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Abstract

Generative AI has established the opportunity
to readily transform content from one medium
to another. This capability is especially pow-
erful for storytelling, where visual illustrations
can illuminate a story originally expressed in
text. In this paper, we focus on the task of narra-
tive scene illustration, which involves automat-
ically generating an image depicting a scene in
a story. Motivated by recent progress on text-
to-image models, we consider a pipeline that
uses LLMs as an interface for prompting text-
to-image models to generate scene illustrations
given raw story text. We apply variations of this
pipeline to a prominent story corpus in order
to synthesize illustrations for scenes in these
stories. We conduct a human annotation task
to obtain pairwise quality judgments for these
illustrations. The outcome of this process is the
SCENEILLUSTRATIONS dataset, which we re-
lease as a new resource for future work on cross-
modal narrative transformation. Through our
analysis of this dataset and experiments mod-
eling illustration quality, we demonstrate that
LLMs can effectively verbalize scene knowl-
edge implicitly evoked by story text. Moreover,
this capability is impactful for generating and
evaluating illustrations.

1 Introduction

Observing the transformation of a story from one
modality to another (e.g. from text to visual form)
can make the story more compelling to its audience.
Recent advances in generative AI have enabled
this kind of cross-modal transformation to be per-
formed automatically. In particular, text-to-image
models allow people to create visual material using
natural language alone. Current interaction with
these models typically involves users envisioning a
particular visual target and then crafting language
that realizes that target. Many stories that currently
only exist in text form would be well-suited for
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transfer to an image modality, but the text itself of
these stories may not be naturally optimal for di-
rectly applying text-to-image models. Given their
demonstrated success at meta-prompting (e.g. Zhou
et al., 2023), large language models (LLMs) may
be able to interface with story text to synthesize
suitable prompts for text-to-image models towards
this end. The cooperation between these AI models
would make it possible to automatically generate
illustrations for any given text-based story.

Figure 1: Overview of scene illustration pipeline

In this paper, we exemplify this approach to vi-
sual transfer of story text. Generating illustrations
for stories, a task that has been termed story vi-
sualization, encompasses a myriad of challenges.
Some of these challenges pertain to modeling the
relation between the story text and illustrations
(text-image alignment), while others pertain to the
relation between illustrations for different scenes
in the story (image-image alignment). Existing
story visualization research (e.g. Li et al., 2019)
has largely focused on image-image alignment, in
particular the problem of ensuring visual consis-
tency between depictions of story elements like
characters and settings. We aim to bring more re-
search attention to issues of text-image alignment
in this domain. Thus, our work is scoped to focus
on individual scene illustrations. In particular, we
consider scene-level units of stories (fragments).
We present a pipeline (outlined in Figure 1) that
generates a scene illustration given a fragment in
its story context. Through systematic variation and
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ablation of the components of this pipeline, we pro-
duce a novel set of scene illustrations for fragments
in a notable dataset of stories, the ROCStories cor-
pus (Mostafazadeh et al., 2016). We then conduct
a human annotation task to obtain relative quality
judgments for pairs of illustrations. We refer to the
resulting quality-annotated items as the SCENEIL-
LUSTRATIONS dataset.

We leverage the SCENEILLUSTRATIONS dataset
to demonstrate that LLMs can articulate visual
knowledge of narrative scenes by inferring this
knowledge directly from story text, without any
visual input. We establish this capability through
two findings. First, we show that LLMs are an
effective interface for transforming story text into
prompts that facilitate text-to-image models to pro-
duce illustrations. Second, we show that LLMs
can verbalize scene characteristics in a way that is
useful for evaluating the quality of illustrations. In
particular, we demonstrate an approach to predict-
ing human-favored illustrations among pairs in our
dataset, through which we apply LLM-specified
scene characteristics as evaluation criteria for scor-
ing illustrations. The success of this approach rela-
tive to a criteria-ablated baseline further suggests
the utility of LLMs for articulating scene knowl-
edge that is implicitly conveyed by story text.

Contributions This paper makes the following
contributions1:
• We define and motivate the task of narrative scene

illustration in relation to existing research on vi-
sually aligned storytelling.

• We demonstrate a pipeline for producing scene
illustrations for any given story text. The pipeline
components are fully interchangeable and can be
used with any LLM and text-to-image models.

• We apply our pipeline to synthesize scene illustra-
tions for existing stories and elicit human quality
annotations for pairs of these illustrations, result-
ing in the newly created SCENEILLUSTRATIONS

dataset2.
• Through analysis of the quality annotations in

SCENEILLUSTRATIONS, we show that LLMs are
an effective interface between story text and text-
to-image models in facilitating scene illustration.

• We assess an approach to predicting these qual-
ity annotations that involves applying LLM ver-

1Code and prompts for our experiments are available at:
github.com/roemmele/narrative-scene-illustration

2The SCENEILLUSTRATIONS dataset is available at:
huggingface.co/datasets/roemmele/SceneIllustrations

balizations of scene characteristics as evaluation
criteria. We discuss the evaluation results as ad-
ditional evidence that LLMs can articulate visual
scene knowledge inferred from story text.

2 Background and Related Work

Image-Aligned Story Data Datasets that pair
story text with images have emerged from research
on visually grounded story generation, which in-
volves writing a story given a sequence of im-
ages. Human authors have performed this task
for existing media-sourced images (Halperin and
Lukin, 2023; Huang et al., 2016; Hong et al., 2023).
For the reverse-direction task of story visualiza-
tion, which involves generating a sequence of im-
ages given story text, some research has leveraged
videos for data creation (Li et al., 2019; Tao et al.,
2024). Distinct frames of video are sampled as
static images, while crowdsourced descriptions of
frames are designated as the story text (Li et al.,
2019; Maharana and Bansal, 2021; Maharana et al.,
2022). A key design factor of all the above datasets
is that the story text is authored specifically in re-
sponse to the images, rather than originating in text
form. We explore an alternative process for visu-
ally aligning narratives by synthesizing images for
existing text-based stories.

Multimodal Storytelling Systems In addition
to datasets, there are increasing demonstrations
of story visualization systems, as well as systems
that generate story text and images in parallel, i.e.
multimodal story generation (An et al., 2024; Koh
et al., 2023; Singh et al., 2023; Wan et al., 2024;
Yang et al., 2024). While some models applied to
these use cases have been trained end-to-end on the
specialized datasets described above (Feng et al.,
2023; Maharana and Bansal, 2021; Tao et al., 2024),
researchers have also begun to leverage generi-
cally pretrained models to expand the scope of
these systems to open-domain storytelling (de Lima
et al., 2024; Gong et al., 2023; Soumik Rakshit,
2024). We follow suit in leveraging a plug-and-
play pipeline for scene illustration.

Meta-Prompting for Text-to-Image Models
One challenge with using generic models for story
visualization is that the story text itself is not neces-
sarily an optimal prompt for text-to-image models.
In particular, this text tends to lack detailed visual
descriptions (e.g. the physical appearance of story
elements like entities and locations), which are
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considered essential when providing instructions
to text-to-image models (Maharana et al., 2022).
Users of these models who have become skilled in
writing prompts have done so largely through an it-
erative process of observing what prompt language
yields desirable images (Don-Yehiya et al., 2023).
Even with this skill, significant effort is required
to manually compose a prompt that captures the
intended visual features of the scene correspond-
ing to a story fragment. Following the paradigm
of meta-prompting (e.g. Zhou et al., 2023), there
is a variety of research on automated prompt op-
timization for text-to-image models (Brade et al.,
2023; Feng et al., 2024; Hao et al., 2023; Wang
et al., 2024), some of which establishes the effec-
tiveness of LLMs in facilitating this process (Lian
et al., 2024). Accordingly, recent story visualiza-
tion work has used LLMs as an interface for de-
riving text-to-image prompts from story text. In
particular, Gong et al. (2023) and He et al. (2024)
instructed GPT-4 to transform a story into a se-
ries of scene-level prompts intended as input to
text-to-image models. It is presumed that these
synthesized prompts are more visually descriptive
than the story text and thus produce better images,
but this has not been empirically validated. Thus,
we address this opportunity in our work.

LLMs for Image Evaluation Assessing the de-
gree of semantic alignment between images and
text is a prominent research endeavor, which has
primarily involved measuring their similarity when
projected into a shared embedding space (e.g. Hes-
sel et al., 2021). Because of their capacity for vi-
sually descriptive language, even unimodal (text-
only) LLMs can contribute to this endeavor. For in-
stance, several works have demonstrated the utility
of unimodal LLMs for zero-shot visual recognition
tasks (Li et al., 2023; Maniparambil et al., 2023;
Menon and Vondrick, 2023; Pratt et al., 2023). This
line of research has recently extended to eliciting vi-
sual knowledge from LLMs as a strategy for text-to-
image evaluation (Lin et al., 2025; Lu et al., 2023;
Hu et al., 2023). Encouraged by recent demonstra-
tions of LLM-based evaluation in multimodal story
generation (An et al., 2024), we pursue this method
for evaluating scene illustrations.

Criteria-based Evaluation with LLMs In NLP,
criteria is a means of anchoring evaluation to
certain objectives (Yuan et al., 2024). With the
rapidly expanding LLM-as-a-judge paradigm, this
has evolved to the point where LLMs are not just

applying human-authored criteria to assess text, but
are also generating their own criteria (Cook et al.,
2024). We examine LLMs’ capacity to generate
evaluation criteria for the scene illustration task.

3 Scene Illustration Pipeline

We first outline the high-level components3 of the
illustration pipeline in this section, before describ-
ing their application in the next section.

Story Fragmentation In our work, we consider
a scene to be an abstract unit of a story that can
be distinctly illustrated by a single image. The
story text that aligns to a scene is referred to as
a fragment. Thus, the first step of producing a
scene illustration is to identify its source fragment.
Recent work has validated the use of LLMs for
the related task of segmenting events in narrative
text (Michelmann et al., 2025). Accordingly, we
utilize an LLM for this fragmentation task, by in-
structing it to explicitly annotate the boundaries of
all fragments in a given story. Table A.13 shows
the prompt we provide to the LLM to facilitate this,
where the input contains the story text and the LLM
is expected to generate the same text with brackets
demarcating the left and right boundaries of each
fragment, as demonstrated by the exemplars. We
parse this output with a simple regular expression
to gather the list of fragments.

Scene Descriptions Once a fragment is identi-
fied, the fragment with its story context can then
be mapped to a scene description. A scene descrip-
tion is a verbalization of what should be illustrated
in the image corresponding to the fragment. This
text serves as the input to the text-to-image model
used to produce the scene illustration. As described
below in §4, we consider different types of scene
descriptions in order to evaluate the capability of
LLMs to generate these descriptions.

Image Generation As mentioned, the scene de-
scriptions are the inputs to a text-to-image model,
referred to here as an image generator. While we
use the term ‘illustration’ to describe the end-to-
end process that yields an image depicting a scene,
the output of this process (i.e. the image generator
output) is also called an illustration.

3We ran all model components using APIs, which we spec-
ify here for each model. Unless otherwise indicated, we used
the default inference parameters defined by the model’s API.
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4 SCENEILLUSTRATIONS Dataset

Each item in the SCENEILLUSTRATIONS dataset
consists of a fragment with its story context, along
with two illustrations depicting the fragment. The
illustrations vary based on their scene description
and/or the image generator used to produce them.
The dataset consists of 2990 items in total, which
were created in two phases that we detail in this
section: Phase 1 yielded 1777 items and Phase 2
yielded 1213 items. Table 2 presents a numerical
summary of the items in the dataset, which will be
explained by the following subsections. For both
phases, we describe the pipeline for synthesizing
and annotating the items, and then present analyses
of the annotation results.

4.1 Story Text

Seeking out a story corpus suitable for the scene
illustration task, we ultimately selected the ROC-
Stories corpus (Mostafazadeh et al., 2016), which
has been widely used for storytelling-related re-
search in NLP (e.g. Brei et al., 2024; Kong et al.,
2021; Mu and Li, 2024). This choice of corpus was
based on some key considerations. In particular,
these English-language stories were authored to ad-
here to basic narrative structure in a tightly length-
constrained format. In particular, each story con-
sists of five sentences conveying “a causally (log-
ically) linked set of events involving some shared
characters”. Thus, we can expect that stories are
composed of distinct fragments that are each ap-
propriately visualized as a scene illustration. More-
over, the stories are narrations of everyday expe-
riences that can be interpreted according to com-
monsense knowledge. This knowledge is general
enough it is likely to be familiar to the model com-
ponents of our illustration pipeline.

4.2 Phase 1 Pipeline Details

We applied the pipeline outlined in §3 to produce
an initial set of scene illustrations, which we refer
to as Phase 1 data. As inputs to the pipeline, we
used the first 50 stories in the ROCStories dev set.4

4The dev and test items in ROCStories are actually des-
ignated as the Story Cloze Test, where items have a specific
format: each story consists of four sentences plus two alterna-
tive fifth sentences, where one is the ‘correct’ story ending and
the other is the ’incorrect’ ending. For each item, we discarded
the incorrect ending and appended the correct ending after the
initial four sentences to form a single five-sentence story.

Fragmentation We divided these stories into
fragments as described in §3, using CLAUDE-3.55

as the LLM. We selected CLAUDE-3.5 because
it topped the LLM Creative Story Writing Bench-
mark6, which assesses story generation capabilities.
As shown in Table A.7, this resulted in 206 total
fragments across all 50 stories, an average of 4.12
per story. §A.1.1 presents some additional analysis.

Scene Descriptions We applied an LLM to trans-
form a fragment alongside its story context into a
scene description, using the prompt in Table A.15
with CLAUDE-3.5 as the LLM. We employ the term
scene captioner to refer to an LLM’s role when
running this prompt, and we refer to the outputs
as CAPTION scene descriptions. As outlined in
Table 1, CAPTION is one of four scene description
types we consider for Phase 1. We compare CAP-
TION with baseline scene descriptions composed
of the raw story text. In the first baseline case, NC-
FRAGMENT (i.e. no context fragment), we use the
original fragment isolated from its story context
as a scene description. The obvious limitation of
NC-FRAGMENT is that the ablated context may be
necessary for understanding certain information in
the fragment (for example, a fragment might use
a pronoun whose referent is only specified in the
context). Thus, we considered two additional base-
line scene descriptions that account for the story
context, referred to as VC-FRAGMENT and SC-
FRAGMENT. As Table 1 shows, VC-FRAGMENT

(i.e. verbose context) inserts the full story text into
the scene description, which is formatted as an
instruction to consider this context when illustrat-
ing the fragment. Alternatively, SC-FRAGMENT

(i.e. succinct context) is a rewritten version of the
fragment where references to information in the
story context are made explicit, enabling the frag-
ment to be understood independently of the con-
text. We prompt an LLM (also CLAUDE-3.5) to do
this rewriting task, using the prompt in Table A.14.
Table 1 gives examples of these different scene de-
scriptions, with additional examples in Table A.16.

Image Generation We then applied two image
generators7 to generate images using the scene de-
scriptions as prompts. In particular, we used Mid-
journey v6.1, denoted here as MJ-6.1 (Midjourney,
2024), and FLUX-1[pro], denoted here as FLUX-1-

5claude-3-5-sonnet-20240620, ran via the Anthropic API
6github.com/lechmazur/writing
7With exception to Midjourney, we ran all image genera-

tion models described in this paper via the Replicate API.
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Type Format Example
NC-FRAGMENT {{fragment}} “Alice called her mother and apologized profusely.”
VC-FRAGMENT “Consider this story:

[{{story}}] Based
on this context,
illustrate this frag-
ment of the story:
[{{fragment}}]”

“Consider this story: [Alice was getting married in a few weeks. One night,
her mother called and she forgot to call her back. Her mother left an angry
message on her phone. She threatened not to come to the wedding. Alice called
her mother and apologized profusely.] Based on this context, illustrate this
fragment of the story: [Alice called her mother and apologized profusely.]”

SC-FRAGMENT LLM output of
fragment rewriting
prompt (Table A.14)

“The bride-to-be called her mother and apologized profusely for forgetting to
return her call and for the resulting angry message threatening not to attend the
wedding.”

CAPTION LLM output of scene
captioning prompt
(Table A.15)

“A young woman with a worried expression sits on a couch, holding a phone to
her ear. She’s gesticulating with her free hand, appearing to speak emphatically.
In the background, a wedding dress can be seen hanging on a closet door. The
room is dimly lit, suggesting it’s evening, and there’s a notepad with wedding
plans visible on a nearby coffee table.”

Table 1: Types of scene descriptions for Phase 1

PRO (Black Forest Labs, 2024a). We selected these
image generators because they topped the Artificial
Analysis Image Arena Leaderboard8 at the time
of Phase 1 in August 2024. This leaderboard cap-
tures the relative ELO score (Boubdir et al., 2023)
of text-to-image models based on pairwise human
judgments regarding how well images from differ-
ent models reflect the input prompt. Table A.16
includes examples of generated illustrations.

4.3 Phase 1 Annotation Task

Illustration Pairs Our primary objective for
Phase 1 was to assess the effectiveness of the LLM-
based scene captioner in generating illustrations rel-
ative to generating them directly from the raw story
text. To address this, we randomly sampled pairs of
illustrations each belonging to the same fragment
(across 206 possible fragments), where one illus-
tration used a CAPTION as the scene description,
while the other used one of the baseline scene de-
scriptions: NC-FRAGMENT, VC-FRAGMENT, or
SC-FRAGMENT. This sampling resulted in some
pairs where the illustrations used the same image
generator and others that used different image gen-
erators. Ultimately there were 1777 illustration
pairs. Table 2 specifies their exact distribution.

Task Design We designed an annotation task to
assess the relative quality of the two illustrations
in each pair. In judging a pair, human annotators
were shown the full story with the target fragment
for that scene underlined, along with the two alter-
native images. Note that scene descriptions were
not shown to annotators, since their judgment of
illustration quality should be conditioned on the
original text. As shown in Figure A.3, annotators

8artificialanalysis.ai/text-to-image/arena/leaderboard-text

were instructed to select the image that was “the
better visualization of the underlined fragment”.
Annotators could express uncertainty by selecting
“I can’t decide which is better”. We implemented
the UI for this task using POTATO (Pei et al., 2022).

Procedure We deployed the task on Prolific to
obtain annotators. English proficiency was the only
requirement for participation. We sought 2 annota-
tors to judge each illustration pair. Each participant
judged between 33 and 74 pairs (median=47), plus
3 “attention check” items where one illustration
in the pair was replaced with one for a different
story, making it trivially easy which image to se-
lect. Participants were paid $6 for an expected
completion time of 30 minutes. We filtered out
participants who did not pass all of the attention
check items. Ultimately, 75 (out of 80) participants
passed the attention checks. This resulted in a total
of 3554 responses for the 1777 pairs, where each
item received a response from 2 annotators.

4.4 Phase 1 Annotation Results

Inter-annotator Agreement Given the anno-
tated pairs resulting from §4.3, we computed the
inter-annotator agreement of which illustration was
selected as the better one in each pair. We did this
using an uncertainty-weighted variation of Cohen’s
Kappa score (Cohen, 1960), which we abbreviate
here as κu. This variation considers that response
disagreements arising from one annotator express-
ing uncertainty (i.e. selecting “I can’t decide”)
should be weighted half as much as disagreements
where the two annotators each select a different il-
lustration as better. As shown in Table 2, the overall
κu for all 1777 items was 0.436, which can be clas-
sified as moderate agreement (Landis and Koch,
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Illustration Pair Type # Pairs κu

Phase 1
All 1777 0.436
Different Scene Descriptions 1457 0.483

NC-FRAGMENT vs. CAPTION 680 0.520
VC-FRAGMENT vs. CAPTION 384 0.504
SC-FRAGMENT vs. CAPTION 393 0.398

Different Image Generators
FLUX-1-PRO vs. MJ-6.1 661 0.364

Phase 2
All 1213 0.231
Different Scene Captioners 807 0.239

CLAUDE-3.5 vs. GPT-4O 265 0.200
CLAUDE-3.5 vs. LLAMA-3.1 267 0.239
GPT-4O vs. LLAMA-3.1 275 0.274

Different Image Generators 809 0.231
FLUX-1.1-PRO vs. IDEOGRAM-2.0 72 0.079
FLUX-1.1-PRO vs. MJ-6.1 74 0.183
FLUX-1.1-PRO vs. RECRAFT-V3 75 0.089
FLUX-1.1-PRO vs. SD-3.5-LARGE 70 0.183
IDEOGRAM-2.0 vs. MJ-6.1 98 0.314
IDEOGRAM-2.0 vs. RECRAFT-V3 81 0.159
IDEOGRAM-2.0 vs. SD-3.5-LARGE 94 0.339
MJ-6.1 vs. RECRAFT-V3 72 0.426
MJ-6.1 vs. SD-3.5-LARGE 87 0.189
RECRAFT-V3 vs. SD-3.5-LARGE 86 0.271

Phase 1 & 2
All 2990 0.352

Table 2: Illustration pair statistics for the SCENEILLUS-
TRATIONS dataset, divided into Phase 1 and Phase 2,
and including inter-annotator agreement (κu) for differ-
ent pair types. For the total number of unique illustra-
tions associated with each scene description type and
image generator, see Table A.8.

1977). Annotators agreed in their responses for
62.3% of items. Table 2 also shows that agreement
was higher in Phase 1 among the 1457 pairs where
the illustrations used different scene descriptions
(κu=0.483), while agreement was lower among the
661 pairs where the illustrations used different im-
age generators (κu=0.364). This indicates that the
scene description was particularly influential to an-
notators’ judgments of relative illustration quality.

Win Rates for Scene Description Types To de-
termine whether using an LLM as a scene captioner
helps illustration quality, we counted how often the
favored illustration was associated with each scene
description type, i.e. each type’s win rate. Table
3 shows the win rate for CAPTION illustrations
when alternatively paired with NC-FRAGMENT,
VC-FRAGMENT, and SC-FRAGMENT illustrations.
This win rate is represented as the percentage of
responses in which annotators selected the CAP-
TION illustration as better among all responses for
each respective set of pairs. In all three cases, the

CAPTION is significantly9 better: it has an overall
win rate of ≈78% against NC-FRAGMENT, ≈75%
against VC-FRAGMENT, and ≈73% against SC-
FRAGMENT. Table A.17 further examines the win
rates for pairs that used the same image generator,
verifying that CAPTION is equally favorable regard-
less of which image generator is used. Considered
along with the inter-annotator agreement results
highlighted above, which showed higher agreement
among pairs where the illustrations used different
scene descriptions, we can specifically conclude
that ablating the scene captioner (i.e. using the
baseline NC-FRAGMENT, VC-FRAGMENT, or SC-
FRAGMENT scene descriptions) yielded illustra-
tions that annotators consistently judged as lower
quality relative to those that used the scene cap-
tioner. This validates the importance of using an
LLM for scene captioning in the pipeline: the re-
sulting verbalization enables the image generator
to better depict how a story fragment should be
visually illustrated as a scene.

Scene Description Pair CAPTION Win %
CAPTION vs. NC-FRAGMENT 78.1
CAPTION vs. VC-FRAGMENT 74.7
CAPTION vs. SC-FRAGMENT 72.5

Table 3: Win rates of CAPTION over the baseline scene
descriptions in Phase 1

4.5 Phase 2 Motivation and Design
After observing that the CAPTION scene descrip-
tions significantly contribute to illustration qual-
ity, we wanted to compare the impact of differ-
ent LLMs as scene captioners. Phase 1 only con-
sidered CLAUDE-3.5. In Phase 2, we included
other LLMs that obtained noteworthy performance
on the LLM Creative Story Writing Benchmark:
GPT-4O10 (OpenAI et al., 2024) and LLAMA-3.111

(Grattafiori et al., 2024). We used the same cap-
tioning prompt from §4 (Table A.15).

We expanded the Phase 2 data to include a larger
set of fragments compared with those of Phase
1. We randomly sampled 1000 stories from the
ROCStories dev set, split them into fragments using
the same method from Phase 1 (CLAUDE-3.5 with
the Table A.13 prompt), then randomly selected
one fragment per story for inclusion in the dataset.

9Statistical significance was computed using a one-sample
binomal test at α = 0.05 to determine if the win rate was
higher than that expected by chance, where chance is defined
as (1−#ties/#responses)/2

10gpt-4o-2024-05-13, ran via the OpenAI API
11llama-3.1-405b-instruct, ran via the Replicate API
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We also considered a larger set of image gen-
erators in Phase 2. Based on the state of the Ar-
tificial Analysis Leaderboard in November 2024,
we selected five image generators. This included
MJ-6.1 from Phase 1, as well as FLUX1.1[pro]
(referred to here as FLUX-1.1-PRO) (Black For-
est Labs, 2024b), Ideogram 2.0 (IDEOGRAM-2.0)
(Ideogram, 2024), Recraft V3 (RECRAFT-V3) (Re-
craft, 2024), and Stable Diffusion 3.5 Large (SD-
3.5-LARGE) (Stability AI, 2024).

We applied the scene illustration pipeline to pro-
duce illustrations for all 1000 fragments, varying
runs of the pipeline between the 3 scene captioners
and 5 image generators. We sampled a roughly
equal ratio of pairs where the illustrations varied by
scene captioner, image generator, or both scene cap-
tioner and image generator. The exact distribution
is specified in Table 2. We repeated the same pro-
cedure detailed in §4.3 to obtain selections from
two annotators for the better illustration in each
pair. There were 48 (out of 49 total) annotators
on Prolific who passed the attention checks, each
annotating between 46 and 109 pairs (median=50),
resulting in a total of 2426 responses for 1213 pairs.

4.6 Phase 2 Annotation Results

Inter-annotator Agreement As shown in Table
2, the overall κu for all 1213 items in Phase 2 was
0.231, and annotators agreed in their responses
for 52.6% of these items. This is lower than the
overall agreement observed for Phase 1. Table
2 also shows that the agreement level was simi-
lar between the 807 pairs where illustrations in-
volved different scene captioners (κu=0.239) and
the 809 pairs that involved different image gen-
erators (κu=0.231). Agreement varied especially
widely based on which particular image genera-
tors were paired together (ranging from 0.079 for
FLUX-1.1-PRO vs. IDEOGRAM-2.0, up to 0.426
for MJ-6.1 vs. RECRAFT-V3). This indicates that
in contrast to Phase 1 where there was a significant
variable (the presence/absence of the scene cap-
tioner) that made the relative quality of illustrations
more consistently distinguishable to annotators, the
Phase 2 pairs were less reliably distinct.

Win Rates for Scene Captioners Table 4 shows
the win rates for each LLM scene captioner against
each of the others. In particular, each value is the
percentage of responses where the illustration asso-
ciated with the scene captioner in the row label was
selected as better than the illustration associated

with the scene captioner in the column label. Sta-
tistically significant win rates are denoted with an
asterisk. Recall that a response of “I can’t decide”
indicates a tie, which is why win rates of less than
50% may be statistically significant. These results
show that CLAUDE-3.5 yields the highest win rates,
followed by GPT-4O, with LLAMA-3.1 having low-
est rates. The win rate for CLAUDE-3.5 against
LLAMA-3.1 is statistically significant, suggesting
that the former generates more descriptive captions
compared with the latter.

CLAUDE-3.5 GPT-4O LLAMA-3.1
CLAUDE-3.5 - 46.2 49.6*
GPT-4O 41.1 - 48.0
LLAMA-3.1 39.7 42.9 -

Table 4: Win rates (%) by scene captioner for Phase 2

Win Rates for Image Generators While not the
focus of our analysis, we observed some signifi-
cant differences in the win rates of different image
generators. These results appear in §A.1.2.

5 Predicting Illustration Quality

5.1 Perfect-Agreement Data Subset

The SCENEILLUSTRATIONS dataset provides an
opportunity to understand what characterizes a suc-
cessful transformation of a narrative scene from
text to image form. To initiate this line of work,
we explored a particular approach to modeling an-
notators’ judgments of relative illustration quality.
For this experiment, we combined the items from
Phase 1 and Phase 2, and disregarded items involv-
ing annotator disagreement. The resulting Perfect-
Agreement subset consists of 1745 items (≈58% of
the full dataset) where both annotators agreed in
their selection of the better illustration in the pair.

5.2 Criteria Generation

Our approach leverages the finding from §4 that
LLMs can effectively verbalize visual descriptions
of scenes based on the story text. We consider
whether these descriptions can be used as criteria
for predicting illustration quality. For each frag-
ment, we ran the prompt in Table A.18 to produce
criteria articulating the expected visual character-
istics of the scene illustration. We use the term
criteria writer to refer to an LLM’s role when run-
ning this prompt, and we refer to its output as a
criteria set. An example of a criteria set is included
in Table 5. Note that a criteria writer model does
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Fragment (within story) Illustration 1 Illustration 2

Sophie’s nana was terminally ill. Sophie visited her in the hospital to say goodbye. Her
nana gave Sophie her prized gold locket. She told Sophie to keep it to remember her
by. Sophie cried.

Criteria Response Response
1. The image shows two people: an elderly woman (nana) and a younger woman (Sophie) ✓ ✗
2. The setting appears to be a hospital room or medical facility ✓ ✓
3. The elderly woman is in a hospital bed or medical chair ✓ ✗
4. The image shows a gold locket ✓ ✓
5. The locket is clearly visible and recognizable as a piece of jewelry ✓ ✓
6. The elderly woman is holding or presenting the locket to the younger woman ✗ ✓
7. The younger woman’s hand is positioned to receive or touch the locket ✓ ✗
8. The facial expressions of both women convey emotional significance ✓ ✓
9. The elderly woman’s expression shows love, tenderness, or sadness ✓ ✓
10. The younger woman’s expression shows a mix of emotions (sadness, gratitude, love) ✓ ✗
11. The body language of both women suggests intimacy and connection ✓ ✓
12. The composition focuses on the moment of giving/receiving the locket ✓ ✓
13. The lighting adequately illuminates the locket and the faces of both women ✓ ✓
14. The locket appears to be in good condition, suggesting its value as a keepsake ✓ ✓
15. The elderly woman’s appearance suggests illness or frailty ✓ ✗
16. The younger woman’s appearance and demeanor suggest she is visiting ✓ ✗
17. The overall atmosphere of the image conveys a solemn and meaningful moment ✓ ✓
18. The spatial relationship between the two women suggests closeness and care ✓ ✓
19. Any medical equipment or hospital elements are present but not dominating the scene ✓ ✓
20. The perspective allows viewers to see both the locket and the emotional exchange
between the women

✓ ✓

Score=19.0 Score=14.0

Table 5: Demonstration of criterial rating approach applied to both illustrations in a given pair. In this particular
example, the criteria writer is CLAUDE-3.5, and the rater providing each response is GPT-4O.

not require vision capabilities, since it observes
only the story text as input.

Two design considerations for the criteria gener-
ation prompt were flexibility and atomicity. Flexi-
bility emphasizes that a scene characteristic refer-
enced by a criterion may be depicted with multiple
alternative visual details that all align acceptably
well with the story text. For example, if a crite-
rion conveys that the scene should take place at a
particular location, it should be flexible about how
the location is portrayed. Regarding atomicity, we
aimed for each criterion to be as atomic as possi-
ble, meaning that it should refer to only a single
characteristic of the scene. This promotes concise
and easy-to-parse responses when judging whether
the criterion is satisfied by an image, as opposed
to a criterion that conflates multiple characteristics,
some of which are satisfied and others that are not.
The prompt did not specify a particular number of
criteria to return, but it indicated that the criteria
set should comprehensively refer to as many scene
characteristics as possible without redundancy.

Criteria Writer Details We examined three cri-
teria writers, the same LLMs that operated as scene
captioners in §4.5: CLAUDE-3.5, GPT-4O, and

LLAMA-3.1. Applying the Table A.18 prompt
with temperature=0 to facilitate deterministic out-
put, each criteria writer generated one criteria set
per fragment. We post-processed this output to
identify each individual criterion according to its
expected numerical label in the set. §A.2.1 gives
some descriptive analysis of the criteria sets.

5.3 Criteria-based Ratings

After obtaining the criteria sets, we then enlisted
visually-enabled models to assess illustrations
based on this criteria. In our scheme, when apply-
ing a criteria set to score a given illustration, each
criterion receives a response indicating whether or
not it is satisfied by the image. The overall illus-
tration quality is quantified by the total number of
satisfied criteria. Our scoring protocol is as fol-
lows: a response conveying that the criterion is
satisfied is assigned 1.0 points; a response convey-
ing “maybe” or partial satisfaction is assigned 0.5
points; and a response conveying the criterion is
not satisfied is assigned 0.0 points. The total score
for an illustration is the sum of these point values.

We implemented this by prompting a visually-
enabled LLM (i.e. VLM) to assign responses to
each criterion for a given illustration. We use the
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VLM Rater
Criteria Writer CLAUDE-3.5 GPT-4O PIXTRAL Average

Criterial Base Criterial Base Criterial Base Criterial Base
CLAUDE-3.5 0.717 0.606 0.709 0.567 0.712 0.589 0.713 0.587
GPT-4O 0.701 0.602 0.687 0.583 0.699 0.589 0.695 0.592
LLAMA-3.1 0.684 0.597 0.678 0.589 0.677 0.581 0.679 0.589
Average 0.700 0.602 0.691 0.580 0.696 0.586 0.696 0.589

Table 6: Accuracy of criterial and baseline (Base) raters grouped by criteria writer and VLM

term criterial rater to refer to a VLM’s role when
running this prompt, which appears in Table A.19.
As shown, the rater observes an illustration and the
criteria set for the corresponding fragment. The
rater is asked to respond to each criterion (where a
response of ‘✓’ means the criterion is satisfied, ‘✗’
means not satisfied, and ‘?’ means “maybe”). As
post-processing, we parsed these response tokens
and mapped them to the point values defined above
to obtain the illustration score. Table 5 exemplifies
this approach applied to both illustrations in a pair.

Rater Details For raters, we utilized three VLMs
that have obtained notable performance on visual
understanding benchmarks: CLAUDE-3.5, GPT-4O,
and PIXTRAL12 (Mistral AI, 2024). Each rater ran
the prompt in Table A.19 with temperature=0. All
images were resized to a height of 240 pixels with
proportional width. We briefly assessed the correct-
ness of raters’ responses, which appears in §A.2.2.

Comparative Baseline To determine the impact
of criteria in assessing quality, we designed a com-
parable rating approach that scores illustrations on
the same scale as the criterial rater but without ob-
serving the criteria itself. We use the term baseline
rater to refer to a VLM’s application of the prompt
for this approach, which is shown in Table A.20.
The prompt presents the fragment and illustration,
and instructs the VLM to assign a rating in half-
point increments between 0 and a maximum that
is dynamically set to the length of the given crite-
ria set. For each criteria writer, we compare the
result obtained by a particular criterial rater to the
analogous result obtained by the baseline rater.

5.4 Selection Performance Results

We applied all raters to score the illustrations in
the Perfect-Agreement subset of SCENEILLUSTRA-
TIONS. For a given pair, a rater’s selection was
the image it assigned a higher score. We measured
each rater’s performance in terms of proportion of

12pixtral-large-2411, ran via the MistralAI API

pairs where the rater’s selection matched the human
selection. We refer to this metric as accuracy.

Table 6 shows the accuracy for all raters on these
pairs, with the respective averages for each criteria
writer and rater. For reference, always selecting
the second illustration in each pair yields 49.4%
accuracy. We observe that the criterial raters all
considerably outperform the baseline raters (an av-
erage accuracy of ≈70% vs. 59%). Criteria from
different writers yields comparable results, with
CLAUDE-3.5 averaging the highest accuracy across
raters (≈71%). The raters obtain similar accuracies
when applied to the same criteria. Overall this out-
come suggests that criteria are an effective strategy
for modeling illustration quality, which in turn pro-
vides further evidence of LLMs’ capacity to verbal-
ize visual characteristics of narrative scenes. This
leaves room for further accuracy gains, motivating
future exploration of this dataset for understanding
what makes a compelling scene illustration.

6 Conclusion and Future Work

This paper details a pipeline for generating illustra-
tions of narrative scenes, which we apply to pro-
duce SCENEILLUSTRATIONS, a quality-annotated
dataset of illustrations for a popular story corpus.
We identify that LLMs can facilitate this illustra-
tion task by distilling scene descriptions from story
text. We show that this capacity to verbalize im-
plicit scene knowledge is also useful for modeling
illustration quality.

The scene illustration task isolates text-image
alignment challenges in story visualization from
issues of image-image alignment. In future work,
we plan to consider recent approaches addressing
the latter, such as ensuring visual consistency be-
tween story elements (e.g. Liu et al., 2025) and
progressive story development across images (e.g.
Maharana et al., 2022), in order to extend our il-
lustration pipeline to generate multi-scene image
sequences that depict complete stories.
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Limitations

We consider the following limitations:

Proprietary Models Our scene illustration
pipeline has a plug-and-play design, enabling any
LLM to be used for fragmentation and scene cap-
tioning and any text-to-image model to be used
for image generation. However, most of the mod-
els we assessed in this paper are proprietary (i.e.
closed-weight), with exception to LLAMA-3.1 and
SD-3.5-LARGE. While the gap between closed and
open-weight models is narrowing (Cottier et al.,
2024), currently most models with capabilities rele-
vant to the illustration task are closed-weight. This
poses a general disadvantage in accessibility and re-
producibility, which applies likewise to this work.

Prompt Design Currently there is no tractable
way to ensure that a particular prompt is optimal
for the task it is intended to perform. Prompt op-
timization is fundamentally a process of iterative
trial-and-error, even when automation is used to
increase the number of trials. For our experiments,
we primarily employed a principled approach to
writing prompts, which involved adhering to gen-
eral guidance on effective prompt design such as
explaining instructions clearly and including rep-
resentative exemplars (e.g. DAIR.AI, 2025). We
iterated on this design according to qualitative sub-
jective assessment of model outputs for inputs not
included in our scene illustration dataset (i.e. “vibe-
based” prompt engineering), rather than employing
a quantitative optimization approach (e.g. Khattab
et al., 2024) based on targets in a designated devel-
opment set. There are tradeoffs to this technique:
while it avoids overfitting to our presented dataset,
it leaves open the possibility of further prompt op-
timization, which could yield a different view of
model behavior compared with our observations.

Story Corpus The story corpus we use, ROCSto-
ries, is popular in NLP research for some of the
same reasons discussed in §4: the constrained lan-
guage and structure of the text makes the narrative
elements more accessible to computational model-
ing techniques. The stories were authored specifi-
cally for the benefit of this research. However, this
corpus is distinct from “naturally” authored stories
whose complexity is what makes them compelling
to readers. We have not yet fully assessed whether
our scene illustration pipeline generalizes to more
complex narratives.

Ethical Considerations

Generative AI models, and in particular text-to-
image models, pose various ethical risks (Bird et al.,
2023). A key risk is misinformation, which we
avoid by utilizing stories that are strictly depictions
of fictitious people and scenarios. We were pri-
marily concerned with the risk of exposing Prolific
annotators to harmful content. We attempted to mit-
igate this risk by manually reviewing stories sam-
pled for inclusion in our dataset. We flagged stories
that we anticipated could yield objectionable illus-
trations, and re-sampled a different story to replace
each of these. Ultimately, this re-sampling was trig-
gered for 10 stories. Of course, this procedure did
not eliminate the risk, so we also utilized the con-
tent warning feature on the Prolific platform, which
indicated to potential annotators that the task could
expose them to offensive and/or biased content.
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A Appendix

A.1 Additional Statistics for
SCENEILLUSTRATIONS Dataset

A.1.1 Analysis of Phase 1 Fragments

As mentioned in §4.2, there were 206 total frag-
ments derived from the 50 stories in Phase 1, based
on applying CLAUDE-3.5 to the prompt in Table
13. As shown in Table 7, the majority of fragments
consist of a single sentence, with some consisting
of 2 sentences and a few having 3 sentences. An
internal annotator assessed each fragment to deter-
mine if it was the correctly-sized unit for a scene
illustration. A fragment was considered incorrectly-
sized if it either did not include all the text in the
story relevant to a single scene (i.e. the fragment
was too short) or if it included text pertaining to
more than one scene (i.e. the fragment was too
long). The annotator considered the vast majority
of fragments to be correctly-sized (≈96%).

# Total Fragments 206
# 1-Sentence Fragments 164
# 2-Sentence Fragments 40
# 3-Sentence Fragments 2
Mean # Sentences Per Fragment 1.21
Mean # Fragments Per Story 4.12
% of Correctly-Sized Fragments 96.1%

Table 7: Fragmentation statistics for stories in Phase 1

Illustration Type # Illustrations
Phase 1

All 1576
By Scene Description

NC-FRAGMENT 395
VC-FRAGMENT 384
SC-FRAGMENT 393
CAPTION 404

By Image Generator
FLUX-1-PRO 791
MJ-6.1 785

Phase 2
All 1577
By Scene Captioner

CLAUDE-3.5 493
GPT-4O 531
LLAMA-3.1 553

By Image Generator
FLUX-1.1-PRO 307
IDEOGRAM-2.0 300
MJ-6.1 318
RECRAFT-V3 322
SD-3.5-LARGE 330

Table 8: Number of unique illustrations associated with
each scene description type and image generator in
Phase 1 and Phase 2

A.1.2 Win Rates for Image Generators
To determine whether the choice of image genera-
tor influenced illustration quality in both Phase 1
and Phase 2, we computed the win rates for each
image generator against each other among the pairs
that used different image generators.

For Phase 1, there were only two image genera-
tors used to produce illustrations, FLUX-1-PRO vs.
MJ-6.1. We did not find any significant difference
in their win rates. Table 9 shows these results.

FLUX-1-PRO MJ-6.1
42.6% 41.0%

Table 9: Win rates (percentages) of FLUX-1-PRO vs
MJ-6.1 for Phase 1 pairs

.

The Phase 2 data utilized a larger set of image
generators. Table 10 shows their win rates, pre-
sented comparably to Table 4 where each value is
the percentage of selections for the image gener-
ator in the row against the image generator in the
column. According to these results, IDEOGRAM-
2.0 obtains the highest win rates against the other
image generators, with significant success against
FLUX-1.1-PRO, MJ-6.1, and SD-3.5-LARGE. Ad-
ditionally, RECRAFT-V3 is significantly favored
over MJ-6.1. Analysis of these model differences
for this task is an opportunity for future work.

A.2 Criteria-based Evaluation Details

A.2.1 Descriptive Analysis of Criteria Sets
Regarding the generated criteria sets (§5.2), Table
11 compares the average number of criteria in the
sets generated by each criteria writer, revealing that
CLAUDE-3.5 generated the longest criteria sets,
followed by GPT-4O, and LLAMA-3.1.

CLAUDE-3.5 GPT-4O LLAMA-3.1
19.3 17.3 15.8

Table 11: Mean number of criteria per set for each writer

Additionally, Figure 2 visualizes all criteria,
based on encoding each criterion with the Mod-
ernBERT embedding model (Warner et al., 2024),
then running PCA + t-SNE to yield a 2D embed-
ding. While there are no distinct clusters asso-
ciated with each criteria writer, some separation
can be observed between the criteria generated by
CLAUDE-3.5 and GPT-4O, while those generated
by LLAMA-3.1 are more distributed alongside both
other criteria writers.
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FLUX-1.1-PRO IDEOGRAM-2.0 MJ-6.1 RECRAFT-V3 SD-3.5-LARGE
FLUX-1.1-PRO - 35.4 43.2 45.3 48.6
IDEOGRAM-2.0 53.5* - 61.7* 46.9 58.5*
MJ-6.1 39.9 32.1 - 29.2 45.4
RECRAFT-V3 44.0 40.1 61.8* - 50.6
SD-3.5-LARGE 43.7 30.3 43.7 37.8 -

Table 10: Win rates (percentages) by image generator for Phase 2. Statistically significant win rates are denoted
with an asterisk.

Figure 2: Visualization of criteria generated by each cri-
teria writer. Each point is a single criterion represented
by its ModernBERT embedding. We applied PCA fol-
lowed by t-SNE to plot the embeddings in 2D space.

A.2.2 Criterial Rater Assessment

Rater κ
CLAUDE-3.5 0.676
GPT-4O 0.710
PIXTRAL 0.622

Table 12: Correctness of criterial rater responses (κ)

As referenced in §5.3, we conducted a small
assessment of the correctness of the VLM raters’
responses to criteria. To do this, we randomly sam-
pled 100 items, each with a unique image and crite-
ria set. We then enlisted an expert human annotator
to assign a response to each criterion, which we
treated as the gold standard criterion response for
the sampled image. We measured rater correct-
ness in terms of linear-weighted κ agreement with
the gold standard, where responses of ‘✗’ were
mapped to -1, ‘?’ to 0, and ‘✓’ to 1; this results
in less weight assigned to disagreements involving
‘?’ (“maybe”) responses. Table 12 shows the κ
on these 1699 criterion responses. It indicates that
raters are all substantially aligned with the human
annotator, though GPT-4O appears to have the high-
est human agreement, followed by CLAUDE-3.5,
and then PIXTRAL.
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You are performing the task of story fragmentation. The task is to split a story into fragments where each fragment consists
of a distinct part of the story. A fragment contains enough information to yield a visualization that is unique to that part of the
story. In this version of the task, you will insert brackets (i.e. [ and ]) into the given story text to annotate the beginning and
end of each fragment. Write the fragments without preamble. Here are some examples:

Story: Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival. To encourage her
team, she began chanting positive phrases. During her chant, her favorite team scored a goal. Mia cheered loudly and thought
that she helped score that goal.
Fragmented Story: [Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival.] [To
encourage her team, she began chanting positive phrases.] [During her chant, her favorite team scored a goal.] [Mia cheered
loudly and thought that she helped score that goal.]

[...2 more exemplars...]

Story: {{story}}
Fragmented Story:

Table 13: Fragmentation prompt. LLM prompt for annotating fragment boundaries in a story, which consists of a
task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora

(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).

You will be shown a story fragment along with its story context. Your task is to rewrite the fragment so that its meaning can
be fully understood if read independently of the story context. For instance, you should replace names of characters with
generic nouns. You should replace pronouns with the nouns they refer to (if the reference is a character, replace it with the
appropriate generic noun). For first-person pronouns, replace the pronoun with a generic identifier (e.g. "I" -> "A person",
"my" -> "the person’s"). If the fragment implicitly refers to any other information in the story context, this information should
be made explicit in the revised fragment. Write the revised fragment without preamble. Here are some examples:

Story Context: Anna was filling her bird feeders. But a chunk of suet fell onto the ground. Her dog rushed over and lapped it
up! Anna was astonished. She had no idea dogs loved bird food!
Story Fragment: Her dog rushed over and lapped it up!
Revised Story Fragment: The woman’s dog rushed over and lapped up the chunk of suet that had fallen onto the ground.

[...2 more exemplars...]

Story Context: {{story}}
Story Fragment: {{fragment}}
Revised Story Fragment:

Table 14: Fragment rewriting prompt. LLM prompt for generating SC-FRAGMENT scene descriptions. The
prompt consists of a task instruction and exemplars demonstrating the task. The stories in the exemplars are
from the ROCStories corpus.

Imagine an AI system will be used to generate illustrations for story fragments. This AI illustrator generates a single image
given a caption describing what is contained in the image. Your task is to read a story fragment along with its story context
and write a caption that describes how to illustrate the fragment. The caption should elaborately describe the most salient way
to visualize the fragment. It should completely specify all the information the illustrator needs to generate the image. Write
the caption without preamble. Here are some examples:

Story Context: Carrie had just learned how to ride a bike. She didn’t have a bike of her own. Carrie would sneak rides on her
sister’s bike. She got nervous on a hill and crashed into a wall. The bike frame bent and Carrie got a deep gash on her leg.
Story Fragment: Carrie would sneak rides on her sister’s bike.
Caption for Story Fragment: A young girl with a mischievous expression carefully wheels a bicycle that’s slightly too big for
her out of a garage, glancing over her shoulder as if making sure no one sees her.

[...2 more exemplars...]

Story Context: {{story}}
Story Fragment: {{fragment}}
Caption for Story Fragment:

Table 15: Scene captioning prompt. LLM prompt for generating CAPTION scene descriptions. The prompt consists
of a task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora
(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).
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Fragment (within story) CAPTION CAPTION Illustration VC-FRAGMENT
Illustration

Joe went to the junk-
yard to find treasures.
He dug through a stack of
old clothes. At the bottom
was a vintage shirt with a
rock band on it. Joe put
the shirt on to try it out.
Joe was happy the shirt
fit.

A young man with an excited expres-
sion stands at the entrance of a sprawl-
ing junkyard. He’s wearing casual
clothes and holding a small backpack.
The junkyard is filled with piles of dis-
carded items, including old appliances,
furniture, and scrap metal. The sky is
bright and sunny, creating an adventur-
ous atmosphere. In the foreground, a
rusty sign reads "Junkyard" with oper-
ating hours listed below.

Trish hated the outdoors.
Her friends convinced her
to go camping. She
wasn’t having a good
time. They showed her
how to fish and showed
her the stars. Eventually
Trish grudgingly came to
accept nature.

A young woman with a scowling ex-
pression sits on a log by a campfire,
arms crossed and looking miserable.
She’s surrounded by cheerful friends
setting up tents and unpacking camp-
ing gear in a forest clearing. Her
clean, urban clothing contrasts with the
rugged outdoor setting, emphasizing
her discomfort with nature.

Sammy’s coffee grinder
was broken. He needed
something to crush up his
coffee beans. He put his
coffee beans in a plastic
bag. He tried crushing
them with a hammer. It
worked for Sammy.

A man in casual clothing stands at
a kitchen counter, holding a hammer
above a clear plastic bag filled with
whole coffee beans. The hammer is
poised mid-swing, about to strike the
bag. The man’s face shows a mix of de-
termination and uncertainty. Scattered
around the counter are a few stray cof-
fee beans and an unplugged, visibly
broken coffee grinder.

I decided to go on a bike
ride with my brother. We
both headed out in the
morning. We were hav-
ing a lot of fun. Suddenly,
he hit a rock and broke his
wheel! I felt very badly
for my brother.

A concerned young person stands next
to their brother, who sits dejectedly on
the ground next to a fallen bicycle with
a visibly bent front wheel. The scene
takes place on a sunny morning on a
bike path, with trees and nature in the
background. The standing sibling has
a sympathetic expression, reaching out
to comfort their brother, who looks dis-
appointed and upset about the broken
bike.

Table 16: Examples of scene illustrations in Phase 1. For each story fragment, we show an illustration resulting
from the LLM-generated CAPTION scene description and one resulting from the baseline VC-FRAGMENT scene
description. The image generator for all illustrations is FLUX-1-PRO.

CAPTION Win %
Scene Description Pair MJ-6.1 & FLUX-1-PRO MJ-6.1 Only FLUX-1-PRO Only
CAPTION vs. NC-FRAGMENT 78.1 79.2 77.7
CAPTION vs. VC-FRAGMENT 74.7 74.5 75.0
CAPTION vs. SC-FRAGMENT 72.5 76.1 68.9

Table 17: Extended view of Table 3. Here, the win rates (percentages) for CAPTION vs. baseline scene descriptions
in Phase 1 are split out by pairs where both illustrations used the same image generator (the MJ-6.1 Only and
FLUX-1-PRO Only columns). This shows that the CAPTION win rate is similar regardless of which image generator
is used.
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Figure 3: Example of a item shown to participants in the annotation task described in §4.3

Imagine an AI system will be used to judge the quality of images intended to illustrate story fragments. This AI judge scores
the images given some criteria about what should be depicted in the images. Your task involves writing the criteria for this AI
judge. In particular, you will read a story and focus on a fragment at a specific position in the story. You will write the criteria
defining the characteristics the image for that fragment should satisfy in order to be considered a good illustration of the
fragment. There are a few things to consider when writing the criteria. First, while the criteria should define the fundamental
characteristics depicted in the image, the visual details of these characteristics may vary across images, and alternative details
may be similarly effective in illustrating the fragment. Each criterion should be written in a way that accommodates these
potential variations in detail, without assuming specific information that is not defined explicitly in the story. Additionally,
each criterion should refer to only a single atomic characteristic of the image. If a criterion references multiple characteristics
such that an image might satisfy some but not others, it should be further split into multiple separate criteria. For example,
instead of writing "the image shows a sapphire ring on the bathroom floor" as one criterion, you should write "the image
shows a ring", "the ring contains a sapphire", and "the ring is on the bathroom floor" as separate criteria. The criteria should
not only consider the presence of certain elements in the image, but also the visual quality of their depiction. Write the criteria
without preamble, with a number header (e.g. ’1.’) for each criterion. Try to write as many criteria as possible, but avoid
specifying extraneous or redundant criteria. Here is an example:

Story Context: Lisa has a beautiful sapphire ring. She always takes it off to wash her hands. One afternoon, she noticed
it was missing from her finger! Lisa searched everywhere she had been that day. She was elated when she found it on the
bathroom floor!
Story Fragment: She was elated when she found it on the bathroom floor!
Image Criteria for Story Fragment:
1. The image shows a clearly visible ring
2. The image portrays a bathroom setting recognizable through typical bathroom elements (tiles, fixtures, etc.)
3. The ring contains a blue gemstone recognizable as a sapphire
4. The ring is on the bathroom floor
5. The ring appears to be positioned naturally as if it had fallen or been dropped
6. A female figure (Lisa) is present in the image
7. The woman’s facial expression clearly conveys joy or elation
8. The woman’s body language demonstrates excitement or relief
9. The woman’s positioning suggests she has just discovered or is reaching for the ring
10. The lighting adequately illuminates the ring to make it visible as the focal point
11. The perspective of the image allows viewers to see both the ring and the woman’s emotional reaction
12. The composition draws attention to the moment of discovery
13. The spatial relationship between the woman and ring suggests imminent retrieval
14. The overall scene composition captures the spontaneous nature of the discovery
15. The woman’s appearance suggests this is taking place during daytime/afternoon
16. The ring appears intact and undamaged, justifying the woman’s relief
17. The bathroom setting appears residential rather than public

Story Context: {{story}}
Story Fragment: {{fragment}}
Image Criteria for Story Fragment:

Table 18: Criteria generation prompt. LLM prompt used to generate evaluation criteria for assessing the quality
of scene illustrations.
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You will observe an image along with a list of criteria, where each criterion describes a characteristic or quality that may or
may not be depicted in the image. Your task is to determine whether or not each criterion is satisfied by the image. For each
criterion, if the image fully satisfies that criterion, write a checkmark (’✓’) after it. If the image only partially satisfies the
criterion but not completely, write a question mark (’?’) after it. Otherwise, if the image does not satisfy that criterion, write
an X mark (’✗’) after it. Reiterate each criterion before giving your assessment for it, but do not provide additional preamble
in your response. Here is an example:

Criteria:
1. The image shows a young woman (Laura) in an apartment setting
2. The woman’s facial expression conveys happiness or contentment
3. The apartment appears to be newly moved into, with some visible unpacked items
4. There are visible windows in the apartment
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
6. The lighting suggests natural daylight entering the apartment
7. The apartment appears residential and suitable for a recent college graduate
Image: <IMAGE WILL APPEAR HERE>
Criteria Responses:
1. The image shows a young woman (Laura) in an apartment setting ✓
2. The woman’s facial expression conveys happiness or contentment ✗
3. The apartment appears to be newly moved into, with some visible unpacked items ?
4. There are visible windows in the apartment ✓
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
✗
6. The lighting suggests natural daylight entering the apartment ✓
7. The apartment appears residential and suitable for a recent college graduate ✓

Criteria:
{{criteria}}
Image: {{image}}
Criteria Responses:

Table 19: Criteria-based rating prompt. VLM prompt used to score the quality of a scene illustration by assigning
responses to each criterion in a provided criteria set

Your task is to rate how well a particular image illustrates a fragment of a story. You will observe the fragment with its story
context, alongside the image depicting the fragment. Provide a rating on a scale ranging from 0.0 to {{len(criteria)}}
in half-point increments, where 0.0 indicates the image is unrelated to the fragment and {{len(criteria)}} indicates the
image is a perfect illustration of the fragment. Do not provide additional preamble before the rating. Here is an example:

Story: Laura had just graduated college. She was planning on moving on California. She packed all her belongings in her car
and drove 18 hours. When she arrived at her new apartment she unpacked all her things. Laura loved the new change of
scenery at her new place.
Fragment: Laura loved the new change of scenery at her new place.
Image: <IMAGE WILL APPEAR HERE>
Rating: 4.5

Story: {{story}}
Fragment: {{fragment}}
Image: {{image}}
Rating:

Table 20: Baseline rating prompt. VLM prompt used to score the quality of a scene illustration by directly
assigning a rating between 0 and a maximum. This maximum is dynamically set to the total number of criteria in a
provided criteria set ({{len(criteria)}}), even though the criteria themselves are not referenced in the prompt.
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