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Abstract

The human-centered word association test
(WAT) serves as a cognitive proxy, reveal-
ing sociocultural variations through culturally
shared semantic expectations and implicit lin-
guistic patterns shaped by lived experiences.
We extend this test into an LLM-adaptive, free-
relation task to assess the alignment of large lan-
guage models (LLMs) with cross-cultural cog-
nition. To address culture preference, we pro-
pose CultureSteer, an innovative approach that
moves beyond superficial cultural prompting by
embedding cultural-specific semantic associa-
tions directly within the model’s internal repre-
sentation space. Experiments show that current
LLMs exhibit significant bias toward Western
(notably American) schemas at the word associ-
ation level. In contrast, our model substantially
improves cross-cultural alignment, capturing
diverse semantic associations. Further valida-
tion on culture-sensitive downstream tasks con-
firms its efficacy in fostering cognitive align-
ment across cultures. This work contributes
a novel methodological paradigm for enhanc-
ing cultural awareness in LLMs, advancing the
development of more inclusive language tech-
nologies.'

1 Introduction

Word associations, often perceived as common-
place neural activities (Pulvermiiller, 1999; Ander-
son et al., 2017; Khanna et al., 2024), are deeply
rooted in lived environments and personal expe-
riences. The neurocognitive research (Schneider
et al., 2024) find out that transient human associ-
ations reflect not only situational factors but also
ingrained in sociocultural identities. Multilingual
and cross-cultural WAT also unveil how culture
modulates perceptual and interactive patterns (Sza-
lay and Deese, 2024; Garimella et al., 2017, 2016).

*Corresponding author
'Our code and resources are publicly available at
https://github.com/hlt-cuhksz/CultureSteer.
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Figure 1: Cross-cultural comparison of word associa-
tions for the cue “Red” between LLM predictions and
human responses.

For instance, as shown in Figure 1, when
prompted with “red,” beyond general associa-
tive words such as “blue” and “color”, which
reflects semantic relations, British respondents
tend to activate idiomatic expressions like see
red (anger), while Australians are more likely
to mention bureaucratic metaphors such as red
tape(bureaucracy). This cross-cultural diver-
gence in word associations reveals rich cognitive-
semantic information embedded within linguistic
conditioning.

Multilingual LLMs exhibit persistent cultural bi-
ases, ranging from stereotypical associations (Abid
et al., 2021; Bano et al., 2025) to value misalign-
ments (Masoud et al., 2023; Cao et al., 2023a; Jiang
et al., 2024). Prior research has largely concen-
trated on addressing these biases by aligning mul-
ticultural cognition through prompt-based meth-
ods (Choenni and Shutova, 2024; Wang et al., 2024;
Sato et al., 2024), which depend on explicitly pro-
viding cultural context to elicit targeted responses.
On the other hand, fine-tuning approaches (Xu
et al., 2024; Yao et al., 2025) are knowledge-driven
but still require explicit cultural settings during in-
ference.

Building on this perspective, our approach fol-
lows the opinion that cultural competence in NLP
is often best evaluated through diagnostic tasks that
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reveal latent cultural patterns (Zhou et al., 2025b).
By simulating human word association tasks, we
directly capture latent cultural relationships and
assess the semantic spaces of cultural preferences
within LLMs themselves. Extending beyond ex-
isting word association datasets, our work adapts
these implicit, word-level cultural patterns to the
evaluation of LLMs. Our contributions can be
summarized as follows:

* We design an LL.M-adaptive, free-relation
word association task and a quantitative eval-
uation metric to assess the cross-cultural cog-
nitive abilities of LLMs (§3).

* We introduce CultureSteer, an innovative ap-
proach that integrates a culture-aware steering
mechanism to guide semantic representations
toward culturally specific spaces (§ 4).

* Our experiments show that LLMs exhibit cul-
tural bias in word association tasks, while our
model is able to effectively mitigate this bias,
outperforming prompt-based methods (§ 5).

* Further analysis demonstrates the effective-
ness of the culture-aware steering mechanism
and the generalizability of the model (§ 6).

2 Related Work

Cultural Bias and Alignment in LLMs Ex-
tensive research has investigated cultural biases
in LLMs across domains such as value prefer-
ence (Benkler et al., 2023; Cao et al., 2023a; Jiang
et al., 2024; Durmus et al., 2023), knowledge per-
ception (Palta and Rudinger, 2023; Shen et al.,
2024), and moral measurement (Jinnai, 2024; Rao
et al., 2023, 2024), revealing persistent Western-
centric value preferences and regionally divergent
commonsense knowledge. To improve cultural per-
ception, current approaches predominantly employ
prompt engineering (Wang et al., 2024; AlKhamissi
et al., 2024; Zhou et al., 2025a; Masoud et al.,
2025), explicitly embedding cultural context in
prompts to evoke culturally sensitive responses.
Alternatively, fine-tuning methods such as Culture-
Bank (Shi et al., 2024), CultureLLM (Li et al.,
2024b), CultureSPA (Xu et al., 2024) and Sim-
LLMCultureDist (Cao et al., 2025a) have been pro-
posed to enhance cultural alignment in different
ways. However, these methods rely on survey data
(particularly from word value surveys), data-driven
SFT, and still require culture-specific prompts for
downstream tasks.

Word Association in LLMs Prior to the LLM
era, previous studies have also revealed cultural
preferences from the perspectives of word usage
and associations (Garimella et al., 2016), and have
attempted to use models, such as the Compos-
ite Skip-gram Model (C-SGM) (Garimella et al.,
2017), to predict the word association process.

On the other hand, recent work adopts word as-
sociation tasks to evaluate the capabilities of LLMs
across various domains. For instance, uncovering
gender stereotypes (Abramski et al., 2024b) and
assessing color associative perception (Fukushima
et al., 2024). These studies primarily focus on
word association mappings under specific relation-
ships, emphasizing explicit word generation and
partially relying on manual interpretation during
evaluation (Abramski et al., 2024a; Vintar et al.,
2024).

In contrast, we not only extend word associa-
tion datasets to four cultures, going beyond the two
cultures (Chinese and English) which is focused
on in the pre-LLM era, but also propose metrics
that focus on the predicted probabilities of associa-
tion words without manual intervention, enabling a
more comprehensive evaluation of LLMs’ associa-
tive capabilities.

Steering Control of LLMs Steering methods
aim to control the internal activation states of LLMs
at inference time to influence the generation style
of their outputs (Bo et al., 2025). These have been
applied to reduce harmful responses (Arditi et al.,
2024; Cao et al., 2024) and perform style trans-
fer (Song et al., 2025; Konen et al., 2024). Our
approach introduces a steerable layer that modu-
lates associative outputs to reflect culture-specific
cognitive patterns in its lexical associations.

3 Word Association Test Task

Word Association Test (Woodworth and Wells,
1911; Gough, 1976) is a psychological assess-
ment that reveals subconscious thoughts, emotional
states, or cognitive patterns through an individ-
ual’s quick associative responses to stimulus words.
The cultural background influences the associated
words and response patterns, with different cultures
often producing vastly different associations to the
same stimulus, reflecting the profound impact of
culture on language, thinking, and emotions.
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3.1 Human-centered task

The WAT for human participants is conceptualized
as an open-ended activity in a free-relation for-
mat, allowing for flexible and diverse associations
that more accurately reflect human cognitive pro-
cesses.” Before conducting the WAT, demographic
information, such as age, gender, education, na-
tive language, and region, is collected for each
participant. Given a cue word w, the participant
u is asked to provide the first word that comes to
mind and may optionally add a second and third
word sequentially, resulting in up to three asso-
ciated words, represented as u$, = {af,ay,a}},
where ¢ denotes the participant’s cultural back-
ground. Within this cultural context, the collec-
tive set of associative words for a given cue word
w, aggregated across all participants US, = {uf,},
is represented as AS = {(a1, f1), -, (an, fn)}-
Here, f; > fi+1, and f; represents the frequency
with which the associative word a; appears in U

3.2 LLM-adaptive task

Directly employing the human-centered task
paradigm to conduct WAT with LLMs proves insuf-
ficient for effectively capturing variations across en-
tire cultural groups. Inspired by Fierro et al. (2024)
and Zhou et al. (2025a), we adapt this task into a
word prediction framework, designed as a retrieval
process for candidate associative words. Specif-
ically, we employ a template ¢, such as “When
{cue_word} is mentioned, people often associate
it with the following words:”, to prompt the LLM
and elicit its predictions of associated words. The
input is represented as © = g(w), and the output is
denoted as 0 = M(q(w)), where the generalized
function M (-) represents the inference process of
the LLM.

Unlike the human-centered task, which gathers
associative words directly from participants, our
method computes the probability of each candidate
associative word being predicted by the LLM and
ranks them based on their relative probabilities.
To address potential uninformative prefixes in the
LLM’s next-token predictions (e.g., phrases like ‘I
think’), we move beyond relying solely on the like-
lihood of a candidate associative word appearing
as the immediate next token. Instead, we compute
its probability within a fixed window of next-token

2https://s:mallworldof’words.org
3This can be viewed as an open-ended multi-choice
question-answering task without predefined options.

predictions. By evaluating the candidate word’s
probability at each position within the prediction
window, we select the maximum value as its final
probability, P, (a;). The mathematical formula-
tion of this process is as follows:

t—1

]_ .
P ;) —= a. — <A . = ]>
w (a;) i tjzop Um+j = a;

ey
where k is the size of the fixed prediction window,
t is the number of sub-tokens in the candidate word
a;, a] is the j-th sub-token, and gy, is the token
predicted at position m + j. Based on these prob-
abilities, we construct the predicted ranked list of
associative words, denoted as A,, = lag, ai,...],
where Pw (d,) > Pw (di+1).

3.3 Evaluation metric

To evaluate the alignment between human cultural
associations A¢, and the LLM’s predicted associ-
ations A,,, we propose a novel evaluation metric,
Position-Weighted Recall (PWR @K), which is an
extension of Top-K Recall (R@K).

Baseline Metric Given that WAT in LLMs is a
retrieval task involving a large number of truly rele-
vant associative words and a ranking process close
to full ranking, we adopt R@K as the baseline eval-
uation metric, emphasizing full coverage. Formally,
it is defined as:

where N = | A¢ | denotes the total number of truly
relevant associative words, and I(+) is the indicator
function.

Proposed Metric While R@K effectively mea-
sures coverage, it fails to account for ranking order.
In our task, higher-ranked words in A¢, signify
stronger associative strength and thus hold greater
importance. To address this limitation, we propose
PWR @K, which incorporates positional weighting
by assigning higher weights to words ranked ear-
lier, specifically using the inverse of their position
as the weight. It is formally defined as:

N 1 . 1(a; € Top-K(A,
Z’L—l 7 (a’ 1Op ( ) (3)

PWR@K = N
Zi:l %
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Figure 2: The framework of CultureSteer model. Top: model pipeline; Bottom: training and inference process

based on WAT.

where the denominator normalizes the positional
weights across all IV positions.

A detailed comparison with other position-
weighted metrics such as DCG@K is provided in
Appendix B.

4 CultureSteer: Modeling and Controlling
Cultural Awareness in LLLMs

Inspired by the findings of LM-Steer (Han et al.,
2024), which suggest that, with certain assump-
tions, shifting styles in language models is equiva-
lent to a linear transformation in the word embed-
ding space, we extend this perspective to the cul-
tural domain. Specifically, we hypothesize that dif-
ferent cultures define distinct semantic association
spaces shaped by cultural preferences, which can
be modeled through culture-specific linear trans-
formations within the embedding space. Based on
this, we introduce the CultureSteer model, which
leverages both human-centered and LLLM-adaptive
WAT tasks to (1) equip LLMs with human-like
word association perception, thereby enhancing
their cognitive abilities, and (2) enable the word
association capabilities of LLMs to align across
different cultures. The overall architecture of the
model is illustrated in Figure 2.

Cultural Control Paradigms Previous ap-
proaches primarily control cultural preferences ex-
plicitly at the input level by defining the cultural
context ¢ through textual prompts. The output in
these methods can be denoted as:

0= M (q(w,c)) )

In contrast, our model performs post-processing on
the LLM’s output, mapping the semantic represen-
tation space to a specific cultural perception space.
This operation is represented as:

o = Steer (M (q(w)) , ¢) Q)

Cultural-Aware Steering Mechanism Building
on this paradigm, we detail the CultureSteer frame-
work, focusing on how semantic representations
are steered into culturally-specific spaces. First, we
obtain the semantic representation h = M (q (w)),
which encodes the general meaning without any
culture-specific preferences. To model culture-
specific semantic associations, we apply a trans-
formation to the base semantic representation h.
Specifically, the cultural preference adjustment
AR is computed as:

AR =h-(cOW)=h-W, (6

Here, c € RIC is the cultural control vector, where
each element corresponds to a specific culture. In
our work, we use a one-hot encoding for differ-
ent cultural contexts. The operation ¢ ©® W se-
lects the relevant cultural subspace from W called
‘W, which contains learnable parameters that en-
code culture-specific semantic directions. The final
culture-aware representation is then computed as:

7 (c)

h” =h+e¢ARO @)

where € is a scaling factor that modulates the in-
fluence of the culture-specific adjustment.* The

*We set € = le — 3 as the default steering value (Han et al.,
2024).
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adjusted representation ﬁ(c) is then used to predict
the associated words for a given query, considering
the specified cultural context.

Training and Inference Process During train-
ing, we use the human-centered WAT pattern to
train the CultureSteer model SFT, where the true
human associations are fed back into the model at
each time step ¢. The loss function, which mini-
mizes the discrepancy between the predicted asso-
ciations a;’ and the true human responses a;'. used
is cross-entropy During the inference phase, we
employ the LLM-adaptive WAT task to evaluate
the LLM’s cross-cultural word association ability,
using the proposed metric PWR @K.

5 Experiment

5.1 Dataset Creation

Data Source We utilized the officially released
datasets from the Small World of Words Project
(SWOW)°. For our study, we selected data in two
languages: English and Mandarin Chinese, referred
to as SWOW-EN (De Deyne et al., 2019) and
SWOW-ZH (Li et al., 2024a), respectively. The
SWOW-EN dataset comprises over 3 million re-
sponses collected from more than 90,000 partici-
pants across various English-speaking countries or
regions, covering more than 12,000 cues. More-
over, the SWOW-ZH dataset contains over 2 mil-
lion responses corresponding to 10,192 cues, with
participants primarily from the Chinese mainland.

Culture Selection To ensure sufficient partici-
pant representation across different cultures, we
first filter the three most prominent cultural groups
from SWOW-EN: the United States (USA), the
United Kingdom (UK), and Oceania (OC)°®. Addi-
tionally, SWOW-ZH serves as the representative
for China (CN). As a result, we construct datasets
representing four distinct cultural groups: USA,
UK, OC, and CN.

Data Preprocessing To ensure fairness in evalu-
ating word association perception across different
cultures, we utilize the Intercontinental Dictionary
Series (IDS) (jung Yu and Wang, 2023) to align the
cue words between English and Chinese, ultimately
retaining 881 cue words that are common across all

Designed as a human-centered Word Association Task
(WAT).

80C includes participant responses from Australia and
New Zealand, which are combined due to their relatively
participant numbers and shared historical background.

four cultural groups. Given the substantial differ-
ences in participant numbers across cultures, which
lead to significant variation in the number of asso-
ciated words (A¢,), we standardize the A¢ lists by
truncating them to the size of the culture with the
fewest associated words. Using the IDS framework,
we categorize these cue words into 22 semantic
categories based on their conceptual meanings. Ex-
amples of the final preprocessed data and statistical
details are provided in Appendix C.2, Table 4 and
Table 5. Finally, we split the cue words in each
semantic category into 70% for training and 30%
for testing.

5.2 Experimental Setup

We conduct experiments using Llama3.1-
8B (Grattafiori et al., 2024) and Qwen2.5-
7B (Team, 2024) to simulate the WAT. First,
we evaluate the base versions of these models
on word association tasks using a base prompt
without any cultural conditioning, aiming to
assess their human-like associative cognition and
the default cultural representation they exhibit.
Subsequently, we build CultureSteer based on
these two models to enhance their cross-cultural
perception capabilities. For the LLM backbone,
we adopt LoRA (Hu et al., 2022) and train the
models on a single A100 GPU.

Furthermore, to comprehensively evaluate the
effectiveness of our approach, we employ both
prompting-based strategies and cultural-related
LLMs as baseline methods for comparison.1) Ex-
plicit Culture-Aware Prompting Strategies: We im-
plement two prompting approaches to examine how
explicit cultural conditioning affects model perfor-
mance: First, Culture-Specific Prompt (CSP) (Xu
et al.,, 2025) and Cross-Culture Think (CCT).
Detailed prompt templates and settings for all
approaches are provided in Appendix C.1. 2)
Cultural-Related LLMs: To establish comprehen-
sive baselines, we compare against four cultural-
aware language models. These include CultureSPA,
Culture—merge7, SimLLMCultureDist (Cao et al.,
2025b) and CultureLLM (Li et al., 2024b)3.

5.3 Overall Results

LLMs Exhibit Cultural Biases in the WAT Task
The overall comparison results are presented in

"https://huggingface.co/surbhi2 1/llama3-8b-cultural-
merged

80riginally trained on LLaMA2-70B, we migrate the ap-
proach to LLaMA 3.1-8B to ensure fair comparison.
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| Llama | Qwen
| PWR@K K=3 K=5 K=10 K=20 | K=3 K=5 K=10 K=20
Baseline 12.37  19.57 29.25 4254 | 1522 19.05 26.18 35.90
CultureLLM 1532 19.89 25.10 27.76 | 6.01 7.48 10.34  16.15
SimLLMCultureDist  22.30  30.94 4220 50.73 | 16.83 21.89 30.84 42.05
USA CultureMerge 2029 29.24 40.33  49.07 - - - -
CultureSPA 19.30 27.73 4093 49.71 - - - -
CSP 30.30  37.61 4895 60.95 | 20.34 28.19 39.05 50.65
CCT 2592 3298 44.05 5554 | 2259 3051 4231 5476
CultureSteer 38.14 50.30 67.58 80.13 | 3634 46.06 59.78 72.05
Baseline 10.69 16.53 2496 3592 | 1243 16.16 22.05 29.97
CultureLLM 12.68 1633  20.65 23.19 | 5.68 7.14 9.46 14.06
SimLLMCultureDist  19.24  26.28 35.00 41.43 | 1490 1927 26.04 34.53
UK CultureMerge 1734 2495 3358 41.04 - - - -
CultureSPA 1646 2343 33,53 4096 - - - -
CSP 2431 30.64 3991 4927 | 1643 22.14 30.58 39.86
CCT 21.58 2774 35770 4496 | 18.17 2427 3354 4272
CultureSteer 29.19 38.84 5145 61.88 | 2823 34.88 46.10 57.53
Baseline 9.53 15.62 2325 33.67 | 11.87 15.07 2135 2841
CultureLLM 13.13 1682 2029 22.11 | 5.15 5.97 8.25 13.45
SimLLMCultureDist ~ 16.63  22.67 31.10 37.80 | 13.16 17.45 24.10 32.88
ocC CultureMerge 1599 22.64 30.64 37.83 - - - -
CultureSPA 1442 2120 3135 37.78 - - - -
CSP 23.17 28.62 36.78 4588 | 1558 21.21 29.02 37.60
CCT 20.21 25.64 3337 4241 | 17.16 22.67 31.61 40.63
CultureSteer 27.56 3544 47.65 58.77 | 25.05 3222 41.55 5222
Baseline 7.31 11.03 1843 24.01 | 8.61 11.65 17.16 24.11
CultureLLM 0.73 0.86 1.01 1.05 4.20 6.87 10.56  14.61
SimLLMCultureDist ~ 8.42 1333 19.09 2472 | 11.78 1632 23.82 3498
CN CultureMerge 10.30  15.11 2145 2577 - - - -
CultureSPA 10.10 1475 20.57 26.35 - - - -
CSpP 10.52  15.83 2334 29.81 | 1556 21.59 31.77 4281
CCT 9.71 14.08 21.02 28.00 | 1232 17.71 26.57 36.85
CultureSteer 12.77 19.04 27.26 33.53 | 21.78 30.13 44.88 58.76
Baseline 9.98 15.69 2397 34.04 | 12.03 1548 21.69 29.60
CultureLLM 1047 1348 16.76 1853 | 5.26 6.87 9.65 14.57
SimLLMCultureDist  16.65 23.31 31.85 38.67 | 14.17 1873 2620 36.11
Average CultureMerge 1598 2299 3150 3843 - - - -
CultureSPA 15.07 21.78 31.60 38.70 - - - -
CSP 22.08 28.18 37.25 4648 | 1698 2328 32.61 42.73
CCT 19.36  25.11 3354 4273 | 17.56 23779 3351 43.74
CultureSteer 2692 3591 4849 5858 | 27.85 3582 48.08 60.14

Table 1: Overall comparison results: (1) LLMs display cultural biases in the WAT task; (2) CultureSteer enhances
LLMs’ cultural awareness and achieves the best performance.

Table 1, where the “ Baseline ” denotes the de-
fault cultural preferences exhibited by the LL.Ms.
Both models consistently reveal a cultural pref-
erence pattern: USA > UK > OC > CN.? This
suggests that, in terms of word-level cognitive abil-
ities, LLMs exhibit a stronger inclination toward
American culture, aligning with findings from prior
studies (Cao et al., 2023b; Myung et al., 2024;
Zhou et al., 2025a). Overall, Llama demonstrates
stronger human-like word-level cognitive abilities
compared to Qwen, primarily due to its signifi-
cantly better performance in English-speaking cul-
tural contexts. In contrast, the performance gap
between the two models is relatively small in CN.

To demonstrate that performance differences are due to
cultural factors rather than the language used in prompts, we
conducted an ablation study. Details are provided in Ap-
pendix D.

Interestingly, when evaluating PWR @3, Qwen out-
performs Llama across all cultural contexts, sug-
gesting that Qwen excels at predicting highly as-
sociated words. However, as K increases, LLlama
surpasses Qwen, indicating that Llama possesses a
more comprehensive associative cognition across a
broader range of related words.

CultureSteer Enhance LLM Cultural Awareness
At the methodological level, CultureSteer consis-
tently outperforms both prompt-based methods and
culture-related models across all cultural settings
while some models performed worse after fine-
tuning. This demonstrates that the model does
not rely on explicit textual configurations but also
showcases the superiority of our implicit cultural
steering mechanism over traditional fine-tuning ap-
proaches that may suffer from overfitting or cul-
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Figure 3: Fine-grained performance comparison across 22 semantic classes in the test set with PWR@20. Red

denotes Global Knowledge,

tural knowledge interference. Interestingly, for
the Llama model, the CSP method consistently
outperforms the CCT method across all cultural
contexts. In contrast, for the Qwen model, the
CSP method performs better only in the Chinese
cultural context, while the CCT method excels in
the other three, particularly in English-speaking
settings. This suggests that Llama is more effec-
tive with culture-specific prompts tailored to a sin-
gle context, whereas Qwen demonstrates stronger
cross-cultural reasoning, especially for the English-
speaking environments.

5.4 Fine-Grained Results

We visualize the fine-grained performance com-
parison across 22 semantic classes in the test set,
as shown in Figure3. The results reveal notable
differences among baseline models in the Cogni-
tion and Value classes, with Qwen demonstrating
value orientations more aligned with Chinese cul-
ture, while Llama exhibits stronger alignment with
English cultural values. Furthermore, based on
their semantic meanings, these 22 classes are cate-
gorized into three groups: Global Knowledge, Per-
ceptual Experience, and Cultural Ideologies. Cul-
tureSteer improves cultural awareness in both mod-
els with domain-dependent effectiveness. While
global knowledge categories (e.g., World, Animals)
remain difficult to align culturally, perceptual ex-
perience categories (e.g., Action, Space) show no-
table gains, especially within English-speaking cul-
tures. Llama still exhibits gaps between English
and Chinese contexts after steering, whereas Qwen
achieves more balanced cross-cultural performance,
nearing parity in cultural ideologies (Values, Soci-
ety). Overall, CultureSteer mitigates cultural biases

denotes Perceptual Experience, and blue denotes Cultural Ideologies. Other
PWR@K (K=3, 5, 10) results are shown in Appendix E.

and enhances associative abilities but cannot fully
overcome inherent differences in models’ cultural
perception.

6 Analysis

6.1 Culture-Specific Semantic Learning
Matters

To validate the effectiveness of our proposed
cultural-aware steering mechanism, we conduct
two controlled experiments: one without cultural
preference semantic learning in training and one
with cross-cultural semantic space steering in in-
ference. The results are shown in Table 2. We
observe a general decline in performance when the
cultural semantic preference space is not learned
or when a mismatched cultural semantic space is
used for steering. This finding confirms the pres-
ence of cultural semantic preferences, highlights
the differences across cultural semantic spaces, and
underscores the importance of implicitly learning
these preferences. For more detail, on LLama, no
significant performance differences are observed
when comparing the absence of cultural prefer-
ence semantic learning with the use of mismatched
cross-cultural semantic space steering. However,
on Qwen, mismatched cultural semantic spaces
have a negative impact on performance when eval-
uated at K < 10. Interestingly, as the evaluation
range increases to K = 20, a slight improvement
in performance is observed, which suggests that
broader evaluation scopes may capture additional
relevant associations despite the mismatch, par-
tially offsetting the negative effects.
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TopK Model Culture w/oW Wysa Wux Woc Wen PWR@K Model Culture w/oW Wysa Wyx Woe Wen
USA 3628 3814 3621 3632 3632 USA 4796 5030 4799 4807  47.95

U UK 2780 2778 2919 2796 27.84 L UK 3703 37.03 3884 37.08 37.03

ama | oc 2648 2648 2636 27.56 2649 ama | oc 3357 3355 3373 3544 3356

K3 CN 1223 1223 1223 1221 1277 Kes CN 1830 1830 1836 1836  19.04
USA 37.14 3804 3483 3472 3474 USA 4724 4791 4387 4383  43.89

UK 2645 2672 2784 2679 2677 UK 3401 3321 3569 3326 3327

Qwen | o¢ 2682 2523 2520 2505 25.19 Qwen | o¢ 3135 3197 3197 3222 3201

CN 2149 1954 1934 1935 2178 CN 2481 2444 2415 2414 3013

USA 6443 6758 6450 6456  64.40 USA 76.11 8013 7620 7605  76.08

Liama | UK 4888  49.02 5145 4892 4885 Liama | UK 5887 5897 61.88 5877  58.87

ocC 4509 4510 4496 47.65  45.05 ocC 5589 5589 5604 5877 55.89

Ke10 CN 2612 2612 2612 2612 2726 K20 CN 3209 3209 3209 3209 33.53
USA 5619 6188 5681 5683  56.86 USA 6834 7394 6882 6892  68.89

Qwen | UK 4361 4392 4645 44.02  43.87 Qwen | UK 5458 5478  56.66 5474 5478

ocC 4119 4128 4114 4155 4111 ocC 5073 5070 5073 5222 5085

CN 3353 3301 3262 3273 4488 CN 4434 4451 4459 4457  58.76

Table 2: Results of controlled experiments on cultural-aware steering mechanism: performance declines without
cultural preference semantic learning or with mismatched cross-cultural semantic space steering, highlighting the

existence and variability of cultural semantic preferences.

Llama Qwen
Baseline CultureSteer | Baseline CultureSteer

WVS USA 53.64 51.11 47.66 5143
UK 51.69 53.89 48.33 51.57

OoC 51.43 53.32 46.63 52.35

CN 49.11 53.11 46.87 49.01

BLEnd USA 46.29 50.47 62.73 68.91
UK 43.18 48.86 57.89 62.86

CN 41.65 47.93 52.84 56.55

Table 3: Performance Comparison on Cross-Cultural Benchmarks: WVS and BLEnD. Bold values indicate superior
performance under each model. In WVS, we evaluated the Australian Q&A data as the result for OC, while BLEnD
lacks data from Australia and New Zealand, so no evaluation was conducted.

6.2 Generalization on Cultural Tasks

To assess whether CultureSteer’s cultural aware-
ness and cognitive modeling capabilities bene-
fit downstream culture-related tasks, we perform
experiments on two datasets: the World Values
Survey (WVS) (Xu et al., 2024), which captures
global perspectives on values and beliefs, and
BLEnD (Myung et al., 2024), which focuses on
everyday knowledge in diverse cultures. The exper-
imental results are shown in Table 3. CultureSteer
consistently outperforms across all cultural settings
on both tasks, except for the USA culture in the
WYVS task, indicating that our method enhances
LLMs’ cultural awareness through word-level in-
terventions. The performance gains on both WVS
and BLEnD confirm that mitigating cultural bias in
word association tasks establishes a foundational
cognitive structure for broader cultural competence.
By grounding conceptual mappings in cultural con-
texts through word association mechanisms, Cul-
tureSteer activates latent cultural perception capa-

bilities in language models, surpassing superficial
mitigation of task-specific biases. This validates
that word association analysis serves as an effec-
tive entry point for enhancing the generalization
capacity of multicultural LLMs.

6.3 Case Study

To gain deeper insights into how CultureSteer dif-
ferentially influences the probability distributions
of Afﬂ, we perform a targeted case study focus-
ing on the cue word “red” across three English-
speaking cultures: USA, UK, and Oceania (OC).!°
We compute the probability differences between
CultureSteer and the baseline LLM version for
A¢,, as illustrated in Figure 4. The results re-
veal notable probability increases for both culture-
specific words (red marks) and general words
shared across cultures. This indicates that the
model learns not only universal word associations

!Chinese (CN) is excluded to avoid confounding linguistic
differences across language families.
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Figure 4: Probability differences between CultureSteer
and vanilla models across USA, UK and OC. Red marks
denote culture-specific words, while gray marks repre-
sent general words common across cultures.

but also culture-specific ones, validating the effec-
tiveness of the CultureSteer.

7 Conclusion

Our research aims to utilize the insights from WAT
to evaluate and mitigate cultural biases in LLMs.
We proposed a novel metrics for assessing the asso-
ciation abilities of LLMs through word prediction
task. Additionally, we introduced CultureSteer that
leverages word association patterns to align LLMs’
cultural cognition by guiding sematic representa-
tions toward culturally specific spaces and vali-
dated effectiveness of this method in downstream
tasks. Although we did not explicitly prescribe
the specific associative logic underlying word as-
sociations, we instead enabled the model to infer
these connections through contextual prompts. Re-
markably, our training methodology successfully
elicited the model’s cross-cultural word association
capabilities. Future research could concentrate on
refining these associative patterns to further aug-

ment models’ cultural sensitivity and semantic com-
prehension.

Limitation

Our research is constrained by its focus on a limited
number of languages and cultures when examining
word association differences, primarily due to the
reliance on word association test datasets sourced
from human participants, which poses significant
challenges to scalability. Moreover, our control
vector mechanism treats cultures as independent
entities, without adequately considering potential
relationships and interactions between them. Fu-
ture work could address these limitations by devel-
oping scalable methods for collecting word asso-
ciation data, expanding the linguistic and cultural
scope, and incorporating inter-cultural connections
to provide a more comprehensive and nuanced per-
spective.
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A Data Preparation

A.1 Few example of IDS chapters

We list the whole 22 chapters of IDS and a few

example words, shown in Table 4

Chapter Examples(English)
Physical world flame, ice, light
Kinship they, girl, male
Animals bee, ant, fox
The body blind, wound, dream
Food and drink fruit, mill, dish
Clothing and grooming headband, coat, tailor
The house brick, window, yard

Agricultural and vegetation
Action and technology
Motion
Possession
Spatial relations
Quantity
Time
Sense perception
Emotion and values
Cognition
Speech and Language
Society and politics
Warfare and hunting
Law
Religion and belief

crop, plow, garden
wash, untie, glass
harbor, carriage, road
market, trade, tax
wide, south, far
second, some, more
often, age, summer
see, color, heavy
joyful, love, hate
know, learn, pupil
ask, refuse, paper
master, friend, custom
fight, soldier, shoot
court, accuse, steal
bless, heaven, ghost

Table 4: The 22 chapters names with few sample words

A.2 Data Cleaning

We filter SWOW with IDS by the following steps:

* For one-to-many alignments in IDS, we retain
only the first word in the list of multiple terms.

* Align the cue words between English and Chi-
nese in IDS cross-culture word paris

* Remove abnormal characters and meaningless
responses, such as *#Missing’ or ’?’.

* Filter out responses containing multiple words
in English and those with more than four char-
acters in Chinese.

* Truncate the association words for each cue
word to the number of association words cor-
responding to the culture with fewest associa-
tion words.

A.3 Data Overview

The data overview(frequency) of our dataset has
been shown in Table 5. By truncating the associa-
tion word, we ensure that the number of tuples for
each association sorting A,, corresponding to each
cue word is consistent across cultures.
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Chap Cue Asso Users

@e) ysA UK OC CN
World 52 1596 3895 645 513 1995
Kinship 34 14.21 2246 342 266 1282
Animals 65 142 3416 706 459 2420
Body 92 13.12 4988 897 679 3462
Food 53 1425 3046 519 379 2066
Cloth 44 1295 2296 450 273 1631
House 31 13.81 1784 267 234 1205
Agriculture 36 13.81 2285 409 270 1337
Action 39 14.08 2336 362 353 1436
Motion 47 1536 2910 465 488 1617
Possession 33 1297 1841 237 313 1175
Space 59 12.8 3544 406 529 1970
Quantity 29 12.69 1456 166 296 924
Time 42 12.05 2711 289 370 1455
Sense 34 1538 1975 292 426 1337
Values 42 13.17 2243 346 319 1670
Cognit 38 1345 2299 277 323 1332
Language 31 14.13 1978 277 271 1073
Society 27 14.19 1353 229 183 957
Warfare 26 1446 1428 277 158 940
Law 16 15.19 1078 135 135 682
Religion 11 14.36 592 104 72 440
Overall 881 13.94 51700 8097 7309 32406

Table 5: The data overview(frequency) of our dataset.

B Metric Discussing

We provide a detailed comparison with Discounted
Cumulative Gain at K (DCG@K), a widely-used
position-weighted evaluation metric in information
retrieval.

DCG @K Formulation DCG@K applies a loga-
rithmic discount to the relevance scores based on
their ranking positions, with the intuition that items
ranked lower should contribute less to the overall
score. For our Word Association Task (WAT), we
adapt DCG@K as follows. Given the ground truth
associative words A = {a1,as,...,an} ranked
by their associative strength, and the LLM’s pre-
dicted ranking A, DCG@K is defined as:

K rel(i)
DCG@K = Z - 8)
=1

go(i+ 1)

where rel(7) represents the relevance score of the
item at position ¢ in the predicted ranking. In our
adaptation, we define:

if 4; € A,

0 otherwise

N —rank(a;)+1
N

rel(i) = ©))

where rank(a;) denotes the ground truth ranking
position of the predicted word a; in AS . This for-
mulation assigns higher relevance scores to words
that appear earlier in the ground truth ranking.

Experimental Results with DCG@K We re-
evaluate all our main experiments using DCG@K
and present the results in Table 6. The experimen-
tal setup and datasets remain identical to those re-
ported in the main paper.

The results obtained using NDCG @K are con-
sistent with those derived from our proposed
PWR @K metric. Both metrics demonstrate similar
trends across different models, cultural contexts,
and experimental conditions. This consistency val-
idates that our key findings and conclusions are
robust to the choice of position-weighted evalua-
tion metric.

C Experiment Settings
C.1 Template Using

The templates used in this work are shown in Ta-
ble 7. Notably, the CN-t condition also employs
English prompts.

C.2 Hyperparaments

The detailed setting of hyperparaments are shown
in Table 8.

D Language Ablation Study

In § 5, we performed an ablation study introducing
a CN-t (Chinese-to-English translated) group to in-
vestigate the impact of linguistic differences on our
results, controlling for language while preserving
English context. Chinese-associated words were
translated using MUSE bilingual dictionaries (Lam-
ple et al., 2017), with Opus-MT-zh-en (Tiedemann
et al., 2024) covering uncovered pairs. Results in
Table 9 suggest that Chinese contexts more effec-
tively activate Chinese word association capabili-
ties, indicating that the main experimental perfor-
mance differences stem from cultural rather than
linguistic factors.

E Granular Performance

The granular performance is shown in Figure 5.
When K=3, 5, 10, the CultureSteer results con-
sistently exhibit comparably weaker performance
in Global Knowledge categories, while cultural
disparities in Llama remain greater than those in
Qwen.
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| Llama | Qwen

| PWR@K K=3 K=5 K=10 K=20 | K=3 K=5 K=10 K=20
Baseline 088 1.17 1.54 1.78 0.82 1.00 1.23 1.51
CultureLLM 078 093 1.08 1.12 029 035 044 0.54
SimLLMCultureDist  0.98 127  1.63 1.87 0.82 1.00 1.23 1.51
USA CultureMerge 092 120 1.57 1.79 - - - -
CultureSPA 087 1.15 1.53 1.76 - - - -
CSp 1.04 131 1.65 1.90 1.02 122 150 1.77
CCT 083 1.06 1.33 1.49 1.04 121 146 1.72
CultureSteer 149 1.87 236  2.66 138 171 213 2.40
Baseline 094 1.18 135 0.68 0.70 0.82 1.00 1.20
CultureLLM 070 0.81 0.85 0.62 025 030 037 0.45
SimLLMCultureDist 1.03 128 1.43 0.77 0.69 082 1.00 1.20
UK CultureMerge 097 122 138 0.74 - - - -
CultureSPA 095 120 137 0.68 - - - -
CSP 1.00 124 141 0.81 079 095 1.16 1.35
CCT 085 1.04 1.17 0.68 0.81 095 1.15 1.33
CultureSteer 138 171 1.94 1.16 1.03 127 1.55 1.77
Baseline 068 091 1.18 1.33 0.70 0.83 1.01 1.20
CultureLLM 062 072 0.83 0.86 028 033 040 0.49
SimLLMCultureDist  0.77 098 1.22 1.39 0.70 0.83 1.01 1.20
oC CultureMerge 0.74 095 120 1.37 - - - -
CultureSPA 0.68 090 1.17 1.32 - - - -
CSP 081 1.00 1.22 1.39 0.82 098 1.19 1.37
CCT 068 085 1.04 1.16 079 093 1.10 1.28
CultureSteer 116 144 1.77 1.99 1.04 1.28 1.56 1.79
Baseline 0.62 080 1.01 1.16 0.77 098 1.26 1.58
CultureLLM 0.06 0.06 0.07 0.07 029 038 0.52 0.65
SimLLMCultureDist  0.58 0.76  0.96 1.11 0.77 098 1.26 1.58
CN CultureMerge 0.59 0.76 0.95 1.08 - - - -
CultureSPA 0.62 0.79 1.00 1.14 - - - -
CSP 0.80 1.03 1.30 1.47 1.13 145 194 2.35
CCT 0.81 1.01 124 1.39 094 124 1.68 2.06
CultureSteer 1.06 135 1.69 1.87 145 1.88 2.54 3.06
Baseline 090 091 1.18 1.37 0.86 0.86 1.06 1.29
CultureLLM 0.71  0.60 0.70 0.73 033 032 040 0.50
SimLLMCultureDist 099 097 1.22 1.41 0.85 0.86 1.06 1.29
Average CultureMerge 095 093 1.19 1.37 - - - -
CultureSPA 090 091 1.17 1.36 - - - -
CSP 1.02 1.03 129 1.50 1.00 1.07 1.33 1.61
CCT 0.84 089 1.11 1.27 098 1.01 124 1.50
CultureSteer 145 144 180 2.07 131 143 178 2.13

Table 6: Re-evaluated experimental results using DCG@XK show consistent performance trends with our proposed
PWR @K metric across models and conditions, confirming the validity and robustness of PWR @K for assessing
ranking effectiveness.
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Language Mode Template

Base When "{cue_word}" is mentioned, people often think of the following words:

You are a person with {culture} cultural background.
EN,CN-t CSP
When "{cue_word}" is mentioned, people often think of the following words:

You are a person with {culture} cultural background.

cCT Before you respond, think about how {culture} culture is different from {cultures} cultures.
When "{cue_word}" is mentioned, people often think of the following words
Base LEEHE" {cue_word }", NI TETESHEE| FIiF &2
PR — A ESHE RN -
CN CSP

HEGE " {cue_word )", AMMTFEE S AR A1 2
fRE—THESNE RN -
CCT EEEZ ], BRERTESULE EE - BE - REMSULRIARFHE -
LEEHE" {cue_word }", NI TETESTEE| BIiF &2

Table 7: Templates for different tasks and regions, where red denotes additional cultural information, blue indicates
cross-cultural thinking instructions, and marks task descriptions aimed at preventing LLMs from generating
redundant responses.
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Llama_baseline Qwen_baseline Llama_CultureSteer Qwen_CultureSteer

) House Cloth . House Cloth . House Cloth House Cloth
Agriculture Foo! USA Agriculture Food Agriculture Food Agriculture Food

UK

Values 3 Society Values 3 Society Values Society Values 3 Society
Cogrianguage Cogrianguage Cogrlianguage Cogrlianguage

(a) Performance in PWR@3

Llama_baseline Qwen_baseline Llama_CultureSteer Qwen_CultureSteer
House Cloth House Cloth “House Cloth “House Cloth
Agriculture Foor USA Agriculture Food Agriculture Food Agriculture Food

UK

Values 3 Society Values 3 Society Values Society Values ) Society
Cogrianguage Cogrianguage Cogrlianguage Cogrilianguage
(b) Performance in PWR@5
Llama_baseline Qwen_baseline Llama_CultureSteer Qwen_CultureSteer
House Cloth House Cloth House Cloth House Cloth
Agriculture Foo.—— USA Agriculture Food Agriculture Food Agriculture Food

Values Society Values Society Values Society Value:

) . S 3 Society
Cogrianguage Cogriianguage Cogrlianguage Cogrlianguage

(c) Performance in PWR@10

Figure 5: Graunalr performance in PWR@3, 5 and 10.
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Phase Hyperparameters Value

Train learn rate le-4
epsilon le-3
max length 64
12 rate 0
LoRA rank 8
LoRA alpha 16
LoRA dropout 0.05
batch size 8
epoch 5

Generate max new tokens 5
temperature 1
epsilon le-3

Table 8: Relative hyperparameters

Llama(baseline)
PWR@K 3 5 10 20

CN 7.31 11.03 1843 24.01
CN-t 551 879 15.62 23.75

Qwen(baseline)

CN 8.61 11.65 17.16 24.11
CN-t 555 721 10.33  15.26

Table 9: Comparison results after translating Chinese
prompts and lexical items into English. Bold values
indicate stronger activation of word association capabil-
ities in Chinese linguistic contexts.
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