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Abstract

Large Language Models (LLMs) have shown
strong capabilities in document re-ranking, a
key component in modern Information Re-
trieval (IR) systems. However, existing LLM-
based approaches face notable limitations, in-
cluding ranking uncertainty, unstable top-k
recovery, and high token cost due to token-
intensive prompting. To effectively address
these limitations, we propose REALM, an
uncertainty-aware re-ranking framework that
models LLM-derived relevance as Gaussian
distributions and refines them through recur-
sive Bayesian updates. By explicitly cap-
turing uncertainty and minimizing redundant
queries, REALM achieves better rankings more
efficiently. Experimental results demonstrate
that our REALM surpasses state-of-the-art re-
rankers while significantly reducing token us-
age and latency, improving NDCG@10 by
0.7 − 11.9 and simultaneously reducing the
number of LLM inferences by 23.4 − 84.4%,
promoting it as the next-generation re-ranker
for modern IR systems.

1 Introduction

Document re-ranking is a key component in mod-
ern IR systems (Zhu et al., 2024). Given a user
query, retrieval systems typically begin with a fast
but coarse retrieval stage that returns a broad set
of potentially relevant documents. However, these
initial results are often noisy or only loosely re-
lated to the query. Re-ranking addresses this is-
sue by applying a more accurate, context-aware
scoring model to refine the order of the candi-
dates and place the most relevant documents at
the top (Nogueira and Cho, 2020). For example,
in academic paper searching, an initial retrieval
step may return a large number of documents that
match surface-level keywords, while missing more
in-depth relevance analysis. Without re-ranking,

*REALM is integrated in: https://ipapers.ai/.

the most important references could be placed at
the bottom, potentially leading researchers to miss
those key published findings in their research jour-
ney. In a nutshell, re-ranking is crucial to ensure
that high-quality, contextually appropriate docu-
ments are selected as input for subsequent applica-
tions (Lewis et al., 2020).

LLMs are redefining document re-ranking by en-
abling deep semantic and contextual understanding
that traditional methods fundamentally lack. Tra-
ditional re-rankers, such as those based on BM25
scores (Robertson and Zaragoza, 2009) or learning-
to-rank models like LambdaMART (Burges, 2010),
rely on either simple sparse feature-term overlap,
document frequency, or hand-crafted heuristics,
which often fail in capturing nuanced relevance, es-
pecially in complex or fine-grained queries. In con-
trast, LLM-based re-rankers treat the query and can-
didate documents as joint inputs, allowing for more
in-depth relevance estimation grounded in deep
semantic and contextual comprehension. Recent
studies have shown that LLMs, when applied as
cross-encoders or guided with task-specific prompt-
ing, consistently outperform classical re-rankers
across benchmarks (Sun et al., 2023). These ad-
vancements suggest that LLMs are not just an incre-
mental improvement but a paradigm shift toward
unifying retrieval and comprehension within a sin-
gle, adaptable framework.

However, LLM-based document re-ranking
faces a three-pronged challenge: (i) ranking un-
certainty, stemming from the inherent stochastic
nature of LLMs (see Section 2.2); (ii) unstable
top-k recovery, where minor input variations can
substantially disrupt document rankings (see Fig-
ure 2); and (iii) high token costs, due to the need
of complex prompting strategy (see Table 1).

Recent research endeavors have fallen short in
effectively addressing all three challenges: Point-
wise methods (Nogueira et al., 2020) are efficient
and parallelizable, as they assess each document in-
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dependently. Some variants (Zhuang et al., 2023b)
further leverage generation likelihood as a rele-
vance score. However, pointwise approaches fail
to model interactions among candidates, making
them less effective at resolving uncertainty or pro-
ducing globally consistent top-k rankings. List-
wise methods (Sun et al., 2023) enable joint eval-
uation of multiple candidates in a single query,
which helps mitigate ranking inconsistency. Ap-
proaches like TourRank (Chen et al., 2025) adopt
tournament-style aggregation to extend listwise
scoring. Despite these benefits, listwise meth-
ods still suffer from context length constraints and
positional bias (Liu et al., 2024b), especially for
long candidate sets. Pairwise methods (Qin et al.,
2024) improve local comparison quality by directly
modeling relative preferences between document
pairs. Advanced systems like PRP-Graph (Luo
et al., 2024) further exploit graph structures to ag-
gregate pairwise signals. Nevertheless, the repeated
comparisons lead to high token usage and substan-
tial inference latency. Setwise methods (Zhuang
et al., 2024; Podolak et al., 2025) improve effi-
ciency by evaluating small subsets at a time, but
discard fine-grained preference information, such
as full relevance logitsthereby under-utilizing the
models capacity.

To effectively address the three-pronged chal-
lenge, this paper proposes REALM, an uncertainty-
aware re-ranking framework that combines rele-
vance estimation with a recursive refinement pro-
cess. REALM explicitly models uncertainty, im-
proves top-k stability, and reduces inference costs.
Our contributions are as follows:

• Uncertainty-Aware Relevance Modeling.
We model each documents relevance as a
Gaussian distribution, capturing both the esti-
mated score and uncertainty to support robust
re-ranking under the inherent stochastic nature
of contemporary LLMs.

• Recursive Refinement Framework. We in-
troduce a recursive framework that compares
pivot documents with subsets and refines rele-
vance distributions through Bayesian updates,
enhancing ranking stability.

• Pivot-Centric Optimizations. We optimize
efficiency by selecting high-confidence pivots,
aggregating updates via uncertainty-aware av-
eraging, and applying pivot adjustment to en-
sure effective workload reduction.

Experiments show that REALM outperforms
state-of-the-art re-ranking methods while substan-
tially reducing token usage and improving stability,
making it suitable for real-world retrieval systems.

2 Related Work & Preliminary

2.1 Related Work

Zero-shot document re-ranking with LLMs is typ-
ically grounded in four fundamental prompting
strategies: pointwise (Nogueira et al., 2020), pair-
wise (Qin et al., 2024), listwise (Sun et al., 2023),
and setwise (Zhuang et al., 2024). In this section,
we compare REALM with these papers.

Pointwise methods. Pointwise methods prompt
LLMs to assess the relevance of each document
independently with respect to a given query, typi-
cally by generating a relevance score or extracting
the score from the output logits (Nogueira et al.,
2020). Several variants exist. For example, Query
Generation (Zhuang et al., 2023b) estimates query-
document compatibility by computing the likeli-
hood of the query given a passage. While these
approaches are token efficient and scalable, they
struggle to capture comparative relevance across
candidates, which is well preserved in REALM.

Listwise methods. With the continued expan-
sion of LLM capacity and input window size, list-
wise ranking, where the model receives a group of
candidate documents and directly outputs their rela-
tive ordering, has become increasingly feasible. By
supporting joint reasoning over multiple candidates
within a single inference, this paradigm has moti-
vated a series of methods aimed at better leveraging
LLM capabilities for document re-ranking.

RankGPT (Sun et al., 2023) and LRL (Ma et al.,
2023) adopt a sliding-window listwise re-ranking
strategy, comparing a subset of candidates at each
step, retaining the most relevant ones, and forward-
ing the rest for subsequent comparisons. Tour-
Rank (Chen et al., 2025) draws inspiration from
sports tournaments, treating each subset as a group
match and aggregating results through a point-
based system. ListT5 (Yoon et al., 2024) follows
a similar tournament-style design, effectively im-
plementing an m-ary heap traversal over listwise
scoring primitives to recover the top-k results.

Despite their effectiveness, these methods face
inherent limitations. Current LLMs are still re-
stricted by finite context lengths and remain sensi-
tive to positional biases (Liu et al., 2024b), which
hinders their ability to process long candidate lists
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holistically and maintain consistency across multi-
ple comparisons. In contrast, REALM avoids full-
list comparisons by decomposing the ranking pro-
cess into a sequence of setwise updates. This ap-
proach enables consistent top-k selection without
suffering from context-length limitations or posi-
tional bias, while still leveraging the LLM’s capac-
ity to reason over small candidate sets.

Pairwise methods. Pairwise prompting (PRP)
(Qin et al., 2024) was introduced to overcome the
limitations of pointwise and listwise ranking by
prompting the model to compare two candidates
at a time and choose the more relevant one. To
extend this into a full ranking, the authors imple-
mented a multi-round bubble sort using overlap-
ping comparisons to extract the top-k candidates.
PRP-Graph (Luo et al., 2024) further generalizes
this idea by constructing a weighted comparison
graph and applying a PageRank-style aggregation
to derive a global ranking.

While pairwise prompting yields accurate com-
parisons, it incurs high token costs due to repeated
queries. In contrast, our method reduces the num-
ber of LLM calls by performing aggregation over
setwise comparison, achieving greater efficiency
without sacrificing ranking quality.

Setwise methods. Setwise prompting (Zhuang
et al., 2024) was introduced as a refined variant of
listwise prompting, leveraging model output log-
its to select the top-k documents within a group.
This strategy was extended by integrating it with
classic sorting algorithms such as bubble sort and
heap sort. Setwise Insertion (Podolak et al., 2025)
further advanced this line of work by incorporating
the initial document ranking as prior knowledge,
thereby improving ranking efficiency.

While drawing inspiration from setwise prompt-
ing, REALM preserves the full comparative infor-
mation encoded in logits and performs uncertainty-
aware updates through probabilistic aggregation,
enabling more robust relevance estimation.

Other directions in LLM for re-ranking.
(i) Training strategies for LLM-based re-rankers.
RankT5 (Zhuang et al., 2023a) adopts pairwise
and listwise training objectives for T5, while
ChainRank-DPO (Liu et al., 2024a) enhances
ranking consistency using CoT-style supervision
with DPO. Rank-R1 (Zhuang et al., 2025) intro-
duces reinforcement learning with limited supervi-
sion to promote reasoning over queries and docu-
ments. RankGPT (Sun et al., 2023) and RankVi-
cuna (Pradeep et al., 2023) distill ChatGPT/GPT-

3.5 into smaller models via pairwise and listwise
losses. ListT5 (Yoon et al., 2024) uses Fusion-
in-Decoder for listwise inference, and TSARan-
kLLM (Zhang et al., 2024) adopts a two-stage pre-
training and fine-tuning strategy.

(ii) Hybrid architectures. Hybrid methods re-
structure the inference process by combining rank-
ing components or decomposing tasks, e.g., Eco-
Rank (Rashid et al., 2024), RankFlow (Jin et al.,
2025a), and APEER (Jin et al., 2025b). In par-
allel, Permutation Self-Consistency (Tang et al.,
2024) aggregates multiple permutations to reduce
positional bias, and LLM-RankFusion (Zeng et al.,
2024) improves robustness via calibration and
fusion-based aggregation.

2.2 LLM Uncertainty & Bayesian Rating
System

LLM uncertainty. LLMs exhibit two forms of un-
certainty: aleatoric, which stems from inherent data
noise, and epistemic, which arises due to limited
training coverage (Kendall and Gal, 2017). While
aleatoric uncertainty is largely irreducible, epis-
temic uncertainty can be mitigated by introducing
additional informative signals during inference.

In this context, studies have shown that in
multiple-choice settings, LLM output logits are
often well-calibratedi.e., their relative magnitudes
reliably reflect the model’s confidence (Kadavath
et al., 2022; Si et al., 2023). This calibration
enables softmax-normalized logits to serve as
meaningful probability estimates, supporting down-
stream applications such as uncertainty estimation
and probabilistic relevance modeling.

Bayesian rating systems offer principled proba-
bilistic frameworks for estimating latent skill levels
or quality scores based on observed outcomes from
comparisons or matches. Grounded in Bayesian
inference, these systems iteratively update skill es-
timates by combining prior beliefs with new ev-
idence. Key advantages include explicit uncer-
tainty modeling, incremental update capabilities,
and robustness to noisy or incomplete data. Two
widely adopted instances are the Elo rating sys-
tem (ELO, 1978) and its more expressive successor,
TrueSkill (Herbrich et al., 2006), which extend the
rating process to handle more complex scenarios,
which we detail in the Appendix A.
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Figure 1: Workflow of our recursive relevance modeling framework for LLM-based document re-ranking.

3 Methodology

3.1 REALM Framework

Figure 1 illustrates the workflow of our relevance
modeling framework for LLM-based document re-
ranking. As an illustrative example, the task is to
retrieve the top-2 most relevant documents on the
topic of LLM-based re-ranking. Given a set of
documents, we model each documents relevance
as a Gaussian distribution N (µ, σ2) (step 1.1 ).

We begin by selecting a pivot D3 to put the doc-
uments into multiple subsets. For each subset, we
conduct a setwise comparison involving the same
pivot, as shown in step 2.1 in Figure 1. Then, as
depicted in step 2.2 , we adopt a Bayesian update
to refine the relevance distributions. Further details
are presented in § 3.2. Further, as shown in step 3 ,
we introduce a mechanism to update document
D3’s relevance model.

A naive subsequent design of REALM would di-
rectly rely on the relevance distributions of the first
iteration to order all the documents. Subsequently,
we can select the top-k most relevant documents as
the final result. Particularly, we can derive the rele-
vance score of each document using a distribution-
based rule µ − kσ, where k is a constant control-
ling conservativeness, with higher values penaliz-
ing uncertainty more heavily. However, this design
could potentially rely on relevance distributions
that are very unstable, as a single round of compar-
ison might fail to effectively curb the uncertainty
of the relevance distributions (see Table 3).

Consequently, we introduce a recursive design,
that is, we compare each document against the
pivot document. If a document is closer to the query
than the pivot, we keep it for the next round of
calculation. Otherwise, we filter out that document.

Moreover, directly relying on the pivot D3 to filter
out unpromising documents would yield unstable
workload reduction. We thus design an effective
workload reduction mechanism to cope with this
concern, which could derive D4 as the final split
point ( 4 ). Of note, we also design a strategy to
select the document with the highest confidence as
the pivot (step 1.2 ).

3.2 REALM’s Relevance Modeling Scheme

Modeling relevance as a normal distribution. In
REALM, relevance judgment derived from LLMs
is inherently noisy due to their contextual sensitiv-
ity, response stochasticity, and inherent biases (Dai
et al., 2024). To capture this uncertainty, following
TrueSkill (Herbrich et al., 2006), a framework orig-
inally designed for competitive player rating, we
model the relevance of each document to a given
query as a Gaussian distribution, which is denoted
as N (µ, σ2), where the mean µ represents the esti-
mated relevance score and the variance σ2 quanti-
fies the uncertainty of this estimate.

As illustrated in step 1.1 of Figure 1, each doc-
ument is initially associated with an initial rele-
vance distribution (i.e., the dark blue squiggle lines
beside each document Di). We model the rele-
vance as a Gaussian distribution with fixed standard
deviation σ0, reflecting a uniform level of uncer-
tainty across all unobserved documents. The initial
mean µ0 is set based on the documents retrieval
score if available (e.g., from a pre-LLM retrieval
pipeline such as embedding search); otherwise, a
shared default value is assigned.

Extracting latent LLM information for rele-
vance model update. To refine these initial rele-
vance distributions, REALM extracts latent infor-
mation from LLMs during setwise comparison.
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In setwise comparison, LLM is prompted to
select the most relevant document from a small
group (of size m) of candidate documents. Our
example query is "Given a query, which of the fol-
lowing passages is the most relevant?". Internally,
LLM assigns scalar logits to each option; we ex-
tract these as a score vector {`i : Di ∈ set}, where
each `i corresponds to the document Di. For in-
stance, in step 2.1 of Figure 1, the logits assigned to
(D0, D1, D3) are 3.2, 1.1, and −0.8, respectively.
Of note, for closed-source LLMs, we can prompt
them to output the confidence values and use that
as the scores (Xia et al., 2025).

Rather than relying on these scores for direct
selection or ranking (Zhuang et al., 2024), REALM

interprets their differences as pairwise preference
probabilities. Specifically, the probability that doc-
ument Di is preferred over Dj is computed as:

P (Di � Dj) = σ

(
`i − `j

T

)
,

where σ is the sigmoid function and T is a tem-
perature parameter. This formulation transforms
a single multi-document comparison into a set of(
m
2

)
pairwise probability updates.

To ensure consistency in aggregation, REALM

adopts a pivot-based strategy. One document in the
prompt is designated as the pivot, and preference
probabilities are computed between the pivot and
the others. As illustrated in step 2.1 of Figure 1,
when D3 is used as the pivot alongside D0 and
D1, we extract the probabilities P (D0 � D3) and
P (D1 � D3). These preference probabilities are
then used to update the relevance distributions of
both the pivot and its comparators as follows.

Relevance update design. The extracted pair-
wise preference probabilities, such as P (D0 � D3)
and P (D1 � D3) from step 2.1 , are then used to
update each documents relevance distribution.

Rather than treating each update as a determinis-
tic outcome (win, loss, or draw) as in the original
TrueSkill, we leverage the preference probability
to capture richer information in relevance updates.
Specifically, we interpolate the influence of the win
and loss outcomes based on the predicted probabil-
ity, i.e., P (Di � Dj).

As illustrated in step 2.2 , the model predicts
P (D0 � D3) = 0.73. In this case, the rele-
vance distribution of D0, i.e., N (µ0,0, σ

2
0,0), is up-

dated to N (µ0,1, σ
2
0,1) by interpolating between

the two TrueSkill-updated distributions: a win

N (µwin, σ
2
win) (green dashed curve) and a loss

N (µloss, σ
2
loss) (red dashed curve) against D3,

weighted by the predicted probability.
The resulting distribution for D0 thus shifts to-

ward the win-specific distribution while incorpo-
rating uncertainty, effectively reflecting both the
model’s directional preference and its confidence.

Formally, let the distribution of document Di

be N (µi,0, σ
2
i,0), with natural parameters defined

as the precision λi,0 = 1/σ2
i,0 and the precision-

adjusted mean τi,0 = µi,0/σ
2
i,0. We compute two

updated distributions for Di by applying the stan-
dard TrueSkill update rules for a 1v1 match against
Dj ∼ N (µj,0, σ

2
j,0), as follows:

• N
(
µwin, σ

2
win

)
, assuming Di wins over Dj ,

• N
(
µloss, σ

2
loss

)
, assuming Di loses to Dj .

Let τwin = µwin/σ
2
win and λwin = 1/σ2

win, and
similarly for the loss outcome. Given a win prob-
ability p = P (Di � Dj), we apply a fractional
update (Minka, 2004) in the natural parameter
space by combining the additive changes from the
win/loss outcomes:
λi,1 = λi,0+p·(λwin−λi,0)+(1−p)·(λloss−λi,0),

τi,1 = τi,0+p ·(τwin−τi,0)+(1−p) ·(τloss−τi,0),

The resulting distribution of Di is again a Gaus-
sian, given by:

N
(
µi,1, σ

2
i,1

)
, where µi,1 =

τi,1
λi,1

, σ2
i,1 =

1

λi,1
.

This relevance update enables our model to in-
tegrate both the direction and confidence of each
comparison. Further details are provided in Ap-
pendix A.3. As shown in step 2.2 of Figure 1, the
updated distribution becomes narrower, indicat-
ing increased certainty and shifts toward the more
likely outcome, resulting in a more accurate and
confident relevance distribution.

3.3 Pivot-Centric Optimizations

Pivot aggregation. The previous pivot-based strat-
egy enables the extraction of useful pairwise com-
parisons centered on each pivot. To integrate global
relevance signals for a given pivot, we introduce
pivot aggregation that consolidates its comparison
outcomes across all subsets.

After the current round, we combine the rele-
vance models of various copies for the pivot via an
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uncertainty-aware averaging:

τ =
c∑

i=1

σ−2
i ,

µagg =

∑c
i=1 µi σ

−2
i

τ
,

σagg =
( τ
n

)−1/2
.

Here, τ denotes the total precision accumulated
from c shadow comparisons, and the averaging
yields an aggregated distribution that favors more
confident estimation while reducing overall uncer-
tainty. As shown in step 3 of Figure 1, the pivot
D3 is replicated into five copies and updated in-
dependently through soft comparisons. The final
distribution of D3 is then obtained by aggregat-
ing these updates, resulting in a more stable and
unbiased estimation.

Pivot selection. To determine the global pivot at
each recursive step, we select the document with
the lowest estimated standard deviation σ from
the current candidate pool. Intuitively, a lower σ
indicates higher confidence in the documents rele-
vance estimate. Using such a document as the pivot
improves the stability of the partitioning process.
Initially, the σ may be the same across documents.
In this case, we select the document with the me-
dian estimated relevance score µ as the pivot, to
avoid pruning too many or too few candidates. As
illustrated in step 1.2 of Figure 1, document D3 is
selected as the global pivot due to its lowest uncer-
tainty. The remaining documents are then grouped
into prompts: {D0, D1}, {D2, D4}, and {D5}, en-
suring that each non-pivot document is compared
once against D3. This structure enables us to con-
struct a globally consistent relevance preference
centered on a high-confidence document.

Pivot adjustment for effective reduction. Con-
sidering that pivot might not be able to effectively
reduce the documents, we interpolate the pivot with
the interval midpoint:

i∗ = λ rp + (1− λ)
l + r

2
, λ ∈ [0, 1],

where l and r are the current interval bounds. Using
i∗ as the split index helps avoid unbalanced parti-
tions. Setting λ < 1 guarantees recursion depth
remains bounded by O(log n) and total LLM com-
parisons scale linearly with n. While the pivot still
guides comparisons, the softened partition is used
only to improve efficiency and does not change

the underlying ranking based on the pivot. As il-
lustrated in step 4 of Figure 1, only documents
ranked above the split point (e.g., D3) are retained
for the next iteration of refinement. This iteration
continues until the desired top-k set is extracted.

4 Experiments

4.1 Experimental Setup

We conduct evaluations on Flan-T5 models (Long-
pre et al., 2023) of three sizesFlan-T5-Large (770M
parameters), Flan-T5-XL (3B), and Flan-T5-XXL
(11B)following recent work on LLM-based re-
ranking (Qin et al., 2024; Luo et al., 2024; Zhuang
et al., 2024; Podolak et al., 2025). To assess the
generality of REALM, we additionally evaluate
Flan-UL2 (20B) (Tay et al., 2023) and LLaMA3
(8B and 70B) (Grattafiori et al., 2024). Notably,
LLaMA3 follows a decoder-only architecture and
differs from Flan-T5 models in both model struc-
ture and pretraining objectives.

All experiments are conducted on a server with
512 GB RAM, two Intel Xeon Silver 4309Y CPUs
(16 cores), and four A100 GPUs (80 GB each). All
models are evaluated on a single GPU, except for
LLaMA3-70B, which uses all four GPUs.

Datasets and metrics. Experiments are con-
ducted on widely used benchmarks: TREC
Deep Learning 2019 (Craswell et al., 2020),
2020 (Craswell et al., 2021), and the BEIR bench-
mark (Thakur et al., 2021).

All LLM-based methods re-rank the top 100 doc-
uments retrieved by a BM25 first-stage retriever.
Adopting prior work’s evaluation strategy (Zhuang
et al., 2024; Podolak et al., 2025), we formulate
re-ranking as a top-k task, with k = 10 as the de-
fault setting. Effectiveness is measured using the
NDCG@10 metric for all datasets. For clarity, all
NDCG@10 results are presented as percentages.

Baselines. We compare our method with four
recent LLM-based re-ranking approaches: Tour-
Rank (Chen et al., 2025), PRP-Graph (Luo et al.,
2024), Setwise-Heapsort (Zhuang et al., 2024), and
Setwise-Insertion (Podolak et al., 2025). Imple-
mentation details are provided in Appendix B.

TourRank is a state-of-the-art listwise re-ranking
method inspired by sports tournaments. It treats
each subset of documents as a “group match” and
aggregates the results using a point-based system.
PRP-Graph constructs a global ranking by aggre-
gating local pairwise preferences through a graph-
based approach. Setwise-Heapsort and Setwise-
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LLM Method TREC DL 2019 TREC DL 2020
N@10 #Inf. P. tks. G. tks. Lat.(s) N@10 #Inf. P. tks. G. tks. Lat.(s)

NA BM25 50.6 - - - - 48.0 - - - -
Fl

an
-T

5-
L

ar
ge TourRank 48.2 130.0 95271.4 1507.2 56.9 40.7 130.0 95341.8 1524.5 57.1

PRP-Graph 65.8 492.7 221781.9 - 43.3 61.8 492.5 224605.5 - 42.4
Setwise-Heapsort 66.9 125.3 40449.6 626.5 8.8 61.8 124.2 40357.4 621.0 8.7
Setwise-Insertion 66.9 92.5 29913.1 93.4 4.5 62.5 91.3 29757.7 93.8 4.4

REALM 67.0 79.0 25165.7 - 3.9 63.0 74.6 23584.9 - 3.6

Fl
an

-T
5-

X
L TourRank 64.3 130.0 95257.0 2719.2 96.8 59.7 130.0 95277.6 2791.0 100.6

PRP-Graph 67.6 492.6 212884.5 - 43.0 66.1 492.5 216071.3 - 43.1
Setwise-Heapsort 69.2 129.5 41665.7 647.7 10.1 67.8 127.8 41569.1 639.1 9.6
Setwise-Insertion 69.0 106.0 34732.7 100.7 5.3 67.0 105.3 34400.7 99.5 5.1

REALM 70.5 80.4 25823.0 - 4.0 68.4 75.6 24033.6 - 3.7

Fl
an

-T
5-

X
X

L TourRank 61.9 130.0 95269.3 1610.4 133.6 62.7 130.0 95273.6 1615.6 133.2
PRP-Graph 66.6 492.6 213536.2 - 73.3 66.1 492.6 216332.4 - 74.4

Setwise-Heapsort 70.6 130.1 42078.6 650.5 15.9 68.8 128.2 41633.7 640.8 15.7
Setwise-Insertion 68.4 104.9 34284.2 99.2 10.6 67.1 100.7 33036.9 100.0 10.2

REALM 71.2 76.5 24659.8 - 7.5 69.1 74.1 23759.6 - 7.3

Table 1: Evaluation on TREC DL 2019 and TREC DL 2020 datasets: REALM vs TourRank (Chen et al., 2025),
PRP-Graph (Luo et al., 2024), Setwise-Heapsort (Zhuang et al., 2024), and Setwise-Insertion (Podolak et al., 2025).

Insertion utilize setwise prompting to compare mul-
tiple candidates jointly in a token-efficient way.
The former focuses on computational efficiency us-
ing a heap-based sorting strategy, while the latter
improves ranking accuracy through a more refined
insertion-based sorting mechanism.

4.2 Overall Evaluation
Table 1 presents a comprehensive comparison of
our approach on both the TREC-DL 2019 and 2020
benchmarks. We report NDCG@10 (N@10), Inf.
(inference counts, a.k.a., the # of LLM calls), P.
tks. (#tokens in prompt), G. tks. (# of generated
tokens), and Lat. (latency in seconds).

Compared to TourRank, PRP-Graph, Setwise-
Heapsort, and Setwise-Insertion, REALM achieves
consistent improvements in both ranking quality
and inference efficiency across all evaluated bench-
marks. On average, REALM outperforms all base-
lines, improving NDCG@10 by 0.7− 11.9, while
simultaneously reducing the number of LLM in-
ferences by 23.4 − 84.4% and cutting inference
latency by 25.0 − 88.7%. In terms of prompt to-
ken usage (P. tks.), REALM reduces the cost by
25.2−94.8%. Furthermore, since it only leverages
the logits of the first generated token, the genera-
tion token cost (G. tks.) is effectively eliminated.

On the model size dimension, we observe
that Flan-T5-XL outperforms Flan-T5-Large, and
Flan-T5-XXL further surpasses Flan-T5-XL, align-
ing with the general trend that larger instruction-
tuned models exhibit stronger ranking capabilities.
Among all methods, TourRank demonstrates the
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Figure 2: Sensitivity to initial ranking order on TREC
DL 2020 using Flan-T5-XL.

highest sensitivity to model capacity, as its listwise
comparison approach relies heavily on both the
model’s input context length and its vulnerability
to positional biases.

While PRP-Graph and TourRank consume the
most tokens, this is mainly due to their re-
liance on multiple iterative rounds of pairwise
or listwise comparisons to accumulate sufficient
preference information, resulting in significantly
higher total query costs. Setwise-Heapsort and
Setwise-Insertion offer a more favorable efficiency-
performance trade-off by utilizing structured com-
parisons with fewer rounds. However, they still
underutilize the rich preference information em-
bedded in the LLMs output, such as the models
confidence in its ranking decisions. This leaves
room for further enhancement of REALM by incor-
porating more principled information aggregation
strategies and refined comparison scheduling to
fully leverage the LLM’s capacity.

Supplementary evaluation on BEIR datasets.
We further evaluate all methods on four BEIR
datasets: Covid, SciFact, DBpedia, and NFCorpus,
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LLM Method BEIR Covid BEIR SciFact
N@10 #Inf. P. tks. G. tks. Lat.(s) N@10 #Inf. P. tks. G. tks. Lat.(s)

NA BM25 59.5 - - - - 67.9 - - - -
Fl

an
-T

5-
L

ar
ge TourRank 44.4 130.0 96946.4 1670.3 59.1 15.7 130.0 97816.3 1679.0 62.2

PRP-Graph 77.2 492.5 309267.7 - 53.7 64.6 492.0 315965.2 - 52.9
Setwise-Heapsort 75.4 129.6 58286.4 648.0 8.7 62.0 119.2 54641.1 596.0 7.9
Setwise-Insertion 74.2 120.3 53851.7 96.5 5.6 56.2 148.1 67053.6 88.2 6.7

REALM 78.4 81.2 36365.8 - 4.3 69.3 69.8 31901.7 - 3.7
BEIR DBpedia BEIR NFCorpus

NA BM25 31.8 - - - - 32.2 - - - -

Fl
an

-T
5-

L
ar

ge TourRank 28.8 130.0 95231.8 1466.0 56.8 30.6 130.0 93211.3 1551.3 43.4
PRP-Graph 44.0 491.4 236478.8 - 43.3 33.9 349.2 214268.8 - 32.1

Setwise-Heapsort 41.3 124.5 41529.0 622.3 8.1 32.4 87.8 38856.5 438.3 6.5
Setwise-Insertion 42.0 109.3 36393.6 93.6 4.6 32.0 80.3 35314.2 76.4 3.9

REALM 45.9 75.4 25848.0 - 3.6 36.4 50.2 22222.4 - 2.7

Table 2: Supplementary evaluation on four BEIR datasets Covid, SciFact, DBpedia, and NFCorpus, using Flan-T5-
Large model.

using Flan-T5-Large model; the corresponding re-
sults are reported in Table 2. These results are con-
sistent with our claims: REALM outperforms all ex-
isting approaches. In particular, REALM improves
NDCG@10 by 2.6−27.6, while reducing the num-
ber of inferences by 39.6− 84.8% and cutting in-
ference time by 30.8− 93.6%. In terms of prompt
token usage, REALM lowers cost by 39.6− 89.2%.
Note that in NFCorpus, many queries have fewer
candidate passages than in other datasets, which
explains the shorter processing time.

REALM vs Setwise-Insertion on the initial
ranking. Among existing baselines, Setwise-
Insertion offers a reasonable balance between per-
formance and efficiency, utilizing structured com-
parisons to reduce the number of LLM calls while
maintaining competitive ranking quality. However,
its effectiveness can still be affected by the quality
of the initial document ordering.

Figure 2 compares Setwise-Insertion and
REALM on the TREC DL 2020 dataset under three
initial document orderings: BM25, Inverse, and
Random. The left plot reports NDCG@10, while
the right plot shows the corresponding prompt to-
ken usage. Here, Inverse refers to reversing the
original BM25 ranking (i.e., least relevant docu-
ments placed first), while Random denotes a ran-
dom permutation of the BM25-ranked list.

In terms of NDCG, the two methods perform
comparably: Setwise-Insertions best and worst
scores differ by 1.6 points, while REALM shows a
smaller gap of 1.3 points, indicating slightly better
stability. However, the difference becomes more
pronounced when comparing token efficiency. Be-
cause Setwise-Insertion relies more heavily on the

LLM Method Avg. Performance on TREC DL
N@10 #Inf. P. tks Lat.(s)

NA BM25 49.3 - - -
Fl

an
-T

5-
L

ar
ge w/o modeling 62.0 109.2 35064.2 5.4

w/o recursive 63.0 50.0 16089.0 2.6
w/o opt. 64.2 112.5 36335.6 5.6
REALM 65.0 76.8 24375.3 3.8

Fl
an

-T
5-

X
L w/o modeling 66.2 114.9 37003.4 5.8

w/o recursive 68.3 50.0 16089.0 2.6
w/o opt. 68.9 118.6 38409.6 6.0
REALM 69.5 78.0 24928.3 3.9

Fl
an

-T
5-

X
X

L w/o modeling 68.7 113.7 36696.1 11.5
w/o recursive 68.6 50.0 16089.0 5.0

w/o opt. 68.9 119.2 38846.4 12.1
REALM 70.2 75.3 24209.7 7.4

Table 3: Ablation study.

assumptions of the initial ranking, it requires sig-
nificantly more insertion operations when the ini-
tial order is suboptimal (e.g., under Inverse). This
leads to substantially higher prompt token usage,
whereas REALM is less affected by the quality of
the initial ranking and maintains consistently low
token consumption across all input orders.

4.3 Analysis

Ablation study. Table 3 presents the results of
ablation study, comparing the full REALM system
with three reduced variants by disabling key com-
ponents: (1) W/O MODELING, which removes un-
certainty modeling and uses QuickSelect (Hoare,
1961) to retrieve top-k; (2) W/O RECURSIVE, which
disables recursive refinement; and (3) W/O OPTI-
MIZATION, omitting pivot optimization.

Removing any of these components leads to
a consistent drop in performance. Disabling un-
certainty modeling (W/O MODELING) results in a
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Figure 3: Analysis of Hyperparameter λ.

LLM (Size) TREC DL 2019 TREC DL 2020
N@10 lat.(s) N@10 lat.(s)

NA 50.6 - 48.0 -
Flan-T5-Large (770M) 67.0 3.9 63.0 3.6

Flan-T5-XL (3B) 70.5 4.0 68.4 3.7
LLaMA3 (8B) 49.6 30.9 43.6 27.3

Flan-T5-XXL (11B) 71.2 7.5 69.1 7.3
Flan-UL2 (20B) 72.2 13.2 71.4 12.8
LLaMA3 (70B) 72.0 81.4 68.4 80.2

Table 4: Performance across different LLMs.

1.5−3.3 decrease in NDCG@10 across all models,
highlighting the value of Gaussian-based relevance
modeling. The absence of recursive reasoning
(W/O RECURSIVE) also causes noticeable degrada-
tion, underscoring the benefit of multi-round refine-
ment. Lastly, disabling pivot-centric optimization
(W/O OPTIMIZATION) nearly doubles latency-for
example, from 7.4s to 12.1s with Flan-T5-XXL-
confirming that our pivot selection and partitioning
strategy substantially improves efficiency without
compromising effectiveness.

Hyperparameter analysis. We analyze the mix-
ing coefficient λ introduced in Section 3.3: specifi-
cally, we sweep λ ∈ {0, 13 , 23 , 1} and evaluate with
Flan-T5-Large, XL, XXL models on TREC DL
2020 (see Fig. 3). The results reveal a clear cost-
quality trade-off; overall, λ = 2

3 yields the best
performance-efficiency balance, which we adopt
as the default setting in our main experiments.

Performance across different LLMs. As
shown in Table 4, our method benefits from
stronger LLMs, achieving higher re-ranking per-
formance and reduced prompt usage. For instance,
Flan-UL2 achieves the best results on TREC DL
datasets with an average NDCG@10 of 71.8, while
Flan-T5-XXL and Flan-T5-XL reach 70.2 and
69.5, respectively, surpassing the no-LLM base-
line (48.0) and LLaMA models by a large margin.

In contrast, decoder-only architectures such as

LLaMA-8B yield substantially lower performance
(e.g., 49.6 on TREC DL 2019), despite incurring
30.9s per query. This discrepancy is partly due to
their limited formatting capabilities and strong po-
sitional bias. In particular, we observe that LLaMA-
8B selects the first option in approximately 85.6%
of cases on our balanced binary-choice tasks con-
structed from the TREC DL 2019 dataset (see Ap-
pendix C.2), indicating a strong positional bias that
undermines its effectiveness for re-ranking.

5 Conclusion

We present REALM, an uncertainty-aware re-
ranking framework. By modeling document rel-
evance as Gaussian distributions and refining them
through recursive comparisons and Bayesian aggre-
gation, REALM achieves both high effectiveness
and efficiency. Experiments across multiple LLMs
and TREC benchmarks demonstrate that REALM

consistently outperforms existing re-ranking meth-
ods across various configurations.

Limitations

Our current design choices are partially constrained
by resource and space limitations. While our rele-
vance modeling is, in principle, compatible with a
broad range of re-ranking methods, we center our
evaluation on the specific framework we designed
that achieved the strongest empirical performance.
Besides, we have not considered skew-normal dis-
tributions for modeling relevance; while they may
better capture the skewed score distributions given
by the retriever, they would introduce additional
complexity and inference costs. We leave the the-
oretical and empirical investigation of it to future
work. Last, we conduct experiments using open-
source models, including the Flan-T5 and LLaMA
3 series. We did not include closed-source models
such as GPT-3.5 or GPT-4 accessed via API. Future
extensions may consider such models to provide a
more complete empirical picture of REALM.
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A Bayesian Rating Systems

Bayesian rating systems provide probabilistic
frameworks to estimate latent skill levels or qual-
ity scores of entities based on observed outcomes
of comparisons or matches. Such systems lever-
age Bayesian inference principles, combining prior
knowledge with observed data to update skill esti-
mations dynamically. The general characteristics
include modeling uncertainty explicitly, supporting
incremental updating, and providing robustness to
noise and incomplete data. Two widely-adopted
Bayesian rating systems are Elo (ELO, 1978) and
its more advanced successor, TrueSkill (Herbrich
et al., 2006), which progressively extend rating
complexity and flexibility.

A.1 Elo Rating System

The Elo rating system is a foundational Bayesian
rating method originally designed to quantify the
relative skill levels of chess players. In this sys-
tem, each player’s ability is represented by a single
numerical rating. When two players compete, the
ratings are updated based on the observed outcome
compared to the expected outcome calculated from
current ratings. A player’s rating increases after
wins against higher-rated opponents and decreases
upon losses or unexpected outcomes. The Elo sys-
tem’s simplicity and adaptability make it partic-
ularly effective in scenarios involving sequential
pairwise competitions.

A.2 TrueSkill Rating System

TrueSkill, introduced by Microsoft, generalizes the
Elo rating system by explicitly modeling player
skills using probability distributions rather than
single scalar values. Specifically, TrueSkill repre-
sents each player’s skill as a Gaussian distribution
characterized by two parameters: a mean µ reflect-
ing the estimated skill level, and a standard devi-
ation σ capturing the uncertainty of this estimate.
Following each match, TrueSkill applies approxi-
mate Bayesian inference to update these parame-
ters according to the observed results, factoring in
the certainty of each player’s current rating. This
mechanism enables TrueSkill to naturally handle
multiplayer and team-based matches, uncertain out-
comes, and noisy comparisons.

A.3 Bayesian Update Details

We adopt a Gaussian-based update rule derived
from the 1v1 setting in TrueSkill (Herbrich et al.,
2006), adapted for document ranking.

Given two documents Di and Dj with current
relevance estimates µi,0, σ

2
i,0 and µj,0, σ

2
j,0, we de-

fine the following intermediate quantities:

δ = µi,0 − µj,0, c2 = σ2
i,0 + σ2

j,0 + 2β2,

t =
δ√
c2
, v(t) =

φ(t)

Φ(t)
, w(t) = v(t)(v(t)+t),

where φ(t) and Φ(t) denote the probability den-
sity function and cumulative distribution function
of the standard normal distribution, respectively.
The parameter β is a fixed constant that controls
comparison noise; we follow the TrueSkill default
and set β = µ0/3.
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We then define the Bayesian updates to the rel-
evance distribution of Di, under two possible out-
comes:

If Di wins over Dj:

N (µwin, σ
2
win)

∆λ+ =
σ4
i,0

c2
· w(t),

∆τ+ =
σ2
i,0√
c2

· v(t) + µi,0 ·∆λ+,

λwin = λi,0 +∆λ+,

τwin = τi,0 +∆τ+,

µwin =
τwin

λwin
, σ2

win =
1

λwin
.

If Di loses to Dj:

N (µloss, σ
2
loss)

∆λ− =
σ4
i,0

c2
· w(−t),

∆τ− = −
σ2
i,0√
c2

· v(−t) + µi,0 ·∆λ−,

λloss = λi,0 +∆λ−,

τloss = τi,0 +∆τ−,

µloss =
τloss

λloss
, σ2

loss =
1

λloss
.

B Implementation Details

B.1 Detailed Explanation of Datasets
The TREC Deep Learning (DL) 2019 (Craswell
et al., 2020) and 2020 (Craswell et al., 2021)
datasets are benchmark collections designed to
evaluate document ranking systems in complex in-
formation retrieval tasks. Both datasets are based
on queries derived from real-world search logs and
are built on top of the MS MARCO (Bajaj et al.,
2018) passage and document corpora. The TREC
DL 2019 dataset includes 43 queries with graded
relevance judgments, while the 2020 version ex-
pands the test set to 54 queries. All documents
are written in English and drawn from a large web-
scale corpus, with each query typically associated
with hundreds to thousands of candidate passages.

We also evaluate on four datasets from the BEIR
benchmark (Thakur et al., 2021): Covid, SciFact,
DBPedia, and NFCorpus. These collections com-
plement TREC DL by covering diverse domains

such as biomedical search, scientific fact verifica-
tion, entity-centric retrieval, and consumer health
information, thereby broadening the evaluation
scope beyond general web search.

Together, these datasets emphasize fine-grained
relevance estimation and are widely adopted for
benchmarking re-ranking methods. For all experi-
ments, the reported NDCG@10 scores are averaged
over the entire dataset with a single run, ensuring
stable and reliable evaluation results.

B.2 Parameter Settings
For a fair comparison, we set the number of com-
parison rounds for TourRank and PRP-Graph to
10. Since the original implementation of TourRank
only supports the OpenAI API, we re-implemented
it with a T5-based interface. For Setwise-Insertion,
we adopt the best-performing variant, Setwise In-
sertion Sort Compare Prior, as reported in their
paper (Podolak et al., 2025). All other baselines
are used with their default hyperparameters. In
our method, we set λ = 2/3 (see Section 3.3) to
balance effectiveness and efficiency.

B.3 Prompts
For TourRank, we adopt their default listwise
prompt:

System Prompt
You are an intelligent assistant that can com-
pare multiple documents based on their rele-
vance to the given query.

User Prompt
I will provide you with the given query and
{N} documents.
Consider the content of all the documents
comprehensively and select the {M} docu-
ments that are most relevant to the given
query: {query}.
The query is: {query}.
Now, you must output the top {M} docu-
ments that are most relevant to the query
using the following format strictly, and noth-
ing else.
Do not provide any explanation or commen-
tary. Output format:
Document 3, ..., Document 1

For PRP-Graph, we also adopt their default pair-
wise prompt:
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LLM TREC DL 2019 TREC DL 2020
N@10 #Inf. P. tks. G. tks. Lat.(s) N@10 #Inf. P. tks. G. tks. Lat.(s)

Flan-T5-Large 50.9 9 4608 61.1 2.2 48.4 9 4608 65.0 2.3
Flan-T5-XL 49.5 9 4608 80.9 4.1 47.0 9 4608 79.4 4.1

Flan-T5-XXL 50.5 9 9216 69.6 15.0 46.7 9 9216 60.9 14.5

Table 5: Additional Evaluation on RankGPT.

Given a query {query}, which of the fol-
lowing two passages is more relevant to the
query?

Passage A: {document_1}
Passage B: {document_2}

Output Passage A or Passage B:

For the remaining methods (REALM, Setwise-
Heapsort, and Setwise-Insertion), we use a consis-
tent setwise prompt of the following form:

Given a query {query}, which of the fol-
lowing passages is the most relevant to the
query?
{passages}
Output only the passage label of the most
relevant passage:

For Setwise-Insertion, we additionally append
the following sentence to the prompt:

If their relevance is similar, or none of them
is relevant, output A.

This modification follows their original paper,
which claims this change as a key contribution.

B.4 Code Availability

The source code of REALM is publicly available at:
https://github.com/Joeyw02/REALM.

C Supplementary Evaluations

C.1 Additional Evaluation on RankGPT

We additionally include RankGPT (Sun et al.,
2023) in the overall evaluation (Table 5). The re-
sults show that—just like TourRank—this list-wise
approach is bounded by the base model’s capac-
ity: when the model cannot reliably handle long
contexts, it struggles to produce a complete, well-

Choice Correct Wrong Accuracy
LLaMA3 8B

A (85.6%) 10258 8145 55.7%
B (14.4%) 2669 428 86.2%

Total 12927 8573 60.1%
LLaMA3 70B

A (54.9%) 9979 1815 84.6%
B (45.1%) 8794 912 90.6%

Total 18773 2727 87.3%
FLAN-T5-XXL 11B

A (43.9%) 8709 722 92.3%
B (56.1%) 10047 2022 83.2%

Total 18756 2744 87.2%
FLAN-UL2 20B

A (50.3%) 9684 1137 89.5%
B (49.7%) 9542 1137 89.4%

Total 19226 2274 89.4%

Table 6: Statistical summary of different models’
choices in pair-wise comparison on TREC DL 2019.

ordered ranking, often generating partial or seem-
ingly random sequences.

C.2 Model Capability Analysis

We evaluate the pairwise comparison capability of
different LLMs by randomly sampling 500 doc-
ument pairs per query from the TREC DL 2019
dataset. Each pair is presented to the model for bi-
nary relevance judgment. As shown in Table 6, we
observe that LLaMA 3 8B exhibits a strong posi-
tion bias, often favoring the document appearing in
a particular position regardless of content. In con-
trast, Flan-T5 models demonstrate more reliable
behavior and stronger alignment with ground-truth
preferences in pairwise comparisons.

C.3 Iteration Analysis

For the results reported in Table 1, we further mea-
sured the average number of iterations required
during inference on the TREC DL 2019 and 2020
datasets in Table 7. Across different settings, the
model required an average of 4.89 rounds of iter-
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Model TREC DL 2019 TREC DL 2020
Flan-T5-Large 5.12 4.67
Flan-T5-XL 4.98 4.98

Flan-T5-XXL 5.02 4.57

Table 7: Average number of iterations required during
re-ranking on the TREC DL 2019 and 2020 datasets.

ations. This observation suggests that, given suf-
ficient computational resources, our method can
be naturally parallelized and thus remains efficient
even with multiple iterative steps.
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