Identifying and Answering Questions with False Assumptions:
An Interpretable Approach

Zijie Wang and Eduardo Blanco
Department of Computer Science
University of Arizona
{zijiewang,eduardoblanco}@arizona.edu

Abstract

People often ask questions with false assump-
tions, a type of question that does not have
regular answers. Answering such questions re-
quires first identifying the false assumptions.
Large Language Models (LLMs) often gen-
erate misleading answers to these questions
because of hallucinations. In this paper, we
focus on identifying and answering questions
with false assumptions in several domains. We
first investigate whether the problem reduces to
fact verification. Then, we present an approach
leveraging external evidence to mitigate hallu-
cinations. Experiments with five LLMs demon-
strate that (1) incorporating retrieved evidence
is beneficial and (2) generating and validating
atomic assumptions yields more improvements
and provides an interpretable answer by pin-
pointing the false assumptions.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Team et al., 2023) have demonstrated remark-
able abilities in extractive (Rajpurkar et al., 2016;
Kwiatkowski et al., 2019) and generative question
answering (Reddy et al., 2019; Fan et al., 2019)
among others. Despite their capabilities, LLMs suf-
fer from hallucinations (Zhang et al., 2023). This
leads to unfaithful answers due to overconfidence—
when LLMs lack knowledge, they often make up
answers despite abstaining (e.g., “I do not know”)
being more desirable (Feng et al., 2024). Over-
confidence also leads to hallucinated answers to
unanswerable questions (Slobodkin et al., 2023).
For example, “Which countries border Kansas?”
should be addressed by pointing out that Kansas
does not have an international border.
Unanswerable questions, as studied in previous
works (Kim et al., 2023; Yu et al., 2023b; Hu et al.,
2023), are information-seeking questions contain-
ing false assumptions. The false assumptions make
them lack regular answers. Instead, answers should

Evidence: The 2020 Summer
Olympics, [...], was held from
23 July to 8 August 2021.
. + . _ 3 .
& Does the questionhave = @ | Does the question have false
 false assumptions? assumptions?

@‘ No | @ Yes
"In the 2020 Summer " Interpretation:
Olympics in Tokyo, The @ Olympics results in gold medals.
United States won the @ There was a 2020 Olympics.

most gold medals. The X The 2020 Olympics was held in
. U.S. athletes [...]. 2020.

Question: Which country
won the most gold medals
in the Olympics in 2020?
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Figure 1: Question with a false assumption (i.e., the
2020 Olympics was held in 2020). ChatGPT provides
a misleading answer without identifying the false as-
sumption. Our approach couples external evidence with
a process to generate and validate atomic assumptions.
Doing so allows us to answer questions with false as-
sumptions by pointing out the false assumptions (e.g.,
There was a 2020 Olympics but it was not held in 2020).

point out the false assumptions. Consider the ques-
tion in Figure 1. It wrongly assumes that the 2020
Olympics was held in 2020. The event, however,
was held in 2021. ChatGPT fails to identify the
false assumption and generates a misleading an-
swer. In this paper, we investigate the problem
of identifying and answering questions with false
assumptions. We define false assumptions in ques-
tions as subjective opinions, beliefs, or misconcep-
tions held by the question author. Note that they
differ from false facts, which are objective claims
contradicting reality.

By leveraging retrieval-augmented methods, our
approach (Figure 1, right) mitigates hallucinations.
In contrast to previous works aiming to generate
free-form answers to questions with false assump-
tions (Kim et al., 2023; Yu et al., 2023b; Hu et al.,
2023), we propose to generate and validate atomic
assumptions. Doing so not only benefits identify-
ing false assumptions but also pinpoints the false
assumptions—often a small part of the question—
thus yielding a human-interpretable answer.
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As the examples above and Table 2 show, identi-
fying and answering questions with false assump-
tions is challenging. Our main contributions are:'

* A set of general-purpose approaches to iden-
tify questions with false assumptions.

* Interpretable answers derived from the gener-
ation and validation of atomic assumptions.

* Experiments showing that our approach yields
state-of-the-art results across three datasets
yet requires less compute than other ap-
proaches.

* Error analysis providing insights into the ques-
tions and false assumptions that lead to mis-
classifications by our best model.

2 Related Work and Existing Datasets

Answering Special Questions Question answer-
ing has evolved from answering factoid ques-
tions (Clark et al., 2019) to non-factoid ques-
tions (Soleimani et al., 2021); from reading com-
prehension to open-domain QA (Karpukhin et al.,
2020). Recently, research efforts have been made
on various special types of questions. For example,
Min et al. (2020) investigate ambiguous questions
(i.e., questions with more than one valid answer).
Stelmakh et al. (2022) further extend it by answer-
ing the questions with long-form responses. Wang
et al. (2023, 2024) interpret answers to yes-no ques-
tions that do not contain yes or no.

Retrieval-Augmented LLMs Document re-
trieval has been used in question answering for
decades (Moldovan et al., 2002). Dense Passage
Retriever (Karpukhin et al., 2020) leverages re-
trieval and LLMs. Retrieval-Augmented Gener-
ation (Lewis et al., 2020; Guu et al., 2020, RAG)
combines retrieval and generation models to miti-
gate hallucinations (Gao et al., 2023). In addition,
retrieval-augmented methods have been integrated
into LLMs. Chen et al. (2022) incorporate retrieved
instances from the training corpus into prompts.
Peng et al. (2025) evaluate RAG systems on scenar-
ios in which the queries are unanswerable based on
the given knowledge base. Unlike previous works,
we focus on identifying and answering questions
with false assumptions.

Fact Verification Verifying facts is typically
framed as the problem of determining whether a
claim is supported or contradicted by a source doc-

!Code and dataset available at https://github.com/
wang-zijie/Question-with-False-Assumption

(QA)) CREPE FalseQA

Genuine questions? v v X
Genuine answers? X v X
Human-written evidence? v v X
Auto-retrieved evidence? X v X
# instances 602 8,444 4,730
# train 32 3,462 2,374

# validation n/a 2,000 982

# test 570 3,004 1,374
% valid assumptions 50 75 50

% false assumptions 50 25 50

Table 1: Existing corpora containing questions with
false assumptions. These corpora target different do-
mains (search logs, Reddit and selected topics).

ument (Chen et al., 2023). Fact verification and
identifying questions with false assumptions are
only distantly related, as questions with false as-
sumptions often do not have wrong facts. For ex-
ample, “Why can bald people grow beards?” does
not challenge the veracity of “Bald people can grow
beards.” The question, however, has a false assump-
tion: head hair is the same as facial hair. As we
shall see, identifying false assumptions cannot be
reduced to fact verification (Section 4).

Existing Datasets Several works present datasets
consisting of questions with false assumptions:
(QA)? (Kim et al., 2023), CREPE (Yu et al., 2023b),
and FalseQA (Hu et al., 2023). (QA)? obtains
questions from Google and asks crowdworkers to
(1) identify whether the questions have false as-
sumptions and (2) write answers. CREPE obtains
questions and answers from the ELIS5 subreddit
dataset (Fan et al., 2019). Like (QA)?, they rely on
crowdworkers to identify false assumptions in the
questions. FalseQA consists of synthetic questions
about several topics written by crowdworkers, who
are instructed to make up false assumptions. This
results in questions with few variations. Answers
to questions are also written manually.

Table 1 presents basic information about the
three datasets. FalseQA is the only one without
genuine questions (i.e., annotator-written on de-
mand) and provides no external evidence. In con-
trast, (QA)? and CREPE contain genuine questions
and include evidence written by crowdworkers.
CREPE further provides passages retrieved by C-
REALM (Krishna et al., 2021). Notably, (QA)? has
relatively few instances compared to the other two
datasets and lacks training instances. CREPE is the
only corpus that (1) contains genuine answers and
(2) has an unbalanced label distribution.
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EQ: Why can bald people still grow beards? (or S: Bald people can still grow beards.)

T
)
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[ Generating Atomic Assumptions ]
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E1: Hair loss, also known as baldness.
E2: A beard is the hair that grows on
the jaw [...].

E3: Beard growth is linked to dihydrote-
stosterone, [...] also promotes balding.
E4:[..]

Identify False Assumptions:
Does the input contain false assumptions?

RN

No (wrong)g Yes (correct)

i | Baseline | :

[ Retrieving Evidence ]

AA3: Head hair is the same as beard (facial hair).

i [AA2: Bald people can have beards.

AA1: There are people that are bald.

l

[ Validating Atomic Assumptions]

[ Adjudicator ]-——I Interpretation: [4 AA1, 4 AA2, 3 AA3 |

Answer: the question has a false assumption that
“head hair is the same as beard (facial hair)”.

Yes (correct)

[ Generating and Validating Atomic Assumptions ]

Figure 2: Approaches to identify and answer questions with false assumptions. Baselines only have access to the
question or statement. Approaches retrieving evidence incorporate relevant information. Generating and validating
atomic assumptions yields human-readable interpretations as well as answers to the question.

Beyond these datasets, Zhao et al. (2024) present
a benchmark to evaluate LLMs’ ability on rewriting
the unanswerable questions from (QA)?. Yang et al.
(2024) investigate unanswerable questions in the
Electronic Health Records domain.

Despite previous efforts on this problem, we are
the first to propose a unified approach that identi-
fies and answers questions with false assumptions
across all existing datasets. More importantly, pre-
vious works neither specify the false assumptions
nor provide any interpretations or insights to cor-
rect the false assumptions. We propose to generate
and validate atomic assumptions. This approach
allows us to (1) provide interpretations for the bi-
nary identification task and (2) answer questions
with false assumptions by pinpointing specific false
assumptions.

3 Methods to Identify and Answer
Questions with False Assumptions

We define the task of identifying and answering
questions with false assumptions as follows. Con-
sider a question (), its reformation as a state-
ment S, a set of atomic assumptions AA =
[AA4,..., AA,] generated from @, a set of evi-
dence F retrieved based on () or S, and a label set
L € [0, 1], where:

I_ {0 (contains false assumptions)

1 (contains no false assumptions)

Identifying questions with false assumptions is

to learn a mapping f : (I,E) — L, with [ €
@, S, AA] and E might be empty. We answer
the questions by first validating the set of atomic
assumptions Layq = [AA; : L1,...,AA, : Ly),
and then generating an interpretable answer A by
verbalizing L 4.

We present four baselines: (1) reducing the prob-
lem of identifying false assumptions to fact verifi-
cation, (2) supervised fine-tuning language models,
(3) prompting LLMs, and (4) incorporating gen-
erated evidence into prompting (Liu et al., 2022)
(Figure 2, left block). Then, we present methods
to (1) consider retrieved evidence (Figure 2, mid-
dle block) and (2) generate and validate atomic
assumptions (Figure 2, right block).

3.1 Baselines

Reducing the Problem to Fact Verification Fact
verification aims at verifying facts grounded on
support documents (Guo et al., 2022). At first sight,
identifying false assumptions could be solved by
transforming questions into statements and finding
falsehoods in the corresponding statements.

As described next, prompting LLMs is success-
ful at transforming questions into statements. Veri-
fying the statements, however, does not equate to
identifying false assumptions in the questions. This
is because they are fundamentally different prob-
lems. As we discussed before, identifying false
assumptions is different from verifying false facts.
For example, How can we see the moon in the mid-
dle of the day? does not challenge the truth of “The
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Q1: Why are ice cubes mostly clear but icebergs are white?

Evidence: Commercially made ice cubes may be clear; Ice-
bergs are generally white because they are covered in snow;
Although ice by itself is clear, snow usually appears white in
color due to diffuse reflection [...].

Statement: Ice cubes are mostly clear and icebergs are white.

Atomic Assumptions: (al V) Ice cubes and icebergs are made
of water. (a2 v') Ice cubes are mostly clear. (a3 v') Icebergs are
white. (a4 v') Ice cubes and icebergs can be different in color
despite they are made of the same material.

(02: When did the San Andreas Fault last erupt?

Evidence: The San Andreas Fault is a transform fault; Trans-
form fault involves no loss of lithosphere at [... ]; Most vol-
canic activity happens where lithosphere is being destroyed.

Statement: The San Andreas Fault has erupted before.

Atomic Assumptions: (al v') The San Andreas Fault is a geo-
logical feature. (a2 X) The San Andreas Fault can erupt. (a3 X)
The San Andreas Fault has erupted during a known time.

Q3: When did they stop using lead in pencils?

Evidence: [...] lead has not been used for writing [...];
Because the pencil core is still referred to as “lead”, people
have the misconception that the graphite in the pencil is lead.

Statement: People stopped using lead in pencils.

Atomic Assumptions: (al X) Pencils were once made using
lead. (a2 v') Pencils no longer contain lead. (a3 X) There was a
specific time when people stopped using lead in pencils.

Table 2: Three questions with false assumptions from (QA)? and CREPE. Our approach automatically transforms
the questions into (1) a single statement and (2) generates and validates atomic assumptions (v’ or X). Further, we
retrieve evidence from external sources as doing so is more beneficial than generating relevant evidence with LLMs.

moon is visible in the middle of the day”. In fact,
the question indicates that the author is aware that
the statement is true. The question, however, also
falsely assumes that “The moon is expected to be
seen only at night”. As we shall see, these two
problems are only distantly related (Section 4).

Transforming Questions into Statements A
few-shot prompt with GPT-4 is sufficient to reli-
ably transform question () into statement S. Ap-
pendix A.1 lists the full prompts. We evaluated the
transformation quality by manually checking 200
question-statement pairs from each corpus (600 to-
tal). The correctness of the transformation is high
for all datasets ((QA)?: 0.94, CREPE: 0.89, and
FalseQA: 0.98). Table 2 shows three more exam-
ples of questions transformed into statements.

Supervised Approach As discussed in Section 2,
CREPE and FalseQA provide training splits. (QA)?
only includes 32 instances for in-context learn-
ing. We first investigate a cross-domain trans-
fer learning baseline by training a model using
CREPE and (or) FalseQA and evaluate with the
three datasets: (QA)2, CREPE, and FalseQA. Addi-
tionally, we explore another two relevant datasets:
BoolQ (Clark et al., 2019) and FEVER (Thorne
et al., 2018). Since Yu et al. (2023b) demonstrate
that MNLI (Williams et al., 2018) yields worse
results, we do not include any NLI datasets.

Prompting LLMs The second baseline involves
prompting LLMs to identify if a question has false
assumptions. These prompts only rely on LLMs’
internal knowledge acquired during pretraining and
are affected by hallucinations. We use a few-shot

prompt asking whether the question (or statement
automatically generated, Section 3.1) has false as-
sumptions. Appendix A.2 provides the complete
prompts.

Prompting LLMs with Generated Evidence
Following Liu et al. (2022), we (1) generate ev-
idence from the question or statement using an
LLM and (2) incorporate the generated evidence
into the prompt. Note that the generated evidence
is likely to include hallucinations. This baseline
allows us to determine whether retrieving external
evidence outperforms evidence generated by the
LLM itself. As we shall see, generated evidence is
detrimental for this task while retrieved evidence
is beneficial. Detailed prompts can be found in
Appendix A.3.

Leveraging LLMs with Complex Reasoning
Ability State-of-the-art LLMs such as OpenAl
o1l have shown to be capable of complex reasoning
tasks (Jaech et al., 2024). We prompt the o1 model
to identify questions with false assumptions using
similar but zero-shot prompting as the previous
baselines. This practice is suggested by the model
author to provide simple yet clear instructions.

3.2 Retrieving Evidence

Retrieval-augmented methods (Lewis et al., 2020;
Guu et al., 2020) mitigate hallucinations by obtain-
ing knowledge from external sources—up-to-date
knowledge can be readily retrieved. As shown in
Figure 2 (middle block), we propose a retrieval-
augmented method to identify questions with false
assumptions by (1) retrieving an evidence set F/
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based on () or S and (2) incorporating the evidence
in the prompts.

Retrieving Documents We begin by retrieving
documents relevant to the question or statement.
For CREPE, we reuse the relevant Wikipedia pas-
sages retrieved with C-REALM (Krishna et al.,
2021). For (QA)? and FalseQA, we query the
Google Search Engine API, restricting results to
Wikipedia articles and retaining the top three.

Retrieving Sentences From the retrieved
Wikipedia articles, we consider all sentences
as candidate evidence. We employ INSTRUC-
TOR (Su et al., 2023), a state-of-the-art text
embedding model, to identify the top %k sentences
most relevant to the input question or statement.
We treat k as a tunable parameter (maximum: 10).
The quality of retrieved evidence for identifying
false assumptions is evaluated empirically through
our experimental results. Table 2 illustrates ques-
tions with their corresponding retrieved evidence.
For instance, evidence for “When did they stop
using lead in pencils?” includes “[...] lead has not
been used for writing” which directly contradicts
the false assumption in the question (i.e., people
once used lead in pencils). The experimental
settings are reported in Appendix A.4, and the
complete prompts incorporating retrieved evidence
are provided in Appendix A.5.

3.3 Generating and Validating Atomic
Assumptions

The identification methods discussed so far indicate
whether a question contains false assumptions—
L € {0, 1}. They neither specify the false assump-
tions nor provide any interpretations or insights to
correct the false assumptions.

As shown in Figure 2 (right block), our method
grounded on generating and validating atomic as-
sumptions pinpoints specific false (and true) as-
sumptions in questions. Atomic assumptions are
explicit and implicit elemental information stated
and believed to be true by the question author,
and provide human-readable interpretations for the
identification problem. Further, we argue that vali-
dated atomic assumptions (true or false) are more
sound answers to questions with false assumptions
than the free-form answers generated in previous
work. This is because comparing a single gold
answer to the generated one with existing metrics
such as BLEU (Papineni et al., 2002) cannot effec-
tively assess correctness (Min et al., 2023). Fur-

ther, they cannot distinguish when answers gener-
ate plausible answers without realizing the question
has false assumptions. For example, ChatGPT’s an-
swer to the question from Figure 1 (“United States
won the most gold medals in the 2020 Olympics”)
is factually correct but does not address the false
assumption: The 2020 Olympics was held in 2020.
In fact, it was held in 2021. On the other hand, gen-
erating and validating atomic assumptions does ad-
dress the false assumptions in the question: There
was a 2020 Olympics but it was not held in 2020.
Table 2 and Figure 2 detail more examples.

We generate a set of atomic assumptions AA
from () and then validate each AA; € AA to obtain
L 4. The last step is to aggregate L 44 to deter-
mine whether the question has a false assumption,
in another word, L. We propose a simple adjudica-
tor: L = A\, Li, L; € Lg4. As we shall see, this
approach (1) yields improvements in identifying
false assumptions, (2) provides interpretations for
the identification task, and (3) is more efficient than
other methods to obtain the interpretation.

It is more beneficial to generate atomic assump-
tions from the question than the statement by lever-
aging GPT-40 with a few-shot chain-of-thought
prompt (Wei et al., 2022). Note that we first exper-
iment with GPT-40 to generate the atomic assump-
tions. Later we present results with smaller LLM:s.
This task is more challenging than similar practice
that extracts atomic facts or claims from long-form
text generation (Min et al., 2023) or book-length
summarization (Kim et al., 2024), as it requires
extracting both explicit and implicit information
behind a relatively short question.

Appendix A.6 reports the specific prompts and
results of a quality check process. Overall, the
precision of generated atomic assumptions is near
perfect for all three datasets. Note that we are
unable to calculate the recall as it is unclear what
the full list of atomic assumptions is (e.g., is it
worth generating Water can freeze in the shape
of a cube from Q1 in Table 2?). On average, we
generate 4.7 atomic assumptions per question.

Validating atomic assumptions is conceptually
the same as validating the statements derived from
questions. We reuse the same prompts described in
Section 3.1 and Section 3.2.

4 Experiments and Results

We are the first to experiment across all three cor-
pora including questions with false assumptions:
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(QA)®> CREPE FalseQA

(Acc) (F1) (Acc)
Best Prev. Work 64.00 67.00 86.00
(2023) (2023b)  (2023)
Fact Verification w/ Question
and Evidence
Gold (upper bound) 7293 4947 n/a
Retrieved w/ Question 6947 4241 65.57
Retrieved w/ Statement 68.25 41.31 63.32
Fact Verification w/ Statement
and Evidence
Gold 7571  54.36 n/a
Retrieved w/ Question 73.33 5258 70.89
Retrieved w/ Statement 71.75  52.06 71.18
Best Fine-tuned RoBERTa 56.07 62.81 73.59
Prompting GPT-40 with
Question 7232 62.62 73.77
Statement 71.05 5993 71.90
Generated Evidence 67.03 61.24 73.57
Prompting OpenAl o1 with
Question 75.08 67.24 80.81
Statement 74.19  64.13 76.06

Table 3: Results obtained with (1) the best previous
work for each corpus, (2) a state-of-the-art fact verifica-
tion system (Tang et al., 2024), and (3) several baselines.
Fact verification with the statement yields better results
than the question, but it underperforms even the simplest
prompting. ROBERTa underperforms, and evidence gen-
erated (Liu et al., 2022) with GPT-40 is detrimental.
Prompting with ol model yields the best results (bold).

(QA)?, CREPE, and FalseQA. As we shall see,
generating and validating atomic assumptions to
identify and answer questions with false assump-
tions (1) is the best performing across the three
corpora and (2) unlike previous work, it is inter-
pretable by design. The first row in Table 3 presents
the best results to date with each corpus. Note that
these systems are crafted for each corpus; unlike
us, the authors do not conduct any cross-corpora
evaluation.

4.1 Results with Baselines

Fact Verification We evaluate MiniCheck (Tang
et al., 2024), a state-of-the-art fact verification sys-
tem,” to identify questions with false assumptions
as a fact verification task. (QA)? and CREPE pro-
vide gold evidence that is written or retrieved by
humans (Section 2); we use it to define an (unreal-
istic) upper bound. We retrieve evidence (Section
3.2) using the question or statement, and keep the
top-10 evidence sentences.

Fact verification with the statement yields better

2https://11m-aggrefact.github.io/

results than the question (Table 3, second block).
While it obtains somewhat high results, as we shall
see, simple supervised models and prompts outper-
form fact verification—even with gold evidence.
We conclude that fact verification helps identify-
ing questions with false assumptions but the latter
cannot be reduced to the former.

Supervised Approach The supervised approach
finetunes a RoBERTa-large model (Liu et al., 2019).
Table 3 only reports the best results on each corpus;
Table 8 in Appendix B lists the complete results. A
supervised RoBERTa model outperforms fact veri-
fication. However, cross-domain learning yields no
improvements with CREPE and FalseQA. In fact,
when in-domain training instances are unavailable
(e.g., (QA)?), fine-tuning with any corpora yields
similar results, demonstrating that the effectiveness
of the supervised approach is bounded by the avail-
ability of in-domain instances.

Prompting without Retrieved Evidence
Prompting GPT-40 without evidence outperforms
both fact verification and the supervised model,
although the benefits are minimal if training
data is available (CREPE, FalseQA). Thus,
simple prompting is not justified if training data
is available, as a small, finetuned RoBERTa
obtains virtually the same results. Contrary to
previous work (Liu et al., 2022), we observe that
incorporating generated evidence (not retrieved)
with GPT-40 is detrimental for our task. The
drops are substantial with (QA)?: 67.03 vs. 72.32.
We hypothesize that this is due to LLMs often
reciting information provided to them even if it is
incorrect (Wu et al., 2024). Prompting with the
more powerful ol model yields the best results,
which outperforms the best results from previous
works for two datasets. However, as we shall see,
this approach requires substantial computational
costs and still falls behind our approach.

4.2 Results Retrieving Evidence

For our retrieval-augmented approaches, we experi-
ment with five LLMs (proprietary and open-weight)
with various sizes. Specifically, we report results
with GPT-40, Llama 3 70B, and Mistral 7B (Table
4) and Llama 3 8B and Qwen2 7B (Appendix B).
Appendix A.7 reports our experimental settings
including hyperparameters.

Similar to the fact verification experiments, we
experiment with gold evidence to establish an (un-
realistic) upper bound and two variants of retrieved
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GPT-40 Llama 3 70B Mistral 7B
(QA)> CREPE FalseQA (QA)? CREPE FalseQA (QA)? CREPE FalseQA
(Acc) (F1) (Acc) (Acc) (F1) (Acc) (Acc) (F1) (Acc)
Best from Baselines 75.08 67.24  80.81 75.08 67.24  80.81 75.08 67.24  80.81
Identifying with Question
w/o Evidence (baseline) 7232 6262  73.77 55.37 5248 7293 50.72 4857  57.20
with Retrieved Evidence
Gold (upper bound) 85.96* 74.10* n/a 80.53* 74.75% n/a 7240 58.36%* n/a
using the Question 76.46* 69.24* 83.91*  63.33*% 62.32*% 77.66* 5246 55.23* 59.04
using the Statement 76.21*% 68.24* 83.49*  62.98* 62.65* 76.49* 52.81 54.80* 58.84
Identifying with Statement
w/o Evidence (baseline) 71.05 59.93 71.90 56.84 50.45 70.22 51.42 48.13 58.95
with Retrieved Evidence
Gold (upper bound) 84.74*% 70.67* n/a 76.84% 67.40% n/a 71.98% 60.32%* n/a
using the Question 76.51*% 64.35% 79.40*  63.68* 57.85*% 72.20 54.93*% 55.58* 59.24
using the Statement 76.33*% 63.62  79.11*  61.75 58.14* 73.07 57.21*% 54.89*%  59.95
Gen. & Val. Atomic Assumptions
w/o Evidence (baseline) 7139 6952 82.88 60.53 6842 7473 57.02 5220  60.08
with Retrieved Evidence
Gold (upper bound) 83.81* 73.52% n/a 78.95*% 76.82* n/a 64.74*% 67.78* n/a
using the Question 73.86* 6991  86.02*  65.79* 70.05* 85.43*  60.70* 53.63  63.15*
using the Statement 72.60 6824  85.10*  65.79* 69.91 85.57%  60.58* 52.38  64.48*

Table 4: Results obtained with GPT-40, Llama 3 70B, and Mistral 7B (1) prompting using the question or statement
without and with evidence (middle block; without is equivalent to Prompting in Table 3) and (2) generating
and validating assumptions with and without evidence (bottom block). Including retrieved evidence is always
beneficial—most improvements are statistically significant (indicated with an asterisk; McNemar’s test (McNemar,
1947), p<0.05). Generating and validating atomic assumptions yields competitive results and, crucially, (1) succinct
interpretations for the identification task and (2) answer to the question pinpointing the false (and true) assumptions.

evidence: retrieved using the question or statement.
Table 4 reports results considering 10 sentences
as evidence; Appendix B provides more results
considering different amounts of evidence.

LLMs benefit from retrieved evidence to iden-
tify questions with false assumptions. This is
true across all datasets and LLMs—comparing
to baselines without retrieved evidence, most im-
provements are statistically significant (McNemar’s
test (McNemar, 1947), p<0.05). In fact, LLMs
incorporating retrieved evidence yield the state-
of-the-art results on two datasets ((QA)?: 76.51,
CREPE: 69.24). The previous work on FalseQA
trains an LLM (Tafjord and Clark, 2021, MACAW-
11B) and only yields a marginal improvement com-
pared to ours (86.00 vs. 83.91). However, we show
that such a supervised approach is not transferable
to other datasets (Appendix B, Table 8).

Prompting with the question is mostly better
than the statement. This is due to the fact that
transforming questions into statements loses infor-
mation about the underlying assumptions by the
author of the question. GPT-40 outperforms the ol
model and other small size models. Bold indicates
the best results for each model.

4.3 Results Generating and Validating Atomic
Assumptions

Our approach to generate and validate atomic as-
sumptions is interpretable. In addition, it outper-
forms the best non-interpretable approach (i.e.,
identifying with question and retrieved evidence)
in most cases. It yields state-of-the-art results on
all three datasets, some even without retrieved ev-
idence (CREPE: 69.52). This demonstrates that
models reduce hallucinations when exposed to im-
plicit false atomic assumptions in the question. Im-
portantly, Llama 3 70B gains significantly more
improvements and yields comparable results to
GPT-40 on two datasets (CREPE and FalseQA),
showing that this approach is more beneficial for
a smaller model. Incorporating evidence is always
beneficial but with a smaller margin. The trend is
consistent across all models.

Generating Atomic Assumptions with Smaller
LLMs We have demonstrated that generating
(with GPT-40) and validating (with GPT-40, Llama
3 70B, and Mistral 7B) atomic assumptions yields
state-of-the-art results. However, they rely on GPT-
40 to generate atomic assumptions.
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Error Type Dataset Example FP (%) FN (%)
Irrelevant Evidence All ggg;r?ci?ilntgzgr? Cl’lroiunsetzhii zr?uesvee?nt held by landlords or [. .. 2 2
Relevant Evidence
Wrong Label C,F Name two outdoor activities that can play indoors? 7 15
Ambiguous Q,C  When did the Beatles get married? 5
Commonsense F How does a tenant rent the house to the owner? 4 12
Domain Knowledge Q  What episode does Aiden come back in Just Like That? 10 10
All Other All  When does Korea get a new president? 50 35

Table 5: The most common error types made by our best approach (Table 4) in (QA)? (Q), CREPE (C), and FalseQA
(F). False Positive (FP) indicate the percentages of instances not having false assumptions but predicted as having
false assumptions. False Negative (FN) indicate the opposite.

(QA)? CREPE FalseQA

(Acc) FD) (Acc)
Gen. & Val. Atomic Assumptions with Llama 3 70B
w/o Evidence (baseline) 64.25  65.52 71.24
with Retrieved Evidence
Gold (upper bound) 76.01  72.71 n/a
using the Question 66.97 68.91 79.10
using the Statement 64.71  68.42 79.51

Gen. & Val. Atomic Assumptions with Mistral 7B

w/o Evidence (baseline) 51.42  32.02 54.03
with Retrieved Evidence
Gold (upper bound) 61.58 3296 n/a
using the Question 52.61 31.76 57.80
using the Statement 5246 3192 55.41

Table 6: Experimental results generating and validating
atomic assumptions using Llama 3 70B and Mistral 7B.
Llama obtains comparable results to generating atomic
assumptions with GPT-4o (Table 4).

We investigate whether smaller models, Llama 3
70B and Mistral 7B, can both generate and validate
atomic assumptions. The generated atomic assump-
tions are manually verified, with detailed results in
Appendix A.6. While Llama 3 70B generates fewer
atomic assumptions than GPT-40 (averaging 3.4
per question), Mistral 7B performs worse still (3.2
per question), reflecting its limited ability. Table 6
shows validation results using these smaller models.
Despite generating lower-quality atomic assump-
tions, Llama 3 70B achieves competitive validation
performance compared to Table 4, demonstrating
that less perfect atomic assumptions help identify
questions with false assumptions. However, Mis-
tral 7B shows significant performance degradation
in the end-to-end pipeline, indicating that substan-
tially smaller models struggle with both generation
and validation tasks.

4.4 Computational Cost Analysis

While our approach requires additional computa-
tional overhead for evidence retrieval and atomic
assumption generation/validation, it remains more
cost-effective than alternative methods such as
prompting the ol model. We measure computa-
tional costs using inference tokens (input and out-
put), with results averaged across all datasets.

Evidence retrieval incurs a one-time cost that
depends on the retrieval system. Our T5-based re-
triever (Appendix A.4) requires minimal resources.
On the other hand, 4-shot prompting without ev-
idence consumes 151 inference tokens per ques-
tion, while incorporating top-10 evidence adds 304
tokens per question. In contrast, the ol model re-
quires 568 additional tokens per question due to
its extensive chain-of-thought reasoning. More-
over, ol inference is 5 times more expensive than
GPT-40 and has significantly longer query times.

Generating and validating atomic assumptions
require 51 additional tokens each (102 total) and 4.7
extra queries per question. Despite this overhead,
our approach delivers superior performance with
interpretable outputs while maintaining lower costs
than competing methods.

4.5 Error Analysis

We define a False Positive (FP) as a question
only having valid assumptions but predicted as
having false assumptions. Similarly, we define
a False Negative (FN) as a question having false
assumptions but predicted as only having valid as-
sumptions. From the errors made by our best ap-
proach (Table 4, question and evidence retrieved
with statement), we observe that (QA)? has a simi-
lar rate of FP (52.5%) and FN (47.5%) but CREPE
has more FP (61.1%) than FN (38.9%), consistent
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with their label distributions (Table 1). Surprisingly,
FalseQA results in significantly more FP (87.5%)
than FN (12.5%) despite having a balanced distri-
bution. We hypothesize this is due to the fact that
FalseQA revises questions with false assumptions
(e.g., What is the length of the air?) to create valid
assumptions (e.g., What is the length of the arm?),
resulting in unnatural questions.

We also conduct an error analysis to identify the
most common error types by the best model. We
analyze 50 FP and 50 FN errors from each bench-
mark (300 total). Table 5 presents the error types.
First, 24% of errors are due to failing to retrieve
relevant evidence. For example, the evidence re-
trieved for “How to open the door in the house?” in-
cludes the keyword “open house” but it is irrelevant
(opening a door vs. real estate). Wrong annotation
labels account for 7% FP and 15% FN in CREPE
and FalseQA. This issue has also been reported
by Yu et al. (2023b). (QA)? and CREPE include
ambiguous questions that do not necessarily have
false assumptions since they expect multiple valid
answers. 8% of questions from FalseQA require
simple commonsense knowledge to identify false
assumptions, however, the model fails to do so even
with the help of retrieved evidence. Finally, 10%
errors in (QA)? require domain knowledge (e.g.,
understanding TV show plots).

5 Validating Atomic Assumptions
Provides Interpretations

Are LLMs Capable of Generating Interpreta-
tions? Before presenting our approach that vali-
dates atomic assumptions, we investigate if LLMs
have the ability to directly generate an interpreta-
tion for a question with false assumptions. Specif-
ically, we prompt two LLMs, GPT-40 and Llama
3 70B, to generate interpretations. We do not in-
clude smaller models as they have already demon-
strated limited ability in previous tasks. We ran-
domly choose 100 questions with false assumptions
per benchmark that are successfully identified by
our approach (GPT-40 incorporating evidence re-
trieved with question, Table 4). Note that we also
provide in the prompt that the question has false
assumptions. The generated interpretation is eval-
vated manually by checking whether it pinpoints
the false assumptions. Appendix C.1 details the
evaluation process. GPT-4o0 yields an accuracy
of 0.86, 0.67, and 0.93 on (QA)2, CREPE, and
FalseQA, respectively, and Llama 3 70B yields

an accuracy of 0.81, 0.66, and 0.84, respectively,
showing that LL.Ms still hallucinate when generat-
ing interpretations even with knowing the question
has false assumptions. Besides performance, this
approach requires more computational costs than
our approach, with an average of 121 tokens per
question. Appendix C.2 reports the prompts and
exemplifies errors by the two models.

We now evaluate our approach. Does validat-
ing atomic assumptions provide interpretations?
We reuse the same questions from the previous
study and manually annotate the interpretation of
the atomic assumptions: which atomic assumptions
are true and false. Appendix C.3 reports details in-
cluding inter-annotator agreement.

The benchmark contains 1,006 atomic assump-
tions, of which 534 are false and 472 are true. The
results show strong performance with F1 scores
of 0.86 for (QA)?, 0.88 for CREPE, and 0.87 for
FalseQA, demonstrating that it successfully pro-
vides interpretations by pinpointing specific false
assumptions. Appendix C.4 reports detailed results
including Precision and Recall for each label.

6 Conclusions

Identifying and answering questions with false as-
sumptions is a challenging task for state-of-the-art
LLMs. The main issue is that LLMs are overcon-
fident and hallucinate answers to these kinds of
questions. Additionally, fact verification cannot
solve this problem as false assumptions often do
not challenge factual information.

We introduce an approach that leverages ev-
idence retrieval to mitigate hallucinations. Ex-
perimental results show it is beneficial for this
task. Crucially, the benchmarks span several do-
mains (Reddit, search queries, etc.) and proce-
dures to introduce false assumptions (genuine user-
generated, crowdsourcing, etc.). Validating atomic
assumptions derived from a question yields state-
of-the-art results on all three datasets. Most im-
portantly, it provides human-readable interpreta-
tions of the false assumptions beyond simply deter-
mining whether a question has a false assumption.
These interpretations pinpoint the specific assump-
tion that is false and the many assumptions that are
true in a question.

Limitations

Our experimental methodology relies primarily on
LLM prompting, which inherently limits repro-
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ducibility due to the nature of large language mod-
els. To mitigate this concern, we provide com-
prehensive implementation details, including exact
prompts and experimental settings. Furthermore,
we validate our findings across five LLMs of vary-
ing sizes, encompassing both proprietary and open-
weight models, to ensure the generalizability of our
results.

The performance of our approach depends on the
underlying retrieval system, which could be viewed
as a limitation. However, we consider this modular-
ity advantageous, as the retrieval component can be
seamlessly replaced or upgraded as better systems
become available.

Our methodology incurs additional computa-
tional overhead compared to baseline approaches.
Specifically, retrieving evidence requires approx-
imately 2 times more tokens than question-only
identification, while generating and validating
atomic assumptions demands 33% more tokens and
3.7 times more queries. Despite this overhead, our
approach remains substantially more efficient than
alternative methods such as prompting ol models
or direct interpretation generation, which require
significantly higher computational costs.
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A Additional Details to Identify
Questions with False Assumptions

A.1 Prompts to Transform Questions into
Statements

Figure 3 reports the prompts to transform questions
into statements.

A.2 Prompts to Identify False Assumptions

Figure 4 reports the complete version of our
prompts to identify false assumptions in questions.
The few-shot examples are sampled from the train-
ing splits.

A.3 Prompts to Generate Evidence

Figure 5 reports the prompts to generate relevant
knowledge based on the question. We reuse the
same prompts provided by Liu et al. (2022) with
minimal modifications.

A.4 Evidence Retrieval Details

Experimental Setting To retrieve relevant doc-
ument, we query the question (or the statement)

You will be provided with a question. Your
task is to transform the question into a
statement and keep its original meaning.

Question:
collisions?
Statement:
collisions.

How do hashing functions avoid

Hashing functions can avoid

Question: Who is the only Indian to win the
Oscar for music?

Statement: Only one Indian has won the Oscar
for music.

Question: Why have our bodies arrived at
98.6F as the “normal” body temperature?
Statement: 98.6F is the “normal”
temperature.

body

Question: What kind of meat can be made into
soybean milk?
Statement: Soybean milk can be made from meat.

Question: {question}
Statement: {3}

Figure 3: 4-shot prompts to transform questions into
statements.

using Google Search Engine API,? and limit the
results to Wikipedia. The retrieved Wikipedia doc-
uments are further parsed to only retain the main
content. We use the INSTRUCTOR model (Su
et al., 2023) to rank the sentences based on the sim-
ilarity to the question (or statement). The input to
the model include: (1) sentences from Wikipedia
pages retrieved from the last step (Section 3.2),
and (2) the question or statement we want to re-
trieve with. Figure 6 reports the instructions for
the INSTRUCTOR model to rank the candidate
sentences, based on the similarity to the question
or statement.

A.5 Prompts for Identifying False
Assumptions with Retrieved Evidence

Figure 7 reports the 4-shot prompts to identify false
assumptions with retrieved evidence. Note that due
to resource limitations, we are only able to add one
evidence per example for the 4-shot examples.

A.6 Generating and Validating Atomic
Assumptions

GPT-40 Model Figure 8 reports the prompts
used to extract atomic assumptions from the ques-
tions. Note that we reuse the prompts in Figure 4

Shttps://developers.google.com/custom-search
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You are a helpful assistant that helps
identify false assumptions. Output Yes if the
{question | statement} has false assumptions;
otherwise, output No.

Input:
oxygen?
oxygen.}
Question: Does the input contain any false
assumptions?

Answer: Yes

{How do betta fish survive without
Betta fish can survive without

Input: {Who is the Duke of Oxford? | There
exists the Duke of Oxford.}

Question: Does the input contain any false
assumptions?

Answer: No

Input: {Where does the Flint River in Georgia
start and end? | The Flint River in Georgia
start and end in someplace.}

Question: Does the input contain any false
assumptions?

Answer: No

Input: {Who is the movie Jersey based on? |

The movie Jersey is based on someone.}
Question: Does the input contain any false
assumptions?

Answer: Yes

Input: {question | statement}

Question: Does the input contain any false
assumptions?

Answer: {3}

Figure 4: The complete version of prompts to identify
false assumptions in questions (or statements).

to identify false assumptions in atomic assump-
tions. Similar to the transformation of questions
into statements, we evaluate the generated atomic
assumptions by manually checking 200 random
questions from each benchmark (600 total). The
precision of generated atomic assumptions is near
perfect for all three datasets ((QA)?: 0.98, CREPE:
0.95, and FalseQA: 0.95). We generate 2,410,
14,701 and 6,140 atomic assumptions for (QA)?
(570 questions), CREPE (3,004 questions), and
FalseQA (1,374 questions) respectively, resulting
in 4.7 atomic assumptions per question.

Llama and Mistral Model We use the same
prompt as in Figure 8 to generate atomic assump-
tions with Llama 3 70B and Mistral 7B. Llama
3 70B shows worse yet competitive ability com-
pared to GPT-40 ((QA)?: 0.90, CREPE: 0.87, and
FalseQA: 0.90), and Mistral 7B yields worse re-
sults (0.82, 0.83, and 0.75 respectively). They yield
on average fewer atomic assumptions per question

Generate some knowledge about the input.

Input: Greece is larger than Mexico.
Knowledge: Greece is approximately 131,957 sq
km, while Mexico is approximately 1,964,375
sq km, making Mexico 1,389% larger than
Greece.

Input: A fish is capable of thinking.

Knowledge: Fish are more intelligent than
they appear. In many areas, such as memory,
their cognitive powers match or exceed those

of ‘higher’ vertebrates including non-human
primates.
Input: A common effect of smoking lots of

cigarettes in one’s lifetime is a higher than
normal chance of getting lung cancer.
Knowledge: Those who consistently averaged
less than one cigarette per day over their
lifetime had nine times the risk of dying from
lung cancer than never smokers. Among people
who smoked between one and 10 cigarettes per
day, the risk of dying from lung cancer was
nearly 12 times higher than that of never
smokers.

Input: A rock is the same size as a pebble.
Knowledge: A pebble is a clast of rock with a
particle size of 4 to 64 millimeters based on
the Udden-Wentworth scale of sedimentology.
Pebbles are generally considered larger than
granules (2 to 4 millimeters diameter) and
smaller than cobbles (64 to 256 millimeters
diameter).

Input: {question}
Knowledge: {3}

Figure 5: 4-shot prompts to generate relevant knowledge
based on the question.

(Llama 3: 3.4, and Mistral: 3.2).

A.7 Experimental Settings

Fact Verification We use MiniCheck (Tang et al.,
2024), the state-of-the-art fact verification sys-
tem according to LLM-AggreFact Leaderboard.*
Specifically, we access the model (Llama-3.1-
Bespoke-MiniCheck-7B) via the API hosted by
Bespoke Labs.> The returned support_prob score
is mapped to our labels (valid or false assumption)
using a threshold of @. 5.

Supervised Approach We train an off-the-shelf
RoBERTa-large model (Liu et al., 2019) (355M
parameters) from Hugging Face (Wolf et al.,
2020). The experiments are conducted on a sin-

4https://llm—aggrefact.github.io/
Shttps://playground.bespokelabs.ai/
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Represent the {question | statement} for
retrieving supporting evidence: {question}
Represent the evidence for retrieval:
{passages from Wikipedia}

Figure 6: Instructions to identify questions or state-
ments.

RoBERTa-large model

Maximum Epochs 20
Batch Size 32
Optimizer AdamW
Learning Rate le-5
Weight Decay 0.01

Table 7: Hyperparameters used in our supervised
approach with RoBERTa-large model. We adopt
AdamW (Loshchilov and Hutter, 2019) as the optimizer.

gle NVIDIA Tesla V100 (32GB) GPU. A single
experiment takes approximately 1 hour for training,
but the time may vary depending on the training
dataset size. Table 7 reports the hyperparameters
used in the experiments.

Prompting LLMs We prompt GPT-40 (2024-08-
07) for two experiments: (1) transforming ques-
tions into statements (Section 3.1) and (2) gener-
ating atomic assumptions from the questions (Sec-
tion 3.3). Another five LLMs (GPT-40 (2024-08-
07), Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct,
Llama-3-8B-Instruct, and Llama-3-70B-Instruct)
are used for: (1) identifying questions with false
assumptions with and without evidence, and (2)
validating atomic assumptions (both in Table 4).
GPT-40 (2024-08-07) is further used to identi-
fying false assumptions with generated evidence
(Table 3). We access GPT-40 API via Microsoft
Azure AL® We host the other four LLMs, Mistral-
7B-Instruct-v0.3, Qwen2-7B-Instruct, Llama-3-8B-
Instruct, and Llama-3-70B-Instruct via deepinfra.’
We set the temperature as 0.1, top_p as 0.1, and
frequency_penalty as O for all experiments. The
maximum generation length is set to 4 or 512 to-
kens depending on the tasks (i.e., identifying or
answering questions with false assumptions).

6https://azure.microsoft.com/solutions/ai
"https://deepinfra.com

You are a helpful assistant
identify false assumptions

that helps
in {question

statement?}. Use the information from the
evidence to help you identify the false
assumption. Output Yes if the {question |
statement} has false assumptions; otherwise,
output No.

Input: Why can’t we vote online? It seems

ridiculous we have to drive to do such a
simple and important task.

Evidence: Many countries have looked into
Internet voting as a possible solution for
low voter turnout. Some countries like France
and Switzerland use Internet voting.
Question: Considering the external knowledge
from the Evidence, does the input contain any
false assumptions?

Answer: Yes

Input: Why are trees susceptible to lightning
strikes?

Evidence: Direct strike casualties could be
much higher than reported numbers. Trees
are frequent conductors of lightning to the
ground. Question: Considering the external
knowledge from the Evidence, does the input
contain any false assumptions?

Answer: No

Input: Why does a bad throat often turn to
common cold?

Evidence: The distinction between viral

upper respiratory tract infections is loosely
based on the location of symptoms with the
common cold affecting primarily the nose,
pharyngitis (the throat), and bronchitis (the
lungs).

Question: Considering the external knowledge
from the Evidence, does the input contain any
false assumptions?

Answer: Yes

Input: Why does clear plastic turn opaque and
white when bent?

Evidence: Stress-whitening is where a white
line appears along a bend or curve when a
material is stressed by bending or punching
operations.

Question: Considering the external knowledge
from the Evidence, does the input contain any
false assumptions?

Answer: Yes

Input: {question | statement }

Evidence: {}

Question: Considering the external knowledge
from the Evidence, does the input contain any
false assumptions?

Answer: {}

Figure 7: 4-shot prompts to identify false assumptions
with retrieved evidence.
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You are a helpful assistant. Help me
understand the question by extracting both
explicit and implicit atomic assumptions. You
must notice that considering the intention of
the question asker is helpful for extracting
a hidden assumption. Output every atomic
assumption in a complete sentence.

Question: When did the great depression begin
before world war 1?

Let us think step by
assumptions are:

(1) There was a period called the Great
Depression.

(2) There was a conflict called World War 1.
(3) The Great Depression began before World
War 1.

step,the atomic

Question: How do betta fish survive without
oxygen?
Let us think step by step,the atomic

assumptions are:
(1) There is a type of fish called betta fish.
(2) Fish can survive without oxygen.

Question: Why is card counting against the
rules at casinos?
Let us think step by step,the atomic

assumptions are:
(1) Card counting
casinos.

(2) Casinos can have rules against certain
behaviors.

(3) Card counting
places.

is a strategy used at

is not allowed in some

Question: How does the chest cavity close up
after heart surgery is performed?.
Let us think step by step,the
assumptions are:

(1) The chest cavity can be opened and then
closed up.

(2) Heart surgery requires opening of the
chest cavity.

(3) The close of the chest cavity happens
after heart surgery.

atomic

Question: {question}
Let us think step by
assumptions are:

step,the atomic

Figure 8: 4-shot Chain-of-Thought prompts to extract
atomic assumptions from the questions.

(QA)?> CREPE FalseQA

(Acc) (F1) (Acc)

Best Prev. Work 0.64 0.67 0.86
RoBERTa trained with

CREPE 0.50 0.60 0.50

FalseQA 0.56 0.55 0.71

CREPE + FalseQA 0.49 0.62 0.52

+ BoolQ 0.52 0.52 0.72

+ FEVER 0.55 0.58 0.71

All 0.52 0.59 0.73

Table 8: The complete results to identify false as-
sumptions from our supervised baseline. We train a
RoBERTa-large model with several related datasets in-
cluding BoolQ and FEVER.

B Additional Results Identifying
Questions with False Assumptions

For our supervised baseline experiments, we only
report the best results on each corpus in Table 3.
The complete results are reported in Table 8.

Since Mistral 7B yields the best performance
among similar size LLMs (Llama 3 8B and Qwen2
7B), we only report the results with Mistral 7B
in Table 4 in the main paper. Table 9 contains
extra results with Llama 3 8B and Qwen2 7B. The
conclusion is the same across all models—it is
beneficial to incorporate extra evidence.

Our evidence retrieval experiments take into ac-
count the 10 most relevant sentences per question.
We take the number of sentences in the evidence
as a hyperparameter to be tuned. Due to space lim-
itations, Table 4 only reports the results with top
10 sentences. Table 10 reports additional results
taking into account other numbers of sentences as
evidence: top 1, 5, and 10.

C Additional Details on Generating
Interpretations via Validating Atomic
Assumptions

C.1 Evaluating Generated Interpretations

We recruit two graduate students to evaluate if
the generated interpretation correctly pinpoints the
false assumptions in the questions. The gold an-
swer from the original dataset is provided to avoid
any misunderstanding of the question. The gener-
ated interpretation is evaluated as False if it (1) fails
to pinpoint the false assumptions, or (2) includes
any additional false facts. Accuracy is used to
calculate the evaluation results. The overall inter-
annotator agreements (Cohen’s k) between two
annotators are, (QA)?: 0.65, CREPE: 0.68, and
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(QA)?  CREPE FalseQA (QA)?  CREPE FalseQA
Acc) (F1) (Acc) (Acc) (F1) (Acc)
Best from Baselines 0.75 0.67 0.81 0.75 0.67 0.81
Identifying with Question
w/o Evidence (baseline) 0.48 0.45 0.52 0.53 0.45 0.50
with Retrieved Evidence
Gold (upper bound) 0.61 0.57 n/a 0.54 0.48 n/a
using the Question 0.52 0.55 0.56 0.50 0.56 0.51
using the Statement 0.53 0.55 0.57 0.51 0.56 0.51
Identifying with Statement
w/o Evidence (baseline) 0.48 0.49 0.56 0.52 0.46 0.53
with Retrieved Evidence
Gold (upper bound) 0.63 0.56 n/a 0.62 0.52 n/a
using the Question 0.52 0.54 0.55 0.51 0.56 0.51
using the Statement 0.54 0.52 0.55 0.51 0.55 0.51
Gen. & Val. Atomic Assumptions
w/o Evidence 0.51 0.34 0.63 0.49 0.46 0.55
with Retrieved Evidence
Gold (upper bound) 0.68 0.55 n/a 0.66 0.60 n/a
using the Question 0.59 0.49 0.66 0.54 0.53 0.61
using the Statement 0.61 0.47 0.63 0.51 0.51 0.61

(a) Llama 3 8B

(b) Qwen2 7B

Table 9: Experimental results to identify false assumptions with Llama 3 8B and Qwen2 7B. For experiments

incorporating evidence, we choose the top 10 evidence.

FalseQA: 0.73, showing substantial agreement.

C.2 Details and Error Analysis of Generated
Interpretations

Prompts Used to Generate Interpretations Fig-
ure 9 provides the 4-shot prompts used to generate
the interpretation to pinpoint the false assumptions
in the question.

Error Interpretations Generated by LLMs Ta-
ble 11 lists three error examples that made by the
two LLMs (GPT-40 and Llama 3 70B) we evalu-
ated. The errors are mainly two types: (1) fail to
pinpoint the false assumption, or (2) include addi-
tional false facts in the claim.

C.3 Benchmark Annotation Details

We create a benchmark to evaluate whether val-
idating atomic assumptions provides interpreta-
tions. The benchmark annotation process evaluates
atomic assumptions independently of the original
questions. Annotators are asked to verify whether
the atomic assumptions are false using any avail-
able methods (e.g., online search). We discard
questions whose atomic assumptions cannot be as-
signed a valid label. The annotations were con-
ducted in-house by two graduate students. The
inter-annotator agreements (Cohen’s k) for (QA)?,
CREPE, and FalseQA are 0.84, 0.67, and 0.81,

You will be provided with a question that
contains at least 1 false assumption. Your
task is to help me understand what are the
false assumptions. Write an explanation to
pinpoint the false assumptions.

Question: How do betta fish survive without
oxygen?

Evidence:

Interpretation: The question has a false

assumption that betta fish can survive without
oxygen. In fact, they need oxygen to survive.

Question: Why can’t we vote online?

Evidence:

Interpretation: The question has a false
assumption that people cannot vote online.
However, in some countries, it is allowed to
vote online.

Question:
Evidence:
Interpretation:

Question:
Evidence:
Interpretation:

Question: {question}
Evidence: {evidence}
Interpretation: {}

Figure 9: 4-shot prompts to directly generate the inter-
pretation, after identified the question has false assump-
tions.
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(QA)?> CREPE FalseQA
(Acc) (F1) (Acc)

Identifying with Question
Retrieved w/ Question

top 1 sentence 0.70 0.56 0.66

top 5 sentence 0.72 0.67 0.75

top 10 sentence 0.76 0.69 0.84
Retrieved w/ Statement

top 1 sentence 0.70 0.57 0.67

top 5 sentence 0.73 0.64 0.72

top 10 sentence 0.76 0.68 0.83

Identifying with Statement
Retrieved w/ Question

top 1 sentence 0.74 0.51 0.74

top 5 sentence 0.74 0.59 0.76

top 10 sentence 0.77 0.64 0.79
Retrieved w/ Statement

top 1 sentence 0.74 0.52 0.73

top 5 sentence 0.75 0.54 0.75

top 10 sentence 0.76 0.63 0.79

Validating Atomic Assumptions
retrieved w/ Question

top 1 sentence 0.68 0.48 0.65

top 5 sentence 0.72 0.60 0.77

top 10 sentence 0.74 0.70 0.86
retrieved w/ Statement

top 1 sentence 0.69 0.49 0.64

top 5 sentence 0.73 0.61 0.79

top 10 sentence 0.73 0.68 0.85

Table 10: Experimental results with GPT-4o to identify
false assumptions with different amounts of retrieved
evidence. We take the number of sentences in the ev-
idence as a tuned parameter (1, 5, and 10). Overall,
including more sentences yields better results.

respectively, indicating substantial to perfect agree-
ment (Artstein and Poesio, 2008).

Annotator Demographics Two graduate stu-
dents, including a female and a male, volunteered
to conduct the annotations. Both of them are Asian
and have research experience in Computer Science.

C.4 Additional Results to Validate the Atomic
Assumptions

Table 12 reports additional results including Preci-
sion and Recall for each label.
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Question: Can our eyes only see up to 3D, or are 4D+ objects just unable to be seen/created?

False Assumption: Human eyes can see up to 3D.

Correction: Human eyes can only see 2D images.

Generated Interpretation: The question has a false assumption that 4D+ objects are unable to be seen or created because
our eyes can only see up to 3D. In reality, our eyes and brain are adapted to perceive the world in
three dimensions (length, width, and height). [...]

Question: When glaciers melt during the warmer months how much gets frozen back during the cooler
months?

False Assumption: Glaciers freeze the ice that has melted off previously to regain size.

Correction: Glaciers do not refreeze ice, glaciers accumulate snow throughout the year, which allows them

to gain size.

Generated Interpretation: The question has a false assumption that all the ice lost from glaciers during the warmer months
is fully regained during the cooler months. In reality, due to climate change, many glaciers are
losing more ice in the warmer months than they regain in the cooler months, leading to a net loss

over time.

Question: When did horses stop being used for glue?

False Assumption: Horses have stopped being used for glue

Correction: Animals including horses are still used for glue, although animal glue has been mostly replaced
by other adhesives and plastics. Animal glue is still manufactured and used for purposes such as
restoration.

Generated Interpretation: The question has a false assumption that horses were ever used to make glue. In reality, horses
have never been used to make glue. The common misconception likely stems from the fact that
horse hooves and bones were used to make a type of glue called “hide glue” in the past, but not
the horses themselves.

Table 11: Three error examples of generated interpretations made by LLMs. We also list the correct false assumption
and its correction for comparison.

QA)°
Valid False All
P R P R P R
Validating Atomic Assumptions 0.92  0.81 0.81 9.92 0.87 0.86
CREPE
Valid False All
P R P R P R

Validating Atomic Assumptions 0.87  0.88 0.88  0.88 0.88 0.88

FalseQA
Valid False All
P R P R P R

Validating Atomic Assumptions 0.93  0.72 0.84 0.96 0.88 0.87

Table 12: Results to validate atomic assumptions. We report metrics including Precision (P) and Recall (R) for each
label.
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