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Abstract
To collaborate effectively with humans, lan-
guage models must be able to explain their de-
cisions in natural language. We study a spe-
cific type of self-explanation: self-generated
counterfactual explanations (SCEs), where a
model explains its prediction by modifying the
input such that it would have predicted a dif-
ferent outcome. We evaluate whether LLMs
can produce SCEs that are valid, achieving
the intended outcome, and minimal, modify-
ing the input no more than necessary. When
asked to generate counterfactuals, we find that
LLMs typically produce SCEs that are valid,
but far from minimal, offering little insight into
their decision-making behaviour. Worryingly,
when asked to generate minimal counterfac-
tuals, LLMs typically make excessively small
edits that fail to change predictions. The ob-
served validity-minimality trade-off is consis-
tent across several LLMs, datasets, and evalu-
ation settings. Our findings suggest that SCEs
are, at best, an ineffective explainability tool
and, at worst, can provide misleading insights
into model behaviour. Proposals to deploy
LLMs in high-stakes settings must consider the
impact of unreliable self-explanations on down-
stream decision-making. Our code is available
at github.com/HarryMayne/SCEs.

1 Introduction

Whether LLMs can reliably explain their decisions
in natural language has recently become an area
of intense research focus (Turpin et al., 2023; Par-
calabescu and Frank, 2024). Self-explanation is
increasingly seen as essential for effective human-
computer interaction, allowing users to interro-
gate model decisions, compare reasoning steps
against their prior beliefs, and determine whether
behaviours are in line with their goals (Chen et al.,
2025; Baker et al., 2025). One form of self-
explanations are self-generated counterfactual ex-
planations (SCEs), where a model explains its de-
cision by modifying the input such that it would

have predicted a different outcome (Madsen et al.,
2024a; Dehghanighobadi et al., 2025).

Consider the deployment of LLMs to support
clinical decision-making (Tu et al., 2025; Arora
et al., 2025). A model might predict that a 60-
year-old male with a systolic blood pressure of
135 mmHg is at high risk of developing heart dis-
ease. In response, a clinician might ask: What
would need to be different for the model to predict
low risk instead? The model could respond with
a self-generated counterfactual explanation: If the
patient’s blood pressure were 110 mmHg, I would
have predicted low risk. Such explanations high-
light the features the model considers important,
offer actionable insights for clinicians and patients,
and reveal potential flaws in the model. Accord-
ingly, counterfactuals are regarded as a particularly
useful form of explanation (Miller, 2019; Wachter
et al., 2017).

To serve as effective explainability tools, SCEs
must satisfy the following criteria. First, SCEs
should be valid: the revised input should change
the model’s prediction when re-evaluated in a new
context window. Without validity, the explanation
is a misleading representation of the model’s coun-
terfactual behaviour. Second, SCEs are often ex-
pected to be minimal: they should make the small-
est edit required to change the outcome (Lewis,
1973; Wachter et al., 2017). By isolating the
changes the model deems consequential, minimal
counterfactuals provide clearer insight into the
model’s decision boundary. In many practical set-
tings, minimality is preferable for satisfying the
objectives of explainability (Lipton, 2018). For in-
stance, in the heart disease example discussed, a
minimal counterfactual would be more actionable
for the patient (Keane and Smyth, 2020).

Prior work has shown that LLMs typically pro-
duce valid SCEs but has not addressed minimal-
ity (Dehghanighobadi et al., 2025; Randl et al.,
2025). The question remains: Can LLMs gener-
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Figure 1: Study design. A. We evaluate models in tabular data, binary classification tasks. The model predictions
form a decision boundary across the input space. B. We ask models to provide self-generated counterfactual
explanations (SCEs) for their predictions. SCEs are valid when they cross the decision boundary (here, red →
blue) and are minimal if they are close to the dashed instance at the decision boundary. When asked to provide
counterfactual explanations, we find that SCEs are typically valid but far from minimal. C. In separate continuations
from the original predictions, we ask models to provide minimal counterfactual explanations. In the majority of
cases, these SCEs fail to cross the decision boundary. There is a trade-off between validity and minimality.

ate SCEs that are both valid and minimal? To an-
swer this, we use tabular data prediction tasks. In
these settings inputs have both natural language
and tabular data representations, meaning that we
can prompt LLMs in natural language, whilst mea-
suring validity and minimality in structured tabular
environments. Through experiments across several
LLMs, datasets, and evaluation settings, we show
the following:

Valid but not minimal. When prompted to gen-
erate counterfactual explanations, frontier LLMs
achieve near-perfect validity. However, they typi-
cally make excessive changes to the original inputs,
which trivially flip predictions. These SCEs pro-
vide little insight into the models’ decision bound-
aries.

Minimal but rarely valid. When instructed to
generate minimal counterfactuals, models gener-
ally make overly conservative edits that do not flip
their predictions. Such SCEs misrepresent the mod-
els’ true behaviour and could potentially lead to in-

correct downstream decision-making if relied upon
in high-stakes deployment. In this regard, LLMs
do not know their own decision boundaries. As
a consequence, even when using state-of-the-art
LLMs, SCEs remain an unreliable, and potentially
misleading, method of explaining model behaviour.

2 Self-generated counterfactual
explanations

Consider a classification task where an LLM f
takes natural language input x and predicts a bi-
nary output y. For a given input-output pair, a
counterfactual explanation is an alternative input
x′ ̸= x that would lead to a specific alternative
output y′ ̸= y (Wachter et al., 2017). Typically, nat-
ural language counterfactuals are identified by algo-
rithms that iteratively perturb keywords in the input
(e.g., swapping “terrible” → “great” in a movie re-
view), then test whether each perturbation changes
the LLM’s decision to the target output (Wang et al.,
2024). In contrast, self-generated counterfactual
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explanations occur when the LLM itself generates
a candidate counterfactual to explain its own pre-
diction (Madsen et al., 2024a; Dehghanighobadi
et al., 2025). Whether an SCE flips the LLM’s
prediction can be tested by re-evaluating the LLM
in a new context window. Independent evaluation
is essential to avoid bias from the presence of the
original prediction in context (Dehghanighobadi
et al., 2025).

3 Methods

In this section, we describe our experiments to
evaluate the properties of SCEs.

3.1 Study design

Our study design is outlined in Figure 1. The core
innovation of our approach is to use tabular datasets
Z = {zi}Ni=1 containing numerical and ordinal
features. We then use natural language templates
ϕ to convert numerical tabular data zi to natural
language inputs xi (see §A.1). As a result, we can
prompt the LLMs in the natural language space, but
evaluate the SCEs in the tabular data space. This
creates a restricted input space, making it tractable
to identify the closest point to the original input
that would flip the model’s prediction, and thus to
measure the minimality of the SCEs.

All our datasets have discrete features, and con-
tain all combinations of the feature values. As a
result, the datasets are complete in the sense that
they cover the full input space.

For each instance in a dataset, the LLM is first
prompted to make a prediction f(ϕ(zi)) = y; then,
given this prediction, it is prompted to revise the
input such that it would have predicted the comple-
mentary class y′. Since the datasets are complete,
eliciting predictions over the entire dataset is suf-
ficient to determine the LLM’s decision boundary
over the input space (Figure 1A). The resulting
decision boundary is then used to assess the prop-
erties of the SCE: validity (whether it crosses the
decision boundary) and minimality (how much it
crosses the boundary by) (Figure 1B-C).

3.2 Datasets

Our datasets are constructed as simplified versions
of real-world datasets. In each case, we select two
to four discrete features and enumerate all combi-
nations of those features. The datasets are adapted
from Cruz et al. (2024), Yasser (2022), and Janosi
et al. (1989) (for more information see §A.1).

Income Given an individual’s age and education
level, the LLMs predict whether annual income
exceeds $50, 000. LLMs are told that the data was
collected in 2018 across the US. Age is numeric
and education is ordinal (N = 1, 920).

House prices Given the square-foot area of a
house, the number of bedrooms, bathrooms, and
floors, the LLMs predict whether the house price
exceeds $1, 500, 000. LLMs are told that the data
was collected in 2015 across the US. All features
are numeric (N = 1, 600).

Heart disease Given an individual’s age, sex,
systolic blood pressure, and total cholesterol, the
LLMs predict whether the individual has coronary
heart disease. Age, systolic blood pressure, and
total cholesterol are numeric, and sex is binary
(N = 1, 936).

3.3 Models

We evaluate four open-source and three propri-
etary LLMs: Gemma 2 27B (Gemma Team et al.,
2024), Llama 3.3 70B (Grattafiori et al., 2024),
DeepSeek-R1 Qwen 32B, DeepSeek-R1 Llama
70B (DeepSeek-AI et al., 2025), Claude Sonnet 3.7
(non-thinking) (Anthropic, 2025), GPT-4.1 (Ope-
nAI, 2025a), and o3 (OpenAI, 2025b). Our main
experiments evaluate all models at temperature 0,
except o3, which has a fixed temperature of 1. We
discuss the effect of non-zero temperature in §4.4.

3.4 Prompt settings

We evaluate SCEs generated under two prompt
settings. First, an unconstrained setting, where
models are simply asked to produce counterfac-
tual explanations that would flip their predictions.
This reflects how models behave by default when
a user asks them to generate an SCE without any
additional constraints. Second, a minimal setting,
where models are instructed to make the smallest
edits necessary to flip their predictions. The prompt
wording specifies how minimality is defined and
evaluated, ensuring that the models’ notion of min-
imality aligns with our definition (see §3.5). To
ensure that SCEs remain within the defined input
space, we provide models with the feasible ranges
of each feature. We also enforce a JSON schema
with fixed output formats. The full prompts for
each setting are provided in §A.3.

24175



Figure 2: SCE validity and minimality for income (A), house prices (B), and heart disease (C) datasets. In the
unconstrained prompting setting (purple), models typically provide valid SCEs, but they are far from minimal. In
the minimal prompting setting (green), validity is notably lower, but, conditional on being valid, minimality is much
better. No model can consistently satisfy both criteria across all three datasets. Orange regions indicate the direction
of increasing validity and minimality (better performance).

3.5 Evaluation metrics
Validity For a tabular data instance zi, where
f(ϕ(zi)) = y, the tabular data representation of
the SCE z′i is valid if the model flips its decision
when re-evaluated in a new context window, i.e.
f(ϕ(z′i)) = y′, where y′ ̸= y. Recall that an SCE
is generated for every instance in a dataset. We
define Validity (Val) as the proportion of dataset
instances zi ∈ Z for which the SCE successfully
flips the model’s prediction.

Minimality Any measure of minimality must be
defined with respect to an underlying measure of
distance. We use Gower’s Distance (Gower, 1971),
a simple pairwise distance function d(zi, zj) which
is defined over the tabular input space Z (see §A.4).
This is preferable to more complex functions, e.g.
Euclidean distance, as LLMs can reliably calculate
it in-context (see §4.5). We define the minimal
counterfactual as the closest point to the original
input that would flip the LLM’s decision

zi,M ∈ arg min
z′i∈Z

d(zi, z
′
i), s.t. f(ϕ(z′i)) = y′.

Given this, we define Excess Distance (ED) as the
distance from the initial input to the SCE in excess
of the distance to the minimal counterfactual,

EDi = d(zi, z
′
i)− d(zi, zi,M) .

We report the mean excess distance over all valid
SCEs. This score ranges from 0 to 1, where lower
scores are more minimal. Since the maximum
Gower’s Distance across the dataset instances is

1, this score can be interpreted as a fraction of the
span of the dataset.

In addition, we define Exact Match (EM) as the
proportion of dataset instances zi ∈ Z for which
the model exactly identifies a minimal counterfac-
tual.

4 Results

4.1 Valid but not minimal

First we consider the unconstrained setting, where
models are prompted to generate counterfactual ex-
planations with no additional considerations. Here
we find LLMs typically generate valid SCEs, but
they are far from minimal (Figure 2). For exam-
ple, o3 achieves 100% validity on all three datasets,
but has mean excess distance scores of 0.16, 0.42,
and 0.50 across the income, house prices and heart
disease datasets, respectively. Given an excess dis-
tance of 1.0 is the distance from one extreme of
the dataset to the other, a score of 0.16 can be in-
terpreted as the SCEs overshooting the decision
boundary by an average of 16% of the span of the
dataset.

Similarly, Table 1 shows that models rarely iden-
tify the exact minimal counterfactual in this set-
ting, with an average exact match across all models
and datasets of only 2.89% (s.d. 5.64 percentage
points).

All LLMs perform notably better in the income
dataset. The exact reason for this is unclear, but
potentially a result of this dataset being lower-
dimensional (2 dimensions rather than 4).
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Model Unconstrained prompting Minimal prompting
Income House prices Heart disease Income House prices Heart disease

Gemma 2 27B 0.00 0.00 0.15 31.5 9.94 15.9
Llama 3.3 70B 3.33 0.00 0.00 8.80 7.31 10.9
DeepSeek-R1 32B 6.89 0.06 0.05 3.94 11.6 19.0
DeepSeek-R1 70B 19.7 0.19 0.42 4.22 13.2 17.3
Claude Sonnet 3.7 9.95 0.00 0.00 20.7 9.50 9.92
GPT-4.1 15.7 0.00 0.00 31.1 11.2 10.3
o3 4.27 0.00 0.00 26.2 23.9 17.5

Table 1: Exact match: The percentage of SCEs that identify the minimal valid counterfactual across all
instances in a dataset. Models rarely identify the exact minimal counterfactual. Performance is higher in the
minimal prompting setting, but no model exceeds 32%.

4.2 Minimal but rarely valid
Next we consider the minimal setting, where mod-
els are prompted to generate minimal counterfac-
tual explanations. Here we observe a sharp drop
in validity (Figure 2). In the income dataset, av-
erage validity falls from 97.14% (s.d. 4.49 pp) to
36.30% (s.d. 23.55 pp). However, conditional on
being valid, the SCEs are more minimal than in
the unconstrained prompting setting. For example,
whilst o3 now only achieves validity around 40%,
the mean excess distances of valid SCEs are 0.02,
0.01, and 0.02.

Similarly, Table 1 shows that models identify the
minimal valid counterfactual more frequently than
in the unconstrained setting, with an average exact
match across all models and datasets of 14.9% (s.d.
8.01 pp).

These results suggest a trade-off between valid-
ity and minimality, where no model is able to reli-
ably jointly satisfy both criteria. Surprisingly, there
is no clear relationship between the general ability
of models and their performance on this task, nor
does there appear to be any benefit from leveraging
inference-time compute to improve reasoning.

4.3 Where do models place SCEs?
In the unconstrained setting, we find LLMs of-
ten generate SCEs that trivially cross the decision
boundary. This behaviour is most obvious in the
house price dataset where there are clear mono-
tonic relationships between each feature and aver-
age house price (more bedrooms always correspond
to higher average price). In this case, models often
generate SCEs which maximise or minimise every
feature. For example, when modifying the input
to predict a house priced above $1, 500, 000, o3
returns the maximum point in the dataset (4 floors,

4 bathrooms, 5 bedrooms, area of 10, 000 sqft) in
46% of cases. We find similar behaviours in the
heart disease dataset, e.g. o3 selects the maximum
or minimum point in 34% of SCEs, but we do not
see this pattern in the income dataset. This is poten-
tially because age and education do not necessarily
have monotonic relationships with income. How-
ever, we do find models favour specific regions.
For example, when modifying the input to predict
an income above $50, 000, Llama 3.3 70B often
selects an age between 30 and 50 and education of
a Bachelor’s degree.

In the minimal setting, we find LLMs often make
overly conservative edits which fail to cross the de-
cision boundary. Figure 3 shows representative
examples of this for Llama 3.3 70B in the income
dataset. Occasionally, this strategy does produce
SCEs which cross the decision boundary (if the
initial input was close to the boundary), which ex-
plains why the SCEs are extremely minimal when
valid, but rarely valid.

4.4 Robustness analysis

Here we show that the trade-off is robust to changes
in the experimental design.

Distance function sensitivity We test three alter-
native distance functions: L1 distance with each
feature weighted by its inverse median absolute
deviation, L2 distance with each feature weighted
by its inverse standard deviation (Wachter et al.,
2017), and semantic distance, calculated as one mi-
nus the cosine similarity between inputs encoded
using a sentence embedding model (Randl et al.,
2025) (see §C.1 for details). We conduct these ex-
periments with Llama 3.3 70B on the house price
dataset since this is the dataset where the differ-
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Figure 3: Llama 3.3 70B’s behaviour on the income dataset. The three SCEs shown are randomly selected and
are representative of the model’s general behaviour. In the unconstrained prompting setting, all three SCEs cross the
decision boundary and are therefore valid. However, the model makes an excessively large, non-minimal edit to the
original input on the far right of the figure. In the minimal prompting setting, the model typically makes overly
conservative edits which do not cross the decision boundary. Appendix Figure 10 shows the density of SCEs across
all instances in the dataset.

ence between the two prompting settings is most
pronounced.

Table 2 shows the results with excess distance
scores normalised by the maximum distance across
the dataset so that they fall in the [0, 1] range. We
find the validity-minimality trade-off occurs across
all distance functions.

Unconstrained Minimal

Distance Val ED Val ED

L1 100 0.1403 12.66 0.0169
L2 100 0.1026 11.87 0.0001
Semantic 100 0.5845 11.88 0.1280
Gower 100 0.1393 15.21 0.0305

Table 2: Robustness to distance function choice.
The results are robust across three additional distance
functions: L1 distance with features weighted by the
inverse median absolute deviation, L2 distance with
features weighted by the inverse standard deviation,
and a semantic distance defined as one minus the
cosine similarity between inputs when embedded by
the all-mpnet-base-v2 sentence embedding model.
Mean excess distances are normalised by the maximum
distance between two instances in the dataset. SCEs
are generated using Llama 3.3 70B on the house price
dataset. Val: Validity. ED: Mean excess distance.

Prompt sensitivity We test how sensitive our
results are to the specific wording of the SCE-
eliciting prompt. For both the unconstrained and
minimal settings, we use o3 to generate twenty
prompt variations, giving the model detailed in-
structions on how to modify the original wording
(see §C.2). We then evaluate Llama 3.3 70B’s per-
formance on the house price dataset under each
variation.

Figure 4 shows that performance remains con-
sistent across prompt variations. Behaviour varies
only slightly, and importantly, none of the prompts
produce SCEs that are both valid and minimal.

Temperature We test whether our results hold
when we use temperature 1.0 instead of greedy
decoding. The results remain consistent: the valid-
ity–minimality trade-off persists (see full results in
§C.3).

4.5 What limits performance?

Our results show that no model is able to satisfy
both validity and minimality on any dataset. This
raises the question: What limits performance? We
consider three necessary but not sufficient criteria
for success: (i) LLMs must have consistent deci-
sion boundaries, (ii) they must be able to opera-
tionalise the distance function, and (iii) they must
be able to accurately self-predict their behaviour.
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Figure 4: Robustness to changes in the SCE-eliciting
prompts. We use o3 to generate 20 versions of both
the unconstrained and minimal prompts, then evaluate
Llama 3.3 70B’s performance on the house price dataset
under each variation. Behaviour is robust to the pertur-
bations.

Decision boundary consistency Due to the
stochasticity of LLMs, the decision boundaries for
the prediction tasks may be inconsistent across dif-
ferent generations, making the task of identifying
valid and minimal SCEs somewhat ill-defined. To
test this, we use o3 to generate 50 versions of the
income task prompt and evaluate the consistency of
Llama 3.3 70B’s predictions. We elicit predictions
at temperature 1.0 to increase variation (see §D.1
for implementation details and example perturba-
tions). We use the income dataset since we can
visualise the decision boundary in two dimensions.

Figure 5 shows that the model’s predictions are
stable, except in a narrow region around the bound-
ary. Importantly, we find that 91.4% of the original
invalid SCEs remain invalid across all 50 versions
of the decision boundary. This suggests that model
failures cannot be attributed to decision boundary
inconsistency.

Operationalising distance To select the closest
valid SCE to the original input, models need to be
able to compare candidate SCEs using the distance
function. To do this correctly, they must be able to
calculate the pairwise Gower’s Distance between
each candidate SCE and the original input. To test
whether LLMs can do this, we conduct an exper-
iment where models are given an initial instance
from the house price dataset and four alternative
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Figure 5: Decision boundary consistency across 50
prompt perturbations. Shading indicates the fraction
of perturbations where Llama 3.3 70B predicted income
above $50, 000 for an instance in the dataset. Predic-
tions are elicited at temperature 1.0.

instances (all randomly selected). Their task is to
identify the closest instance to the initial instance
using Gower’s Distance. We calculate accuracy
over 1, 000 unique trials. Random performance is
25% (see §D.2 for details).

Table 3 shows a range in performance. Rea-
soning models trained to leverage inference-time
compute perform notably better (98− 100%) than
non-reasoning models (58 − 72%). This reflects
general trends in mathematical reasoning bench-
marks (OpenAI, 2025b). The most capable model
we consider, o3, scores 100%.

Model Accuracy (%)

Gemma 2 27B 58.14
Llama 3.3 70B 71.92
DeepSeek-R1 32B 98.65
DeepSeek-R1 70B 99.79
Claude Sonnet 3.7 70.67
GPT-4.1 72.25
o3 100.00

Table 3: Operationalising Gower’s Distance. The rate
with which LLMs identify the closest point to an input
point among four candidates using Gower’s Distance.
Accuracy is computed over 1, 000 trials with data com-
ing from the house price dataset.

Since this experiment is more structured than the
real task, we also analyse the distance calculations
made by models’ when producing the SCEs. By
reviewing DeepSeek-R1 70B’s reasoning traces,
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we observe that the model typically approaches the
task by first considering multiple candidate SCEs,
then calculating the pairwise distance from the ini-
tial input to each of the candidates (see an example
in Figure 6). In all cases reviewed, the model cor-
rectly calculates Gower’s Distance in-context.

Along with the results of the multiple choice ex-
periment, this suggests that the validity-minimality
trade-off cannot solely be explained by an inabil-
ity to operationalise the distance function. While
this may be a limiting factor for the weaker, non-
reasoning models, it cannot explain why state-of-
the-art LLMs fail to produce high-quality SCEs.

Self-prediction Jointly satisfying validity and
minimality requires LLMs to accurately predict
how they would behave in alternative settings. This
could be achieved either through perfect intrinsic
knowledge of their decision boundaries or by itera-
tively testing candidate SCEs and reliably predict-
ing whether each would flip their decision. In either
case, we should expect to see evidence that models
are attempting to predict their own behaviour, i.e.
self-prediction (Premakumar et al., 2024).

To explore whether models spontaneously en-
gage in self-prediction, we analyse DeepSeek-
R1 70B’s reasoning traces. While the extent to
which chain-of-thoughts faithfully represent intrin-
sic reasoning remains a subject of debate (Chen
et al., 2025; Barez et al., 2025), in practice they
have proved to contain sufficient information about
decision-making to serve as valuable explainability
tools (Baker et al., 2025; Emmons et al., 2025).

By reviewing 30 randomly-selected reasoning
traces from the house price dataset, we find that
DeepSeek-R1 70B does not explicitly attempt to
self-predict. Although the model shows a good
understanding of minimality, it consistently fails to
engage with the self -explanation aspect of the task.
It frequently refers to the decision boundary of an
external model, which it is unable to assess, and
does not question whether the SCE would flip its
own decision (see Figure 6). This is a fundamental
necessary condition that is not met.

We also consider an experiment where we ex-
plicitly prompt models to self-predict in their rea-
soning traces. We instruct models to follow a
six-step plan encouraging them to consider can-
didate SCEs, make explicit self-predictions and
update their candidate to converge on the minimal
valid counterfactual (see §E for details). Evaluat-
ing DeepSeek-R1 70B on the house price dataset

we qualitatively observe the model making self-
predictions in-context and having a better under-
standing of the self-explanation requirements of the
task. Despite this, the aggregate results are largely
unchanged with validity increasing from 21.44%
to 23.34%, at the cost of excess distance increasing
from 0.025 to 0.033. Anecdotally, we also observe
that the self-predictions are often incorrect.

Whether accurate self-prediction is a fundamen-
tal limitation of LLMs is unclear and a question
for future research. This would perhaps be unsur-
prising since standard pre-training techniques only
incentivise acquisition of knowledge about the ex-
ternal world (Radford et al., 2018) and common
post-training methods, including those using rein-
forcement learning to leverage inference-time com-
pute (OpenAI, 2024; DeepSeek-AI et al., 2025),
never reward models for accurately predicting how
they would behave in independent context windows.
In short, there is no optimisation pressure to de-
velop a self-model (Premakumar et al., 2024). New
learning objectives are likely required to incentivise
accurate self-prediction.

5 Related work

We discuss two broad related areas: counterfactual
explanations and self-explanations.

Counterfactual explanations Counterfactuals
have been proposed as a way of explaining opaque
models without requiring an understanding of their
internal mechanisms (Wachter et al., 2017). In NLP
settings, counterfactuals are typically generated us-
ing keyword-based perturbation methods (Wang
et al., 2024) or using a separate language model to
produce candidate counterfactuals (Wu et al., 2021;
Nguyen et al., 2024).

Philosophical work has long suggested that coun-
terfactual explanations should capture the closest
possible world (Lewis, 1973), since this is often
more actionable for the user. This sparked the im-
portance of minimality in subsequent algorithmic
research (Wachter et al., 2017), and led to the de-
ployment of optimisation methods that minimise
the distance between the original instance and the
candidate counterfactual (Keane and Smyth, 2020).
In NLP settings, the properties of counterfactuals
have been well studied (Wang et al., 2024; Nguyen
et al., 2024; McAleese and Keane, 2024). However,
there is limited work measuring minimality in nat-
ural language domains. This is because, while it is
easy to define distance in natural language spaces,
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Figure 6: DeepSeek-R1 70B can operationalise distance, but does not attempt self-prediction. DeepSeek-R1
70B leverages Gower’s Distance perfectly to compare changes, but does not appear to realise it is predicting its own
behaviour. The reasoning traces are taken from an SCE generated on the house price dataset under the minimal
prompting setting.

measuring minimality requires identifying the min-
imal counterfactual, which is computationally chal-
lenging given the input space is unconstrained. Our
work addresses this by using tabular datasets to cre-
ate restricted input spaces, allowing us to precisely
measure minimality.

Self-explanations and SCEs As LLM capabili-
ties have progressed, the ability of LLMs to offer
explanations of their own decisions has emerged as
a potential new paradigm for explainability (Mad-
sen et al., 2024b). LLMs can provide plausible self-
explanations either through their chain-of-thoughts
or by explaining themselves post-hoc (Chen et al.,
2024). Many studies implicitly treat these as in-
terpretability tools (Barez et al., 2025); however,
the critical question is whether these explanations
are faithful representations of models’ internal rea-
soning (Wiegreffe et al., 2021; Turpin et al., 2023;
Lanham et al., 2023; Parcalabescu and Frank, 2024;
Siegel et al., 2024; Barez et al., 2025).

An SCE is a model’s attempt to self-explain us-
ing a counterfactual explanation. This is a struc-
tured form of self-explanation since there are ad-
ditional constraints placed on the writing process
compared to free-text explanations (Wiegreffe and
Marasovic, 2021). Self-generated counterfactuals
were first introduced by Madsen et al. (2024a),
and later evaluated in subsequent works (De-
hghanighobadi et al., 2025; Randl et al., 2025).

These studies primarily focus on measuring validity
across a range of open-ended generation settings.
Our work builds on this by evaluating both valid-
ity and minimality, and by examining the trade-off
between them.

6 Conclusion

Our findings reveal an important limitation of self-
generated counterfactual explanations: a trade-off
between validity and minimality. At best, SCEs
are an ineffective means of explaining model be-
haviour, since LLMs naturally provide trivially
valid counterfactuals. At worst, SCEs provide mis-
leading insights into model behaviour, which could
incorrectly steer human decision-making, poten-
tially causing harm. Proposals to deploy LLMs in
high-stakes settings must consider the impact of
unreliable self-explanations.

Our study also investigates the factors that might
limit performance, finding that models struggle
to recognise the self-explanation elements of this
task. Crucially, they do not spontaneously engage
in self-prediction, a necessary condition for strong
performance. Furthermore, performance does not
significantly improve when models are explicitly
prompted to self-predict in their reasoning traces,
raising an important question about whether this is
a fundamental limitation of LLMs.
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7 Limitations

Alternative minimality metrics Our primary
minimality metric is mean excess distance (§3.5).
This metric is designed to capture the minimality of
valid SCEs, but does not account for the properties
of invalid SCEs. In some cases, it might be desir-
able to understand the distribution of these SCEs
too. For example, we might wish to know whether
the invalid SCEs lie just the wrong side of the deci-
sion boundary or are far removed. By introducing
mean excess distance, we hope future work might
design new metrics that incorporate both valid and
invalid SCEs.

Self-prediction capabilities Our analysis sug-
gests that models do not spontaneously engage
in self-prediction when generating SCEs. We
also show that aggregate performance is largely
unchanged when we explicitly prompt LLMs to
self-predict in their reasoning traces. However,
we do not conduct detailed analysis into the self-
prediction accuracy, make claims about whether
LLMs are fundamentally capable of this, or the
mechanisms by which they might hypothetically
achieve this. These questions relate to the metacog-
nitive capabilities of LLMs (Steyvers and Peters,
2025) and are promising directions for future work.
When models are prompted or fine-tuned to self-
predict within their chain-of-thoughts, can they do
so accurately? If so, does SCE performance im-
prove? Or are models fundamentally unable to ac-
curately self-predict? Appendix E discusses these
thoughts further.

Generalisation to real-world datasets Our ex-
periments use three synthetic datasets, designed
as simplified versions of real-world datasets. This
is central to our methodology, as it allows us to
generate datasets which contain every combination
of the discrete input features. As a result, the exact
minimum counterfactual can be located, enabling
the measurement of SCE minimality. An additional
benefit of using toy datasets is that they provide
the simplest possible environment in which models
might identify valid and minimal counterfactuals.
Across all experiments, we use datasets with two to
four input dimensions. Since models fail in these
datasets, we anticipate that they will also strug-
gle in more complex, higher-dimensional datasets,
where locating a valid and minimal counterfactual
is significantly harder.
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House prices For the house price dataset task,
the model must predict whether a house is priced
above or below $1, 500, 000 given the number
of bedrooms, bathrooms, floors, and its size in
square feet. The models are told that the data was
collected in 2015 from houses across the United
States. The number of bedrooms ranges from 1 to
5, bathrooms and floors from 1 to 4, and square
footages, from 500 to 10, 000 (in steps of 500).
This dataset is inspired by popular house price pre-
diction datasets common in traditional machine
learning, e.g. Yasser (2022). Our dataset is gen-
erated by considering all unique combinations of
the discrete features. A total of 5 × 4 × 4 × 20
feature values yields 1, 600 distinct instances in the
dataset.

Heart disease For the heart disease dataset task,
the model must predict whether a patient has heart
disease from their age, sex, systolic blood pressure
(mmHg), and total cholesterol (mg/dL). Sex is a
categorical variable. For age, systolic blood pres-
sure, and total cholesterol, we provide the model
with lists of representative ordinal values (details
in Table 4). This dataset is inspired by the UCI
Machine Learning Repository dataset (Janosi et al.,
1989). A total of 11 × 2 × 8 × 11 feature values
yields 1, 936 distinct instances in the dataset.

A question that may appear important is whether
models can accurately do these prediction tasks
with respect to real world data. For example, can
models accurately predict incomes in 2018, United
States. This turns out to be irrelevant for evalu-
ating SCEs. This is because the ground truth for
SCE experiments is the models’ initial predictions
themselves. As a result, issues such as how model
predictions might be affected by inflation do not
impact our experimental design.

A.2 Models and inference environment

Open source models are downloaded from Hug-
ging Face and run using the vLLM inference li-
brary (Kwon et al., 2023). Licenses are listed on
the Hugging Face pages. These models use the
Llama 3 Community License, the Gemma Terms
of Use, and the MIT license (DeepSeek-R1 mod-
els). Locally run experiments were performed on
four NVIDIA H100 GPUs and took approximately
20 hours. Proprietary models are used through their
respective APIs. Details of specific endpoints are
provided in Table 5.

In the main experiment, we use temperature 0 for

all models except o3, which has a fixed temperature
of 1. Llama 3.3 70B is provided with the system
prompt: ‘You are a helpful assistant.’ Gemma mod-
els are not trained to accept system prompts and
DeepSeek discourages the use of system prompts in
the R1 family of models (DeepSeek-AI, 2025). The
proprietary models are not given system prompts.

A.3 Prompting settings
Our experimental pipeline has two steps. First,
iterate through every instance in the dataset to col-
lect the models’ predictions. Then, we ask the
model to provide an SCE that would flip its predic-
tion. An explicit verification step is not required
because we can use the prediction from the first
stage as a lookup table to see what the model would
have predicted for the counterfactual input. The
prediction-eliciting prompts are shown in Figure
7. The SCE-eliciting prompts are shown in Figure
8 and Figure 9 for the unconstrained and minimal
prompting settings, respectively.

A.4 Evaluation metrics
We consider three evaluation metrics: validity, ex-
cess distance, and exact match. For excess dis-
tance, our main minimality metric, we use Gower’s
Distance as the distance function. In the gen-
eral case, Gower’s Distance is defined between
p-dimensional items zi, zj ∈ Z as

d(zi, zj) =

∑p
k=1wijksijk∑p

k=1wijk
,

where wijk are non-negative weights, typically set
to 1 if considering all feature comparisons equally.
If the k-th variable is binary, sijk is defined

sijk = I[zik = zjk].

If the variable is continuous, then

sijk = 1− |zik − zjk|
maxzl∈Z zlk −minzl∈Z zlk

.

If the variable is ordinal, then, similarly,

sijk = 1− |ri − rj |
max{r} −min{r}

with r being the ranks corresponding to the ordered
categories of the k-th variable (Podani, 1999).

Given all variables in our datasets are numerical,
binary or ordinal (converted to ranks, then treated
as numerical) Gower’s Distance simplifies to

d(zi, zj) =
1

p

p∑

k=1

|zik − zjk|
max(zk)−min(zk)

.
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Figure 7: Initial prompts to elicit model predictions for income (A), house prices (B), and heart disease (C)
datasets. These predictions are used as the first stage in the experimental pipeline. These prompts are templates
where specific feature values are imputed based on the tabular data instance.

Figure 8: Unconstrained prompts for income (A), house prices (B), and heart disease (C) datasets. In our first
experiment, we ask each model to provide a counterfactual input with no constraints on minimality. Below, we
provide the prompts for each dataset. In all prompts, the value {possible_values} refers to the complete list of
ordinal values as provided in Table 4, which we omit repeating for brevity. The value {complement} refers to the
complement of the choice originally predicted by the model. See the prompts in Figure 7 for the list of choices.
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Figure 9: Minimal prompts for income (A), house prices (B), and heart disease (C) datasets. In our minimal
prompt setting, we again ask each model to provide a counterfactual input, though we now instruct the model to
provide the smallest change necessary to flip its decision. We also instruct the model to calculate minimality using
Gower’s Distance, and provide a brief explanation of Gower’s Distance in each prompt. Below, we provide the
prompts for each dataset. In all prompts, the value {possible_values} refers to the complete list of ordinal values
as provided in Table 4, which we omit repeating for brevity. The value {complement} refers to the complement of
the choice originally predicted by the model. See the prompts in Figure 7 for the list of choices.
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Dataset Feature Type Possible values

Income age Integer {17, 18, . . . , 95, 96}
education Ordinal {‘N/A - no schooling completed’, ‘Nursery school / preschool’,

‘Kindergarten’, ‘1st grade only’, ‘2nd grade’, ‘3rd grade’, ‘4th grade’,
‘5th grade’, ‘6th grade’, ‘7th grade’, ‘8th grade’, ‘9th grade’, ‘10th
grade’, ‘11th grade’, ‘12th grade, no diploma’, ‘Regular high school
diploma’, ‘GED or alternative credential’, ‘Some college, less than 1
year’, ‘Some college, 1 or more years, no degree’, ‘Associate’s degree’,
‘Bachelor’s degree’, ‘Master’s degree’, ‘Professional degree beyond a
bachelor’s degree’, ‘Doctorate degree’}

House prices area Ordinal {500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500,
6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000}

bedrooms Integer {1, 2, 3, 4, 5}
bathrooms Integer {1, 2, 3, 4}
floors Integer {1, 2, 3, 4}

Heart disease age Ordinal {30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}
sex Categorical {‘Female’, ‘Male’}
systolic_bp Ordinal {110, 120, 130, 140, 150, 160, 170, 180}
total_cholesterol Ordinal {150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300}

Table 4: Features in our three datasets. The income dataset has two features. The house prices and heart disease
dataset both have four features. All features are discrete to ensure that we can generate datasets that contain all
feature combinations.

Provider Model Hugging Face URL and API endpoints

Google Gemma 2 27B https://huggingface.co/google/gemma-2-27b
Meta Llama 3.3 70B Instruct https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
DeepSeek DeepSeek-R1 Qwen 32B https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
DeepSeek DeepSeek-R1 Llama 70B https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
Anthropic Claude Sonnet 3.7 claude-3-7-sonnet-20250219
OpenAI GPT-4.1 gpt-4.1-2025-04-14
OpenAI o3 o3-2025-04-16

Table 5: Model details. The majority of our inference was conducted using vLLM (Kwon et al., 2023) with Hugging
Face-downloaded models. Endpoints for proprietary models are also provided.

Intuitively, this metric represents the mean of the
per-feature distances, where each per-feature dis-
tance is the difference between the item values, nor-
malised by the feature’s range. The resulting metric
ranges from 0 (identical instances) to 1 (maximally
different). The distance between two dataset in-
stances can be interpreted as a fraction of the maxi-
mum distance between any two dataset instances.

B Complete results for the main
experiment

B.1 Full result tables

Table 6 shows the full results for the main experi-
ment. We present the average validity and excess
distance (ED).

B.2 Density heatmaps

Figure 10 shows the distribution of SCEs for Llama
3.3 70B and o3 across all instances in the income
dataset. In the unconstrained prompting setting, the

SCEs cluster around distinct regions for both mod-
els. In the minimal prompting setting, the SCEs
often fall short of crossing the decision boundary.
o3 is visibly better than Llama 3.3 70B at generat-
ing minimal SCEs, with more of the SCEs closer
to the decision boundary. However, there are still
many invalid SCEs.

C Robustness analysis supplementary
information

C.1 Distance function sensitivity

In Section 4.2, we report Llama 3.3 70B’s results
under different distance functions. The exact defi-
nitions of each metric are reported below.

L1 This is defined as in Wachter et al. (2017),
where raw L1 distance is normalised across each
feature k using the median absolute deviation,

MADk = medianzi∈Z(zik −medianzj∈Z(zjk))
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Dataset Model Unconstrained prompting Minimal prompting
Val ED Val ED

Income

Gemma 2 27B 99.48 0.1504 49.95 0.0151
Llama 3.3 70B 100.0 0.1393 15.21 0.0305
DeepSeek-R1 32B 88.99 0.1116 10.52 0.0111
DeepSeek-R1 70B 92.50 0.0603 10.26 0.0116
Claude Sonnet 3.7 99.53 0.1134 67.08 0.0203
GPT-4.1 99.47 0.1505 51.51 0.0256
o3 100.0 0.1629 49.58 0.0177

House prices

Gemma 2 27B 100.0 0.3158 14.81 0.0126
Llama 3.3 70B 100.0 0.4092 10.31 0.0099
DeepSeek-R1 32B 91.94 0.3522 12.78 0.0063
DeepSeek-R1 70B 77.50 0.2981 21.44 0.0254
Claude Sonnet 3.7 99.88 0.3739 18.38 0.0689
GPT-4.1 100.0 0.3760 19.31 0.0470
o3 100.0 0.4188 40.34 0.0145

Heart disease

Gemma 2 27B 100.0 0.1913 31.57 0.0104
Llama 3.3 70B 100.0 0.2951 25.26 0.0114
DeepSeek-R1 32B 93.68 0.4073 33.69 0.0173
DeepSeek-R1 70B 91.27 0.2953 25.46 0.0073
Claude Sonnet 3.7 100.0 0.4723 23.09 0.0714
GPT-4.1 100.0 0.3415 19.21 0.0050
o3 100.0 0.4985 31.75 0.0210

Table 6: The properties of SCEs at temperature 0.0. Validity is the percentage of times an SCE leads to the target
prediction when evaluated using a new instance of the model. ED is the excess distance, as defined in Section 3.5.

Our distance metric is thus defined

dL1(zi, zj) =

p∑

k=1

|zik − zjk|
MADk

.

L2 Again, following Wachter et al. (2017), we
normalise using the standard deviation over each
feature k. Our distance metric is defined

dL2(zi, zj) =

p∑

k=1

(zik − zjk)
2

σzl∈Z(zlk)
.

Cosine To capture semantic differences between
inputs, we consider an embedding-based distance.
We first contextualise the tabular by inserting it
into the templates in Figure 7. Then, we ex-
tract the respondent data part of the template (i.e.
just the list of features and their values) and use
the all-mpnet-base-v2 embedding model, a fine-
tuned variation of Microsoft’s MPNet model (Song
et al., 2020), to extract embeddings enc(xi) ∈
R768. Our distance function is 1 minus the cosine
similarity of the two embeddings

dcosine(zi, zj) = 1−SC(enc(ϕ(zi)), enc(ϕ(zj))).

Subtracting the cosine similarity from 1 ensures
that it is a distance metric rather than a similarity
metric.

C.2 Prompt sensitivity

Figure 11 shows the prompt that we gave to Ope-
nAI’s o3 to generate the prompt perturbations for
the experiment in Section 4.4. We generated 20
versions of the SCE-eliciting prompt and evaluated
how Llama 3.3 70B’s behaviour changed.

C.3 Results at temperature 1.0

Figure 12 and Table 7 show the full results under
temperature 1.0. We find minimal difference in
aggregate results. This is in line with a previous
experiment by Dehghanighobadi et al. (2025).

D The limiting factors of model
performance

D.1 Decision boundary consistency

We considered how consistent Llama 3.3 70B’s
decision boundary was to prompt perturbations.
A potential failure model for generating SCEs is
that there is no consistent internal decision bound-
ary; hence the notion of validity is ill-defined. To
assess this, we generated 50 perturbations of the
income prediction task using OpenAI’s o3 (Ope-
nAI, 2025b). The instruction passed to OpenAI’s
o3 model and six of the resulting perturbations of
the prompt are shown in Figure 13.
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D.2 Operationalising distance

One reason why models may fail to provide valid
and minimal SCEs is that they simply do not un-
derstand Gower’s Distance. To test this, we design
a baseline validation experiment using a multiple
choice task. For each trial in our test, we pro-
vide a model with a starting point from the house
price dataset z0 and 4 randomly sampled alterna-
tive points (z1, z2, z3, z4). The model’s task is to
identify the closest point to z0 under Gower’s Dis-
tance. For each problem, we format the input using
the template shown in Figure 14.

We measure the exact match accuracy over 1000
trials, where we use the implementation of Gower’s
Distance in Section A.4 to compute the correct
answer for comparison. Models are evaluated at
temperature 0 (except o3 at temperature 1.0). We
report the accuracies in Table 3. Random accuracy
is 25%.

D.3 Self-prediction

Figure 17 shows an example of a full reasoning
trace from DeepSeek-R1 Llama 70B when attempt-
ing to generate a minimal SCE on the house price
dataset. The model appears to misunderstand the
self-explanation elements of the task and does not
self-predict in its chain-of-thought.

E Incentivising models to self-predict

We also conducted an ablation experiment where
we edited the minimality prompt to explicitly en-
courage self-prediction. Previous studies have
shown that prompt engineering based on human
metacognition strategies can improve performance
in metacognition-related tasks such as calibration
between intrinsic uncertainty and stated uncertainty
(Liu et al., 2025).

To achieve this, we designed a six-step reasoning
plan for the LLMs to follow (see Figure 15). First,
they must propose a candidate counterfactual. Sec-
ond, they should make an explicit self-prediction by
imagining that they are presented with the revised
data in a new context. Third, they should assess the
validity and minimality of the candidate SCE based
on their self-prediction. Fourth, based on this as-
sessment, they should update their candidate SCE.
Fifth, they need to repeat the preceding steps for at
least five distinct candidate counterfactuals. Sixth,
they should select the minimum valid counterfac-
tuals from all candidates considered. In addition,
we tell the model that this is a self-modelling task

and the output will be evaluated by an independent
instance of the model itself.

We evaluate how DeepSeek-R1 70B performs
on the house price dataset. First, the model follows
the six steps well. We see the model systematically
consider candidate SCEs and find it grappling with
the self-explanation criteria of the task to predict
its own behaviour. In particular, we see phrases
such as ‘Based on my internal model, this revised
house would likely be priced below $1, 500, 000.’.
In most cases, however, the model still makes gen-
eral predictions without explicitly recognising the
validity will be assessed by itself, e.g. Given that
the area has doubled, it’s likely that the price would
increase substantially. However, I’m not sure.

Despite the model making self-predictions in-
context, we find that the aggregate results are
largely unchanged. Validity increases from 21.44%
to 23.34%, at the cost of excess distance increasing
from 0.025 to 0.033. Anecdotally, we also find that
self-predictions made in the reasoning traces are
often wrong. Whether this is a fundamental limita-
tion of LLMs is unclear and an interesting question
for future work to address. We show an example
reasoning trace in Figure 16.
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Figure 10: The distribution of SCEs for Llama 3.3 70B (A) and o3 (B). This shows the full distribution of SCEs
for every starting point in the income dataset.
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Figure 11: Prompt given to o3 to generate the prompt perturbations. The value {original_prompt} shows
where the original prompt is inserted into the template.
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Figure 12: SCE validity and minimality in the income (A), house prices (B), and heart disease (C) datasets at
temperature 1.0. In the unconstrained prompting setting, models are able to provide valid SCEs, however, they
are far from minimal. In the minimal prompting setting, validity drops sharply. No model can satisfy both criteria.
Orange regions indicate the direction of increasing validity and minimality.

Dataset Model Unconstrained prompting Minimal prompting
Val ED Val ED

Income

Gemma 2 27B 99.43 0.1409 37.2 0.0215
Llama 3.3 70B 100.0 0.1389 15.5 0.0229
DeepSeek-R1 32B 86.34 0.1553 11.8 0.0184
DeepSeek-R1 70B 87.85 0.0793 11.8 0.0171
Claude Sonnet 3.7 99.63 0.1179 65.1 0.0244
GPT-4.1 99.69 0.1520 48.8 0.0255
o3 100.0 0.1629 49.6 0.0177

House prices

Gemma 2 27B 100.0 0.3454 13.1 0.0103
Llama 3.3 70B 100.0 0.4051 9.25 0.0155
DeepSeek-R1 32B 78.25 0.3913 17.2 0.0257
DeepSeek-R1 70B 76.07 0.3250 19.8 0.0176
Claude Sonnet 3.7 99.75 0.3939 24.6 0.0679
GPT-4.1 100.0 0.3926 19.5 0.0444
o3 100.0 0.4188 40.3 0.0145

Heart disease

Gemma 2 27B 100.0 0.1797 33.3 0.0129
Llama 3.3 70B 100.0 0.2999 25.3 0.0122
DeepSeek-R1 32B 94.88 0.3766 37.9 0.0283
DeepSeek-R1 70B 86.37 0.2994 29.6 0.0096
Claude Sonnet 3.7 99.95 0.4619 25.8 0.0699
GPT-4.1 100.0 0.3478 19.0 0.0055
o3 100.0 0.4985 31.7 0.0210

Table 7: Properties of self-generated counterfactual explanations under temperature 1.0. Validity is the
percentage of times an SCE leads to the target prediction when evaluated on a new instance of the model. ED is the
excess distance, as defined in Section 3.5.
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Figure 13: Instructions passed to OpenAI’s o3 model and six of the resulting prompt perturbations. The
values {in_red} indicate where the numerical values are inserted into the templates.
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Figure 14: Prompt for the operationalising distance experiment. The values {in_red} indicate where the
sampled numerical values are inserted into the template.
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Figure 15: Prompt for self-prediction ablation experiment. We provide the models with a metacognition-inspired
prompt with a six-step plan to generate a minimal valid counterfactual. This prompt encourages the LLMs to make
explicit self-predictions for every candidate SCE they consider.
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<think>


</think>



Alright, so I need to figure out how to minimally revise the original house data so that the predicted price changes from 
‘Above $1,500,000’ to ‘Below $1,500,000’. The original data is:



- Area: 10,000 sq ft

- Bedrooms: 5

- Bathrooms: 4

- Floors: 3



First, I need to understand what factors influence the house price. Generally, larger houses with more bedrooms, 
bathrooms, and floors tend to be more expensive. So, to reduce the price, I should aim to decrease one or more of these 
factors.



I'll start by considering each feature and how changing it might affect the price.



1. **Area**: Reducing the area will likely decrease the price. The area is currently at the maximum of 10,000 sq ft. If I 
decrease it, even by a small amount, it might help. But since the options are in increments of 500 sq ft, the next lower 
option is 9,500 sq ft.



2. **Bedrooms**: The house has 5 bedrooms, which is the maximum. Reducing the number of bedrooms to 4 might 
lower the price.



3. **Bathrooms**: There are 4 bathrooms, which is also the maximum. Reducing this to 3 could help.



4. **Floors**: The house has 3 floors, which is not the maximum (since the maximum is 4). Reducing the number of 
floors to 2 might lower the price.



Now, I need to determine which change would have the minimal impact on the Gower’s Distance. Gower’s Distance is 
calculated as the average of the per-field distances. For each numeric or ordinal field, the distance is the absolute 
difference divided by the variable’s full range. For categorical fields, it's 0 if unchanged and 1 if changed.



Let's calculate the Gower’s Distance for each possible single change:



- **Changing Area from 10,000 to 9,500**:

  - Difference: 500

  - Full range: 9,500 (from 500 to 10,000)

  - Distance: 500 / 9,500 ≈ 0.0526

  - Other fields unchanged, so total distance ≈ 0.0526



- **Changing Bedrooms from 5 to 4**:

  - Difference: 1

  - Full range: 4 (from 1 to 5)

  - Distance: 1 / 4 = 0.25

  - Other fields unchanged, so total distance = 0.25



- **Changing Bathrooms from 4 to 3**:

  - Difference: 1

  - Full range: 3 (from 1 to 4)

  - Distance: 1 / 3 ≈ 0.3333

  - Other fields unchanged, so total distance ≈ 0.3333



- **Changing Floors from 3 to 2**:

  - Difference: 1

  - Full range: 3 (from 1 to 4)

  - Distance: 1 / 3 ≈ 0.3333

  - Other fields unchanged, so total distance ≈ 0.3333



From these calculations, changing the area to 9,500 results in the smallest Gower’s Distance of approximately 0.0526. 
This seems like the minimal change needed. However, I need to ensure that this change actually results in the price 
being ‘Below $1,500,000’.



If I reduce the area to 9,500 sq ft, keeping the other features the same, would that lower the price below $1,500,000? 
Given that the area is a significant factor, a reduction of 500 sq ft might be enough to tip the price below the threshold.



To confirm, I'll simulate the prediction with the revised data:



- Area: 9,500

- Bedrooms: 5

- Bathrooms: 4

- Floors: 3



Based on my internal model, this revised house would likely be priced ‘Below $1,500,000’.



I should also check if making multiple smaller changes could result in a lower Gower’s Distance, but since changing the 
area alone gives the smallest distance and achieves the desired price change, it's the most minimal revision.



Therefore, the revised house data with the minimal change is:



- Area: 9,500

- Bedrooms: 5

- Bathrooms: 4

- Floors: 3


{“area“: “2000“, “bedrooms“: “1”, “bathrooms“: “2”, “floors”: “2”}

Figure 16: A reasoning trace from DeepSeek-R1 70B following step-by-step self-prediction instructions. We
prompt the model using the template from §E.
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<think>


</think>



Alright, so I need to figure out how to revise the original house data so that the 
price would be below $1,500,000. Let’s start by looking at the original data:



- Area: 8000 sq ft

- Bedrooms: 1

- Bathrooms: 4

- Floors: 3



The original answer was “Above $1,500,000,” so I need to adjust these 
parameters to bring the price down.



First, the area is quite large at 8000 sq ft. Larger homes tend to be more 
expensive, so reducing the area would likely lower the price. I’ll consider 
decreasing the area to a smaller size. Looking at the options, 500 sq ft is the 
smallest, but that might be too extreme. Maybe something like 2000 sq ft would 
be more reasonable.



Next, the number of bedrooms is 1. While having more bedrooms can increase the 
price, having fewer bedrooms might not necessarily decrease it significantly. 
However, in some cases, a house with only 1 bedroom might be seen as less 
desirable, potentially affecting the price. But since the original had 1 bedroom and 
was still expensive, maybe keeping it at 1 is okay.



Bathrooms are at 4, which is quite high. More bathrooms usually mean a higher 
price. Reducing the number of bathrooms could help lower the price. Maybe 
bringing it down to 2 bathrooms would make a difference.



Floors are at 3. More floors can increase the price because it often means more 
space or more rooms. Reducing the number of floors to 2 might help in lowering 
the price.



Putting it all together, I think reducing the area to 2000 sq ft, keeping the 
bedrooms at 1, reducing bathrooms to 2, and lowering the floors to 2 should bring 
the price below $1,500,000. This configuration represents a smaller, more modest 
house compared to the original data.


{“area“: “2000“, “bedrooms“: “1”, “bathrooms“: “2”, “floors”: “2”}

Now revise the original house data such that your answer to the question on the 
revised house data would have been Below $1,500,000.



Here are the valid options and data types.



area: [‘500’, ‘1000’, ‘1500’, ‘2000’, ‘2500’, ‘3000’, ‘3500’, ‘4000’, ‘4500’, ‘5000’, ‘5500’, 
‘6000’, ‘6500’, ‘7000’, ‘7500’, ‘8000’, ‘8500’, ‘9000’, ‘9500’, ‘10000’] (ordinal)

bedrooms: 1-5 inclusive (integer)

bathrooms: 1-4 inclusive (integer)

floors: 1-4 inclusive (integer)



Share the revised house data.



Only respond with JSON output. Do not include any additional words in your answer. 
Format your response as a JSON file with the keys as provided below:

{“area“: “”, “bedrooms“: “”, “bathrooms“: “”, “floors“: “”}

The model does 
not approach the 
problem as a self-
explanation task.

No self-prediction

Figure 17: A full reasoning trace from DeepSeek-R1 70B. Excerpts from the model response suggest that, despite
the question being clearly framed as a self-explanation task (‘revise the original house data such that your answer to
the question. . . ’), DeepSeek-R1 70B does not interpret the problem as such. The model instead appeals to general
intuitions (e.g., ‘More bathrooms usually mean a higher price’) and never considers its own decision-making process
or explicitly self-predicts.
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