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Abstract

Large language models (LLMs) have demon-
strated remarkable performance on question-
answering (QA) tasks because of their supe-
rior capabilities in natural language understand-
ing and generation. However, LLM-based QA
struggles with complex QA tasks due to poor
reasoning capacity, outdated knowledge, and
hallucinations. Several recent works synthesize
LLMs and knowledge graphs (KGs) for QA to
address the above challenges. In this survey, we
propose a new structured taxonomy that cate-
gorizes the methodology of synthesizing LLMs
and KGs for QA according to the categories of
QA and the KG’s role when integrating with
LLMs. We systematically survey state-of-the-
art methods in synthesizing LLMs and KGs for
QA and compare and analyze these approaches
in terms of strength, limitations, and KG re-
quirements. We then align the approaches with
QA and discuss how these approaches address
the main challenges of different complex QA.
Finally, we summarize the advancements, eval-
uation metrics, and benchmark datasets and
highlight open challenges and opportunities.

1 Introduction

Question answering (QA) plays a fundamental role
in artificial intelligence, natural language process-
ing, information retrieval, and data management
areas since it has a wide range of applications, such
as text generation, chatbots, dialog generation, web
search, entity linking, natural language query, fact-
checking, etc. The pre-trained language models
(PLMs) and recent LLMs have shown superior
performance in several QA tasks such as KBQA
(Knowledge bases QA), KGQA (Knowledge graph
QA), CDQA (Closed domain QA), etc. However,
PLM and LLM-based methods are incapable of
handling complex QA scenarios due to the follow-
ing limitations. (1) Limited complex reasoning ca-
pability: LLMs encapsulate very limited reasoning
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capability since they have been pre-trained with the
tasks of predicting the next word in a text sequence.
(2) Lack of up-to-date and domain-specific knowl-
edge: LLMs are incapable of generating accurate
and up-to-date responses for domain-specific QA
because they have been pre-trained on the data and
knowledge with a cutoff date. (3) Tendency to gen-
erate hallucinated content: LLMs usually generate
hallucinated content due to the lack of factual veri-
fication and logical consistency checking.
Challenges. Retrieval augmented generation
(RAG) (Mao et al., 2021) was proposed for open-
domain QA by retrieving the relevant contexts from
large documents, and several techniques, such as
graph neural networks (GNNs) (Li et al., 2025b),
have been investigated to enhance the retrieval cov-
erage from passages. Although RAG-based QA
can generate better responses in comparison to
NoRAG-based QA, it still has limited capability for
knowledge reasoning and understanding user inter-
actions during complex QA. Complex QA usually
involves knowledge interactions and fusion among
data across modalities and sources, and an excellent
understanding of complex queries and user inter-
actions, whereas the RAG-based QA suffers a lot
from the following technical challenges. (1) Know!-
edge conflicts: Conflicts occur due to the fusion of
inconsistent and overlapping knowledge between
LLMs and external sources in RAG-based QA that
may further tend to generate inconsistent answers.
(2) Poor relevance and quality of retrieved con-
text: The accuracy of the generated answers in
RAG-based QA largely depends on the relevance
and quality of the retrieved context, where irrel-
evant context leads to incorrect results. (3) Lack
of iterative and multi-hop reasoning: RAG-based
QA struggles to generate accurate and explainable
answers for questions requiring global and summa-
rized contexts due to a lack of iterative.

The emergence of synthesizing LLMs+KGs pro-
vides a unique opportunity to address the above
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challenges and limitations of LLMs for knowledge-
intensive tasks, e.g., complex QA (Ma et al.,
2025a). The graph retrieval augmented genera-
tion (GraphRAG) (Zhang et al., 2025; Peng et al.,
2024; Han et al., 2024) and knowledge graph re-
trieval augmented generation (KG-RAG) (San-
martin, 2024; Yang et al., 2024) have demonstrated
the strengths of unifying LLMs with KGs for com-
plex QA. These GraphRAG and KG-RAG based
QA approaches introduce several modules, such as
knowledge integration and fusion, reasoning guide-
lines, and knowledge validation and refinement, to
mitigate the above challenges.

Motivation. In recent years, a rapidly increasing
number of works on synthesizing LLMs and KGs
for QA have been conducted to achieve complex
QA under open-domain and long-context settings.
This survey aims to address the aforementioned
limitations by outlining the recent progress in in-
tegrating LLMs with KGs for complex QA, sum-
marizing technical advances, and identifying open
challenges and future research opportunities. Our
survey differs from the existing surveys (details
in Appendix §A.1), it provides a comprehensive
overview of the recent advancements of QA from
the perspective of the roles of KGs when synthesiz-
ing LLMs and KGs for complex QA.

Taxonmy. We categorize the methodology of syn-
thesizing LLMs and KGs and complex QA from
different perspectives, and a structured taxonomy
(details in Appendix § B) is given in Figure 1. The
taxonomy from different perspectives aims to high-
light the alignments between various LLM+KG ap-
proaches and different complex QA by discussing
how the LLM+KG approaches with different roles
of KG can address the challenges of complex
QA. Notably, these categories, divided from differ-
ent perspectives, are non-exclusive, where a work
might be classified into multiple categories from
different perspectives.

Contributions. Considering the popularity and
mainstream adoption of both LLMs and KGs, and
their wide applications in QA, our survey is timely.
The contributions of this work are summarized be-
low. (1) We introduce the structured taxonomy
that categorizes state-of-the-art (SOTA) works on
synthesizing LLMs+KGs for QA. (2) We review
the SOTA works on synthesizing LLMs and KGs
for QA in various categories and discuss the re-
cent advanced topics in this field. (3) We create
the alignments between various approaches in syn-

thesizing LLLMs and KGs and complex QA, and
highlight how these approaches address the spe-
cific challenges of different complex QA; (4) We
discuss the current challenges and opportunities in
synthesizing LL.Ms and KGs for QA. The online
resources of this survey are available on Github!.

2 Complex QA

Complex QA usually involves question decomposi-
tion, knowledge fusion among data across modali-
ties and sources, where complex knowledge reason-
ing is required to generate accurate answers. The
methodology in synthesizing LL.Ms and KGs for
complex QA has been exploited as follows.

2.1 Multi-document QA

Multi-document QA refers to the QA over con-
texts from multiple documents, while efficiently
and effectively retrieving the relevant knowledge
from multiple contexts is the main technical chal-
lenge. To reduce the retrieval latency and im-
prove the quality of the retrieved context for multi-
document QA, KGP (Wang et al., 2024d) intro-
duces an LLM-based graph traversal agent for re-
trieving relevant knowledge from KG. Similarly,
CuriousLLM (Yang and Zhu, 2025) integrates a
knowledge graph prompting, reasoning-infused
LLM agent, and graph traversal agent to augment
LLMs for multi-document QA. VisDom (Suri et al.,
2024) introduces a novel multimodal RAG for
multi-document question answering by integrating
and fusing the multi-modal knowledge and leverag-
ing the (Chain-of-thought) CoT-based reasoning.

2.2 Multi-modal QA

Multi-modal QA refers to the QA over multi-modal
data, and visual QA (VQA) is one of the typ-
ical multi-modal QA. To retrieve the most rele-
vant knowledge from the external KG for enhanc-
ing VQA, MMJG (Wang et al., 2022) introduces
an adaptive knowledge selection to jointly select
knowledge from visual and text knowledge based
on the knowledge-aware attention and multi-modal
guidance. To effectively retrieve the evidence from
multi-modal data, RAMQA (Bai et al., 2025) en-
hances multi-modal retrieval-augmented QA by
integrating learning-to-rank with training of gener-
ative models via multi-task learning. KVQA (Dong
et al., 2024b) integrates LLMs with multimodal
knowledge by using a two-stage prompting and a

"https://github.com/machuangtao/LLM-KG4QA
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Figure 1: A Structured Taxonomy of Synthesizing LLMs and KGs for QA.

pseudo-siamese graph medium fusion to balance
intra-modal and inter-modal reasoning.

2.3 Multi-hop QA

Multi-hop QA differs from simple QA, which
usually involves multi-step reasoning to gener-
ate the final answers. The basic idea is to de-
compose the multi-hop questions into multiple
single-hop questions, then generate the answers
for each single-hop question, and finally integrate
them (Linders and Tomczak, 2025). For instance,
GraphLLM (Qiao et al., 2024) leverages LLMs
to decompose the multi-hop question into sev-
eral simple sub-questions and retrieve the sub-
graphs via GNNs and LLMs to generate the an-
swers for sub-questions based on graph reasoning.
HOLME (Panda et al., 2024) utilizes a context-
aware retrieved and pruned hyper-relational KG
that is constructed based on the entity-document
graph to enhance LLMs for generating the answers
of multi-hop QA. To enable accurate factual knowl-
edge retrieval and reasoning of LL.Ms for multi-hop
QA, GMeLLo (Chen et al., 2024b) effectively in-
tegrates the explicit knowledge of KGs with the
linguistic knowledge of LLMs by introducing the
fact triple extraction, relation chain extraction, and
query and answer generation.

2.4 Conversational QA

The challenge of conversational QA lies in how
to make the language model (LM) easily under-
stand the questions and intermediate interactions.
To make user interactions easily understood by ma-
chines, CoRnNetA (Liu et al., 2024b) introduces
an LL.M-based question reformulation, reinforce-
ment learning agent, and soft reward mechanism
to improve the interpretation of multi-turn interac-
tions with KGs. The conversational QA involves
several multi-run QA to refine and get accurate an-
swers through multiple rounds of interactions. The
knowledge aggregation module and graph reason-
ing are introduced for joint reasoning between the
graph and LLMs (Jain and Lapata, 2024) to address
the challenges of understanding the question and
context for conversational QA. To improve the con-
textual understanding and the answer quality for
conversational QA, SELF-multi-RAG (Roy et al.,
2024) leverages LLMs to retrieve from the summa-
rized conversational history and reuse the retrieved
knowledge for augmentation.

2.5 Explainable QA

Explainable QA (XQA) aims to provide explana-
tions for the generated answers based on the rea-
soning over the factual KGs. To effectively inte-
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grate the multiple sources of knowledge for XQA,
RoHT (Zhang et al., 2023) introduces a two-stage
XQA method that implements the probabilistic
reasoning based on the constructed Hierarchical
Question Decomposition Tree (HQDT) from the
aggregated knowledge. To trace the provenance
and improve the explainability of the answers, EX-
PLAIGNN (Christmann et al., 2023) constructs
a heterogeneous graph from retrieved knowledge
and user explanations and generates explanatory
evidence based on GNN with question-level atten-
tion. RID (Feng et al., 2025) directly integrates the
unsupervised retrieval with LLMs based on rein-
forcement learning-driven knowledge distillation.

2.6 Temporal QA

The challenges of temporal QA lie in fully un-
derstanding the implicit time constraints and ef-
fectively incorporating them with temporal knowl-
edge for temporal reasoning. To improve the ac-
curacy of LLMs in answering temporal questions,
TimeR* (Qian et al., 2024) introduces a Retrieve-
Retriev-Rerank pipeline to augment the tempo-
ral reasoning of LLMs by temporal knowledge-
based fine-tuning. Similarly, GenTKGQA (Gao
et al., 2024) introduces a temporal GNN and virtual
knowledge indicators to capture temporal knowl-
edge embeddings, and further dynamically inte-
grates retrieved subgraphs into LLMs for temporal
reasoning. To facilitate reasoning of LLMs with
KGs, KG-IRAG (Yang et al., 2025) enables LLMs
to incrementally retrieve knowledge and evaluate
its sufficiency for augmenting the capabilities of
LLMs in answering time-sensitive and event-based
queries involving temporal dependencies.

3 Approaches and Alignments

The strengths and limitations of the approach in
synthesizing LLMs and KGs for QA are summa-
rized (details in Table 2), and the research progress
on the alignment of these approaches with the com-
plex QA is discussed (details in Table 7).

3.1 KGs as Background Knowledge

KGs usually play the role of background knowl-
edge when synthesizing LL.Ms for complex QA,
where knowledge fusion and RAG are the main
technical paradigms (comparison in Table 3).

3.1.1 Knowledge Integration and Fusion

Knowledge integration and fusion aim to enhance
language models (LMs) by integrating unknown

knowledge into LMs for QA. As shown in Figure 2,
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Figure 2: Knowledge Integration and Fusion.

the KGs and text are aligned via local subgraph ex-
traction and entity linking, and then fed into the
cross-model encoder to bidirectionally fuse text
and KG to jointly train the language models for
complex QA tasks (Yasunaga et al., 2022; Zhang
et al., 2021). To address knowledge forgetting
and noisy knowledge during knowledge integration,
InfuserKI (Wang et al., 2024a) and KEFF (Zhao
et al., 2025a) introduce the adaptive selection and
knowledge enhancement filter, respectively, which
selects the new knowledge and integrates it with
LLMs. Fine-tuning LLMs with text and knowledge
graphs can improve their performance on speci-
fied tasks. For instance, KG-Adapter (Tian et al.,
2024) improves parameter-efficient fine-tuning of
LLMs by introducing a knowledge adaptation layer
to LLMs. GAIL (Zhang et al., 2024d) fine-tunes
LLMs for lightweight KGQA models based on re-
trieved SPARQL-question pairs from KGs.

3.1.2 Retrieval Augmented Generation

RAG serves as a retrieval and augmentation mech-
anism, as shown in Figure 3. It first retrieves rel-
evant knowledge from the text chunks based on
vector-similarity retrieval, and then augments the
LLMs by integrating the retrieved context with
LLMs (Alawwad et al., 2025; Li et al., 2025b).
Howeyver, the mainstream RAG methods retrieve
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Figure 3: Retrieval Augmented Generation.

the relevant knowledge from the textual chunks,
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which ignore the structured information and inter-
relations of these textual chunks. To mitigate this
limitation, Graph RAG (Hu et al., 2024b) and KG-
RAG (Sanmartin, 2024; Xu et al., 2024; Linders
and Tomczak, 2025) are proposed. Instead of re-
trieving the knowledge from textual chunks, Graph
RAG directly retrieves the relevant knowledge from
graph data. GRAG (Hu et al., 2024b) retrieves the
top-k relevant subgraphs from the textual graph
and then integrates the retrieved subgraphs with
the query by aggregating and aligning the graph
embeddings with text embeddings based on GNNGs.
LEGO-GraphRAG (Cao et al., 2024) decomposes
the retrieval process into subgraph-extraction, path-
filtering, and path-refinement modules, thereby im-
proving the reasoning capabilities of LLMs with
retrieved knowledge. KG?RAG (Zhu et al., 2025)
retrieves the relevant subgraph from KG and ex-
panding the textual chunks with the retrieved KG
for augmenting the generation.

3.1.3 Aligning with Complex QA

In the approaches of synthesizing LLMs and KGs
for QA, where KG plays the role of background
knowledge, the retrieved relevant knowledge from
the factual knowledge graph can reconcile knowl-
edge conflicts from the multiple documents for
multiple-doc QA (Wang et al., 2024d). The cross-
modal reasoning can facilitate the cross-modal in-
teraction and alignment for multi-modal QA (Suri
et al., 2024). Additionally, the question decom-
position of multi-hop QA can be augmented by
fusing the knowledge from LLMs and KGs, which
further facilitates iterative reasoning for generat-
ing the accurate final question (Saleh et al., 2024;
Cao et al., 2024). The RAG (Roy et al., 2024) and
KG-RAG (Sanmartin, 2024) can also improve the
capabilities of LLMs in understanding the user’s in-
teractions for generating accurate answers for con-
versational QA. However, the key technical chal-
lenge behind this methodology is how to retrieve
the relevant knowledge from large-scale KGs and
then effectively fuse with LLMs without inducing
knowledge conflicts?

3.2 KGs as Reasoning Guidelines

KGs can provide reasoning guidelines for LLMs to
access precise knowledge from factual evidence
based on reasoning. Recent methods (comparison
in Table 4) for integrating the reasoning of KG and
LLMs can be classified into three categories.

3.2.1 Offline KG Guidelines

In offline KG guidelines, KG supplies potential
paths or subgraphs before the reasoning process by
the LLM, from which the LLM selects the most rel-
evant path for reasoning. For instance, SR (Zhang
et al., 2022) trains a subgraph retriever that operates
independently from the downstream reasoning pro-
cess, while Keqing (Wang et al., 2023) decomposes
complex questions using predefined templates, re-
trieves candidate entities and triples from a KG.
EtD (Liu et al., 2024a) initially uses a GNN to
identify promising candidates and extracts relevant
fine-grained knowledge pertinent to the questions,
and then creates a knowledge-enhanced multiple-
choice prompt to guide LLM for generating the
final answer. Recent studies have explored the ap-
plication of novel formats of guidelines. GCR (Luo
et al., 2024a) first converts a KG into a KG-Trie and
then develops a graph-constrained decoding and a
lightweight LLM to generate multiple reasoning
paths and candidate answers. KELDaR (Li et al.,
2024b) introduces the question decomposition and
atomic retrieval modules to extract implicit infor-
mation and retrieves the relevant subgraphs from
KG to augment LLM for QA.

3.2.2 Online KG Guidelines

This paradigm emphasizes that the guidance of the
KG directly involves the LLM’s reasoning process,
rather than merely relying on existing static knowl-
edge. For example, Oreo (Hu et al., 2022) uses
a contextualized random walk across a KG and
conducts a single step of reasoning through the
specific layers. KBIGER (Du et al., 2022) consid-
ers the (k-1)-th reasoning graph to construct the
k-th instruction for reasoning and corrects erro-
neous predictions of intermediate entities. LLM-
ARK (Huang, 2023) approaches reasoning tasks
as sequential decision-making processes and em-
ploys Proximal Policy Optimization (PPO) for op-
timization. ToG (Sun et al., 2024a) allows LLMs
to iteratively perform beam search over KGs, by
which the most promising reasoning paths and the
most likely reasoning outcomes are generated. In
contrast, ToG-2 (Ma et al., 2025b) utilizes entities
as intermediaries to guide LLMs toward precise
answers based on iterative retrieval between docu-
ments and KGs. KG-CoT (Zhao et al., 2024b) lever-
ages external KGs to generate reasoning paths for
joint reasoning of LLMs and KGs to enhance the
reasoning capabilities of LLMs for QA. To identify
the relevant KG subgraphs, HippoRAG (Gutiérrez
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et al., 2024) integrates multip-hop reasoning with
single-step multi-hop knowledge retrieval.
3.2.3 Agent-based KG Guidelines

KGs can also be integrated into the reasoning pro-
cess of LLMs as a component within an Agent
system, as shown in Figure 4. This integration al-
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Figure 4: KGs as Reasoning Guidelines.

lows the Agent to leverage structured knowledge
for augmenting the decision-making and problem-
solving capabilities of LLMs. KG-Agent (Jiang
et al., 2024) is a multifunctional toolbox integrating
LLMs with a KG-based executor and a knowledge
memory system that autonomously selects tools
and updates the memory to enhance the reasoning
of LLMs over KGs. ODA (Sun et al., 2024b) incor-
porates KG reasoning capabilities through a global
observation approach, which improves reasoning
abilities by employing a cyclical paradigm of obser-
vation, action, and reflection. GREASELM (Zhang
et al., 2021) effectively integrates encoded repre-
sentations from LMs and GNNs by introducing
several modality interaction layers to seamlessly
blend structured knowledge with language contexts.
PoG (Chen et al., 2024a) integrates reflection and
self-correction mechanisms to adaptively explore
the reasoning paths over KG via an LLM agent, and
then augments the LLM in complex reasoning and
question answering based on the retrieved knowl-
edge paths. ATOMR (Xin et al., 2025) leverages
LLMs as a reasoning agent to retrieve and incor-
porate the knowledge across multiple knowledge
sources for augmenting the reasoning capability of
LLM in knowledge-intensive question answering.

3.2.4 Aligning with Complex QA

The approaches that incorporate KGs with LLMs
can enable multi-hop and iterative reasoning over
the factual KGs, further augmenting the reasoning
capability of LLMs for complex QA. The chal-
lenges of knowledge retrieval and conflicts across
modalities and knowledge sources, as well as com-

plex knowledge reasoning and question answer-
ing in multi-document QA, multi-modal QA, and
multi-hop QA, can be mitigated through joint rea-
soning over factual KGs and LLMs (Suri et al.,
2024; Liang et al., 2025; Qiao et al., 2024; Xin
et al., 2025). Moreover, the joint reasoning over
the factual KGs and LLMs provides the logical
inference chains and anchor for LLMs to gener-
ate explainable answers with clear evidence from
factual KGs (Zhao et al., 2024b). Although the
joint reasoning over the factual KGs and LLMs
can address the challenges of complex QA well,
joint KG-LLM reasoning remains inefficient be-
cause large-scale graph traversal is computation-
ally intensive and time-consuming. Moreover, the
reasoning capabilities of KGs mainly depend on
the completeness and knowledge coverage of KGs,
where the incomplete, inconsistent, and outdated
knowledge from KGs might induce noise or con-
flicts. The main challenge lies in how to improve
the reasoning efficiency over the large-scale graph
and reasoning capabilities under incomplete KG?

3.3 KGs as Refiners and Validators

The factual evidence from KGs enables LLMs to re-
fine and verify the intermediate answers, as shown
in Figure 5. In these methods (comparison in Ta-
ble 5), KGs act as refiner and validator.
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Figure 5: KGs as Refiners and Validators.

Top-k triples

3.3.1 KG-Driven Filtering and Validation

KGs enhance the accuracy and reliability of LLM
outputs by filtering and validating candidate an-
swers with structured and verified knowledge. For
instance, ACT-Selection (Salnikov et al., 2023) fil-
ters and re-ranks answer candidates based on their
types extracted from Wikidata. Q-KGR (Zhang
et al., 2024c) improves the reasoning capabilities
of LLMs by filtering out the irrelevant knowledge
based on the ranking of the relevance score between
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the question and knowledge. KGs can improve the
factual accuracy of generated answers, as demon-
strated by KG-Rank (Yang et al., 2024), which
integrates medical KGs with re-ranking techniques
to enhance the credibility of generated responses.
Moreover, KGR (Guan et al., 2024) autonomously
extracts and validates factual statements, signifi-
cantly boosting performance on factual QA.

3.3.2 KG-Augmented Output Refinement

Integrating KGs with LLMs is essential to refining
the outputs of LLMs for greater clarity and accu-
racy. EFSUM (Ko et al., 2024) employs LLM as
a fact summarizer to generate relevant summaries
from KGs, thereby improving performance in zero-
shot QA. InteractiveKBQA (Xiong et al., 2024)
enables iterative knowledge interactions, allowing
LLMs to generate logical forms and refine outputs
based on user feedback. LPKG (Wang et al., 2024b)
fine-tunes LLMs with KG-derived planning data
to enhance the planning capabilities of LLMs in
sophisticated reasoning for complex QA.

3.3.3 Aligning with Complex QA

The approaches that leverage the retrieved factual
evidence from KGs for refinement and validation
are designed to augment the capability of LLMs in
understanding user interactions and verifying the
intermediate reasoning for multi-hop QA (Chen
et al., 2024b) and conversational QA (Xiong et al.,
2024), respectively. However, the common case is
that the knowledge from KGs is not available or
not enough to verify the intermediate results, since
the factual knowledge from KGs might be incom-
plete (Zhou et al., 2025). In particular, the knowl-
edge conflicts between the intermediate answer and
KG facts might induce irrelevant results due to the
poorly verified intermediate results. Meanwhile,
the refinement and validation of results largely de-
pend on the correctness, timeliness, and complete-
ness of factual knowledge in KGs. Thereby, the
main challenges of this approach lie in how to han-
dle the knowledge conflict between intermediate
answers and KG facts and incrementally update
KGs to ensure factual knowledge in KGs is up-to-
date and correct?

3.4 Advancements

The advanced methods can be categorized into two
subcategories: hybrid methods and optimization.

3.4.1 Hybrid Method

In addition to acting as a single role, the approaches
(comparison in Table 6) where KGs serve multiple
roles when synthesizing with LLMs for QA have
been investigated. For instance, KG-RAG (San-
martin, 2024) introduces the Chain-of-Explorations
(CoE) to rank and obtain the top-k nodes or rela-
tionships based on vector similarity, by which the
most relevant knowledge is selected and then fed
into LLMs for the final answer. LongRAG (Zhao
et al., 2024a) retrieves the top-k most relevant
chunks based on a hybrid retriever and analyzes
their relevance with the query by introducing a
CoT-guided filter. Furthermore, the KG-augmented
prompting is introduced to LLMs for augment-
ing the generation of the final answer. In KG-
Rank (Yang et al., 2024), multiple ranking meth-
ods are introduced to refine the retrieved triples
for augmenting the reasoning with the most rele-
vant knowledge. FRAG (Zhao, 2024) introduces
reasoning-aware and flexible-retrieval modules to
retrieve reasoning paths from KGs, thereby guiding
and augmenting LLM for efficient reasoning and
answer generation. KGQA (Ji et al., 2024) com-
bines the CoT-based prompting with graph retrieval
to improve the retrieval quality and the multi-hop
reasoning capability of LLMs in QA.

3.4.2 Optimization

To mitigate the low efficiency and high computing
costs of existing methods in synthesizing LLMs
and KGs for complex QA, several optimization
techniques (extension in Appendix § D) are pro-
posed to improve the efficiency of synthesizing
LLMs and KGs. (1) Index-based optimization. It
aims to accelerate the process of learning embed-
dings and vector retrieval for given questions and
knowledge context. For instance, PG-RAG (Liang
et al., 2024b) proposes dynamic and adaptable
knowledge retrieval indexes based on LLMs that
can effectively handle complex queries and im-
prove the overall performance of RAG systems
in QA tasks. (2) Prompt-based optimization. It
mainly enhances the quality of the prompts and fa-
cilitates the knowledge fusion based on prompt en-
gineering. For example, KGP (Wang et al., 2024d)
proposes a KG prompting approach to enhance the
prompt for LLMs and optimize the knowledge re-
trieval by introducing the KG construction module
and LLM-based graph traversal agent. (3) Cost-
based optimization. It aims to minimize computa-
tion costs by reducing the number of calls to LLMs
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and accelerating knowledge retrieval. In particular,
SPOKE KG-RAG (Soman et al., 2024) proposes a
token-based optimized KG-RAG framework that
integrates explicit and implicit knowledge from KG
with LLM to enhance LLMs for cost-effective QA.

3.4.3 Aligning with Complex QA

The hybrid method that involves the multiple roles
of KG when synthesizing LLMs and KGs can ad-
dress the limitations and challenges of complex
QA in knowledge interactions and complex rea-
soning across modalities and knowledge sources.
The combination of knowledge fusion, RAG, CoT-
based reasoning, and ranking-based refinement is
capable of accelerating the complex question de-
composition (Wang et al., 2023) for multi-hop QA,
enhancing the context understanding for conversa-
tion QA (Roy et al., 2024), facilitating the interac-
tions across modalities for multi-modal QA (Dong
et al.,, 2024b), and improving the explainabil-
ity of the generated answers (Christmann et al.,
2023). However, the remaining challenge is how to
achieve efficient vector indexing and search over
large-scale KGs and maintain a balance between
the cost and performance?

4 Evaluation and Application

We summarize the metrics & dataset and showcase
the related applications and demonstrations.

4.1 Evaluation and Benchmark Dataset

The metrics and benchmark datasets are summa-
rized and compared (details in Appendix §E.1).

Metrics. The metrics for evaluating the approach
in synthesizing LL.Ms with KGs for QA are sum-
marized: (1) Answer Quality (AnsQ); (2) Retrieval
Quality (RetQ); (3) Reasoning Quality (ReaQ).
Benchmark Dataset. The recent benchmark
datasets are summarized and compared (details
in Table 8) with the focus on Answer Quality, Re-
trieval Quality, and Reasoning Quality.

4.2 Applications

We showcase the industrial and scientific appli-
cations and demonstrations (details in Appendix
§E.2) in synthesizing LLMs with KGs for QA.

5 Open Challenges and Opportunities

Even though the synthesis of LLM and KG can take
advantage of their strengths and be mutually bene-
ficial for complex question answering, the current

LLM+KG QA systems may still meet challenges.
We summarize the challenges by highlighting the
opportunities and discussing the future directions.

Scaling to both Effectiveness and Efficiency.
LLM+KG systems retrieve the factual knowledge
and perform multi-hop reasoning under tight la-
tency and memory budgets. Three bottlenecks are
emerging: (1) Structure-aware retrieval: Vanilla
dense or sparse retrieval treats a KG as an un-
ordered triple, thereby discarding topological cues
that are vital for pruning the search space (Tian
et al., 2025). Hierarchical graph partitioning, dy-
namic neighbourhood expansion, and learned path-
prior proposal networks are promising ways to ex-
pose structure to the retriever while keeping the
vector index sublinear. (2) Amortized reasoning:
Current retrieval and prompting pipelines repeat-
edly query the KG for every Beam search or CoT
step. Caching subgraphs, reusing intermediate em-
beddings, and exploiting incremental-computation
friendly hardware can mitigate the quadratic blow-
up of iterative reasoning. (3) Lightweight an-
swer validation: Most guardrails rely on LLMs,
while probabilistic logic programs and bloom fil-
ter sketches with KG-based fact-checking offer a
lightweight solution. An opportunity is to design a
retriever and validator that estimates the uncertainty
of retrieval results and then guides the selective ex-
ecution of validation.

Knowledge Alignment and Dynamic Integration.
Once a KG snapshot is injected into an LLM, it
starts to become outdated, just like real-world KGs
usually involve adding new entities, deleting rela-
tions, and resolving contradictions. Future work
should focus on: (1) Quantify alignment: We
lack metrics that score not only semantic overlap
but also structural compatibility between paramet-
ric knowledge in the LLM and symbolic knowl-
edge in the KG. Contrastive probing with syn-
thetic counterfactuals or topology-aware alignment
losses may fill this gap. (2) Facilitate real-time
updates: Parameter-efficient tuning (e.g. LoRA
modules keyed by graph deltas) and retrieval-time
patching (streaming KGs with temporal indices)
are early steps toward stream-time knowledge align-
ment. (3) Detect and resolve conflicts: Bayesian
trust networks, source-aware knowledge distilla-
tion, and multi-agent debate protocols can estimate
and reconcile confidence scores across modalities
and sources. Incorporating these into the decoding
objective is an open challenge with high pay-off.
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Explainable and Fairness-Aware QA. The scale
of LLMs poses challenges to explainability and fair-
ness in QA. While integrating KGs offers a path
toward interpretable reasoning, it also introduces
computational challenges and fairness concerns.
Future work may consider the following directions:
(1) Reasoning over subgraphs: Retrieving sub-
graphs from large-scale KGs is computationally
expensive and often results in overly complex or
incomprehensible explanations. Structure-aware re-
trieval and reranking methods should be employed
to identify subgraphs consistent with the gold sub-
graphs. Furthermore, CoT-based prompting can be
used to guide LLMs in generating explicit reason-
ing steps grounded in the retrieved subgraphs. (2)
Fairness-aware knowledge retrieval: LLMs can
capture social biases from training data, but KGs
may contain incomplete or biased knowledge. As
a result, the fairness concerns remain in RAG (Wu
et al., 2024b). Incorporating fairness-aware tech-
niques into KG retrieval (e.g., reranking based on
bias detection) and integrating them with counter-
factual prompting can mitigate bias. (3) Explain-
able conversational QA: Single-turn QA restricts
the exploration of diverse perspectives and lim-
its the reasoning processes. Developing conversa-
tional QA with retrieval strategies can dynamically
detect and adjust knowledge biases and further im-
prove the explainability of the RAG-based QA sys-
tem through multi-turn user interactions.

6 Conclusion

This survey has systematically examined the syn-
thesis of LLMs and KGs in question answer-
ing, presenting a novel taxonomy that categorizes
methodologies based on QA types and the role of
KGs. Our analysis highlights the strengths and
limitations of current approaches, emphasizing the
potential opportunities of leveraging the KGs to
augment LLLMs to overcome challenges such as
hallucinations, limited reasoning capabilities, and
knowledge conflicts in complex QA scenarios. De-
spite significant advancements, several remaining
challenges include efficient knowledge retrieval,
dynamic knowledge integration, effective reason-
ing over knowledge at scale, and explainable and
fairness-aware QA. Future research should focus
on developing adaptive frameworks that dynami-
cally integrate up-to-date knowledge with LLMs,
as well as establishing efficient methods for scaling
reasoning, explainability, and fairness.

Limitations

This survey covers the taxonomy and survey of
the recent advancements in synthesizing LLMs and
KGs for QA, as well as the discussion of its chal-
lenges and opportunities. However, we are aware
that this survey may miss some newly released
works due to the rapid expansion of works on this
topic. Moreover, the survey mainly highlights the
alignments between the recent methodologies of
incorporating LLMs and KGs for QA and the chal-
lenges of the various complex QA tasks, while
these taxonomies from different perspectives are
non-exclusive, and the overlap between the two
taxonomies may arise. Furthermore, this survey
underemphasizes the quantitative and experimen-
tal evaluation of different methodologies due to
the various implementation details, the diversity
of the benchmark datasets, and non-standardized
evaluation metrics.
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A Related Survey and Paper Selection

A.1 Related Survey

Previous surveys have drawn the roadmap of uni-
fying LLMs+KGs (Pan et al., 2024), discussed the
opportunities and challenges (Pan et al., 2023) of
leveraging LLMs for knowledge extraction, ontolo-
gies and KGs constructions, summarized the in-
tegration and synthesis paradigms of LLMs and
KGs (Kau et al., 2024; Ibrahim et al., 2024), and
gave an overview of the knowledge injection meth-
ods between LLMs and domain-specific knowl-
edge (Song et al., 2025). Additionally, the existing
surveys give an overview of multilingual knowl-
edge graph question answering (Perevalov et al.,
2024), review temporal knowledge graph QA (Su
et al., 2024), complex QA (Daull et al., 2023), and
discuss search engines, KGs and LLMs from the
perspective of user information seeking for QA
(Hogan et al., 2025). The comparative analysis
of these surveys across LLMs, KGs, LLMs+KGs,
GraphRAG, and QA is given in Table 1.

We summarize that the previous surveys on syn-
thesizing LLMs and KGs for QA show limitations
in terms of the scope and tasks. (1) The scope

of the surveys is dedicated for general knowledge-
intensive tasks, such as knowledge extraction, en-
tity linking, KG construction and completion, and
text generation, etc; (2) the QA task in the surveys
is limited to the close-domain QA over the knowl-
edge graph; (3) the survey on integrating LL.Ms,
KGs, and search engines for answering user’s ques-
tions is from the perspective of user-centric infor-
mation needs.

A.2 Paper Selection

We first retrieve research papers since 2021 by us-
ing Google Scholar and PaSa® using the phrases
“knowledge graph and language model for question
answering" and “KG and LLM for QA", and extend
the search scope of the benchmark dataset paper
to 2016, and then screen and select them based on
their relevancy and publication venue quality.

B Taxonomy

B.1 Complex QA

We classify the complex QA into the following
categories according to the technical challenges.

e Multi-document QA. Multi-document QA
(Multi-doc QA) retrieves and synthesizes rele-
vant information from various sources to pro-
vide a comprehensive answer.

e Multi-modal QA. It refers to the QA over
data and knowledge involving multiple modal-
ities such as text, audio, images, video, etc.

* Muti-hop QA. It usually involves decompos-
ing the complex question and generating the
final answers based on multi-step and iterative
reasoning over a factual KG.

* Conversational QA. It involves user engage-

ment in multi-turn QA to understand the given

context, determine the final answers, and sat-
isfy their information needs.

Explainable QA. XQA (Explainable QA) not

only gives the answers to the question but also

provides explanations for the given answers.

Temporal QA. It refers to the questions with

temporal intent over the temporal KGs that

have entities, relations, and associated tempo-
ral conditions.

B.2 Approaches of Synthesizing LLLMs and
KGs for QA

We categorize the methodology of synthesizing
LLMs and KGs for QA based on the role of KGs.

2https://pasa-agent.ai/
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Survey KGs LLMs LLMs+KGs Graph RAG QA
Unifying LLMs and KGs: Roadmap (Pan et al., 2024) v v v v X
LLMs+KGs: Opportunities and Challenges (Pan et al., 2023) v v 4 v X
Combing KGs and LLMs (Kau et al., 2024) v 4 v v X
mQAKG (Perevalov et al., 2024) v X X X v
TKGQA (Su et al., 2024) v X X X v
LLMs, KGs, and SEs (Hogan et al., 2025) v v v X v
Complex QA (Daull et al., 2023) v v X X v
Knowledge Injection (Song et al., 2025) v v X X v
[This work] v v v v v

Table 1: Comparsion of Existing Survey Across LLMs, KGs, LLMs+KGs, GraphRAG, and QA. mKGQA: multi-
lingual Question Answering for Knowledge Graphs, TKGQA: Temporal Knowledge Graph QA. v/ Covered or

Dicussed, X Not Covered or Dicussed.

* KG as Background Knowledge. When KGs
are used as background knowledge to enhance
LLMs for QA, the questions are parsed to
identify the relevant subgraphs from KGs,
which are then incorporated with LLMs based
on knowledge integration and fusion.

* KGs as Reasoning Guidelines. KGs can
serve as reasoning guidelines for LLMs for
QA tasks by providing structured real-world
facts. This factual knowledge and their reli-
able reasoning paths can improve the explain-
ability of the generated answers.

* KGs as Refiners and Validators. KGs can
be treated as refiners and validators for LLMs
in QA tasks, where LLLMs can verify initial
answers with factual knowledge and filter out
inaccurate responses by integrating KG to en-
sure that the final responses are precise.

* Hybrid Methods. The hybrid methods in-
volve a KG’s multiple roles, namely, back-
ground knowledge, reasoning guidelines, re-
finer and validator, when synthesizing LLMs
and KGs for QA.

We summarize the strengths and limitations of
each method of synthesizing LLMs and KGs for
QA in Table 2 according to our previous taxonomy.

C Summary and Alignment

C.1 Summary Tables of Approaches

The detailed summarization and comparison of
the different categories of approaches in terms of
main techniques, language model (LM), knowledge
graph (KG), dataset, QA types, and evaluation met-
rics are given in the following tables.

KG as Background Knowledge. Table 3 gives

a summary and comparison of approaches in the
category of KG as background knowledge.

KG as Reasoning Guidelines. Table 4 gives a
summary and comparison of approaches in the cat-
egory of KG as reasoning guidelines.

KG as Refiners and Validators. Table 5 gives
a summary and comparison of approaches in the
category KG as refiners and validators.

Hybrid Approach. Table 6 gives a summary and
comparison of hybrid approaches.

C.2 Alignment of Approaches to Complex QA

The alignment of the existing approaches in syn-
thesizing LLMs and KGs to diverse complex QA
is presented in Table 7.

D Extended Optimization

The extended optimization techniques are summa-
rized and discussed as follows.

Index-based Optimization. It is a time-
consuming and complex task to create vector in-
dexes from long-range facts and retrieve the rel-
evant knowledge from large-scale graphs. To ad-
dress this issue, GoR (Zhang et al., 2024b) lever-
ages GNN and BERT score-based objectives to
optimize node embeddings during graph indexing.
KG-Retriever (Chen et al., 2024c) leverages a hi-
erarchical index graph to enhance knowledge cor-
relations and improve information retrieval for ef-
ficient knowledge indexing. NodeRAG (Xu et al.,
2025b) integrates the heterogeneous graphs and
fine-grained retrieval with RAG by optimizing the
indexing of graph structures. DRO (Shi et al., 2025)
proposes a direct retrieval-agumentation method
to directly estimate the distribution of document
permutations from the selected model for jointly
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Approach Strength

Limitation KG Requirement

KG as Background Knowledge
KG as Reasoning Guidelines
KG as Refiners and Validator
Hybrid Approach

Broad Coverage
Multi-hop Capabilities

Limitation Mitigation

Hallucination Reduction

Static Knowledge
Computational Overhead
Validation Latency

High Computing Cost

High Domain Coverage
Rich Relational Paths
High Accuracy & Recency
Dynamic Adaptation

Table 2: Comparison of Approaches with Different Roles of KGs.

Methods Techniques LM(s) KG(s) Dataset(s) QA Type Metric(s)
InfuserKI (Wang et al., 2024a)  Knowledge-based Fine  Llama-2-7B UMLS, Movie KG  PubMedQA, KGQA NR, RR, F1
Tuning (MetaQA) MetaQA-
1HopQA
KnowLA (Luo et al., 2024b) Knowledgeable Adapta- Llama2-7B, Alpaca2 WordNet, Concept- CSQA, SIQA, MCQA,CBQA, Acc, CE Score,
tion Net, Wikidata BBH, WQSP, TruthfulQA BLEU, ROUGE
TriviaQA
KG-Adapter (Tian et al., 2024)  Parameter Efficient Fine = Llama-2-7B-base, ConceptNet, Free- OBQA, CSQA, KGQA, Acc, Hits@1
Tuning & Joint Reason- ~ Zephyr-7B-alpha base WQSP, CWQ MCQA, OBQA,
ing CWQ
GAIL (Zhang et al., 2024d) GAIL Fine-tuning Llama-2-7B, BERTa Freebase WQSP, CWQ, KGQA EM, F1, Hits@1
GrailQA
GRAG (Hu et al., 2024b) Textual Graph RAG Llma-2-7B WebQSP, Expla- GraphQA, KGQA Fl1, Hits@1, Acc
Graphs WQSP
LEGO-GraphRAG (Cao et al., Modular Graph RAG Qwen2-72B, Sentence Freebase WQSP, CWQ, KBQA,CWQ R, F1, Hits@1
2024) Transformer GrailQA
KG?RAG (Zhu et al., 2025) Graph-guided Chunks Llama-3-8B Dataset  Inherent HotpotQA Multi-hop QA F1,P,R
Expansion KGs
KG-RAG (Xu et al., 2024) Vector-based Subgraph ~ GPT-4 Self-constructed Curated Dataset KGQA MRR, Recall@K,

Retrieval

KGs NDCG@K, BLEU,
ROUGE, METEOR

Table 3: Summary and Comparison of Methods in the Category of KG as Background Knowledge. NR: Newly-
learned Rate, RR: Remembering Rate, CE Score: Cross Entropy Score, EM: Exact Match, MRR: Mean Reciprocal
Rank, BLEU: Bilingual Evaluation Understudy, ROUGE: Recall-Oriented Understudy, NDCG: Normalized Dis-
counted Cumulative Gain, METEOR: Metric for Evaluation of Translation with Explicit Ordering.

learning the selection model and generative LM
model.

Prompt-based Optimization. To facilitate the
deep fusion between the retrieved knowledge from
KGs and the internal knowledge of LLMs, sev-
eral prompt-based optimization approaches are pro-
posed. For instance, StraGo (Wu et al., 2024c)
enhances the quality and stability of the prompts
based on the insights and strategic guidance learned
from the historical prompts by using in-context
learning. Meanwhile, several ranking strategies
have been exploited to retrieve the top relevant
knowledge from diverse knowledge bases, and the
most relevant contexts are further fed to LLMs
together with the prompts. For example, KG-
Rank (Yang et al., 2024) leverages re-ranking tech-
niques based on the score measuring relevance and
redundancy to rank the top-k triples from KGs and
then combine them with the prompt to generate the
answers for QA. Similarly, KS-LLM (Zheng et al.,
2024b) introduces the evidence sentence selection
module to retrieve the most relevant evidence sen-
tences based on the ranking of the Euclidean dis-
tance between the triples and each evidence sen-
tence. Instead of direct ranking of context-based
relevance, BriefContext (Zhang et al., 2024a) in-

troduces the preflight check to predict the rele-
vance ranking between the user query and the re-
trieved documents, which is divided into multiple
chunks for multiple RAG subtasks based on the
map-reduce strategy. To leverage the multi-source
knowledge for RAG-based QA, QUASAR (Christ-
mann and Weikum, 2024) enhances RAG-based
QA by effectively integrating unstructured text,
structured tables, and knowledge graphs for ev-
idence retrieval and re-ranking and filtering the
relevant evidence from the retrieved evidence.

Cost-based Optimization. To implement effi-
cient and effective knowledge probing of LLMs,
GLens (Zheng et al., 2024a) initially leverages the
Thompson sampling strategy to measure the align-
ment between KGs and LLMs for addressing the
knowledge blind spots of LLMs, and then designs
a graph-guided question generator to convert KGs
to text, together with a sampling strategy on the pa-
rameterized KG structure to accelerate KG traver-
sal. Similarly, Coke (Dong et al., 2024a) mini-
mizes the calls of LLMs for KGQA by introducing
a cluster-level Thompson sampling to formulate
the accuracy expectation and an optimized context-
aware policy to distinguish the expert model based
on question semantics. LMQL (Beurer-Kellner
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Methods Techniques LM(s) KG(s) Dataset(s) QA Type Metric(s)
SR (Zhang et al., 2022) Trainable Subgraph Re- RoBERTa-base Dataset  Inherent WQSP,CWQ KBQA Hits@1, F1
triever, Fine-tuning KGs
KELDaR (Li et al., 2024b) Question Decomposi- GPT-3.5-Turbo, GPT-4- Dataset Inherent WQSP, CWQ KGQA, Multi- EM
tion Tree, Atomic KG  Turbo KGs hop QA
Retrieval
Oreo (Hu et al., 2022) Knowledge Interaction RoBERTA-base, T5- Dataset Inherent NQ, WQ, CBQA, OBQA, Acc
and Injection, KG Ran-  base KGs, Wikidata WQSP,  Triv- Multi-hop QA
dom Walk iaQA, CWQ,
HotpotQA
KBIGER (Du et al., 2022) Interative Instruction LSTM  based Pre- Dataset Inherent WQSP, CWQ, Multi-hop Hits@1, F1
Reasoning trained Model KGs, Freebase GrailQA KBQA
ToG (Sun et al., 2024a) Beam-search base Re- GPPT-3.5-Turbo, GPT- Dataset Inherent CWQ, WQSP, KBQA, Open- Hits@1
trieval, LLM Agent 4, Llama-2-70B-Chat KGs, Freebase, GrailQA, Domain QA
Sentence Transformer Wikidata QALDI10-en,
wQ
ToG-2 (Ma et al., 2025b) Hibrid RAG, GPT-3.5-Turbo, GPT- Wikipedia, Wiki- WQSP, Multi-hop Acc, EM, R, F1
Knowledge-guided 40, Llama-3-8B, data QALD10-en, KBQA &
Context Retrieval Qwen2-7B AdvHotpotQA, Document
HotpotQA, QA, Domain-
ToG-FinQA specific QA
KG-CoT (Zhao et al., 2024b) CoT-based KG and GPT-4, GPT-3.5-Turbo, Dataset Inherent WQSP, CWQ, KBQA, Multi- Acc, Hit@K
LLM Joint Reasoning Llama-7B, Llama-13B KGs, Freebase SQ, WQ hop QA
KG-Agent (Jiang et al., 2024) KG-Agent based In- Dvinci-003, GPT-4, NQ-Wiki, TQ-Wiki, WQSP, CWQ, KGQA, ODQA Hits@],FI
struction Tuning Llama-2-7B WQ-Freebas GrailQA
ODA (Sun et al., 2024b) ODA-based Knowledge ~ GPT-4, GPT-3.5 Wikidata QALDI10-en KBQA Hits@1, Acc
Graph Retrieval
GREASELM (Zhang et al., Mint-based KGand LM RoBERTA-Large, Aris- ConcepNet, UMLS, CQA, OBQA, Multiple- Acc
2021) Cross-modal Fusionand ~ toRoBERTA, SapBERT, DrugBank MedQAt choice QA

Pretraing

PubmedBERT

Table 4: Summary and Comparison of Methods in the Category of KG as Reasoning Guidelines. EM: Exact Match,

Acc: Accuracy, R: Recall.

et al., 2023) minimizes the call of LLMs by gener-
ating an efficient inference procedure based on the
LMP (Language Model Programming) constraints
and control flow. It differs from the above work in
that CGPE (Tao et al., 2024) optimizes the knowl-
edge retrieval based on clue-guided path explo-
ration and information matching from knowledge
bases to enhance the capabilities of LLMs for unfa-
miliar questions and reduce the costs of LLMs.

To summarize, even if several optimizations and
ranking strategies have been recently investigated
to reduce the costs of graph retrieval, graph rea-
soning, and the length of the context of LLMs.
However, the relevant subgraphs extraction, graph
reasoning, and vector-based retrieval remain a com-
putationally costly task.

E Evaluations and Applications

The details of evaluation metrics, benchmark
datasets, industrial and scientific applications, and
demonstrations of synthesizing LLMs and KGs for
QA are summarized and compared as follows.

E.1 Evaluations

Metrics. The evaluation metrics in synthesiz-
ing LLMs with KGs for QA are: (1) the metrics
measuring the answer quality, BERTScore (Peng
et al., 2024), answer relevance (AR), hallucina-
tion (HAL) (Yang et al., 2025), accuracy matching,
human-verficed completeness (Yu and McQuade,

2025); (2) the metrics measuring the retrieval qual-
ity of RAG, context relevance (Es et al., 2024), faith-
fulness score (FS) (Yang et al., 2024), precision,
context recall (Yu et al., 2024; Huang et al., 2025),
mean reciprocal rank (MRR) (Xu et al., 2024), nor-
malized discounted cumulative gain (NDCG) (Xu
et al., 2024); (3) the metrics measuring the reason-
ing quality for multi-hop QA, Hop-Acc (Gu et al.,
2024), reasoning accuracy (RA) (Li et al., 2025a).

Benchmark Dataset. The recent benchmark
datasets are summarized and compared in Table 8
with the focus on the following evaluations. (1) An-
swer Quality (AnsQ): the correctness of the gener-
ated answer with supported evidence and retrieved
context in comparison to the ground-truth answer;
(2) Retrieval Quality (RetQ): the relevance of the
provided or retrieved context in comparison to the
human-validated relevant context; (3) Reasoning
Quality (ReaQ): the correctness of generated rea-
soning chains and intermediate steps that explain
how the final answer is derived.

E.2 Applications
We showcase the applications and demonstrations
in synthesizing LLMs with KGs for QA.

KAG (Liang et al., 2024a) (by Antgroup)’ is a
domain-knowledge augmented generation frame-
work that leverages KGs and vector retrieval to bidi-
rectionally enhance LLMs for knowledge-intensive

Shttps://github.com/OpenSPG/KAG
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Methods Techniques LM(s) KG(s) Dataset(s) QA Type Metric(s)
ACT-Selection (Salnikov et al., ACT-based Answer Se- T5-Large-SSM Wikidata SQ, RuBQ, KGQA,CBQA, Hit@1
2023) lection and Ranking Mintaka Multi-lingual
KGQA
Q-KGR (Zhang et al., 2024c) Question-guided KG  FLAN-T5-XL, ConceptNet OBQA, PIQA KGQA Acc
Re-scoring, FNN-based RoBERTa-Large,
Knowledge Injection Llama-2-7B
KG-Rank (Yang et al., 2024) Similarity and MMR GPT-4, Llama-2-7B, UMLS, DBpedia LiveQA, Domain- ROUGE-L,
based Ranking Llama-2-13B ExpertQA-Bio,  specific QA BERTScore, Mover-
ExpertQA- Score, BLEURT
Med, MedQA
KGR (Guan et al., 2024) Refine-then-Retrieve, GPT-4, Llama-2-7B, CKG, PrimeKG MedQuAD Domain- Truthfulness Score
Knowledge Truthful- Vanilla Llama-2-7B, specific QA
ness Verfication Transformer
EFSUM (Ko et al., 2024) KG Fact Summariza- GPT-3.5-Turbo, Flan- Dataset Inherent WQSP, Mintaka KGQA, Multi- Acc
tion, KG Helpfulness T5-XL, Llma-2-7B- KGs (Freebase, hop QA
and Faithfulness Filter Chat Wikidata)
InteractiveKBQA (Xiong etal., Multi-turn Interaction =~ GPT-4-Turbo, Mistral- Freebase, Wikidata, WQSP, CWQ, KBQA, F1, Hits@1, EM,
2024) for Observation and 7B, Llama-2-13B Movie KG KQA Pro, Domain- Acc
Thinking MetaQA specific QA
LPKG (Wang et al., 2024b) Planning LLM Tuning, GPT-3.5-Turbo, Dataset  Inherent HotpotQA, KGQA, Multi- EM,P,R
Inference, and Execu- CodeQwenl.5-7B- KGs (Wikidata), 2WikiMQA, hop QA
tion Chat, Llama-3-8B- Wikidatal 5K Bamboogle,
Instruct MuSiQue,
CLQA-Wiki

Table 5: Summary and Comparison of Methods in the Category of KG as Refiners and Validators. Acc: Accuracy,
EM: Exact Match, BLEURT: Bilingual Evaluation Understudy with Representations from Transformers.

Methods Techniques LM(s) KG(s) Dataset(s) QA Type Metric(s)
LongRAG (Zhao et al., 2024a)  Domain-specific Fine- ChatGLM3-6B, Wikidata HotpotQA, KBQA, Multi- Fl
Tuning for RAG & CoT- Qwenl.5-7B, Vicuna- 2WikiMQA, hop QA
guided Filter v1.5-7B, Llama-3-8B, MusiQue
GPT-3.5-Turbo, GLM-4
SimGRAG (Cai et al., 2024) Instruction Fine-Tuning  Llama-3-8B-Instruct, Wikipedia, PubMed  PubMedQA, Domain- Acc, Rouge-L,
for RAG with Filter Gemma-2-27B-it BioASQm specific QA, MAUVE, EM, F1
MedQA, Multi-choice
MedMCQA, QA
LiveQA, Medi-
cationQA
KGQA (Jietal., 2024) KG-related Instruction Llama-2-7B-Chat, Dataset  Inherent WQAP, CWQ KGQA Hits@1, F1
Tuning with CoT Rea- BGE-1.5-en-base KGs
soning
KG-IRAG (Yang et al., 2025) Incremental Retrieval Llama-3-8B-Instruct, Self-constructed TENSW Temporal QA EM, F1, HR, HAL
and Iterative Reasoning ~ GPT-3.5-Turbo, GPT- KGs
40-mini, GPT-40
PIP-KAG (Huang et al., 2025)  Parameteric Pruning for =~ Llma-3-8B-Instruct Dataset  Inherent CoConflictQA KGQA, Multi- EM, ConR, MR
KAG KGs hop QA
RAG-KG-IL (Yu and Mc- Agent-based Incremen- GPT-40 Self-constructed Curated Dataset  Domain- AM, HVC
Quade, 2025) tal Learning and Knowl- KGs from NHS specific QA
edge Dynamic Update
CoT-RAG (Li et al., 2025a) KG-driven CoT Gener- ERNIE-Speed-128K, Self-curated HotpotQA, KGQA, Multi- RA, Robustness
ation and Knowledge- GPT-40-mini Pseudo-Program CSQA, SIQA hop QA

aware RAG  with
Pseudo-program KGs

KGs

Table 6: Summary and Comparison of Methods in the Category of Hybrid Approach. EM: Exact Match, HR:
Hit Rate, HAL: Hallucination, ConR: Context Recall, MR: Memorization Ratio, AM: Accuracy Matching, HVC:
Human-verified Completeness, RA: Reasoning Accuracy.

tasks, such as QA.

PIKE-RAG (Wang et al., 2025) (by Microsoft)* is
a specialized knowledge and rationale augmented
generation system with a focus on extracting, under-
standing, and applying domain-specific knowledge
to guide LLMs toward accurate responses.

GraphRAG-QA (by NebulaGraph)® is an indus-
trial demo of GraphRAG integrating several query
engines for augmenting QA, NLP2Cypher-based
KG query engine (Wu et al., 2022), vector RAG
query engine, and Graph vector RAG query engine.

MedRAG (Zhao et al., 2025b) (by Nanyang Tech-

4https ://github.com/microsoft/PIKE-RAG
Shttps://github.com/wey-gu/demo-kg-build

nological University et al.)® is a KG-elicited reason-
ing enhanced RAG-based healthcare copilot that
generates diagnoses and treatment recommenda-
tions based on the input patient manifestations.

Fact Finder (Steinigen et al., 2024) (by Fraunhofer
TAIS and Bayer)’ augments LLMs with the query-
based retrieval from medical KG to improve the
completeness and correctness of answers.

ApresCoT (Shirdel et al., 2025) (by University of
Waterloo) is a visualization tool for explaining the
answers generated by LLMs with CoT-based path
exploration and inference over KGs.

6https: //github.com/SNOWTEAM2023/MedRAG
"https://github.com/chrschy/fact-finder
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Approach

Multi-doc QA Multi-modal QA Multi-hop QA Conversatiional QA°  XQA  Temporal QA

KG as Background Knowledge
KG as Reasoning Guidelines
KG as Refiners and Validator
Hybrid Methods

> XN\

N XN\

N> XN

v A v
X v v
v X A
v v v

Table 7: Research Progress on Alignment of Existing Approaches of Synthesizing LLMs and KGs with Complex

QA. v Fully Investigated. A Partially Investigated. X Not Yet Investigated.

Dataset Category AnsQ RetQ ReaQ Brief Description

WebQSP (tau Yih et al., 2016) KBQA v v AN Includes SPARQL queries for knowledge-
based QA.

BioASQ-QA (Krithara et al., 2023) KBQA v v X Includes exact and ideal answers of ques-
tion over multi-doc summarization.

CAQA (Hu et al., 2024a) KBQA A v A Evaluates complex reasoning and attribu-
tion.

CR-LT KGQA (Guo et al., 2024) KGQA v A v Supports long-tail entities and common-
sense reasoning.

EXAQT (Jia et al., 2021) KGQA v v A Supports temporal QA with multiple enti-
ties, predicates, and conditions.

CommonsenseQA (Talmor et al., 2019)  Multi-choice QA v A X Includes questions with the correct answer
and four distractor answers.

MedQA (Jin et al., 2021) Multi-choice QA 4 A A Medical multi-choice QA dataset with
multilingual medical examination text.

MINTQA (He et al., 2024) Multi-hop QA v v v Supports LLMs evaluation on new and tail
knowledge.

FanOutQA (Zhu et al., 2024) Multi-Hop QA A A v Includes multi-hop question over multi-
document.

M3SciQA (Li et al., 2024a) Multi-modal QA v v v QA over the context across multiple docu-
ment.

OMG-QA (Nan et al., 2024) Multi-modal QA v v A Evaluates the retrieval and reasoning of
QA across modalities.

ScienceQA (Lu et al., 2022) Multi-modal QA 4 X 4 Supports multi-choice questions across
disciplines in science topics.

TempTabQA (Gupta et al., 2023) Temporal QA v A v Supports temporal reasoning over semi-
structured tables.

PATQA (Meem et al., 2024) Temporal QA v A v Provides Wikidata questions for Present-
anchored temporal QA.

MenatQA (Wei et al., 2023) Temporal QA AN A v Evaluates the temporal reasoning capabil-
ity of LLMs.

Loong (Wang et al., 2024c) Long-context QA v X A QA over multi-doc with a relevant docu-
ment for the final answer.

SituatedQA (Zhang and Choi, 2021) Open-retrieval QA v v X Includes correct question with temporal
or geographical context.

ChatData (Sequeda et al., 2024) LLM-KG QA v v X LLMs+KGs QA over the enterprise SQL
database.

LLM-KG-Bench (Meyer et al., 2023) LLM-KG QA v X X Evaluates capabilities of LLMs in knowl-
edge graph engineering.

XplainLLM (Chen et al., 2024d) LLM-KG QA v A v Focuses on QA explainability and reason-
ing.

OKGQA (Sui and Hooi, 2024) LLM-KG QA v v v Evaluates LLMs+KGs for open-ended
QA.

LiHua-World (Fan et al., 2025) LLM-KG QA v v v Evaluates the capability of LLMs on
multi-hop QA in the scenario of RAG.

STaRK (Wu et al., 2024a) LLM-KG QA v v v Evaluates the performance of LLMs-
driven RAG for QA.

CoConflictQA (Huang et al., 2025) LLM-KG QA v A v Evaluates contextual faithfulness for QA
in the scenario of KAG.

mmRAG (Xu et al., 2025a) LLM-KG QA v v 4 Evaluates multi-modal RAG including
QA dataset across text, tables, and KGs.

BlendQA (Xin et al., 2025) LLM-KG QA 4 A 4 Evaluates cross-knowledge source reason-

ing capabilities of RAG for QA.

Table 8: Comparison of LLMs+KGs for QA Benchmark Dataset. ¢/ The dataset was primarily designed to support
this evaluation. A The dataset can be adapted for this evaluation, but this evaluation is not their main focus. X The
dataset does not support this evaluation.
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