For the following metrics
we compute Variance across users as a degree of
alignment in Page Generation. Lower variance is
better, since it suggests better alignment.
[IoA-var] Intersection over Actual Variance.
[IoG-var] Intersection over Generated Variance.
[IoU-var] Intersection over Union Variance.
[HR-var] Hit Rate Variance.

5.2.3 Outcome Prediction separately for Cart
and for Purchase

For a more complete picture to emerge, we also
consider Accuracy, Recall, Precision separately for

Cart and for Purchase predictions.

5.3 Composite Metrics

To make comparison easier over the 20 metrics, we
introduce composite metrics, where each is a scalar
value . Defined with competing Single LM as bench-
mark, it is = Number of metrics where HeTLM scores
greater than single LM / 20. This metric is intu-
itive, bounded between 0 and 1, where score greater
(less) than 0.5 favors (disfavors) HeTLM, versus sin-
gle LLM. For each of Page Generation-Mean, Out-
come Prediction-Mean, Page Generation-Variance,
and for Overall (across all these three metrics) we
present a composite metric.

6 Experiment Results: Dataset I

Model IoA IoP Acc Rec Prec F1
Cart or Cart or Cart or Cart or

Purchase Purchase Purchase Purchase

GPT-4o Zero-shot 0.275 0.175 0.928 0.400 0.488 0.440

GPT-4o Few-shot 0.400 0.276 0.869 0.628 0.367 0.464

Llama2-7B Chat-Few-shot 0.329 0.251 0.932 0.305 0.424 0.355

Llama3-8B LORA-32R 0.327 0.339 0.914 0.390 0.409 0.399

Llama3-8B FullFineTune 0.295 0.307 0.871 0.399 0.437 0.417

Mistral-7B LORA-32R 0.124 0.129 0.904 0.360 0.376 0.368

Gemma-7B LORA-32R 0.269 0.266 0.905 0.442 0.424 0.433

OPT-350M Pre-train 0.334 0.314 0.872 0.447 0.514 0.478

QWEN-2.5-500M Pre-train 0.408 0.426 0.918 0.515 0.571 0.542

SmolLM2-360M Pre-train 0.431 0.424 0.92 0.502 0.542 0.521

Table 1: Dataset I. Small LMs, QWEN-2.5-500M,
SmolLM2-360M, OPT-350M dominate the collection of
large LMs in 5 metrics, except in Rec - Cart or Purchase.

6.1 Results: Step 1

Small LMs, OPT-350M, QWEN-2.5-500M and
SmolLM2-360M, are pretrained on Dataset I, while
large LMs, Llama3-8B, Mistral-7B and Gemma-7B,
are finetuned on the same data. Two variations of
Llama3-8B are used - LORA finetuned and full
finetuned. Per Table 1, small LMs outperform
large LMs, namely, GPT-4o-200B+, LLaMa2-7B,
Llama3-8B, Mistral-7B, Gemma-7B. Step 2 HeTLM
clusterwise experiments are done with small LMs.

6.2 Results: Step 2

Here we present results for OPT and QWEN2.5;
SmolLM2 results are in Appendix A.2. In each
table, the row Combined shows an average of
all 5,253 users across clusters. First, see Ta-
ble 2. Comparative results are shown for OPT-350M
and QWEN-2.5-500M because each has a large-
sized LM, which is necessary for a just compari-
son, per Sec. 4.1. Since the clusterwise HeTLM for
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Model N HR IoA IoP IoU New-P Val-P

OPT 2.7B 5253 0.813 0.424 0.417 0.31 0.183 0.035

OPT-350M Kmeans, K=6

Cluster 1 438 0.838 0.419 0.31 0.228 0.196 0.028
Cluster 2 1359 0.703 0.221 0.165 0.104 0.018 0.003
Cluster 3 638 0.803 0.327 0.26 0.169 0.205 0.035
Cluster 4 330 0.745 0.472 0.451 0.362 0.364 0.078
Cluster 5 573 0.696 0.277 0.341 0.209 0.265 0.071
Cluster 6 1915 0.794 0.309 0.301 0.188 0.241 0.049
Combined 5253 0.761 0.304 0.275 0.18 0.186 0.038

OPT-350M Kmeans, K=2

Combined 5253 0.776 0.347 0.324 0.225 0.134 0.027

OPT-350M HeTLM (α=2, β=1)

Cluster 1 948 0.795 0.355 0.354 0.24 0.172 0.033
Cluster 2 319 0.881 0.63 0.657 0.538 0.0 0.0
Cluster 3 2875 0.8 0.367 0.396 0.264 0.181 0.042
Cluster 4 277 0.686 0.298 0.406 0.245 0.051 0.016
Cluster 5 759 0.783 0.288 0.334 0.188 0.159 0.043
Combined 5253 0.796 0.367 0.397 0.265 0.156 0.036

OPT-350M HeTLM (α=5, β=9)

Cluster 1 305 0.879 0.616 0.713 0.572 0.0 0.0
Cluster 2 4797 0.819 0.373 0.387 0.265 0.216 0.048
Cluster 3 151 0.57 0.31 0.439 0.286 0.0 0.0
Combined 5253 0.816 0.385 0.407 0.284 0.197 0.044

QWEN-2.5-7B 5253 0.699 0.253 0.265 0.156 0.136 0.044

QWEN-2.5-500M HeTLM (α=5, β=9)

Cluster 1 3101 0.809 0.437 0.39 0.30 0.223 0.041
Cluster 2 316 0.87 0.64 0.71 0.587 0.022 0.005
Cluster 3 1673 0.80 0.401 0.414 0.30 0.175 0.037
Cluster 4 163 0.595 0.322 0.391 0.27 0.006 0.001
Combined 5253 0.803 0.434 0.417 0.314 0.189 0.036

Table 2: Dataset I. Page Generation Results. Higher is
Better. Combined shows the average across clusters for
each HeTLM.

OPT-350M has K = 6 times as many parameters
(6*350M=2.1B), we compare against a larger, sin-
gle LM, namely, OPT-2.7B. Similarly, we compare
HeTLM for QWEN-2.5-500M with (6*500M=3.0B)
parameters against larger, single LM, QWEN-2.5-7B.
Results for Kmeans and HeTLM are shown. Varying
α, β for HeTLM adjusts weights on losses in LO,
leading to major changes in number of clusters and
size. OPT-350M-HeTLM Combined (α=5, β=9) out-
performs all others and the baseline of single LM
OPT-2.7B on all 6 metrics. For each combination
of α, β (i) there is a large variation in evaluation
metrics across clusters, implying that alignment
with users varies across clusters, and (ii) cluster-
specific metrics vary from the single LM, OPT-2.7B.

Echoing results from Page Generation, in Out-
come Prediction (Table 4), HeTLM outperforms sin-
gle LM, within each family OPT and QWEN-2.5. For
Variance in Page Generation, Table 3 comparison
of HeTLM α=5, β=9 with respective LM shows for
each combination of α, β (i) there is difference in
variances across clusters for each metric, and (ii)
cluster specific variances vary from the single LLM

Model N HR-var IoA-var IoP-var IoU-var

OPT 2.7B 5253 0.152 0.121 0.119 0.109

OPT-350M: Kmeans, K=6

Cluster 1 438 0.136 0.088 0.076 0.053
Cluster 2 1359 0.209 0.047 0.031 0.015
Cluster 3 638 0.158 0.068 0.06 0.031
Cluster 4 330 0.19 0.155 0.148 0.129
Cluster 5 573 0.211 0.087 0.108 0.075
Cluster 6 1915 0.163 0.069 0.07 0.044
Combined 5253 0.182 0.077 0.074 0.048

OPT-350M: Kmeans, K=2

Combined 5253 0.174 0.096 0.092 0.071

OPT-350M: HeTLM (α=2, β=1)

Cluster 1 948 0.163 0.094 0.09 0.071
Cluster 2 319 0.105 0.138 0.122 0.129
Cluster 3 2875 0.16 0.1 0.102 0.083
Cluster 4 277 0.215 0.102 0.133 0.091
Cluster 5 759 0.17 0.061 0.072 0.037
Combined 5253 0.162 0.101 0.103 0.082

OPT-350M: HeTLM (α=5, β=9)

Cluster 1 305 0.107 0.137 0.129 0.144
Cluster 2 4797 0.148 0.096 0.097 0.082
Cluster 3 151 0.245 0.143 0.185 0.137
Combined 5253 0.15 0.103 0.107 0.092

QWEN-2.5-7B 5253 0.211 0.064 0.067 0.036

QWEN-2.5-500M: HeTLM (α=5, β=9)

Cluster 1 3101 0.154 0.125 0.103 0.098
Cluster 2 316 0.113 0.143 0.135 0.151
Cluster 3 1673 0.161 0.123 0.115 0.109
Cluster 4 163 0.241 0.14 0.170 0.128
Combined 5253 0.158 0.129 0.117 0.111

Table 3: Dataset I. Variance in Page Generation across
users. Lower is Better. Results for same models as in
Table 4.

OPT-2.7B. The reduction in variance seen in Ta-
ble 3 from HeTLM’s Combined evaluation supports
the clustering approach.

Table 5 has a composite evaluation across all
20 metrics (see Sec. 5.3). The overall Com-
posite shows that respectively, 60% and 80% of
times HeTLM for OPT-350M and QWEN-2.5-500M
with α=5, β=9 outperform the single, LM base-
lines, OPT-2.7B and QWEN-2.5-7B. For OPT, this
is much higher than what exogenous clustering
Kmeans achieves. In sum, page generation align-
ment vary across clusters and shows the downside
of using a single LM to meet users’ heterogeneous
and subjective behaviors and preferences. HeTLM
offers better alignment with users.

In addition to results shown for Kmeans, K=6,
we also show results for K=2 (decided based on
Silhouette Coefficient). See Tables 2 - 5. We find
that K=2 produces worse performance than K=6
for Kmeans, where choice of number of clusters is
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Model N Acc-Cart Acc-Purchase Acc-Cart/Purchase Rec-Cart Rec-Purchase Rec-Cart/Purchase Prec-Cart Prec-Purchase Prec-Cart/Purchase F1-Cart/Purchase

OPT-2.7B 5253 0.74 0.869 0.917 0.55 0.402 0.551 0.532 0.255 0.533 0.542

OPT-350M Kmeans, K=6

Cluster 1 438 0.589 0.653 0.797 0.680 0.52 0.676 0.483 0.169 0.483 0.564
Cluster 2 1359 0.617 0.76 0.816 0.381 0.339 0.381 0.354 0.131 0.353 0.366
Cluster 3 638 0.633 0.82 0.884 0.545 0.2 0.545 0.339 0.05 0.339 0.418
Cluster 4 330 0.746 0.939 0.949 0.156 0.0 0.156 0.132 0.0 0.13 0.141
Cluster 5 573 0.745 0.944 0.951 0.248 0.238 0.248 0.333 0.238 0.333 0.284
Cluster 6 1915 0.688 0.786 0.858 0.509 0.479 0.509 0.486 0.201 0.488 0.498
Combined 5253 0.665 0.799 0.861 0.467 0.4 0.466 0.41 0.159 0.411 0.437

OPT-350M Kmeans, K=2

Combined 5253 0.698 0.831 0.884 0.467 0.376 0.466 0.458 0.184 0.458 0.462

OPT-350M HeTLM (α=2, β=1)

Cluster 1 948 0.688 0.756 0.857 0.576 0.475 0.575 0.539 0.212 0.542 0.558
Cluster 2 319 0.865 0.966 0.969 0.136 0.1 0.136 0.545 0.333 0.545 0.218
Cluster 3 2875 0.745 0.865 0.917 0.530 0.391 0.529 0.577 0.267 0.577 0.552
Cluster 4 277 0.830 0.957 0.964 0.204 0.0 0.204 0.733 0.0 0.733 0.319
Cluster 5 759 0.696 0.80 0.862 0.459 0.417 0.459 0.364 0.103 0.364 0.407
Combined 5253 0.74 0.849 0.906 0.501 0.397 0.50 0.535 0.216 0.536 0.518

OPT-350M HeTLM (α=5, β=9)

Cluster 1 305 0.872 0.974 0.974 0.073 0.0 0.073 0.75 0.0 0.75 0.133
Cluster 2 4797 0.728 0.859 0.912 0.529 0.383 0.528 0.536 0.245 0.536 0.532
Cluster 3 151 0.874 0.974 0.98 0.05 0.0 0.05 1.0 0.0 1.0 0.095
Combined 5253 0.741 0.869 0.918 0.51 0.371 0.508 0.537 0.245 0.537 0.522

QWEN-2.5-7B 5253 0.674 0.877 0.916 0.394 0.147 0.394 0.411 0.153 0.411 0.403

QWEN-2.5-500M HeTLM (α=5, β=9)

Cluster 1 3101 0.728 0.864 0.918 0.626 0.453 0.625 0.529 0.292 0.529 0.573
Cluster 2 316 0.88 0.975 0.978 0.273 0.111 0.273 0.667 1.0 0.667 0.387
Cluster 3 1673 0.725 0.885 0.917 0.549 0.475 0.548 0.530 0.301 0.530 0.539
Cluster 4 163 0.859 0.969 0.969 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Combined 5253 0.74 0.881 0.923 0.58 0.446 0.579 0.531 0.296 0.531 0.554

Table 4: Dataset I. Outcome Prediction Results. Higher is Better. Bold indicates highest value in column. For OPT,
HeTLM Combined results for α=5, β=9, outperform OPT-350M-2.7B on 6 metrics, equals on 1, and is outperformed
by 3. We find even stronger results favoring HeTLM for QWEN2.5.

fixed exogenously. However, notably for HeTLM,
choice of number of clusters is endogenous and
HeTLM outperforms Kmeans.

Model Outcome
Prediction

Page Gen
Mean

Page Gen
Var

Overall
Composite

Compared with OPT-2.7B

OPT-350M - Combined

Kmeans, K=6 0.0 0.333 0.75 0.25
Kmeans, K=2 0.1 0.0 0.5 0.15
HeTLM (α=2, β=1) 0.3 0.167 0.75 0.35
HeTLM (α=5, β=9) 0.5 0.5 1.0 0.6

Compared with QWEN-2.5-7B

QWEN-2.5-500M - Combined

HeTLM (α=5, β=9) 1.0 0.833 0.25 0.8

Table 5: Dataset I. Composite metrics of Sec. 5.3. Over-
all Composite clearly favors HeTLM α=5, β=9 over other
variation and exogenous clusterwise Kmeans.

6.3 BLEU and BERT metrics

See Table 6. Remarkably, each small, single LM out-
performs each large, single LM in BLEU and in all 3
BERT metrics. Within QWEN-2.5, QWEN2.5-HeTLM
Combined performs better than the single LM,
QWEN-2.5 7B, in all metrics, and also performs
better than all LMs shown. The improvements at
cluster level (Cluster 2 for QWEN-2.5-HeTLM, Clus-
ter 1 for OPT-350M-HeTLM) and differences across
clusters in the metrics are notable. The results em-

phasize the importance of recognizing heterogene-
ity in users’ subjective behaviors when training LMs
so that better alignment ensues across users.

6.4 Ablation: OPT-350M

We ran two ablations to examine the effect of the
sharpness of the selector probability distribution
(α) and the presence of cluster separation (β). The
hyperparameters α, β are selected empirically and
these are dataset and LM specific. We provide a
snapshot of composite metrics in Table 7. By com-
paring with results of HeTLM for OPT-350M in Ta-
ble 5, we find that the proposed architecture with
non-zero α=5, β=9 performs appreciably better
than suppressing either α, or β. General trends
may be identified with a more indepth analysis
which is beyond the scope of this paper.

7 Conclusion and Discussion

We address a specific research gap in the otherwise
vast and growing literature in LLMs. This gap em-
anates from lack of attention to the language of
browsing, which is idiosyncratically generated as
sequences of pages, by each user as s/he subjec-
tively browses websites or apps. This language
does not have the grammar and structure of natural
language. Working with the language of browsing,
users’ heterogeneity of behaviors and subjective
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Model BLEU BERT-P BERT-R BERT-F1

LLaMa-3-8B 0.253 0.891 0.889 0.889

Mistral-7B 0.196 0.888 0.88 0.883

Gemma-7B 0.255 0.889 0.88 0.889

Small-LMs

OPT-350M 0.320 0.903 0.896 0.899

SmolLM2-360M 0.360 0.906 0.903 0.904

QWEN-2.5-500M 0.355 0.903 0.902 0.902

OPT 2.7B 0.376 0.906 0.908 0.907

OPT-350M Kmeans, K=6

Cluster 1 0.241 0.861 0.889 0.874
Cluster 2 0.137 0.814 0.844 0.828
Cluster 3 0.20 0.855 0.878 0.866
Cluster 4 0.39 0.903 0.906 0.904
Cluster 5 0.305 0.917 0.890 0.903
Cluster 6 0.268 0.891 0.888 0.888
Combined 0.235 0.868 0.878 0.871

OPT-350M HeTLM (α=5, β=9)

Cluster 1 0.637 0.954 0.944 0.949
Cluster 2 0.339 0.902 0.901 0.901
Cluster 3 0.403 0.951 0.895 0.922
Combined 0.358 0.907 0.904 0.905

QWEN-2.5-7B 0.254 0.892 0.888 0.889

QWEN-2.5-500M HeTLM (α=5, β=9)

Cluster 1 0.359 0.907 0.907 0.907
Cluster 2 0.63 0.954 0.945 0.948
Cluster 3 0.365 0.911 0.903 0.906
Cluster 4 0.396 0.940 0.898 0.918
Combined 0.378 0.912 0.908 0.909

Table 6: Dataset I. BLEU and BERT scores. Bold indi-
cates the highest value in the column. Underline shows
comparison of the larger LM with HeTLM for small LM of
the same family.

preferences call for a model with endogenous clus-
terwise training to balance between performances
on page generation, outcome prediction and reduc-
ing variance in alignment. While training an LM
satisfying these objectives is the primary goal, as
way of applications, we propose using the LM thus
trained to derive solutions to make a variety of
everyday business tasks predictive. These tasks
range from predictive targeting (based on product
page in next session), predictive journey (based on
sequence of pages in next session), segmentation
(based on predictive journey) and recommendation.
Future work can overcome some limitations of this
paper by delving into larger browsing datasets and
these predictive tasks, and compare with conven-
tional models. Also, HeTLM shows lower inference
time than a relevant single LM (Appendix Table 18).

Model Outcome
Prediction

Page Gen
Mean

Page Gen
Var

Overall
Composite

Compared with OPT-2.7B

OPT-350M - Combined

HeTLM (α=1, β=0) 0.1 0.0 0.75 0.2
HeTLM (α=1, β=3) 0.4 0.167 0.75 0.4
HeTLM (α=9, β=0) 0.1 0.167 0.75 0.25
HeTLM (α=9, β=3) 0.1 0.0 0.75 0.2

Table 7: Dataset I. Ablation. Composite metrics of
Sec. 5.3. Ablation with OPT-350M, Pre-training, by
varying α, β.

Limitations

There are a few limitations to which we draw at-
tention. For context, the language of browsing is
commonplace since every online firm collects be-
havior logs of sequences of pages every user clicks
on its website or app. Yet, unlike natural language
data that are readily available on the internet, this
type of data is private to the firm and reside in a
protected data lake. We obtained two datasets put
out in the public domain and show experiments
with those. We tried to make the most of these
datasets by performing experiments on 3 small LMs
and 6 large LMs to provide a fair comparison.

As limitations: One, to generalize our findings, it
will be valuable to run our proposed HeTLM on other
language of browsing datasets. Two, due to the fun-
damental differences between browsing sequences
and natural language, standard NLP datasets could
not be used for evaluation. Three, a scalability
analysis, out of scope for the paper and given our
access to limited compute, will be useful going
forward. Four, staying with single LMs, we com-
pare small versus large LMs to show better perfor-
mance of small LMs, where the large LMs up to
8B in size are finetuned on our data. Extending
this to much larger sized LMs, such as Llama-70B
or others which are finetunable, will provide addi-
tional test of our proposition of using small LMs for
language of browsing.
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A Appendix

A.1 Theoretical Basis of HeTLM
Following (Lee and van der Schaar, 2020), we for-
mulate the problem of identifying user clusters with
similar browsing behaviors and preferences as a
predictive clustering problem. Let X ∈ X and
Y ∈ Y be random variables for input browsing ses-
sions and output next session pages with a joint dis-
tribution pXY , where X is the input session space
and Y is the next session page space.

For each user n, we are given sequences of
browsing sessions xn. Our aim is to identify a
set of K predictive clusters, C = {C(1), ..., C(K)},
where each cluster consists of users with similar
browsing behaviors and preferences.

We define a cluster as C(k) = {xn|t, sn = k}
for k ∈ {1, ...,K} where sn ∈ {1, ...,K} is the
cluster assignment for user n. This allows us to
flexibly update the cluster assignment to which
a user belongs as the cluster representations are
updated over time.

Let S be a random variable for the cluster assign-
ment. We want to find an optimal partitioning of
users into K clusters such that the difference in the
next session distribution conditioned on the input
sessions X and the cluster assignment S is mini-
mized, while optimizing the number of clusters K.
This can be achieved by minimizing the following
Kullback-Leibler (KL) divergence:

minimize
K

K∑

k=1

∑

x∈C(k)
KL(Y |X = x∥Y |S = k)

(5)
The optimization problem is non-trivial, and we

estimate this objective function through the LLM
loss (L1) described in Sec. 4.5. Minimizing L1

is equivalent to minimizing the KL divergence in
Eq. 5 since the former term is independent of our
optimization procedure. To avoid trivial solutions
in this unsupervised setting, such as all embeddings
collapsing to a single point or the selector assigning
equal probability to all clusters regardless of the
input sequence, we introduce two auxiliary loss
functions, L2 and L3, as detailed in Sec. 4.5.

A.2 Experimental Results: HeTLM for
SmolLM2-360M

For small LM, SmolLM2-360M, we present results for
clusterwise training. The clusterwise HeTLM results
here show considerable variations across clusters
in all metrics of Tables 8, 9, and 10. This calls

Model N HR IoA IoP IoU New-P Val-P

SmolLM2-360M: HeTLM (α=5, β=9)

Cluster 1 296 0.889 0.661 0.585 0.493 0.014 0.002
Cluster 2 4806 0.809 0.419 0.348 0.253 0.262 0.05
Cluster 3 151 0.570 0.310 0.439 0.29 0.0 0.0
Combined 5253 0.806 0.429 0.364 0.268 0.24 0.046

Table 8: Dataset I. Page Generation Results. Higher is
better. One HeTLM for SmolLM2-360M version is shown.

attention to the importance of clusterwise training
to achieve better alignment of users’ behaviors.

Model N HR-var IoA-var IoP-var IoU-var

SmolLM2-360M: HeTLM (α=5, β=9)

Cluster 1 296 0.099 0.125 0.091 0.09
Cluster 2 4806 0.155 0.113 0.082 0.068
Cluster 3 151 0.245 0.145 0.187 0.142
Combined 5253 0.156 0.118 0.088 0.075

Table 9: Dataset I. Variance in Page Generation across
users. Lower is better. One HeTLM for SmolLM2-360M
version is shown.

A.3 Dataset II: Experiments

This dataset is public as well (Kechinov, 2019).
Train : Test split = 1M : 10,000 samples. Number
of unique pages = 17,310. The dataset has millions
of consumers; after applying filters for excluding
very short sessions and incomplete data, we ran-
domly select 1.01M samples. Outcomes available
in the pageurls are: Cart (Add to Cart, in Dataset II)
and Purchase, these Outcome pages are generated
by the LM and also used as target labels to evaluate
Outcome prediction.

A.3.1 Experimental Results: Dataset II
We present comparison of HeTLM with OPT-2.7B.
In Page Generation, comparing the respective Com-
bined row in Table 12 with OPT-2.7B shows that
except Val-P, in all other metrics Kmeans and HeTLM
perform slightly better. For HeTLM, the variations
in number of clusters and size of clusters and their
differences in metrics justify endogenous cluster-
ing based training. In Outcome Prediction (Ta-
ble 11) across its 10 metrics HeTLM has an edge
over OPT-2.7B. For Variance in Page Generation
(Table 13) both models perform similarly. Review-
ing Overall Composite metric in Table 14 finds
HeTLM outperforming OPT-2.7B, as the values [0.7,
0.6] are > 0.5. APPENDIX contains additional re-
sults from Dataset II for more variations of HeTLM
and Kmeans.

24846



Model N Cart Acc Acc-Purchase Acc-Cart/Purchase Rec-Cart Rec-Purchase Rec-Cart/Purchase Prec-Cart Prec-Purchase Prec-Cart/Purchase F1-Cart/Purchase

SmolLM2-360M: HeTLM (α=5, β=9)

Cluster 1 296 0.868 0.97 0.976 0.225 0.0 0.225 0.529 0.0 0.529 0.316
Cluster 2 4806 0.710 0.845 0.902 0.609 0.489 0.608 0.503 0.249 0.504 0.511
Cluster 3 151 0.868 0.974 0.974 0.05 0.0 0.05 0.5 0.0 0.5 0.091
Combined 5253 0.724 0.856 0.908 0.591 0.474 0.590 0.504 0.249 0.504 0.544

Table 10: Dataset I. Outcome Prediction Results Higher is better. HeTLM for SmolLM2-360M

Model N Cart Acc Acc-Purchase Acc-Cart/Purchase Rec-Cart Rec-Purchase Rec-Cart/Purchase Prec-Cart Prec-Purchase Prec-Cart/Purchase F1-Cart/Purchase

Single LLM

OPT 2.7B 10000 0.689 0.874 0.935 0.629 0.504 0.627 0.475 0.341 0.482 0.545

Kmeans, K=2

Cluster 1 5421 0.716 0.904 0.94 0.452 0.401 0.451 0.448 0.313 0.454 0.453
Cluster 2 4579 0.666 0.857 0.942 0.76 0.49 0.757 0.499 0.384 0.508 0.608
Combined 10000 0.693 0.883 0.941 0.612 0.453 0.612 0.48 0.355 0.488 0.543

HeTLM (α=5, β=9)

Cluster 1 121 0.587 0.835 0.917 0.617 0.143 0.604 0.475 0.2 0.475 0.532
Cluster 2 9879 0.706 0.875 0.933 0.578 0.514 0.578 0.496 0.344 0.504 0.538
Combined 10000 0.705 0.875 0.933 0.578 0.508 0.578 0.496 0.343 0.504 0.538

Table 11: Dataset II. Outcome Prediction Results Higher is better. Top performing versions of Kmeans and HeTLM
are shown. Results of other versions for Dataset II are in Appendix.

Model N HR IoA IoP IoU New-P Val-P

OPT 2.7B 10000 0.542 0.232 0.311 0.186 1.0 0.917

Kmeans, K=2

Cluster 1 5421 0.462 0.171 0.25 0.136 1.0 0.932
Cluster 2 4579 0.642 0.304 0.392 0.248 1.0 0.897
Combined 10000 0.544 0.232 0.315 0.187 1.0 0.916

HeTLM (α=5, β=9)

Cluster 1 121 0.512 0.215 0.2 0.136 0.983 0.672
Cluster 2 9879 0.545 0.236 0.312 0.188 1.0 0.904
Combined 10000 0.544 0.236 0.311 0.188 1.0 0.901

Table 12: Dataset II. Page Generation Results. Higher
is better. Top version of Kmeans model, top HeTLM
versions are shown.

A.4 Experimental Setup Details

All our experiments are performed on EC2
p4de.24xlarge (Ama) instances with 8 A100
GPUs (Choquette et al., 2021) with each having
80 GB GPU (HBM) memory. For fine-tuning we
used the open-source Axolotl library (axolotl-ai
cloud, 2023). We provide the hyperparameters
used in our experiments for small model pretrain-
ing, heterogeneity-aware model training, and large
model fine-tuning below.

A.4.1 Prompt Templates
The zero-shot setup used a basic instruction prompt:
"A user’s website browsing sequence of pages over
multiple sessions is given as Input. INPUT SES-
SIONS [BOS] denotes beginning of session, [EOS]
denotes end of session. Based on activity in the
given input sessions, predict the next session as a
sequence of pages highly likely to be visited by
the user". For the few-shot setup we add 3 exam-
ples of input-output pairs based on cosine similar-

Model N HR-var IoA-var IoP-var IoU-var

OPT 2.7B 10000 0.248 0.077 0.118 0.058

Kmeans, K=2

Cluster 1 5421 0.249 0.057 0.103 0.042
Cluster 2 4579 0.23 0.089 0.129 0.071
Combined 10000 0.248 0.076 0.12 0.059

HeTLM (α=5, β=9)

Cluster 1 121 0.25 0.072 0.057 0.031
Cluster 2 9879 0.248 0.079 0.117 0.059
Combined 10000 0.248 0.079 0.116 0.058

Table 13: Dataset II. Variance in Page Generation across
users lower is better.

Model Outcome
Pred

Page Gen
Mean

Page Gen
Var

Overall
Composite

Kmeans, K=2 0.6 0.5 0.5 0.55
HeTLM (α=5, β=9) 0.6 0.667 0.5 0.6

Table 14: Dataset II. Composite metrics. HeTLM outper-
forms OPT-2.7B and Kmeans in 3 metrics, and equals
in Page Generation - Variance.

ity of SBERT embeddings with the user’s input
sessions: "Learn from similar users browsing se-
quences given below: INPUT-OUTPUT PAIRS".

A.4.2 Small Model Pretraining
Table 16 presents the hyperparameters for pretrain-
ing the small LM. This model was pretrained on
browsing session data before being used in other
experiments.

A.4.3 HeTLM Training
Table 15 details the hyperparameters used for train-
ing our proposed Heterogeneity-aware Training
of Language Models (HeTLM). These parameters
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Hyperparameter Value

General Configuration

Base Model
OPT-350M (Pretrained)

QWEN-2.5-500M (Pretrained)
SmolLM2-360M (Pretrained)

Tokenizer Type Custom (page level)
Batch Size 16
Maximum Sequence Length 512
Validation Set Size 0.05
Number of Epochs 10
Number of Clusters (Initial) 6

Optimizer Settings

Selector Learning Rate 5e-5
Predictor Learning Rate 1e-5
Selector Weight Decay 1e-4
Predictor Weight Decay 0.01

Loss Weights

α (Loss L2 weight) 0.5–5.0
β (Loss L3 weight) 1.0–9.0

Encoder Configuration

Encoder Type Sentence Transformers
Encoder Path all-MiniLM-L6-v2

Table 15: HeTLM Training Hyperparameters

Hyperparameter Value

Base Model
OPT-350M

QWEN-2.5-500M
SmolLM2-360M

Tokenizer Type Custom (page level)
Learning Rate 1e-5
Weight Decay 0.01
Batch Size 32
Maximum Sequence Length 512
Validation Set Size 0.05
Number of Epochs 100
Gradient Accumulation Steps 4
Warmup Ratio 0.05

Table 16: Small LM Pretraining Hyperparameters

control the Actor-Critic architecture and the weight
of various loss components.

A.4.4 Large Model LoRA Finetuning
Table 17 lists the hyperparameters used for finetun-
ing large LMs using Low-Rank Adaptation (LoRA).
These settings were applied across different model
architectures for comparison purposes.

A.4.5 Inference Time Comparison
Table 18 compares total inference time for different
model configurations on Dataset I (10k samples).
All measurements were conducted under identical
hardware settings with maximum GPU utilization.

Hyperparameter Value

Model Configuration

Base Models

Meta-Llama-3-8B
Mistral-7B-v0.3

Gemma-7B
QWEN-2.5-7B

Load in 8-bit True

Training Configuration

Sequence Length 512
Sample Packing True
Pad to Sequence Length True
Validation Set Size 0.05
Number of Epochs 10
Gradient Accumulation Steps 4
Micro Batch Size 2
Optimizer adamw_bnb_8bit
Learning Rate Scheduler cosine
Learning Rate 2e-4
Weight Decay 0.0
Warmup Steps 10

LoRA Configuration

LoRA Rank 32
LoRA Alpha 16
LoRA Dropout 0.05
Target Linear Layers True

Table 17: Large LM LoRA Finetuning Hyperparameters

Model Inference Time (s)

Single Model

OPT-350M 110.95
OPT-2.7B 363.71

HeTLM

OPT-350M (α = 5, β = 9, 3 clusters) 140.55
OPT-350M (α = 3, β = 1, 5 clusters) 163.99
OPT-350M (α = 1, β = 0, 6 clusters) 194.86

Table 18: Inference Time Comparison on Dataset I

Notably, our HeTLM approach achieves faster in-
ference times than larger single models while hav-
ing better performance (Sec. 6).
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