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Abstract

Recently, Large Language Models (LLMs)
have been widely adopted in a wide range of
tasks, leading to increasing attention towards
the research on how scaling LLMs affects their
performance. Existing works, termed Scal-
ing Laws, have discovered that the final test
loss of LLMs scales as power-laws with model
size, computational budget, and dataset size.
However, the temporal change of the test loss
of an LLM throughout its pretraining process
remains unexplored, though it is valuable in
many aspects, such as selecting better hyper-
parameters directly on the target LLM. In this
paper, we propose the novel concept of Tem-
poral Scaling Law, studying how the test loss
of an LLM evolves as the training steps scale
up. In contrast to modeling the test loss as a
whole in a coarse-grained manner, we break it
down and dive into the fine-grained test loss of
each token position, and further develop a dy-
namic hyperbolic-law. Afterwards, we derive
the much more precise temporal scaling law by
studying the temporal patterns of the parame-
ters in the dynamic hyperbolic-law. Results on
both in-distribution (ID) and out-of-distribution
(OOD) validation datasets demonstrate that our
temporal scaling law accurately predicts the
test loss of LLMs across training steps. Our
temporal scaling law has broad practical appli-
cations. First, it enables direct and efficient
hyperparameter selection on the target LLM,
such as data mixture proportions. Secondly,
viewing the LLM pretraining dynamics from
the token position granularity provides some
insights to enhance the understanding of LLM
pretraining.

1 Introduction

Large Language Model (LLM) marks a paradigm
shift in the scope of natural language processing,
demonstrating unprecedented capabilities in ac-
complishing complicated tasks of natural language
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understanding and generation (Devlin et al., 2019;
Radford et al., 2018). A cornerstone of this re-
markable progress lies in the scalability of the
Transformer architecture (Vaswani et al., 2017),
which has facilitated the development of increas-
ingly large models. Moreover, the accessibility of
large-scale training is significantly enhanced by
the abundance of data gathered from the Internet,
which enables the construction of giant training
datasets to improve model performance (Radford
et al., 2019). Due to the scalability of both the
model size and training data scale, LLMs with
billions of parameters (Brown et al., 2020) and
even trillions of parameters (Fedus et al., 2022) are
widely proposed and applied in various tasks.

The scalability of LLMs has been extensively
studied in terms of variables like model size, com-
putational budget, and dataset size (Kaplan et al.,
2020). Prior works in this domain, which are com-
monly referred to as “scaling laws”(Kaplan et al.,
2020; Henighan et al., 2020), have proposed empir-
ical principles to characterize the power-law (i.e.,
exponential patterns) among those variables. Those
scaling laws demonstrate that the final test loss1 of
an LLM improves exponentially with scalable fac-
tors, i.e., model size, computational budget, and
dataset size. Recently, similar explorations have ex-
panded to multi-modal training (Cherti et al., 2023;
Aghajanyan et al., 2023) and transfer learning (Her-
nandez et al., 2021), enabling researchers to predict
the performance of LLMs in different scenarios.

Prior works of scaling laws typically predict the
final test loss of fully-trained LLMs with a given
computational budget after completing pretraining
with mostly fixed hyperparameters (like data mix-
ture proportions, weight decay, etc.) (Kaplan et al.,
2020; Henighan et al., 2020; Cherti et al., 2023;
Aghajanyan et al., 2023). However, variations in

1Following (Kaplan et al., 2020), "test loss" refers to the
loss on unseen data, which can include both the test and vali-
dation sets.
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Temporal Scaling Law Prior Scaling Laws
Predict objective Evolution of test loss during pretraining Final test loss after pretraining

Fitting & Predicting manners
Fit with light early pretrain on target LLM, Fit with fully pretrained smaller models,

predict on the target LLM predict on the target LLM
Granularity Loss on each token position Loss as a whole

Application
Select hyperparameters directly on target LLMs, Decide a target LLM size &
Provide insight w.r.t. pretraining dynamics, etc. data scale after given a budget

Table 1: Comparison between our temporal scaling law and prior scaling laws.

training hyperparameters also significantly influ-
ence the final test loss in a complicated way (Yang
et al., 2022; Xie et al., 2023). That underscores
the need for a more fine-grained scaling law, which
is to predict the temporal evolution of the test loss
as training steps scale up under different training
hyperparameters on a fixed model size. Such a
temporal scaling law is supposed to be comple-
mentary to prior works, because it further enables
the direct identification of better training hyperpa-
rameters on the target LLM after the model size
and data scale are determined based on previous
research. Furthermore, such a temporal scaling law
can also provide a theoretical basis for studying
more training dynamics of LLMs. Despite broad
applications, prior works have not explored practi-
cal scaling laws from the temporal perspective.

In this paper, we propose the novel concept of
Temporal Scaling Law for LLMs. Specifically,
we first try to model the test loss as a whole in
a coarse-grained manner but find it to be not pre-
cise enough. Then we further break the test loss
into the losses for tokens in different positions. By
carefully investigating multiple functions, we dis-
covered that utilizing dynamic hyperbolic-law ac-
curately portrays the pattern of losses on different
token positions across different training steps. We
further examine the evolution of the curve param-
eters for the dynamic hyperbolic-law and identify
their temporal patterns. We term this phenomenon
as the temporal scaling law, i.e., how the test loss
of an LLM evolves as the training steps scale up.
Our temporal scaling law accurately predicts the
subsequent test losses using the data from an early
training period. Prediction results on both the in-
distribution (ID) and the out-of-distribution (OOD)
validation datasets show that our methodology sig-
nificantly improves over baseline approaches.

Our temporal scaling law has broad practical
applications for LLM pretraining. In this paper, we
provide two use cases as examples:

(a) Our temporal scaling law presents a novel and
practical approach to selecting the hyperparameters

directly on the target to-be-pretrained LLM. Taking
the data mixture proportion as an example, current
works generally tune data proportions on a small-
scale model and directly apply the tuned weights to
pretraining the much larger target LLM (Xie et al.,
2023). However, optimal hyperparameters for a
small-scale model probably are not the optimal
ones for the much larger target LLM (Yang et al.,
2022). With the accurate loss prediction from our
proposed temporal scaling law, we can select the
target LLM’s hyperparameters directly by choosing
the best one which can achieve the lowest-predicted
test loss after training the target LLM with a small-
scale of training data.

(b) Our temporal scaling law reveals some learn-
ing dynamics of LLMs at the token granularity.
Specifically, we theoretically and experimentally
discovered that the loss decrease rate for tokens on
different positions remains uniform after an early
training period. Through experiments on various
position-based weighting strategies, we verify the
effectiveness of the default pretraining practice, in
which no weighting strategies on different token
positions are applied, though they are imbalanced
in terms of learning difficulty.

Differences from Existing Scaling Laws. We
summarize the differences between our temporal
scaling law and prior scaling laws (Kaplan et al.,
2020; Henighan et al., 2020; Cherti et al., 2023;
Aghajanyan et al., 2023) in Tab. 1. Our temporal
scaling law primarily focuses on the evolution of
test loss during the pretraining process, while prior
scaling laws model the relations of the final test loss
and the computational budget (generally decided by
model size and training data scale). Our temporal
scaling law enables a direct selection of training
hyperparameters on a target LLM after the model
size and training data scale are decided by prior
scaling laws. We underscore that our temporal
scaling law is a generic pattern that decoder-based
LLMs follow during the pretraining process.

Overall, our contributions are threefold:
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• We propose the Temporal Scaling Law, mod-
eling the evolution of test loss during LLM
pretraining.

• Based on our proposed temporal scaling law,
we provide a method for precisely predicting
the subsequent test losses after deriving the
parameters of the temporal scaling law from
an early training period.

• We present two scenarios to illustrate the
broad practical applications of our temporal
scaling law. For hyperparameter tuning, our
temporal scaling law enables the direct selec-
tion of better hyperparameter values based
on predicted LLM performance on the target
LLM. For learning dynamics, our temporal
scaling law provides theoretical and experi-
mental verifications for the default pretraining
practice that puts no weight on each token loss
at different positions.

2 Temporal Scaling Law

2.1 Preliminaries

Pretraining Language Models. We mainly dis-
cuss the generation process of decoder-based gen-
erative language models. A generative language
model is trained via next-token prediction. During
pretraining, the text corpus is commonly segmented
into token sequences. The token sequences are then
fed to the model for calculating the prediction loss
on each token position i. Formally, given a train-
ing text sequence Tn consisting of n tokens, i.e.,
Tn = [t1, · · · , ti−1, ti, · · · , tn], when predicting
the token ti, the language model takes the previous
tokens Ti−1 = [t1, · · · , ti−1] as input, and gener-
ates the probability distribution pi for the token
ti. The loss Li w.r.t. the token ti is commonly
calculated via the cross-entropy loss function. In
decoder-based transformers (Vaswani et al., 2017),
a look-ahead mask is applied in the multi-head at-
tention (MHA) module to ensure that each token
can only attend to previous tokens, preserving the
causal order of the generated sequence. Then, all
tokens’ pi can be calculated in a single forward
pass in parallel during pretraining. The loss Li
on each token’s pi is then averaged as the loss for
sequence Tn:

LTn =
1

n

n∑

i=1

Li (1)

ID-Val OOD-Val
Model Power-law Ours Power-law Ours
9.8M 0.6319 0.9858 0.7052 0.9795
58M 0.7606 0.9961 0.7684 0.9954

Table 2: R2 results for fitting the test loss with the
power-law (treat test loss as a whole) and our temporal
scaling law (token-level granularity). Bold represents
the best result.

2.2 Experiment Setup for Deriving Temporal
Scaling Law

We use experiment results to derive the temporal
scaling law and conduct predictions after deriving
parameters of the temporal scaling law from an
early training period. Please refer to Sec. B for
more experiment details.

Train Dataset. We train LLMs on the Pile (Gao
et al., 2021), consisting of 22 English text do-
mains. For all experiments, we tokenize it using
the LLaMA tokenizer (Touvron et al., 2023a) with
a 32k vocabulary. We apply the domain weights in
(Su et al., 2023) for LLM pretraining.

Validation Dataset. We apply two validation
datasets for test loss calculation. For the in-
distribution (ID) dataset, we randomly sample 800
sequences (1024 consecutive tokens for each) for
each text domain from the validation set in the Pile.
For the out-of-distribution (OOD) dataset, we sim-
ply adopt the validation split of the RealNews-Like
domain in the C4 dataset (Raffel et al., 2020), as it
is claimed to be “distinct from the Pile” (Gao et al.,
2021). We refer to both validation datasets as ID-
Val and OOD-Val, respectively. When calculating
test loss, we forward all sequences in the validation
dataset and average the results. It is worth noting
that calculating test loss is equivalent to calculating
the perplexity (PPL) for the validation dataset since
PPL can be directly acquired via test loss:

PPL(T ) = exp{− 1

n

n∑

i

log pθ(ti|Ti−1)} (2)

Models. We train two LLaMA-structure (Tou-
vron et al., 2023a) generative language models with
9.8M and 58M parameters to illustrate our temporal
scaling law. The architectures of both are identical
to the 14M and 70M parameter models in (Bider-
man et al., 2023). The differences between model
parameters can be ascribed to the different vocab-
ulary sizes and different activation functions (i.e.,
SwiGLU v.s. GeLU). When utilizing the temporal
scaling law for predictions and further applications,
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we adopt the architectures of the 410M and 1.0B
parameter models in (Biderman et al., 2023), which
leads to 468M and 1.2B models, respectively. To
further scale up and generalize the validation of
temporal scaling law, we also pre-train: (1) a 6.7B
model with the same architecture of LLaMA-7B,
(2) a 468M GPT-NeoX model, and (3) an 2B MoE
model. Please refer to Sec. G in the Appendix for
training and fitting results on (2) and (3).

Training. Following LLaMA (Touvron
et al., 2023a), we apply the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 3e-4. Following most open-source
LLMs (Touvron et al., 2023a; Biderman et al.,
2023), we use the cosine learning rate decay sched-
ule (Loshchilov and Hutter, 2017) for all experi-
ments to guarantee the broad applicability of our
work. All models are pretrained with 400B tokens
and 1k total warmup steps.

Metric for Fitting Model Evaluation. We pro-
pose the temporal scaling law to fit the test loss
during pretraining. Following the common prac-
tical choice (Cheng et al., 2014), we choose the
coefficient of determination (R2) to evaluate the
quality of the fit. R2 demonstrates the proportion of
the variability in the ground truth that the proposed
fit could explain. Formally, we have:

R2 = 1−
∑

i(yi − fi)
2

∑
i(yi − y)2

, (3)

where yi is the ground-truth test loss w.r.t. the i-th
step, and y is the average of yi. fi is the fit test loss
w.r.t. the i-th step. R2 ∈ (−∞, 1] and a perfect fit
has R2 = 1. A larger R2 indicates a better fit.

2.3 Temporal Scaling Law
The original scaling law (Kaplan et al., 2020) has
validated that the final test loss for training with dif-
ferent model sizes and data sizes follows a power-
law. To validate the effectiveness of the power-law
for the temporal evolution of test loss, we pretrain
9.8M and 70M models following Sec. 2.2 and fit
the power-law function (L = (p1x)

p2 + p3, {pi}
are fitting parameters) to the test loss evolution
curve (i.e., treating test loss as a whole to fit in
this case) using non-linear least squares. As shown
in Tab. 2, though somehow effective, applying the
power-law is not precise enough to portray the tem-
poral evolution for the test loss (follow-up experi-
ments in Fig. 3 also demonstrate that directly using
the power-law in predicting the future test loss re-
sults in larger errors). Such results motivate us

to find a better method to understand the test loss
evolution during LLM pretraining.

The Dynamic Hyperbolic-Law of Loss on Dif-
ferent Token Positions. To fit and predict the
test loss more precisely, we propose to break it
down and investigate the temporal scaling law
from a finer granularity and look into the inher-
ent patterns of the loss on every token position.
Language models are statistical models trained to
model the probabilistic process of next-token pre-
diction. Formally, for a partial sequence of n to-
kens Tn = (t1, t2, · · · , tn), the probability of the
following token being tn+1 given the preceding
tokens is denoted as P (tn+1|Tn). Intuitively and
statistically, in a consecutive sequence:

E[P (tn+1|Tn)] ≳ E[P (tn|Tn−1)], (4)

since tn+1 has a longer context than tn. To illus-
trate this pattern, we plot the results of test loss for
tokens in different positions, as validated on our
ID-Val, using both our 9.8M and 58M models after
training for 100B, 200B, 300B, and 400B tokens.
We show the results for 400B tokens and leave the
rest in the Appendix. As shown in Fig. 1, both
models, although varying in scales, follow the same
pattern that test loss for tokens with shorter con-
text is commonly higher than that for tokens with
longer context. For both models, the loss values
for tokens near the end of the sequence seem to
converge at a certain value. We find that this trend
can be well fit with a hyperbolic relation2:

Li =
a0

1 + a1i
+ a2, (5)

whereLi is the loss on token position i(1 ≤ i ≤ n),
and a0, a1, and a2 are fitting parameters solved by
non-linear least squares. The fit for data from our
9.8M and 58M model are presented in Fig. 1. By
applying this fit to test loss results of all check-
points across the training phase, we find that over
99% of them can be fit with such hyperbolic rela-
tion with R2 > 0.95, well demonstrating its gen-
erality. We term this phenomenon as the dynamic
hyperbolic-law. See Sec. C for more insights.

We also tested Kaplan’s power-law (Kaplan
et al., 2020) and other functions that conform to
Eq. (4) to fit the curve, but the results are subop-
timal. For example, using the power-law yields

2Note that this hyperbolic relation is actually a special case
of the power-law (Kaplan et al., 2020; Team et al., 2024) with
an exponent of −1. Compared to directly applying the power-
law, the hyperbolic relation leads to better fitting results. We
compare and elaborate this in Sec. C of the Appendix.
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Figure 1: Actual loss and fitting curve across different
token positions for the 9.8M and 58M models on ID-Val.
The loss follows a dynamic hyperbolic-law.

R2 < 0.75 for over 95% checkpoints. The conclu-
sion still holds on the OOD-Val and on larger-scale
models. See detailed results in Sec. F.

From the Dynamic Hyperbolic-law to the
Overall Temporal Pattern. In the dynamic
hyperbolic-law, a2 is the converging factor denot-
ing the converged value of loss on each tail to-
ken as context length increases. a0 denotes the
loss gap between the first token and the last to-
ken, and a1 is the scaling factor along sequence
length. To analyze how the derived values of a0,
a1, and a2 vary as training steps increase, we col-
lect the derived value tuples of (a0, a1, a2) for all
evaluated small model checkpoints during pretrain-
ing: [(aN1

0 , aN1
1 , aN1

2 ), · · · , (aNtot
0 , aNtot

1 , aNtot
2 )],

where Ni is the number of trained tokens at the i-th
checkpoint, and Ntot is the total number of tokens
used for pretraining. Then we plot the collected
(a0, a1, a2) values on ID-Val w.r.t. the number of
tokens trained (denoted as N ) for the 58M model
in Fig. 2. It can be seen that the evolution of a0,
a1, and a2 presents an evident pattern that can be
fit by common functions. Therefore, it is possible
for us to firstly fit the temporal evolution of a0, a1,
and a2, and then fill them into Eq. (5) to depict the
temporal evolution of the overall test loss.

First, for a0 and a1, we use a series of common
functions to fit their temporal evolution, and even-
tually choose the following functions that yield the
lowest fitting errors:

aN0 = α0 log(α1 log(N) + α2) + α3,

aN1 =
β0

1 + β1N
+ β2,

(6)

where the {αi} and {βi} fitting parameters are

solved by non-linear least squares. Observed from
the original data in Fig. 2, we find that the value
of a0 and a1 generally converges after a period of
training, but suffer from fluctuations after converg-
ing due to the uncertainty of the first prediction po-
sition in a sequence, which has no previous context
to make prediction. To mitigate the fluctuations,
we define a separation point Nsep:

Nsep := minN, s.t. ∇aN0 < ϵ, ∇aN1 < ϵ. (7)

And we manually stabilize a0 and a1 after Nsep:

aN0 = a
Nsep

0 , aN1 = a
Nsep

1 , (N ≥ Nsep). (8)

Here we empirically set ϵ = 10−4/1B tokens.
For parameter a2, we observe that Nsep is also

a separation point as it marks the shift of its de-
creasing pattern. Before Nsep, we apply the same
function form of the loss gap factor a0 as in Eq. (6).
After Nsep, we find that its temporal pattern holds
strong correlations with the cosine learning rate
scheduler, and in turn apply a cosine relation. Simi-
lar to Eq. (6), we search the common functions and
choose the best fitting function among them for a2:

aN2 =





γ0 log(γ1 log(N)+γ2) + γ3,

(N < Nsep)

γ4 cos(γ5N + γ6) + γ7,

(N ≥ Nsep)

(9)

where {γi} are fitting parameters solved by non-
linear least squares. Interestingly, from the fit for
a2, we find that γ5 ≈ π

Ntot
, indicating that the

training schedule resembles half of a cosine pe-
riod, consistent with the cosine scheduler. It further
validates our speculation that a2 has a strong corre-
lation with the cosine learning rate decay.

We plot the fit of a0, a1, and a2 in Fig. 2. Our fit
captures the primary patterns of parameter evolu-
tion and ignores the insignificant fluctuations. The
conclusion holds on the OOD-Val, and for larger
models and models with other structures. See de-
tailed results in Secs. F and G.

After acquiring aN0 , aN1 , and aN2 , we could in
turn measure the pattern of the total test loss LN
by averaging the loss on each token:

LN =
1

n

n∑

i=1

aN0
1 + aN1 · i

+ aN2 . (10)

As listed in Tab. 2, the fit for all ground-truth test
losses during the whole training process achieves
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Figure 2: Fitting curve for a0, a1, and a2 of the 58M model on ID-Val. R2 for a0 and a1 is affected by fluctuations.

Model Scale LAMBADA Wikitext
9.8M 0.9887 0.9809
58M 0.9805 0.9899
468M 0.9831 0.9920
1.2B 0.9859 0.9930
6.7B 0.9872 0.9927

Table 3: R2 results for fitting the test loss with our tem-
poral scaling law on the LAMBADA and the Wikitext
validation datasets.

R2 > 0.99 across different settings, demonstrating
the validity of our temporal scaling law. Following
(Gao et al., 2021), We also validate the fitting re-
sults on the LAMBADA (Paperno et al., 2016) and
the WikiText (Merity et al., 2017) datasets. Specif-
ically, we use the validation and the test splits for
the LAMBADA dataset, and use the wikitext-2-
v1 domain for the WikiText dataset. As shown in
Tab. 3, all results achieve R2 > 0.98, well demon-
strating the effectiveness of our temporal scaling
law. Please refer to Sec. F for more fitting results.

Summary. Overall, we summarize our temporal
scaling law as follows:

• For LLM pretraining, in each training step,
the loss for tokens in different positions fol-
lows a dynamic hyperbolic-law, in which the
values of parameters (a0, a1, a2) will change
as training steps increase.

• The temporal patterns (i.e., values at different
training steps) of dynamic hyperbolic-law pa-
rameters (i.e., a0, a1, and a2) can be captured
individually with their corresponding coeffi-
cients (i.e., {αi}, {βi}, and {γi}) in the fitting
functions of fixed mathematical forms.

• The temporal pattern of the overall test loss is
derived by averaging losses at all token posi-
tions acquired by the dynamic hyperbolic-law,
i.e., filling Eq. (6-9) into Eq. (10).

2.4 Test Loss Prediction

The primary value of scaling laws lies in their capa-
bility of predicting training outcomes (Kaplan et al.,
2020). From the temporal perspective, accurate pre-
dictions of the upcoming training periods can assist
in a direct selection of hyperparameters based on
the target LLM’s performance, early stopping, etc.
In this section, we derive practical methods from
our temporal scaling law to accurately predict the
overall loss in the upcoming training periods, using
data from an early training period to derive parame-
ters of the temporal scaling law, during which only
Ntrain tokens are trained.

To predict the overall loss, we first predict the
temporal trajectory of aN0 , aN1 , and aN2 . We could
fit for aN0 and aN1 with the functions in Eq. (6):

ãN0 = α̃0 log(α̃1 log(N) + α̃2) + α̃3,

ãN1 =
β̃0

1 + β̃1N
+ β̃2,

(11)

where {α̃i} and {β̃i} are fit using all collected
{LNi }(N < Ntrain) with non-linear least squares.
Following Eq. (7), we could estimate the separation
point as Ñsep. Based on the relationship of Ntrain

and Ñsep, the test loss is predicted as:
Situation #1 (In most occasions): Ntrain ≤

Ñsep, i.e., in an early training stage where the sep-
arate point is not reached yet. For ãN0 and ãN1 , we
apply the fit Eq. (11) for N ≤ Ñsep. For ãN2 , we
first fit the first segment in Eq. (9):

ãN2 = γ̃0 log(γ̃1 log(N) + γ̃2) + γ̃3, (12)

where {γi} are fit using non-linear least squares.
Due to the absence of test loss data for Ntrain >
Ñsep, we could not acquire the value for ãN0 , ãN1 ,
and ãN2 at that period directly. To estimate the pat-
terns after the separation point, we propose general
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Figure 3: MSE results for predicting the subsequent test loss via the temporal scaling law after completing different
proportions of the training process. For the 468M, 1.2B, and 6.7B models, Nsep lies approximately at 40% of the
entire training schedule, and all presented results require predicting through both fitting stages (i.e., N < Nsep and
N ≥ Nsep). Note that the y-axis representing the MSE error is in log scale.

boundary conditions for estimation:

dãNi
dN N→Ñ+

sep

=
dãNi
dN N→Ñ−

sep

,

ã
N→Ñ+

sep

i = ã
N→Ñ−

sep

i .

(13)

According to the definition in Eq. (7), we simply

stabilize the values for ãN0 and ãN1 as ã
Ñsep

0 and

ã
Ñsep

1 correspondingly for N > Ñsep, fulfilling
the derivative condition in Eq. (13) approximately.
For ãN2 at N ≥ Ñsep, to eliminate the number of
unknown variables, we directly adopt the discovery
from fitting Eq. (9) that a2 resembles half of a
cosine period, and directly set γ̃5 = π

Ntot
. We set

γ̃6 = − π
Ntot

Nw, where Nw is the number of tokens
used for warmup training, to ensure that N = Nw

marks the start point of a cosine period. We in
turn solve for the rest parameters γ̃4 and γ̃7 in the
following function based on Eq. (13):

ãN2 = γ̃4 cos[
π

Ntot
(N −Nw)] + γ̃7. (14)

Situation #2 (Otherwise): Ntrain > Ñsep, i.e.,
in a middle stage where the separate point is already
reached: Apart from steps in Situation #1, we addi-
tionally calibrate γ̃4 and γ̃7 with the Ntrain > Ñsep

data by estimating ϵ4 and ϵ7:

ãN2 = (γ̃4 + ϵ4) cos[
π

Ntot
(N −Nw)] + (γ̃7 + ϵ7).

(15)
After acquiring the complete estimations of ãN0 ,

ãN1 , and ãN2 , we could calculate the test loss pre-
diction L̃N for each training step with Eq. (10).

Experiments. Predicting test losses in upcom-
ing training periods is a time series modeling prob-
lem. Following standard practice (Wu et al., 2021;
Liu et al., 2022), we choose MSE for evaluation:

MSE =
1

n

n∑

i=1

(LN − L̃N )2. (16)

Apart from the power-law, we also choose the re-
ciprocal (L = a0

1+a1N
+ a2) and the logarithmic

(L = log(a1 + a2N) + a3) relations as baselines
that model the test loss as a whole. We predict the
subsequent test loss after deriving parameters of
the temporal scaling law from, respectively, 10%,
20%, 30%, and 40% of the training process. Note
that here we apply the larger models with 468M,
1.2B, and 6.7B parameters for validation. As shown
in Fig. 3, on different model scales and proportions
of training, while the baselines hardly generate reli-
able results, our method always yields accurate re-
sults with MSE < 10−2. Our method yields far bet-
ter R2 as well. For example, when using 10% data
for 1.2B model on ID-Val, our method yields R2 =
0.87, while the power-law, reciprocal, and logarith-
mic baselines yield R2 = −1.26,−3.47,−1.02,
correspondingly. Those prediction results provide
strong evidence for the reliability of our temporal
scaling law. The conclusion holds on the OOD-Val.
See Sec. I for detailed results.

3 Use Case #1 of Temporal Scaling Law:
Hyperparameter Selection

Our temporal scaling law can be applied to enable
a direct hyperparameter selection for LLMs. With
our temporal scaling law, for hyperparameters that
are completely un-transferrable such as the weight
decay (Yang et al., 2022), it is applicable to di-
rectly search them on the target large model from
a candidate pool. As for hyperparameters that are
"partially transferrable", e.g., data mixtures, small
proxy models can help to identify a smaller range
of effective candidates for the target large model,
though not necessarily optimal. In such cases, our
method is compatible with existing small-model-
to-large-model hyperparameter searching methods,
and here we could use a retrieval-rerank pipeline
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BoolQ HellaSwag OpenBookQA PIQA SIQA StoryCloze Winogrande

468M
Small Model / 10B Test Loss 58.70 45.38 31.25 68.60 43.39 64.78 54.93
Our pipeline 57.07 45.98 33.68 69.36 44.01 64.88 54.02

1.2B
Small Model / 10B Test Loss 56.25 54.13 34.25 72.20 42.11 69.05 59.83
Our pipeline 58.70 54.51 34.90 72.36 46.73 69.11 60.32

Table 4: Average benchmark performance (0/1/5-shot) of models pretrained on different data proportions. “Small
Model” denotes the Top-1 on the smaller model. “10B Test Loss” denotes the Top-1 selected by real test loss on
ID-Val and OOD-Val validation sets after training 10B tokens. Bold represents the best result.

ID-Val OOD-Val

468M
Small Model / 10B Test Loss 8.65 11.92
Our pipeline 8.58 11.77

1.2B
Small Model / 10B Test Loss 7.55 10.29
Our pipeline 7.50 10.17

Table 5: Pretrained model PPL results. “Small Model”
denotes the Top-1 on the smaller model. “10B Test Loss”
denotes the Top-1 selected by real test loss after training
10B tokens. Bold is the best result.

to achieve more precise results.
For example, data mixture proportions greatly

affect the performance of LLMs (Touvron et al.,
2023a,b; Xie et al., 2023). Due to the huge com-
putation cost of training with multiple data pro-
portions directly on target LLMs, prior art sim-
ply applies the proportion values tuned on a much
smaller model (Xie et al., 2023). Using the tem-
poral scaling law, we could accurately predict the
final performance (in terms of test losses on vali-
dation sets) of different data proportions without
completing the extensive pretraining.

Specifically, to select the best data mixture pro-
portion for training a larger 468M/1.2B model, in
the retrieval stage, following the prior art (Xie et al.,
2023; Feng et al., 2024), we use a small-scale
model to locate a group of data mixture propor-
tion candidates. In the rerank stage, we train all
located data proportions on the target LLM for ac-
ceptable training tokens, and locate the best one
by predicting their final losses with our temporal
scaling law.

Experiment Setup. In the retrieval stage, we
conduct a grid search on a 58M model and locate
the Top-5 candidates. In the rerank stage, we train
each candidate for 10B tokens before making the
test loss prediction with Eq.11-14 on validation
datasets. To validate the data mixture choices by
temporal scaling law on the target 468M/1.2B mod-
els, we (1) primarily use the perplexity metric on
the ID-Val and the OOD-Val, and also (2) follow
(Touvron et al., 2023a; Rae et al., 2021) and em-
ploy 7 popular common sense reasoning bench-
marks, including BoolQ (Clark et al., 2019), Hel-

laSwag (Zellers et al., 2019), OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), StoryCloze (Mostafazadeh
et al., 2016), and Winogrande (Sakaguchi et al.,
2021) for evaluating the final fully trained models.
See the Sec. J for more experimental details.

Experiment Result. We compare the data mix-
ture proportion selected by our retrieval-rerank
pipeline with the following baselines: (1) the Top-1
selected directly on the much smaller model and
(2) the Top-1 selected by comparing the real test
losses on ID-Val and OOD-Val validation sets after
training 10B tokens on 468M/1.2B model. We find
that both (1) and (2) make the same choice from
the Top-5 candidates, and our pipeline locates a
different choice from them. As shown in Tab. 5,
our choice achieves lower perplexity across all set-
tings after completing pretraining (i.e., 400B to-
kens). Additionally, as shown in Tab. 4, our choice
yields superior benchmark performance in 12 of 14
metrics. Consequently, our approach of directly se-
lecting hyperparameters on the target LLM is more
effective and incurs an acceptable cost, which does
not necessitates fully training the model.

4 Use Case #2 of Temporal Scaling Law:
Revisit the Training Strategy

The temporal scaling law has afforded the possibil-
ity to study LLM pretraining in a finer granularity.
As noted in Sec. 2.3, tokens on different positions
possess a fundamental bias in learning difficulty.
Specifically, head tokens are generally harder to
predict than tail tokens. However, as suggested by
Eqs. (6) and (8), a0 and a1 remain constant after
the separation point. Therefore, for N > Nsep:

∂LNi
∂N

=
∂a2
∂N

, (17)

which is unrelated to token position i, suggesting
that LLMs learn equally on different token posi-
tions. To validate this observation, we trace the
actual loss decrease observed during training along
different token positions. It is observed that in
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a later training stage where the separation point
conditions in Eq. (7) are already fulfilled, test loss
decrease among all token positions tends to be uni-
form across all settings (see Fig. 11 for results).
Such a consistency between theoretical prediction
and experimental observation strongly validates the
reasonableness and effectiveness of our temporal
scaling law. Experiments also show that simply av-
eraging losses on all token positions is an effective
strategy for training LLMs. Refer to Sec. K for
more experimental settings and results.

5 Conclusion

Our research introduces the novel concept of Tem-
poral Scaling Law for Large Language Models
(LLMs), studying how the loss of an LLM evolves
as the training steps scale up. We analyze the
loss patterns on different token positions and dis-
cover that these patterns conform to a dynamic
hyperbolic-law. By studying the temporal evolu-
tion of parameters of the dynamic hyperbolic-law,
we could properly fit and precisely predict the evo-
lution of the LLM’s test loss, marking a significant
improvement over baseline methods. Such capa-
bility is crucial for numerous possible applications,
like better hyperparameter selection directly on tar-
get LLM and deeper understanding pretraining dy-
namics of LLM, etc.

Limitations

Our work termed Temporal Scaling Law, pioneers
the modeling of LLM pre-training from a temporal
perspective. Although our temporal scaling law ex-
hibits significant potential for both LLM research
and application, limitations still exist. Our research
primarily focuses on the pre-training stage. The
temporal patterns in other scenarios, such as trans-
fer learning, are not covered. We leave further
investigations of the above topics to our future re-
search.
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A Related Works

A.1 Large Language Models

Language models are statistical models designed
to model the probabilistic correlation in natural lan-
guage sequences (Touvron et al., 2023a). The intro-
duction of the Transformer architecture (Vaswani
et al., 2017) led to the development of large lan-
guage models. GPT-3 (Brown et al., 2020) marks
the beginning of the LLM era, as decoder-based
generative models are capable of completing var-
ious tasks via in-context learning. Further ad-
vancements in LLMs include PaLM (Chowdh-
ery et al., 2023), Pythia (Biderman et al., 2023),
LLaMA (Touvron et al., 2023a), etc. Currently,
GPT-4 (OpenAI, 2023) has pushed the boundaries
of LLMs further in terms of scale and capability.

A.2 Scaling Laws for Language Models

The concept of scaling laws for language mod-
els was proposed by (Kaplan et al., 2020). Their
study revealed that the test loss for generative trans-
former models scales as a power-law with model
size, dataset size, and the amount of computation
used for training. Building upon that foundational
study, further research has expanded the concept of
scaling laws to diverse problem settings (Hernan-
dez et al., 2021) and model architectures (Cherti
et al., 2023; Aghajanyan et al., 2023). For instance,
(Hernandez et al., 2021) has investigated scaling
laws for transfer learning. (Cherti et al., 2023) and
(Aghajanyan et al., 2023) observed scaling laws
for multi-modal model pertaining. Furthermore,
some recent works discovered other patterns be-
side the power-law for different problem settings,
such as continual pertaining (Que et al., 2024), data
mixtures (Ye et al., 2024), and training instabili-
ties (Wortsman et al., 2024). These works follow
a small-model-to-large-model perspective and pre-
dict the final performance of large models by fitting
the final training results on smaller models. Re-
cently, researchers have also investigated scaling
laws in the context of transfer learning (Isik et al.,
2024), where model performance is influenced by
both the size of the training dataset and the degree
of downstream task alignment.

Despite previous advancements, a critical point
that remains underexplored is the temporal trajec-
tory of LLM performance throughout training. Pre-
vious works (Kaplan et al., 2020) estimate that the
final test loss after training individually with dif-
ferent dataset sizes follows a power-law. However,
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such a coarse-grained estimation is not accurate
enough in portraying the test loss evolution during
a single pretrain process. By studying the loss be-
havior on different token positions, we introduce
the temporal scaling law, allowing for more precise
tracking and prediction of LLM test loss during
pretraining. Our temporal scaling law focuses on
the test loss evolution in a single pretrain process,
while prior scaling laws model the relations of final
test loss and the computational budget (model size,
dataset size, etc.).

B Further Experiment Details

In this section, we provide further details toward
the experiment settings in the article.

License for Scientific Artifacts. The Pile (Gao
et al., 2021) is subject to the MIT license3. The
C4 dataset (Raffel et al., 2020) is licensed under
Open Data Commons License Attribution family4.
The LAMBADA dataset (Paperno et al., 2016) is
licensed under Creative Commons Attribution 4.0
International license5. The Wikitext dataset (Mer-
ity et al., 2017) is licensed under the Creative Com-
mons Attribution 4.0 International licence6. The
evaluation benchmarks (Gao et al., 2023) are sub-
ject to the MIT license. All usages of scientific
artifacts in this paper obey the corresponding li-
censes.

Hyperparameters of Models Used. We report
the details of model hyperparameters and train-
ing hyperparameters in Tab. 6. Note that we use
the 9.8M and the 58M models for illustrating our
temporal scaling law. Meanwhile, we apply the
predictions and further applications of our tempo-
ral scaling law to the larger 468M and the 1.2B
models.

Parameters for Packages. We report the ver-
sion numbers of used packages in Tab. 8.

Evaluation Pipeline. For all benchmark evalua-
tions, we utilize the open-source LLM evaluation
tool lm-evaluation-harness7 (Gao et al., 2023),
following (Su et al., 2023; Biderman et al., 2023).
For all numerical results, we report the average
result tested on the last 5 checkpoints.

3https://arxiv.org/pdf/2201.07311
4https://huggingface.co/datasets/allenai/c4
5https://huggingface.co/datasets/cimec/lambada
6https://zenodo.org/records/2630551
7https://github.com/EleutherAI/lm-evaluation-harness

C Theoretical Insights for the Dynamic
Hyperbolic Law

Following prior work on validating scaling laws
(Kaplan et al., 2020; Hoffmann et al., 2022), we
conducted comprehensive experiments and empiri-
cally confirmed the effectiveness of the hyperbolic
pattern in the main article. In the main article, the
main functional forms that we have considered are
the logarithmic function (Li = a1 log(a2i+ a3) +
a4), power-law (Li = a1i

a2 +a3), log-log function
(Li = a1 log(a2 log(i)+a3)+a4), and exponential
function (Li = a1 ·ai2+a3) (see Sec. 2.4 for the ex-
perimental comparisons with those functions). In
addition, we provide a theoretical justification for
selecting the hyperbolic function among candidate
forms. Specifically, the loss with respect to token
positions should approach a lower bound, since the
cross-entropy loss has a minimum of zero. This
constraint limits the valid choices to the power-law,
exponential, and hyperbolic functions. We then
analyze the simplified forms of the power-law and
exponential functions: for the power-law, a1 > 0,
a2 < 0, a3 = 0; for the exponential, a1 > 0,
0 < a2 < 1, a3 = 0. It is straightforward to show
that the exponential function decays faster than the
power-law. Formally, for all valid parameters, there
exists an i0 ∈ N such that Lpower

i > Lexpi for all
i > i0. Given that real-world corpus data typi-
cally does not yield losses approaching zero, the
exponential function is impractical. Lastly, we note
that the hyperbolic function can be rewritten in a
power-law-like form as Li = a0(a1i+ 1)−1 + a2.
Since this formulation not only satisfies theoretical
constraints but also yields better empirical perfor-
mance, we adopt it as the underlying structure for
modeling token position loss.

D Comparison with Other Functional
Form Choices

In this article, for fitting general “increasing” and
“decreasing” patterns (i.e., Eqs. (5) and (6)), we con-
sider using the basic functional forms described in
Sec. C. We compare the fitting results of different
functional forms on the 58M model. Specifically,
for Eq. (5), we report the percentage of checkpoints
that could achieve R2 > 0.95 for each functional
form. For Eq. (6), we report the R2 values fit-
ting with each functional form. The results are
presented in Tab. 9. Based on these results, we se-
lected the hyperbolic function for fitting the token
position loss, the log-log function for a0, and the
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model size dimension intermediate n heads n layers learning rate scheduler warmup optimizer batch size seq length

9.8M 128 512 4 6 3.0e−4 cosine 1k steps AdamW 1024 1024
58M 512 2048 8 6 3.0e−4 cosine 1k steps AdamW 1024 1024

468M 1024 4096 16 24 3.0e−4 cosine 1k steps AdamW 1024 1024
1.2B 2048 8192 8 16 3.0e−4 cosine 1k steps AdamW 1024 1024
6.7B 4096 11008 32 32 3.0e−4 cosine 2k steps AdamW 2048 2048

Table 6: Model sizes, architectures, and optimization hyperparameters.

model name dimension intermediate n heads n layers learning rate scheduler warmup optimizer batch size seq length

468M GPT-NeoX 1024 4096 16 24 3.0e−4 cosine 1k steps AdamW 1024 1024
1.4B MoE (act: 240M) 768 3072 12 12 1.5e−4 cosine 2k steps AdamW 1024 1024

Table 7: Model sizes, architectures, and optimization hyperparameters for generalizing to more architectures.

Package Version Package Version

PyTorch 2.1.0 transformers 4.32.0
deepspeed 0.10.0 tokenizers 0.13.3
flash-attn 2.3.6 lm-evaluation-harness 0.3.0
datasets 2.14.3

Table 8: Versions of used packages.

Hyperbolic Logarithmic Power-law Log-log Exponential

Eq. (5) >99% 5% 67% 31% 0%
Eq. (6) 0.690/0.921 0.788/0.659 0.342/0.441 0.953/0.731 -1.231/-5.002

Table 9: Comparison of functional form choices for
Eqs. (5) and (6) on ID-Val for the 58M model. For
Eq. (5), we report the percentage of checkpoints that
could achieve R2 > 0.95 for each functional form. For
Eq. (6), we report the R2 values fitting with each func-
tional form (a0/a1). Bold represents the best result.

hyperbolic function for a1, as these provided the
best fit.

E Pipeline for Predicting Training
Outcomes Using the Temporal Scaling
Law

We provide the pipeline for predicting the training
outcomes using the temporal scaling law in algo-
rithm 1. Note that we use non-linear least squares
to solve for all fitting parameters. Normally, the fit-
ting would converge in < 103 steps, which takes <1
second on a CPU. We conduct a re-fit for a0 and a1
to mitigate the effect of fluctuations (as observed
in Fig. 2).

F Complete Fitting Results

In this section, we present complete fitting figures
illustrating our proposed temporal scaling law.

F.1 More Results of Dynamic Hyperbolic-Law
As a supplement to Fig. 1, we provide fitting results
of the dynamic hyperbolic-law for both the 9.8M

Strategy Name Description

Default Practice Average loss on all token positions.
Head Suppression Weight loss on the foremost 10% tokens by 0.5x.
Body Suppression Weight loss on the central 80% tokens by 0.5x.
Tail Suppression Weight loss on the last 10% tokens by 0.5x.

Table 10: Details for different weighting strategies.

Default Practice Head Body Tail

468M 8.62 8.62 8.66 8.63
1.2B 7.52 7.52 7.56 7.53

Table 11: ID-Val perplexity of models pretrained on
different weighting strategies. “Head” represents “Head
suppression”, etc. Bold represents the best result.

and 58M models after training for 100B, 200B,
300B, and 400B tokens and on the OOD-Val in
Fig. 6 and Fig. 7, respectively. Those results indi-
cate that our dynamic hyperbolic-law consistently
achieves accurate fitting results across model sizes
and training steps.

F.2 More Results of Temporal Scaling Law

As a supplement to Fig. 2, we provide the results
on the OOD-Val in Fig. 8. We also provide fitting
results on both the ID-Val and the OOD-Val for the
larger 468M, 1.2B, and 6.7B model scales in Fig. 9
and Fig. 10. Across different settings on model
scales and validation set distributions, our temporal
scaling law is able to depict the general trend of
parameter evolution and reduce the influence of
fluctuations as much as possible.

G Generalization to More Model
Structures

To demonstrate the generalizability of the Tem-
poral Scaling Law to other model structures, we
pre-trained a 468M model based on the GPTNeoX-
ForCausalLM (Andonian et al., 2023) architecture
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Figure 4: More temporal scaling law fitting results for the 468M GPT-NeoX model and the 1.4B MoE model on
both the ID-Val and OOD-Val. Note that the fitting for a1 on the MoE model has smaller R2 values than the fit for
other parameters. This is due to the outliers in the beginning of the graph, as we applied a smaller number of total
training tokens for the model, and the training was not stablized in the beginning. Nevertheless, with the outlier
filting mechanism described in Sec. 2.3 and algorithm 1, the temporal scaling law successfully portraits the overall
trend of a1.
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Figure 5: MSE results for predicting the subsequent test loss via the temporal scaling law after completing different
proportions of the training process. Note that the y-axis representing the MSE error is in log scale.

BoolQ HellaSwag OpenBookQA PIQA SIQA StoryCloze Winogrande

468M

Default Practice 52.28 45.39 31.87 68.64 44.04 64.24 55.33
Head Suppression 52.05 45.60 31.80 68.50 44.13 64.71 55.38
Body Suppression 51.98 45.12 31.07 68.66 43.76 64.41 55.64
Tail Suppression 52.91 45.28 31.67 68.05 44.03 64.64 55.62

1.2B

Default Practice 61.42 54.07 34.20 72.00 45.87 68.63 58.64
Head Suppression 59.96 54.49 34.33 71.75 45.36 68.39 58.30
Body Suppression 60.57 53.75 34.80 72.05 44.75 68.20 57.72
Tail Suppression 61.57 54.02 35.53 71.49 45.63 68.61 58.27

Table 12: Average performance (0/1/5-shot) on common sense reasoning benchmarks of models pre-trained
under different weighting strategies. Bold and underline represent the best and the second-best averaged results,
correspondingly.

and a 1.4B MoE model with 240M activated pa-
rameters based on the LLaMA architecture.

Experimental Setup. The 468M GPTNeoXFor-
CausalLM model shares the same hyperparame-
ters with the 468M LLaMA-based model listed
in Tab. 6. The 1.4B MoE model is built based
on the LLaMA architecture with 16 total experts
and adopts a Top-2 activation strategy, following
the common setting in various MoE research (Su
et al., 2024a,b; Huang et al., 2024). Both mod-
els are pre-trained on the Pile dataset used in the
main article. Specifically, the 468M GPTNeoXFor-
CausalLM model is pre-trained with 200B tokens,
and the 1.4B MoE model is pre-trained with 100B
tokens. Detailed settings are listed in Tab. 7.

Experiment Results. We present the fitting
results on both ID-Val and OOD-Val of the two
pre-trained models in Fig. 4. The proposed tem-
poral scaling law successfully genralizes to those
architectures, capturing the primary patterns of pa-
rameter evolution for the GPT-NeoX and the MoE
models, well demonstrating its generalizability.

H Generalization to More Learning
Schedules

In this article, we mainly focus on the cosine decay
scheduler, which is adopted by most mainstream

LLM structures (Touvron et al., 2023a,b; Bai et al.,
2023). To provide insights for other schedulers,
we have managed to conduct a preliminary exper-
iment with the 468M model using a simple linear
learning rate scheduler. Our results indicate that
for this setup, replacing the fitting function for the
a2 parameter with aN2 = γ4 ·N + γ5 (N > Nsep)
yields a high overall fit with R2 = 0.9947. This
demonstrates a strong correlation between the tem-
poral evolution of a2 and the choice of learning rate
scheduler, which is also observed in recent works
(Luo et al., 2025).

I Test Loss Prediction Results on
OOD-Val

In Fig. 3, we presented the test loss prediction re-
sults on the ID-Val for the scaled-up larger models.
Additionally, we present the prediction results on
the OOD-Val in Fig. 5. Same with results on the
ID-Val, our temporal scaling law consistently gen-
erates reliable results over the comparing baselines.

J More Details for Use Case #1:
Hyperparameter Selection

Due to the page limit, we omitted some details for
the use case #1 in Sec. 3. They are thoroughly
described below for reproducibility.
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58M Model Architecture. The architecture of
the 58M model is identical to the 70M parameter
model outlined in (Biderman et al., 2023). The
differences between model parameters can be as-
cribed to different vocabulary sizes and different
activation functions (i.e., SwiGLU v.s. GeLU).

Proportion Candidate Generation. In the
retrieval stage, we generate a group of propor-
tion candidates by conducting grid search on do-
main weights in the Pile dataset (Gao et al., 2021).
Specifically, we first calculate the original domain
weight according to the original epoch settings
noted by (Gao et al., 2021) on our applied 32k
tokenizer. Note that this is also the domain weight
applied in Sec. 2.2. For the grid search, we adopt a
simple but popular pipeline by selecting a domain,
modifying its domain weight by a random value
s ∈ [−0.05, 0.05], and normalizing the domain
weight in other domains.

Candidate Selection on the 58M Model. In
the retrieval stage, we choose the Top-5 data mix-
ture proportions on the 58M model for the rerank
stage and locate the Top-1 proportion on the 58M
model for final comparisons. We choose the Top-5
and Top-1 proportions by calculating the average
benchmark performance of the corresponding 58M
model under 0-shot, 1-shot, and 5-shot settings.

K More Details for Use Case #2: Revisit
the Training Strategy

In Sec. 4, we have stressed that a fundamental bias
in learning difficulty based on token position ex-
ists. Specifically, head tokens (with shorter con-
text) are generally harder to predict than tail tokens
(with longer context), due to the increased uncer-
tainty caused by limited contextual information
available for earlier tokens in a sequence. Surpris-
ingly, our temporal scaling law suggests that LLMs
learn equally on different token positions after an
early training period (as shown by Eq. (17)), de-
spite the learning difficulty bias.

Observation for Actual Loss Decrease on Posi-
tions. We use the larger 468M and the 1.2B models
to validate our suggestion. To validate this ob-
servation, we plot the actual loss decrease pattern
observed during training along different token po-
sitions in Fig. 11. As shown in Fig. 11, in the
early training period of “from 20B to 40B tokens”,
the head tokens suffer from less loss decrease due
to a higher learning difficulty. However, after the
early training period, in a later period of ”from

140B to 160B tokens” that the separation point
conditions in Eq. (7) are already fulfilled, test loss
decrease among all token positions tends to be uni-
form across all settings. Therefore, we can infer
from this observation that the learning dynamics
derived from our temporal scaling law are authenti-
cally presented in LLM pre-training.

Insights for Weighting Strategies. We hypothe-
size that the default strategy for training generative
language models, in which losses on tokens in all
positions are simply averaged, is an effective solu-
tion. To validate the hypothesis, we conduct LLM
pretraining on the larger 468M and the 1.2B mod-
els with three position-based weighting strategies:
Head suppression, Body suppression, and Tail sup-
pression, applied only after the Nsep point. The
implementation details of these strategies are de-
scribed in Tab. 10. Note that for the Suppression
strategies, we normalize the weighted losses to en-
sure the average weight for each token position is
1.0, and thus make the corresponding average loss
comparable with the default practice. We apply
the pre-training settings as in Sec. 2.2 for compar-
ing different position-based weighting strategies.
As shown in Tab. 11, despite being weighted on
different token positions, weighting different to-
kens by position during LLM pretraining probably
cannot yield better results than the default practice,
though different positions possess fundamental bias
in learning difficulty.

To further validate that the default practice actu-
ally trains a competitive model compared to the
weighting strategies, we test the model perfor-
mance on the common sense reasoning benchmarks
described in Sec. 3, and report average model per-
formance on 0-shot, 1-shot, and 5-shot settings.
As shown in Tab. 12, all position-based weighting
strategies acquire comparable or slightly inferior
average results to the default practice, in which
no weighting strategies are attached. On individ-
ual tasks, the default practice even achieves top-2
accuracies among 11 of 14 settings, surpassing
all weighting variants. This indicates that weight-
ing different tokens by position during LLM pre-
training probably cannot yield better results than
the default training strategy, further demonstrating
that it is unnecessary to re-weight tokens by their
positions during LLM pre-training.
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Figure 6: More dynamic hyperbolic-law fitting results for the 9.8M model after training for 100B, 200B, 300B, and
400B tokens on both the ID-Val and OOD-Val.
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Figure 7: More dynamic hyperbolic-law fitting results for the 58M model after training for 100B, 200B, 300B, and
400B tokens on both the ID-Val and OOD-Val.
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Figure 8: Temporal scaling law fitting results for the 58M model on the OOD-Val.

Algorithm 1 Predict Pipeline Using the Temporal Scaling Law

Require: LLM M , Tokenized Train Corpus T , Tokenized Evaluation Corpus E , Prediction Point Npred

Tokens, Total Training Tokens Ntot, Batch Size Nbatch, Evaluation Interval Neval Tokens
1: Initilize M for training. Split T and E to sequences of l consecutive tokens.
2: Initialize the number of currently trained tokens Ncur = 0
3: Initialize the list of token position loss and the corresponding number of trained tokens L = [ ]
4: /****** Train M for an early pretraining period ******/
5: while Ncur < Npred do
6: Update model M with the current batch data
7: Ncur ← Ncur +Nbatch

8: if Ncur%Neval == 0 then
9: // evaluate M for a fitting data point

10: Evaluate M on E , record the average loss on every token position as l, len(l) = l
11: L.append([l, Ncur])
12: end if
13: if Ncur ≥ Npred then
14: break
15: end if
16: end while
17: /****** Predict the test loss curve of M ******/
18: Initialize a0 list A0 = [ ], a1 list A1 = [ ], a2 list A2 = [ ]
19: for each lcur, Ncur in L do
20: Fit lcur for acur0 , acur1 , and acur2 with Eq. 5.
21: Store fitting results A0.append(acur0 ), A1.append(acur1 ), A2.append(acur2 )
22: end for
23: Calculate through A0 and A1, verify whether Ñsep has been reached according to Eq. 7.
24: Apply the fit in Eq. 11 for ãN0 and ãN1
25: Based on the distance of the fit ãN0 , ãN1 and the actual aN0 , aN1 , filter out outlier points from A0, A1

26: Re-fit for α̃i and β̃i according to Eq. 11
27: Fit for ãN2 with Eq. 12
28: Apply the boundary conditions on ãN0 , ãN1 , and ãN2 for N > Ñsep according to Eq. 13
29: if Npred ≤ Ñsep then
30: Use Npred ≤ Ñsep data points in A2 to calibrate ãN2 following Eq. 15.
31: end if
32: Substitute ãN0 , ãN1 , and ãN2 in Eq. 10 for the loss outcome prediction L̃N

33: return L̃N
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Figure 9: More temporal scaling law fitting results for the larger 468M and the 1.2B models on both the ID-Val and
OOD-Val.
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Figure 10: More temporal scaling law fitting results for the 6.7B model on both the ID-Val and OOD-Val.
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Figure 11: Test loss decrease on different token positions in the given training period for the 468M and the 1.2B
models. “∆20B−40B” means the decrease of loss at each token position from “being trained with 20B tokens” to
“being trained with 40B tokens” etc. After an early training period, the loss decrease tends to be uniform across all
token positions (i.e., ∆140B−160B).
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