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Abstract

Large language models (LLMs) exhibit remark-
able similarity to neural activity in the human
language network. However, the key proper-
ties of language underlying this alignment—
and how brain-like representations emerge and
change across training—remain unclear. We
here benchmark 34 training checkpoints span-
ning 300B tokens across 8 different model sizes
to analyze how brain alignment relates to lin-
guistic competence. Specifically, we find that
brain alignment tracks the development of for-
mal linguistic competence—i.e., knowledge
of linguistic rules—more closely than func-
tional linguistic competence. While functional
competence, which involves world knowledge
and reasoning, continues to develop through-
out training, its relationship with brain align-
ment is weaker, suggesting that the human lan-
guage network primarily encodes formal lin-
guistic structure rather than broader cognitive
functions. Notably, we find that the corre-
lation between next-word prediction, behav-
ioral alignment, and brain alignment fades once
models surpass human language proficiency.
We further show that model size is not a re-
liable predictor of brain alignment when con-
trolling for the number of features. Finally, us-
ing the largest set of rigorous neural language
benchmarks to date, we show that language
brain alignment benchmarks remain unsatu-
rated, highlighting opportunities for improving
future models. Taken together, our findings
suggest that the human language network is
best modeled by formal, rather than functional,
aspects of language.!

1 Introduction

Deciphering the brain’s algorithms underlying our
ability to process language and communicate is a
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Figure 1: Model Alignment with the Human Lan-
guage Network is Primarily Driven by Formal than
Functional Linguistic Competence. (a) Average brain
alignment across five Pythia models and five brain
recording datasets, normalized by cross-subject con-
sistency, throughout training. (b) Average normalized
accuracy of the same models on formal linguistic com-
petence benchmarks (two benchmarks). (c¢) Average nor-
malized accuracy on functional linguistic competence
benchmarks (six benchmarks). The x-axis is logarithmi-
cally spaced up to 16B tokens, capturing early training
dynamics, and then evenly spaced every 20B tokens
from 20B to ~300B tokens.

core goal in neuroscience. Human language pro-
cessing is supported by the brain’s language net-
work (LN), a set of left-lateralized fronto-temporal
regions in the brain (Binder et al., 1997; Bates
et al., 2003; Gorno-Tempini et al., 2004; Price,
2010; Fedorenko, 2014; Hagoort, 2019) that re-
spond robustly and selectively to linguistic input
(Fedorenko et al., 2024a). Driven by recent ad-
vances in machine learning, large language mod-
els (LLMs) trained via next-word prediction on
large corpora of text are now a particularly promis-
ing model family to capture the internal processes
of the LN. In particular, when these models are
exposed to the same linguistic stimuli (e.g., sen-
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tences or narratives) as human participants during
neuroimaging and electrophysiology experiments,
they account for a substantial portion of neural re-
sponse variance (Schrimpf et al., 2021; Caucheteux
and King, 2022; Goldstein et al., 2022; Pasquiou
etal., 2022; Aw et al., 2023; Tuckute et al., 2024a;
AlKhamissi et al., 2025; Rathi et al., 2025).

1.1 Key Questions and Contributions

This work investigates four key questions, all aimed
at distilling why LLM aligns to brain responses.
Specifically, we investigate the full model devel-
opment cycle as a combination of model archi-
tecture (structural priors) and how linguistic com-
petence emerges across training (developmental
experience). We ask: (1) What drives brain align-
ment in untrained models? (2) Is brain alignment
primarily linked to formal or functional linguis-
tic competence (Mahowald et al., 2024)? (3) Do
language models diverge from humans as they sur-
pass human-level prediction? (4) Do current LLMs
fully account for the explained variance in brain
alignment benchmarks? To answer these questions,
we introduce a rigorous brain-scoring framework
to conduct a controlled and large-scale analysis of
LLM brain alignment.

Our findings reveal that the initial brain align-
ment of models with untrained parameters is driven
by context integration. During training, alignment
primarily correlates with formal linguistic com-
petence—tasks that probe mastery of grammar,
syntax, and compositional rules, such as identi-
fying subject—verb agreement, parsing nested syn-
tactic structures, or completing well-formed sen-
tences. This competence saturates relatively early
in training (~ 4B tokens), consistent with a plateau-
ing of model-to-brain alignment. Functional lin-
guistic competence, in contrast, concerns how lan-
guage is used in context to convey meaning, intent,
and social/pragmatic content—for example, tasks
involving discourse coherence, reference resolu-
tion, inference about speaker meaning, or interpret-
ing figurative language. Functional competence
emerges later in training, tracks brain alignment
less strongly, and continues to grow even after
alignment with the language network has saturated.

This disconnect later in training is further exem-
plified by a fading of the correlation between mod-
els’ brain alignment and their next-word-prediction
performance, as well as their behavioral alignment.
Further, we show that model size is not a reliable
predictor of brain alignment when controlling for

the number of features, challenging the assumption
that larger models necessarily resemble the brain
more. Finally, we demonstrate that current brain
alignment benchmarks remain unsaturated, indi-
cating that LLMs can still be improved to model
human language processing.

2 Preliminaries & Related Work

A Primer on Language in the Human Brain
The human language network (LN) is a set of
left-lateralized frontal and temporal brain regions
supporting language. These regions are function-
ally defined by contrasting responses to language
inputs over perceptually matched controls (e.g.,
lists of non-words) (Fedorenko et al., 2010). The
language network exhibits remarkable selectivity
for language processing compared to various non-
linguistic inputs and tasks, such as music percep-
tion (Fedorenko et al., 2012; Chen et al., 2023)
or arithmetic computation (Fedorenko et al., 2011;
Monti et al., 2012) (for review, see Fedorenko et al.
(2024a)) and the language network only shows
weak responses when participants comprehend or
articulate meaningless non-words (Fedorenko et al.,
2010; Hu et al., 2023). This selectivity profile is
supported by extensive neuroimaging research and
further corroborated by behavioral evidence from
aphasia studies: when brain damage is confined
to language areas, individuals lose their linguistic
abilities while retaining other skills, such as math-
ematics (Benn et al., 2013; Varley et al., 2005),
general reasoning (Varley and Siegal, 2000), and
theory of mind (Siegal and Varley, 2006).

Model-to-Brain Alignment Prior work has
shown that the internal representations of certain ar-
tificial neural networks resemble those in the brain.
This alignment was initially observed in the domain
of vision (Yamins et al., 2014; Khaligh-Razavi and
Kriegeskorte, 2014; Cichy et al., 2016; Schrimpf
et al., 2018, 2020; Cadena et al., 2019; Kubilius
et al., 2019; Zhuang et al., 2021) and has more re-
cently been extended to auditory processing (Kell
et al., 2018; Tuckute et al., 2023; Koumura et al.,
2023) and language processing (Schrimpf et al.,
2021; Caucheteux and King, 2022; Goldstein et al.,
2022; Kauf et al., 2023; Hosseini et al., 2024; Aw
et al., 2023; AlKhamissi et al., 2025; Tuckute et al.,
2024b; Rathi et al., 2025).

Untrained Models Recent work in vision neu-
roscience has shown that untrained convolutional
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networks can yield high brain alignment to record-
ings in the visual ventral stream without the need
for training (Geiger et al., 2022; Kazemian et al.,
2024). Other works have investigated the induc-
tive biases in different architectures and initializa-
tions in models of visual processing (Cichy et al.,
2016; Cadena et al., 2019; Geiger et al., 2022),
speech perception (Millet and King, 2021; Tuckute
et al., 2023), and language (Schrimpf et al., 2021;
Pasquiou et al., 2022; Hosseini et al., 2024), high-
lighting that randomly initialized networks are not
random functions (Teney et al., 2024).

3 Methods

3.1 Benchmarks for Brain Alignment

Neuroimaging & Behavioral Datasets The neu-
roimaging datasets used in this work can be catego-
rized along three dimensions: the imaging modal-
ity, the context length of the experimental materials,
and the modality through which the language stim-
ulus was presented to human participants (auditory
or visual). Table 1 in Appendix A provides an
overview of all datasets in this study. To focus
specifically on language, we consider neural units
(electrodes, voxels, or regions) associated with the
brain’s language network, as localized by the origi-
nal dataset authors using the method described in
the Section 3.2 and implemented in Brain-Score
(Schrimpf et al., 2020, 2021) (however, see Ap-
pendix J for control brain regions). An exception is
the NARRATIVES dataset, which lacks functional
localization. We here approximate the language
regions using a probabilistic atlas of the human
language network (Lipkin et al., 2022), extracting
the top-10% language-selective voxels (from the
probabilistic atlas) within anatomically defined lan-
guage parcels, in line with the functional localiza-
tion procedure used in the other datasets. In an ad-
ditional analysis, we investigate model alignment
with language behavior using the (Futrell et al.,
2018) dataset, which contains self-paced, per-word
human reading times. See Appendix A for details
of each dataset. To the best of our knowledge, this
study examines the largest number of benchmarks
compared to previous work, providing a more com-
prehensive and reliable foundation for identifying
the properties that drive brain alignment in LLMs.
The diversity of datasets ensures that our conclu-
sions generalize beyond specific experimental stim-
uli and paradigms.

Brain-Alignment Metrics Following standard
practice in measuring brain alignment, we train
a ridge regression model to predict brain activity
from model representations, using the same lin-
guistic stimuli presented to human participants in
neuroimaging studies (Schrimpf et al., 2020, 2021).
We then measure the Pearson correlation between
the predicted brain activations and the actual brain
activations of human participants on a held-out set
that covers entirely different stories or topics (see
Section 4). This process is repeated over k cross-
validation splits, and we report the average (mean)
Pearson correlation as our final result. We refer to
this metric as Linear Predictivity. In Section 5.1,
we demonstrate why other metrics such as Centered
Kernel Alignment (CKA; Kornblith et al., 2019)
and Representational Similarity Analysis (RSA;
Kriegeskorte et al., 2008) are not suitable measures
for brain alignment on current language datasets.

Estimation of Cross-Subject Consistency To
assess the reliability of our datasets and account for
the inherent noise in brain recordings, we com-
pute a cross-subject consistency score (Feather
et al., 2025), also referred to as the noise ceil-
ing (Schrimpf et al., 2021). The consistency score
is estimated by predicting the brain activity of a
held-out subject using data from all other subjects,
through 10-fold cross-validation of all subjects. To
obtain a conservative ceiling estimate, we extrap-
olate subject pool sizes and report the final value
based on extrapolation to infinitely many subjects.
For TUCKUTE2024 we use the theoretical esti-
mate provided by (Tuckute et al., 2024b). Con-
sistency scores are provided in Appendix K. To
aggregate scores across benchmarks, we normal-
ize each model’s Pearson correlation (1) score for
Linear Predictivity by the cross-subject consistency
estimate, using the formula: (normalized score =

raw Score _y Ty .
—CV SLIL ) e final alignment score for each
consistency ) g

model is reported as the average across all bench-
marks. Otherwise, when reporting raw alignment,
we compute the mean Pearson correlation across
datasets without normalization.

3.2 Functional Localization

The human language network (LN) is defined func-
tionally which means that units are chosen accord-
ing to a ‘localizer’ experiment (Saxe et al., 2006).
Specifically, the LN is the set of neural units (e.g.,
voxels/electrodes) that are more selective to sen-
tences over a perceptually-matched control condi-

24335



tion (Fedorenko et al., 2010). When selecting units
from artificial models for comparison against LN
units, previous work selected output units from an
entire Transformer block based on brain alignment
scores (Schrimpf et al., 2021). However, LLMs
learn diverse concepts and behaviors during their
considerable pretraining, not all of which are nec-
essarily related to language processing, e.g., stor-
age of knowledge (AlKhamissi et al., 2022) and
the ability to perform complex reasoning (Huang
and Chang, 2023). Therefore, we here follow the
method proposed by (AlKhamissi et al., 2025) that
identifies language units in LLMs using functional
localization as is already standard in neuroscience.
This approach offers a key advantage: it enables
direct comparisons across models by selecting a
fixed set of units, identified through the indepen-
dent localizer experiment. In this work, we localize
128 units for all models unless otherwise specified,
and we show in Appendix H that the results hold
when selecting a different number of units.

3.3 Benchmarks for Linguistic Competence

There is substantial evidence in neuroscience re-
search that formal and functional linguistic com-
petence are governed by distinct neural mecha-
nisms (Mahowald et al., 2024; Fedorenko et al.,
2024a,b). Formal linguistic competence pertains
to the knowledge of linguistic rules and patterns,
while functional linguistic competence involves
using language to interpret and interact with the
world. Therefore, to accurately track the evolution
of each type of competence during training, we
focus on benchmarks that specifically target these
cognitive capacities in LLMs.

Formal Linguistic Competence To assess for-
mal linguistic competence, we use two benchmarks:
BLIMP (Warstadt et al., 2019) and SYNTAXGYM
(Gauthier et al., 2020). BLIMP evaluates key gram-
matical phenomena in English through 67 tasks,
each containing 1,000 minimal pairs designed to
test specific contrasts in syntax, morphology, and
semantics. Complementing this, SYNTAXGYM
consists of 31 tasks that systematically measure the
syntactic knowledge of language models. Together,
these benchmarks provide a robust framework for
evaluating how well LLMs acquire and apply lin-
guistic rules.

Functional Linguistic Competence Functional
competence extends beyond linguistic rules, en-
gaging a broader set of cognitive mechanisms.

To assess this, we use six benchmarks cov-
ering world knowledge (ARC-EAsy, ARC-
CHALLENGE (Clark et al., 2018)), social reason-
ing (SOCIAL IQA (Sap et al., 2019)), physical rea-
soning (PIQA (Bisk et al., 2019)), and common-
sense reasoning (WINOGRANDE (Sakaguchi et al.,
2019), HELLASWAG (Zellers et al., 2019)). To-
gether, these benchmarks provide a comprehensive
evaluation of an LLM’s ability to reason, infer im-
plicit knowledge, and navigate real-world contexts.

Metrics Inline with prior work, we evaluate all
benchmarks in a zero-shot setting, using surprisal
as the evaluation metric. where the model’s predic-
tion is determined by selecting the most probable
candidate, as packaged in the language model eval-
uation harness (Gao et al., 2024). We report accu-
racy normalized by chance performance, where 0%
indicates performance at the random chance level.

Benchmark for Language Modeling We use a
subset of FINEWEBEDU (Penedo et al., 2024) to
evaluate the perplexity of the models on a held-out
set. Specifically, use a maximum sequence length
of 2048, and evaluate on the first 1000 documents
of the CC-MAIN-2024-10 subset.

3.4 Large Language Models (LLMs)

Throughout this work, we use eight models from
the Pythia model suite (Biderman et al., 2023),
spanning a range of sizes: {14M, 70M, 160M,
410M, 1B, 1.4B, 2.8B, 6.9B}. Each model is eval-
uated across 34 training checkpoints, spanning ap-
proximately 300B tokens. These checkpoints in-
clude the untrained model, the final trained model,
and 16 intermediate checkpoints that are logarith-
mically spaced up to 128B tokens. The remaining
14 checkpoints are evenly spaced every 20B tokens
from 20B to 280B tokens, ensuring a comprehen-
sive analysis of alignment trends throughout train-
ing. Since smaller models fail to surpass chance
performance on many functional benchmarks, we
exclude 14M, 70M, 160M from analyses that com-
pare brain alignment with functional performance.

4 Rigorous Brain-Scoring

While substantial progress has been made in mea-
suring alignment between LLM representations
and neural activity, there’s no standard for com-
paring brain alignment across datasets and condi-
tions. Therefore, to ensure we perform meaningful
inferences, we propose two criteria: (1) alignment
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Figure 2: Context Integration drives Brain Alignment of Untrained Models. (a) Sequence-based models
(GRU, LSTM, Transformers, and mean pooling) achieve higher brain alignment than models that rely solely on
the last token representation (Linear, MLP), highlighting the importance of temporal integration. Error bars report
five random initializations in all subplots. (b) Ablation study of architectural components in a single untrained
TRANSFORMER-V?2 block, demonstrating that attention mechanisms combined with positional encoding yield the
highest brain alignment. (¢) Diagram of the Transformer block architecture used in (b), with components grouped
into attention (lower box) and MLP (upper box). (d) The average performance of five Pythia models with untrained
parameters on formal and functional linguistic competence benchmarks, showing that formal competence exceeds

chance level even in untrained parameter models.

should reflect stimulus-driven responses, dropping
for random token sequences; and (2) models should
generalize to new linguistic contexts. We justify
our metrics and cross-validation choices accord-
ingly. For all benchmarks, we identify language-
selective units to ensure fair model comparisons,
consistent with neural site selection in neuroscience
(AlKhamissi et al., 2025).

4.1 Robust Metrics and Generalization Tests

Measuring Stimulus-Driven Responses We
first ask if the alignment procedure is meaningful,
i.e., whether the encoding models capture meaning-
ful linguistic information and generalize to new lin-
guistic contexts. Figure 6(a) in Appendix B shows
average brain alignment across all brain datasets
under three conditions: (1) a pretrained model pro-
cessing original stimuli, (2) a pretrained model
processing random token sequences, and (3) an
untrained model processing original stimuli. To
evaluate metric reliability, we expect random se-
quences to yield significantly lower alignment than
real stimuli. However, CKA fails this criterion, as-
signing similar alignment scores to both, and even
untrained models surpass pretrained ones. In con-
trast, linear predictivity differentiates between real
and random stimuli, more so than RSA.

Generalization and Contextualization The sec-
ond criterion we propose is that LLMs with high
brain alignment should be able to generalize to
held-out stimuli, with a preference for general-
izing far outside the stimuli used for mapping

the model to brain activity. A key factor in de-
signing a corresponding cross-validation scheme
is contextualization—how the data is split into
train and test sets (Feghhi et al., 2024). The
PEREIRA2018 dataset consists of 24 topics com-
posed of multi-sentence passages, and sentences
are presented in their original order to both humans
and models. A random sentence split (contextual-
ization) allows sentences from the same topic in
both train and test sets, and is thus less demanding
of generalization. A stronger generalization test en-
sures entire topics are held out, preventing models
from leveraging shared context. Figure 6(b) shows
that contextualization makes it easier for the model
to predict brain activity. In contrast, topic-based
splits halve the raw alignment score for pretrained
models. The score of untrained models is reduced
even more strongly when enforcing generalization
across topics, suggesting that much of their align-
ment is context-dependent. Nonetheless, untrained
models retain significant alignment — about 50% of
pretrained models — even with strong generaliza-
tion requirements.

5 Results

The following sections progressively unpack the
emergence and limits of brain alignment with the
human language network in LLMs. Section 5.1 es-
tablishes the foundation by showing that untrained
models already exhibit modest brain alignment,
pointing to the role of architectural priors. Building
on this, Section 5.2 tracks how alignment evolves
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Figure 3: Brain Alignment Saturates Early on in Training. Plots indicate the brain alignment scores of three
models from the Pythia model suite with varying sizes (log x-axis up to 16B tokens, uneven spacing after black line).
Scores are normalized by their cross-subject consistency scores. Alignment quickly peaks around 2—-8B tokens
before saturating or declining, regardless of model size (see Appendix D and F for more models).

with training and reveals that it strongly correlates
with the early acquisition of formal linguistic com-
petence, but less so with functional abilities. Sec-
tion 5.3 then shows that as models exceed human-
level performance in next-word prediction, their
brain and behavioral alignment begins to diverge,
suggesting that at this point, LLMs outgrow their
initial alignment with human language processing.

5.1 Brain Alignment of Untrained Models

In Figure 6 we show that untrained models, de-
spite achieving lower alignment scores than their
pretrained counterparts (~ 50%), still achieve rel-
atively decent alignment and surpass that of the
models evaluated with a random sequence of to-
kens. Therefore, we here ask, what are the main
drivers for this surprising alignment.

Inductive Biases of Untrained Models We eval-
uate the brain alignment of various LLMs with
untrained parameters to determine which architec-
ture exhibits the strongest inductive bias toward
the human language network. Figure 2(a) presents
the average alignment across five different random
initializations for six different untrained models.
Each model consists of a stack of two building
blocks from its respective architecture, with a hid-
den state of 1024. To ensure a fair comparison,
we apply the localizer to the output representations
of the last token in the sequence from these two
blocks, extracting 128 units to predict brain activ-
ity. Our findings reveal two key insights. First,
sequence-based models—such as GRU, LSTM,
TRANSFORMERS, and even a simple mean oper-
ation over token representations—exhibit higher
brain alignment than models that rely solely on
the last token’s representation, such as LINEAR
or MLP. In other words, context or temporal inte-

gration is a crucial factor in achieving high align-
ment. Second, we observe a notable difference
between TRANSFORMER-V1 and TRANSFORMER-
v2. While TRANSFORMER-V2 applies static po-
sitional embeddings by directly adding them to
token embeddings, TRANSFORMER-V1 uses rotary
position encoding. Our results suggest that static
positional encoding enables models to capture in-
trinsic temporal dynamics in sentences—possibly
tracking evolving word positions—providing fur-
ther evidence that temporal integration is critical
for brain-like language representations.

Key Components of Transformers To further
isolate the key elements responsible for brain align-
ment in untrained parameter models, we perform
an ablation study on the architectural components
of TRANSFORMER-V2 using a single block (Fig-
ure 2(c)). By focusing on the untrained model,
we isolate the effect of architecture alone, without
confounding influences from training. The archi-
tectural components analyzed are labeled on the
left of each bar in Figure 2(b). Attn refers to all
components inside the lower box in Figure 2(c),
including the first layer norm, multi-head attention,
and the residual connection that follows. MLP

corresponds to the components in the upper box,
comprising the post-attention layer norm, MLP,
and the subsequent residual layer. Pos represents
the addition of positional embeddings to token em-
beddings. Tokens means the model directly re-
turns the raw token embeddings without further
processing. This systematic ablation helps pin-
point the components that contribute most to brain
alignment. Once again, we observe that integration
across tokens, via attention mechanisms and posi-
tional encoding, yields the highest brain alignment.
Further, we found that untrained parameter models
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Figure 4: Formal Competence Tracks Brain Alignment More Closely Than Functional Competence. Each
column compares how the evolution of formal competence (top) and functional competence (bottom) tracks the
evolution of brain alignment during training. The R? values quantify the strength of this relationship, with higher
values in formal competence suggesting it as the key driver of the observed brain alignment. (a): The data averaged
across models of five different sizes. (b-d): the same comparison as in (a), but with comparisons were made for

models from the Pythia suite with three different sizes.

perform better than chance-level performance on
formal competence benchmarks, mirroring their
non-zero brain alignment. In contrast, functional
competence benchmarks remain at chance level for
untrained models. This further supports the finding
that brain alignment is primarily driven by formal,
rather than functional, linguistic competence. (see
Figure 2(d)).

5.2 Brain Alignment Over Training

Having established the architectural components
that make an untrained model brain-aligned in the
previous section, we now investigate how brain
alignment evolves during training. To do so, we
use the Pythia model suite (Biderman et al., 2023),
which consists of models of various sizes, all
trained on the same ~300B tokens, with pub-
licly available intermediate checkpoints. We re-
port results for a model from a different family,
SMOLLM2-360M (Allal et al., 2025), which pro-
vides checkpoints at 250B-token intervals, in Ap-
pendix F.

Figure 3 illustrates the brain alignment of six
Pythia models across five brain recording datasets
at 34 training checkpoints, spanning approximately
300B tokens. Each panel presents checkpoints that
are logarithmically spaced up to the vertical line,
emphasizing the early-stage increase in brain align-
ment, which occurs within the first 5.6% of training
time. Beyond this point, the panels display the re-

maining training period, where brain alignment
stabilizes. More specifically, we observe the fol-
lowing trend: (1) Brain alignment is similar to the
untrained model until approximately 128M tokens.
(2) A sharp increase follows, peaking around 8B
tokens. (3) Brain alignment then saturates for the
remainder of training. Despite the vast difference
in model sizes shown in Figure 3, the trajectory of
brain alignment is remarkably similar.

Alignment Tracks Formal Competence Follow-
ing the observation that brain alignment plateaus
early in training, we next investigate how this re-
lates to the emergence of formal and functional lin-
guistic competence in LLMs. Figure 4 displays the
average brain alignment alongside the average per-
formance on formal competence benchmarks (top
row) and functional competence benchmarks (bot-
tom row). This is shown for three Pythia models
(1B, 2.8B, and 6.9B parameters) and the average of
five Pythia models (first column) across the training
process. To quantify this relationship, we train a
ridge regression model (with a single scalar weight)
to predict brain alignment scores from benchmark
scores using 10-fold cross-validation. The aver-
age R-squared value across these folds serves as
our metric for comparing the relationship between
formal/functional linguistic competence and brain
alignment. These R-squared values are shown in
each panel of Figure 4. Finally, we perform a
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Figure 5: NWP and Behavioral Alignment Correlate with Brain Alignment Only in Early Training. (Top
Row): Correlation between brain alignment and language modeling loss shows a strong, significant relationship
during early training (up to 2B tokens). While this correlation weakens in later stages (up to ~300B tokens). Results
are shown for three models and the average of all 8 models (last column). (Bottom Row): The same analysis, but
for the correlation between brain alignment and behavioral alignment, revealing a similar trend—strong correlation
early in training, but no significant relationship as models surpass human proficiency.

Wilcoxon signed-rank test on the distributions of
R-squared values. This test reveals that formal lin-
guistic competence is significantly more strongly
correlated with brain alignment than functional
competence (W = 0.0, p < 0.002). One possi-
ble explanation for why brain alignment emerges
before formal linguistic competence is that exist-
ing LLM benchmarks assess performance using
discrete accuracy thresholds (hard metrics), rather
than capturing the gradual progression of compe-
tence through more nuanced, continuous measures
(soft metrics) (Schaeffer et al., 2023). We show the
individual benchmark scores across all checkpoints
in Figure 8 in Appendix E.

5.3 LLMs Lose Behavioral Alignment

Do language models that improve in next-word pre-
diction remain aligned with human behavioral and
neural responses, or do they diverge as they sur-
pass human proficiency? To answer this question
we use the FUTRELL2018 benchmark, which has
been widely used in previous research to measure
linguistic behavior (Futrell et al., 2018; Schrimpf
etal., 2021; Aw et al., 2023). This dataset consists
of self-paced reading times for naturalistic story
materials from 180 participants. Per-word reading
times provide a measure of incremental compre-
hension difficulty, a cornerstone of psycholinguis-
tic research for testing theories of sentence com-
prehension (Gibson, 1998; Smith and Levy, 2013;
Brothers and Kuperberg, 2021; Shain et al., 2024).
We measure alignment by calculating the Pearson
correlation between a model’s cross-entropy loss

for a specific token in the sequence and the average
human per-word reading time. The loss for words
that comprise multiple tokens is added together
before computing the correlation.

Early in training, LLMs align with this pattern,
but as they surpass human proficiency (Shlegeris
et al., 2022), their perplexity drops and they begin
encoding statistical regularities that diverge from
human intuition (Oh and Schuler, 2023; Steuer
et al., 2023). This shift correlates with a decline in
behavioral alignment, suggesting that superhuman
models rely on different mechanisms than those un-
derlying human language comprehension. Figure 5
shows that brain alignment initially correlates with
perplexity and behavioral alignment, but only dur-
ing the early stages of training (up to ~2B tokens).
Beyond this point, these correlations diminish. In
larger models, we observe a negative correlation
between brain alignment and behavioral alignment
in the later stages of training. This trend reinforces
that early training aligns LL.Ms with human-like
processing as also observed in earlier stages, while
in later stages their language mechanisms diverge
from humans.

6 Conclusion

In this work, we investigate how brain alignment
in LLMs evolves throughout training, revealing
different learning processes at play. We demon-
strate that alignment with the human language net-
work (LN) primarily correlates with formal linguis-
tic competence (Mahowald et al., 2024), peaking
and saturating early in training. In contrast, func-
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tional linguistic competence, which involves world
knowledge and reasoning, continues to grow be-
yond this stage. These findings suggest that the
LN primarily encodes syntactic and compositional
structure, in line with the literature of language neu-
roscience (Fedorenko et al., 2024a), while broader
linguistic functions may rely on other cognitive sys-
tems beyond the LN. This developmental approach
reveals when brain-like representations emerge, of-
fering a dynamic perspective compared to prior
work focused on fully trained models. For exam-
ple, Oota et al. (2023) demonstrated that syntactic
structure contributes to alignment by selectively
removing specific properties from already trained
models. In contrast, we show that formal linguistic
competence actively drives brain alignment during
the early phases of training. Similarly, Hosseini
et al. (2024) reported that models achieve strong
alignment with limited data; we identify why: the
brain-like representations emerge as soon as core
formal linguistic knowledge is acquired. Further,
their study evaluated only four training checkpoints
and 2 models on a single dataset (PEREIRA2018).
Our study evaluated eight models (14M—6.7B pa-
rameters) across 34 checkpoints spanning 300B
tokens, and used five neural benchmarks within a
rigorous brain-scoring framework. This extensive
design enabled fine-grained correlations with both
formal and functional linguistic benchmarks and
ensured our results are robust and generalizable.
We also show that model size is not a reliable pre-
dictor of brain alignment when controlling for the
number of features (see Appendix I). Instead, align-
ment is shaped by architectural inductive biases, to-
ken integration mechanisms, and training dynamics.
Our standardized brain-scoring framework elimi-
nates contextualization biases from previous work,
ensuring more rigorous evaluations. Finally, we
demonstrate that current brain alignment bench-
marks are not saturated, indicating that LLMs can
still be improved in modeling human language pro-
cessing. Together, these findings challenge prior as-
sumptions about how alignment emerges in LLMs
and provide new insights into the relationship be-
tween artificial and biological language processing.

Limitations

While this study offers a comprehensive analysis
of brain alignment in LL.Ms, several open ques-
tions remain. If functional competence extends
beyond the language network, future work should

explore which additional brain regions LLMs align
with as they develop reasoning and world knowl-
edge, particularly in other cognitive networks like
the multiple demand (Duncan and Owen, 2000)
or theory of mind network (Saxe and Kanwisher,
2003; Saxe and Powell, 2006). Our findings sug-
gest that LLM brain alignment studies should be
broadened from the LN to downstream represen-
tations underlying other parts of cognition. This
raises the question of whether specific transformer
units specialize in formal vs. functional linguistic
competence (AlKhamissi et al., 2025).

One other limitation of our study is that we rely
exclusively on brain data collected from experi-
ments conducted with English stimuli. As such,
we do not explore whether our findings generalize
across languages. This remains an open question
and warrants further investigation. That said, evi-
dence from cross-linguistic neuroscience research
studying 45 languages from 12 language families
(Malik-Moraleda et al., 2022) suggests the exis-
tence of a universal language network in the brain
that is robust across languages and language fami-
lies, both in topography and core functional prop-
erties.

Finally, a key question remains: Does LLM
alignment evolution mirror human language acqui-
sition? Comparing LLM representations to devel-
opmental data could reveal insights into learning
trajectories and help differentiate formal from func-
tional language learning. Expanding brain-scoring
benchmarks and incorporating multimodal models
will help address these questions, further bridging
the gap between artificial and biological intelli-
gence and deepening our understanding of how
both systems process and represent language.
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Appendix
A Neuroimaging & Behavioral Datasets

Table 1 shows the different neuroimaging and be-
havioral datasets used in this work, along with the
dataset modality, presentation mode, and a stimulus
example.

A.1 Neuroimaging Datasets

(Pereira et al., 2018) This dataset consists of
fMRI activations (blood-oxygen-level-dependent;
BOLD responses) recorded as participants read
short passages presented one sentence at a time for
4 s. The dataset is composed of two distinct ex-
periments: one with 9 subjects presented with 384
sentences, and another with 6 subjects presented
with 243 sentences each. The passages in each
experiment spanned 24 different topics. The re-
sults reported for this dataset are the average align-
ment across both experiments after normalizing
with their respective cross-subject consistency esti-
mates.

(Blank et al., 2014) This dataset also involves
fMRI signals but recorded from only 12 functional
regions of interest (fROI) instead of the higher res-
olution signal used by Pereira et al. (2018). The
data was collected from 5 participants as they lis-
tened to 8 long naturalistic stories that were adapted
from existing fairy tales and short stories (Futrell
et al., 2018). Each story was approximately 5 min-
utes long, averaging up to 165 sentences, providing
a much longer context length than the other neu-
roimaging datasets. When measuring brain align-
ment, we use the input stimuli of the last 32 TRs
as the model’s context.

(Fedorenko et al., 2016) This dataset captures
ECoG signals from 5 participants as they read 8-
word-long sentences presented one word at a time
for 450 or 700 ms. Following (Schrimpf et al.,
2021) we select the 52/80 sentences that were pre-
sented to all participants.

(Tuckute et al., 2024b) In this dataset, 5 par-
ticipants read 1000 6-word sentences presented
one sentence at a time for 2 s. BOLD responses
from voxels in the language network were av-
eraged within each participant and then across
participants to yield an overall average language
network response to each sentence. The stim-
uli used span a large part of the linguistic space,
enabling model-brain comparisons across a wide

range of single sentences. Sentence presentation or-
der was randomized across participants. In combi-
nation with the diversity in linguistic materials, this
dataset presents a particularly challenging dataset
for model evaluation.

Narratives Dataset (Nastase et al., 2021) This
dataset consists of fMRI data collected while hu-
man subjects listened to 27 diverse spoken story
stimuli. The collection includes 345 subjects, 891
functional scans, and approximately 4.6 hours of
unique audio stimuli. For our story-based analysis,
we focused on 5 participants who each listened to
both the LUCY and TUNNEL stories. Since func-
tional localization was not performed in the NAR-
RATIVES dataset, we approximated language re-
gions by extracting the top-10% voxels from each
anatomically defined language region according to
a probabilistic atlas for the human language system
(Lipkin et al., 2022). Due to the limited corpus of
two stories, traditional 10-fold cross-validation was
not feasible. To implement topic-based splitting
while maintaining methodological rigor, we par-
titioned each story into n distinct segments, with
each segment functioning as an independent narra-
tive unit. This segmentation approach effectively
prevented cross-contamination of contextual infor-
mation between splits, thereby preserving the in-
tegrity of our evaluation framework.

A.2 Behavioral Dataset

(Futrell et al., 2018) This dataset consists of self-
paced reading times for each word from 180 par-
ticipants. The stimuli include 10 stories from the
Natural Stories Corpus (Futrell et al., 2018), simi-
lar to BLANK2014. Each participant read between
5 and all 10 stories.

B Rigorous Brain-Scoring

Despite progress in linking LLMs to neural activity,
there’s no standard for comparing brain alignment
across datasets and conditions. Here, we aim to
establish a set of desiderata for evaluating brain
alignment. For a model to be considered truly brain-
aligned, two key criteria must be met. First, high
alignment scores should indicate that the model
captures stimulus-driven responses—meaning that
when presented with a random sequence of tokens,
alignment should drop significantly compared to
original linguistic stimuli. Second, a brain-aligned
model should generalize effectively to new linguis-
tic contexts rather than overfitting to specific ex-
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Dataset Modality Presentation Stimulus Example

PEREIRA2018 fMRI Reading Accordions produce sound with bellows ...
BLANK2014 fMRI Listening A clear and joyous day it was and out on the wide ...
FEDORENK02016 ECoG Reading ‘ALEX’, “‘WAS’, ‘TIRED’, ‘SO’, ‘HE’, ‘TOOK’, ...
TUCKUTE2024  fMRI Reading The judge spoke, breaking the silence.
NARRATIVES fMRI Listening Okay so getting back to our story about uh Lucy ...
FUTRELL2018 Reading Times Reading A clear and joyous day it was and out on the wide ...

Table 1: Datasets Used for Evaluating Model Alignment. Neuroimaging datasets were collected via either
functional magnetic resonance imaging (fMRI) or electrocorticography (ECoG). Stimuli range from short sentences
(FEDORENKO02016, TUCKUTE2024) to paragraphs (PERETRA2018) and entire stories (BLANK2014, NARRATIVES,
FUTRELL2018) and were presented either visually or auditorily. FUTRELL2018 is a behavioral dataset.
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Figure 6: Evaluating Brain Alignment with Linear Predictivity and No Contextualization is Most Stringent.
(a) Average brain alignment across 8 Pythia models under three conditions: (1) a pretrained model processing the
original stimuli, (2) a pretrained model processing random sequences of the same length (averaged over five random
seeds) as a control condition, and (3) the model with untrained parameters processing the original stimuli. The
linear predictivity metric differentiates between meaningful and random stimuli most strongly, while RSA and CKA
overestimate alignment. (b) Brain alignment on the PEREIRA2018 dataset under two cross-validation schemes:
with contextualization (random sentence split) and without contextualization (story-based split).

amples. We address these two points in Section 4
to justify our choice of metric and cross-validation
scheme for each dataset (see Figure 6). For all
benchmarks, we localize language-selective units,
which is consistent with neural site selection in
neuroscience experiments and allows for fair com-
parisons across models irrespective of model size
(AlKhamissi et al., 2025). A key limitation of pre-
vious methods is their reliance on the raw hidden
state dimensions, which inherently favors larger
models by providing a greater feature space and
artificially inflating alignment scores.

C Brain-Score Using Additional Metrics

Centered Kernel Alignment (CKA) Kornblith
et al. (2019) introduced CKA as a substitute for
Canonical Correlation Analysis (CCA) to assess
the similarity between neural network represen-
tations. Unlike linear predictivity, it is a non-

parameteric metric and therefore does not require
any additional training. CKA is particularly effec-
tive with high-dimensional representations, and its
reliability in identifying correspondences between
representations in networks trained from different
initializations (Kornblith et al., 2019).

Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008) introduced RDMs as
a solution to the challenge of integrating brain-
activity measurements, behavioral observations,
and computational models in systems neuroscience.
RDMs are part of a broader analytical framework
referred to as representational similarity analysis
(RSA). In practical terms, to compute the dissim-
ilarity matrix for an /N-dimensional network’s re-
sponses to M different stimuli, an M xM matrix of
distances between all pairs of evoked responses is
generated for both brain activity and the language
model’s activations (Harvey et al., 2023). The cor-
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Num Tokens | Pereira2018 Blank2014 Tuckute2024 Fedorenko2016 Narratives | Avg
250B 1.00 0.19 0.47 0.78 0.04 0.50
500B 0.97 0.08 0.51 0.87 0.04 0.49
750B 0.99 0.08 0.52 0.78 0.04 0.48
1T 1.07 0.12 0.55 0.84 0.04 0.52
1.25T 1.00 0.12 0.50 0.82 0.03 0.49
1.5T 1.00 0.12 0.52 0.79 0.03 0.49
1.75T 0.96 0.13 0.48 0.79 0.04 0.48
2T 1.05 0.15 0.56 0.84 0.04 0.53
2.25T 1.08 0.16 0.55 0.75 0.04 0.51
25T 1.12 0.17 0.52 0.72 0.01 0.51
2.75T 1.13 0.12 0.49 0.75 0.04 0.49
3T 1.03 0.26 0.51 0.55 0.01 0.47
3.25T 1.02 0.13 0.52 0.68 0.02 0.47
35T 1.04 0.14 0.52 0.72 0.04 0.49
3.75T 1.14 0.06 0.57 0.84 0.03 0.53
4T 1.05 0.13 0.63 0.82 0.05 0.54

Table 2: Brain Alignment Performance of SMOLLM2-360M Across Training Checkpoints. Reported scores
correspond to normalized correlations with neural responses from five benchmark datasets (Pereira2018, Blank2014,
Tuckute2024, Fedorenko2016, Narratives), along with their average (Avg). These results assess the extent to which
the model’s internal representations align with activity in the human language network.

relation between these two matrices is then used as
a measure of brain alignment.

D Brain Alignment Over Training

Figure 7 complements Figure 3 in the main paper,
illustrating that brain alignment saturates early on
in training for all models analyzed in this work.

E Formal & Functional Scores

Figure 8 presents the individual benchmark scores
for both formal and functional linguistic compe-
tence across training. Formal benchmarks peak
early, mirroring the trajectory of brain alignment,
and remain saturated throughout training. In con-
trast, functional benchmarks continue to improve,
reflecting the models’ increasing ability to acquire
factual knowledge and reasoning skills as they are
trained on significantly more tokens using next-
word prediction.

F Results on SMOLLM2-360M

To assess the generalizability of our findings, we
replicated our experiments using a model from a
different language family. Specifically, we evalu-
ated multiple training checkpoints of SMOLLM?2-
360M on the brain alignment, formal, and func-
tional linguistic competence benchmarks. Since

SmolLLM2 only provides checkpoints at intervals of
250B tokens, we cannot capture the gradual emer-
gence of brain alignment and formal competence,
both of which typically saturate around 4B—8B to-
kens. Given this limitation, our hypothesis was that
brain alignment and formal competence would re-
main largely stable across these checkpoints, while
functional competence would continue to improve.
The results are consistent with this hypothesis as
shown in Tables 2 and 3.

G Role of Weight Initialization

Figure 9 examines the effect of weight initialization
variance on brain alignment in untrained models.
We systematically vary the initialization standard
deviation (sd) and find that the default Hugging-
Face (Wolf et al., 2019) initialization (sd = 0.02)
achieves the highest alignment across datasets.
This suggests that even before training begins, the
choice of initialization can significantly influence
how well a model’s representations align with neu-
ral activity. This finding raises an intriguing hy-
pothesis: could brain alignment, a computationally
inexpensive metric, serve as a useful heuristic for
selecting optimal initialization parameters? If so, it
could help models learn tasks more efficiently and
converge faster, reducing the need for extensive
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Num Tokens | BLIMP SyntaxGym Avg (Formal) ARC-Easy ARC-Challenge Social-IQA PIQA WinoGrande HellaSwag ‘ Avg (Functional)

250B 0.81 0.80 0.81 0.33 0.66
500B 0.80 0.78 0.79 0.78 0.66
750B 0.80 0.82 0.81 0.69 0.69
IT 0.81 0.78 0.80 0.69 0.69
1.25T 0.81 0.78 0.79 0.68 0.68
1.5T 0.81 0.80 0.80 0.69 0.68
1.75T 0.80 0.79 0.79 0.68 0.68
2T 0.81 0.81 0.81 0.69 0.69
2.25T 0.81 0.82 0.81 0.68 0.68
2.5T 0.81 0.82 0.82 0.68 0.68
2.75T 0.81 0.82 0.81 0.25 0.23
3T 0.81 0.81 0.81 0.25 0.23
3.25T 0.81 0.77 0.79 0.67 0.67
3.5T 0.81 0.79 0.80 0.71 0.71
3.75T 0.80 0.78 0.79 0.72 0.72
4T 0.81 0.79 0.80 0.73 0.73

0.35 0.70 0.55 0.47 0.52
0.35 0.70 0.56 0.49 0.53
0.34 0.71 0.57 0.50 0.53
0.35 0.71 0.57 0.50 0.54
0.35 0.71 0.57 0.51 0.54
0.35 0.72 0.56 0.51 0.54
0.36 0.72 0.59 0.51 0.54
0.35 0.72 0.59 0.52 0.54
0.35 0.71 0.59 0.51 0.54
0.36 0.70 0.56 0.52 0.54
0.35 0.50 0.57 0.50 0.50
0.35 0.50 0.57 0.50 0.50
0.34 0.67 0.57 0.51 0.52
0.38 0.72 0.58 0.53 0.55
0.58 0.58 0.54 0.56 0.56
0.39 0.74 0.61 0.56 0.57

Table 3: Performance of SMOLLM2-360M on Formal and Functional Linguistic Benchmarks Across Training
Checkpoints. Formal competence is measured using BLiMP and SyntaxGym (with averages reported as Avg
Formal). Functional competence is measured using ARC-Easy, ARC-Challenge, Social-IQA, PIQA, WinoGrande,
and HellaSwag (with averages reported as Avg Functional). Together, these results characterize the relationship
between training progression and the development of different aspects of linguistic ability.
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Figure 7: Brain Alignment Saturates Early on in Training. Plots complementing Figure 3 showing the brain
alignment scores of three other models from the Pythia model suite with varying sizes (log x-axis up to 16B tokens,
uneven spacing after black line). Scores are normalized by their cross-subject consistency scores. Alignment quickly
peaks around 2—8B tokens before saturating or declining, regardless of model size.

trial-and-error in training from scratch. The results
highlight the importance of architectural inductive
biases and suggest that brain alignment may serve
as a useful heuristic for optimizing model initial-
ization.

H Effect of Number of Units on Brain
Alignment

Figure 10 illustrates the impact of localizing more
units on final brain alignment across the eight
Pythia models used in this study. We find that
increasing the number of units has minimal impact
on the relative ranking of models, with only a slight
increase in average alignment. Additionally, model
size does not influence brain alignment once the
number of units is controlled, reinforcing the idea
that alignment is driven by feature selection rather
than scale.

I Model Size Does Not Predict Alignment

Figure 12 presents the brain alignment for each
dataset, along with the average alignment across
datasets, for eight models of varying sizes from the
Pythia model suite (final checkpoint). Contrary to
the assumption that larger models exhibit higher
brain alignment (Aw et al., 2023), we observe a
decline in average alignment starting from 1B pa-
rameters up to 6.9B parameters, when controlling
for feature size. This analysis is made possible by
functional localization, which allows us to extract
a fixed number of units from each model, rather
than relying on hidden state dimensions, as done
in previous studies. This approach ensures a fairer
comparison among models. We show in Appendix
H that increasing the number of localized units has
minimal impact on the relative ranking of the mod-
els. Additionally, these findings align with expec-
tations in the neuroscience language community,
where it is widely believed that human language

24349



(a) Pythia-1B (b) Pythia-2.8B

°
®

°

®

°
S

Formal Competence
ze:
s
2
Normalized Accuracy
o o
[

°
°

(c) Pythia-6.9B (d) Pythia (5 Models)

°
®
°
®

Zo7

d
Normalized Accuracy
° °
2 a

°
o

5
Z02

SR
Number of Tokens

NSV f¥
01 5

Normalized Accuracy
Normalized Accuracy
°

*

o

*00, »
ME3 g

x /
XWQ::;&:'Q ++++

00 3% SIUEE 0¥
222904

Functional Competence
|

" Number of Tokens " Number of Tokens

LERSREREEREERRREN
05 i [T
xwx"ﬂ 5.6% of training time SRR XXXRNX
04 s R
%
%
e aad
o ad
ot

Il A e e
02 APl gt RRRRRRRRRT JRRRRRRRer T Ly
e Fpn Bnnnnngane T ) g™

gty

AKX, x Au"F 0 S0000000
XEuxglh K A geedT®
L aaaad TIPS

0.0 z!z!”k ++‘.‘

P, ¢
0.0 %g!&ﬁ’,*o:wﬂ"ﬂ‘ . PUe R ascaasg
e, A+t
e,
¥

Normalized Accuracy
Normalized Accuracy
o

o
g2 5923
9*7% 00 -01

5 PPRRRSS
Number of Tokens Number of Tokens

" Number of Tokens Number of Tokens

Formal Competence BLiMP SyntaxGym

Functional Competence

ARC-Easy ==¢== PIQA ==[ll== Social-IQA +ARC Challenge ===¢=== HellaSwag ===-}=== \NinoGrande

Figure 8: Individual Benchmark Scores for Formal and Functional Competence. (a-c): each column shows the
evolution of individual benchmark scores for formal competence (top) and functional competence (bottom) during
training. Data is presented for Pythia models of three different sizes. (d): the same as (a—c), with data averaged

across models of five different sizes.
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Figure 9: Role of Weight Initialization on Brain Align-
ment in Untrained Models The default initialization
standard deviation in the HuggingFace library (sd =
0.02) yields the highest brain alignment for untrained
models, suggesting that initialization choices play a
crucial role in shaping alignment even before training
begins.

processing does not require superhuman-scale mod-
els to capture neural activity in the brain’s language
network.

J Alignment with Other Brain Regions

As a control, we also examine alignment with non-
language brain regions. Specifically, Figure 11
shows the brain alignment of three Pythia models
with both the language network (LN) and V1—an
early visual cortex region—on the PEREIRA2018
dataset. While alignment with the LN increases

2 0.20 Model Size
a - 14M
©0.15 . 70M
= ” l mm 160M
450.10 == 410M
E s 1B
o mm 1.4B
= 0.05 5 8B
= 6.9B
& 0.00

128 1024 4096
Number of Units

Figure 10: The Effect of the Number of Localized
Units on Final Brain Alignment Brain alignment is
evaluated after localizing 128, 1024, and 4096 units.
While increasing the number of units slightly affects
overall alignment, the relative ranking of models re-
mains largely unchanged, indicating that model compar-
isons are robust to the choice of unit count.

early in training (around 4B tokens) and then sat-
urates, alignment with V1 remains largely un-
changed throughout training. This divergence high-
lights a key aspect of LLM representations: they
do not appear to encode low-level perceptual fea-
tures, such as those processed in early visual areas.
If models were learning perceptual structure from
the stimuli, we would expect alignment with V1 to
increase alongside LN alignment. Instead, the sta-
bility of V1 alignment across training suggests that
language models selectively develop internal rep-
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Figure 11: Brain Alignment with the Language Network vs. V1 Across Training. Raw brain alignment scores
(Pearson’s r) of three Pythia models of varying sizes are shown on the PEREIRA2018 dataset. The x-axis (log-scaled
up to 16B tokens; then evenly spaced after the black line every 20B tokens) represents training progress. Alignment
with V1, an early visual region, remains stable throughout training, while alignment with the language network

(LN) increases around 4B tokens before plateauing.
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Figure 12: Model Size Does Not Predict Brain Align-
ment when localizing a fixed set of language units.
Brain alignment across model sizes in the Pythia suite,
measured at their final training checkpoints. Brain align-
ment is shown for each dataset, along with the average
score across datasets, for eight models of varying sizes.

resentations that align with higher-order linguistic
processing rather than general sensory processing.

One reason for not measuring alignment against
other higher-level cognitive brain regions such as
the default mode network (DMN), the multiple
demand network (MD) or the theory of mind net-
work (ToM) is due to a major limitation in cur-
rent neuroimaging datasets: the linguistic stim-
uli used in studies with publicly available datasets
(e.g., PEREIRA2018) do not reliably engage these
higher-level cognitive regions, leading to substan-
tial variability across individuals and thus much
lower cross-subject consistency scores. Simply
“looking” for alignment in the DMN or MD is there-
fore insufficient. Instead, we need new datasets
that deliberately activate non-language networks
and record item-level neural responses. For ex-
ample, most MD studies rely on blocked fMRI
designs (e.g., hard vs. easy math), yielding one
activation estimate per condition rather than per
stimulus. Such coarse measurements limit their
utility to evaluate model-to-brain correspondence
at the granularity of individual items. We expect
alignment with the MD network, a brain region

involved in logical reasoning, to track functional
linguistic competence more than formal compe-
tence as models improve on relevant benchmarks.
We leave this investigation for future work, pending
the availability of suitable datasets.

K Cross-Subject Consistency Scores

Benchmark Consistency Score
PEREIRA2018 (Exp 2)* 0.086
PEREIRA2018 (Exp 3) 0.144
BLANK2014 0.178
FEDORENKO2016 0.222
TUCKTUE2024 0.559
NARRATIVES 0.181
FUTRELL2018 0.858

Table 4: Cross-Subject Consistency Scores The val-
ues used to normalize the raw Pearson correlation.
*PEREIRA2018 (Exp 2) was computed without extrap-
olation.

Table 4 shows the cross-subject consistency
scores computed with extrapolation for the differ-
ent benchmarks used in this work.
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