PLLuM-Align: Polish Preference Dataset for Large Language Model Alignment
Karolina Seweryn, Anna Kołos, Agnieszka Karlińska, Katarzyna Lorenc, Katarzyna Dziewulska, Maciej Chrabaszcz, Aleksandra Krasnodebska, Paula Betscher, Zofia Cieślińska, Katarzyna Kowol, Julia Moska, Dawid Motyka, Paweł Walkowiak, Bartosz Żuk, Arkadiusz Janz
Abstract
Alignment is the critical process of minimizing harmful outputs by teaching large language models (LLMs) to prefer safe, helpful and appropriate responses. While the majority of alignment research and datasets remain overwhelmingly English-centric, ensuring safety across diverse linguistic and cultural contexts requires localized resources. In this paper, we introduce the first Polish preference dataset PLLuM-Align, created entirely through human annotation to reflect Polish language and cultural nuances. The dataset includes response rating, ranking, and multi-turn dialog data. Designed to reflect the linguistic subtleties and cultural norms of Polish, this resource lays the groundwork for more aligned Polish LLMs and contributes to the broader goal of multilingual alignment in underrepresented languages.- Anthology ID:
- 2025.emnlp-main.1219
- Volume:
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 23890–23919
- Language:
- URL:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.1219/
- DOI:
- Cite (ACL):
- Karolina Seweryn, Anna Kołos, Agnieszka Karlińska, Katarzyna Lorenc, Katarzyna Dziewulska, Maciej Chrabaszcz, Aleksandra Krasnodebska, Paula Betscher, Zofia Cieślińska, Katarzyna Kowol, Julia Moska, Dawid Motyka, Paweł Walkowiak, Bartosz Żuk, and Arkadiusz Janz. 2025. PLLuM-Align: Polish Preference Dataset for Large Language Model Alignment. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 23890–23919, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- PLLuM-Align: Polish Preference Dataset for Large Language Model Alignment (Seweryn et al., EMNLP 2025)
- PDF:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.1219.pdf