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Abstract

Human infants face a formidable challenge in
speech acquisition: mapping extremely vari-
able acoustic inputs into appropriate articula-
tory movements without explicit instruction.
We present a computational model that ad-
dresses the acoustic-to-articulatory mapping
problem through self-supervised learning. Our
model comprises a feature extractor that trans-
forms speech into latent representations, an in-
verse model that maps these representations
to articulatory parameters, and a synthesizer
that generates speech outputs. Experiments
conducted in both single- and multi-speaker
settings reveal that intermediate layers of a pre-
trained wav2vec 2.0 model provide optimal rep-
resentations for articulatory learning, signifi-
cantly outperforming MFCC features. These
representations enable our model to learn artic-
ulatory trajectories that correlate with human
patterns, discriminate between places of articu-
lation, and produce intelligible speech. Critical
to successful articulatory learning are represen-
tations that balance phonetic discriminability
with speaker invariance — precisely the charac-
teristics of self-supervised representation learn-
ing models. Our findings provide computa-
tional evidence consistent with developmental
theories proposing that perceptual learning of
phonetic categories guides articulatory develop-
ment, offering insights into how infants might
acquire speech production capabilities despite
the complex mapping problem they face.

1 Introduction

Speech development undergoes dramatic changes
during infancy, progressing from early non-
linguistic vocalizations like crying and gurgling,
to meaningful speech with adult-like intonation
patterns (Stark, 1980). One key mechanism driving
this development is vocal imitation, whereby in-
fants attempt to match the vocalization patterns
of their caregivers. Kuhl and Meltzoff (1996)
found that infants’ vowel-like sounds become more

acoustically distinct with age and that exposure to
specific vowels can elicit matching vocalizations,
suggesting that infants use auditory targets from
speech input to guide their own vocal development.
While evidence of imitation in prelinguistic infants
is still debated, more evidence can be found in
older children who have been found to actively im-
itate arbitrary sounds directed to them by adults
(Ross and Greer, 2003; Jones, 2007; Pelaez et al.,
2018). These studies provide compelling evidence
that infants use aspects of their auditory inputs as
targets for their own vocalizations; however, they
leave open a fundamental question: how do infants
achieve this imitation when they cannot see the
complex movements inside a speaker’s vocal tract?

One central challenge in understanding early
speech production learning is how infants map au-
ditory targets onto motor actions. This problem is
challenging due to three key factors: 1) the many-
to-many mapping between sounds and articulatory
gestures (Atal et al., 1978), where identical sounds
can result from different movements and vice versa;
2) the normalization problem, where infants must
extract invariant phonetic features from diverse
speakers and map these onto their own articulatory
system; and 3) the absence of explicit feedback on
articulation correctness, requiring infants to rely on
some form of unsupervised or self-supervised learn-
ing by comparing their vocalizations with heard
targets to adjust their movements.

Computational models provide a way to explore
how the acoustic-to-articulatory learning might un-
fold, enabling researchers to test hypotheses about
representations and learning mechanisms that could
support speech production learning without explicit
feedback. A range of computational models has
been proposed to investigate how vocal learners —
whether infants or artificial agents — map auditory
targets to motor commands. Early models often
used supervised learning with predefined phonetic
targets and explicit error signals to train articulatory
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controllers (Browman and Goldstein, 1992; Guen-
ther, 1995). More recent approaches have shifted
toward unsupervised or self-supervised learning
(Rasilo and Risédnen, 2017; Begus et al., 2023),
including neural networks that integrate reinforce-
ment with self-organization (Warlaumont et al.,
2013) or curiosity-driven learning (Moulin-Frier
et al., 2014). Closer to our work is Georges et al.
(2024), who introduce a self-supervised model that
learns to control an artificial vocal tract through
imitation. However, their approach has key limi-
tations: the model is trained on hyper-articulated
speech produced by a single speaker and fails to
learn human-like articulatory trajectories.

In this work, we propose a self-supervised imita-
tion learning model that addresses the acoustic-to-
articulatory mapping problem. Our model learns to
translate auditory input into articulatory gestures by
minimizing the distance between input and imitated
speech representations. We systematically compare
how different auditory representations — from basic
acoustic features (MFCCs) to increasingly abstract
representations from wav2vec 2.0 layers (Baevski
et al., 2020) — affect articulatory learning. These
representations act as computational analogs of in-
creasingly abstract speech sound representations
infants develop during their first year (Lavechin
et al., 2024, Poli et al., 2024).

With a single French speaker, our model learns
articulatory trajectories that correlate with hu-
man patterns and effectively distinguish between
places of articulation. Going further, we evaluate
our model in a multi-speaker scenario, where we
demonstrate that speech representations that opti-
mally balance phonetic information with speaker
invariance enable our model to generalize across
speakers and successfully discriminate between
places of articulation.

Our findings suggest a developmental scenario
where perceptual acoustic invariance is crucial for
articulatory learning. The observed U-shaped per-
formance curve across wav2vec 2.0 layers suggests
an optimal abstraction level: lower layers fail to
normalize across speakers, while higher layers lose
critical phonetic distinctions needed to solve the
acoustic-to-articulatory inverse problem.

2 Methods

2.1 The imitation model

We provide an overview of all of the components
of our imitation model.

Feature extractor. The feature extractor trans-
forms input speech signals into feature vectors 2;
for each frame ¢. In this work, we investigate two
approaches: 1) a baseline extractor that derives
low-level acoustic features through MFCCs, and
2) representations from the transformer layers of a
pretrained wav2vec 2.0 model that capture higher-
level properties of speech. These features serve
as computational analogs to the mental encoding
processes humans might employ when perceiving
speech, creating internal representations that guide
subsequent articulation. By comparing different
feature extractors, we can determine which repre-
sentations yield optimal articulatory trajectories.
Inverse model. The inverse model maps the ex-
tracted feature vectors z; to estimated articulatory
parameters dy, simulating the human’s brain abil-
ity to infer the physical configurations required for
speech production. For each frame ¢, the inverse
model predicts a comprehensive set of articulatory
parameters including jaw height (JH), tongue body
(TB), tongue dorsum (TD), tongue tip (TT), lip
protusion (LP), and lip height (LH). This compo-
nent is trained by minimizing a cosine distance loss
function between the features extracted from the
input speech segment z; and those from the imi-
tated speech segment ;. Through this process, the
inverse model learns to decode the input features
into articulatory commands that can be executed
by the subsequent production system.
Articulatory synthesizer. The articulatory syn-
thesizer processes both the predicted articulatory
parameters and two source parameters S; com-
puted directly from the input speech: pitch pe-
riod (PP) and pitch coefficient (PC), which rep-
resent fundamental frequency and harmonicity re-
spectively. Source parameters characterize vocal
fold vibration (the "voice" itself), while articu-
latory parameters describe the physical configu-
ration of the vocal tract (jaw, tongue, lips) that
shapes this voice. These source parameters are di-
rectly extracted from the input speech and passed
through unchanged, rather than being predicted
by the model, as our work focuses specifically on
the acoustic-to-articulatory inverse mapping prob-
lem. From this combined input of articulatory a,
and source parameters s, the synthesizer generates
mel-spectrograms m. The articulatory synthesizer
serves as a computational analog to the human vo-
cal tract, translating articulatory configurations into
acoustic representations.

Vocoder. The vocoder converts mel-spectrograms

23865



Speech perception Speech production
' A s A
Mental Articulatory ~ Articulatory parameters
representations mapping H e Vocal tract
A A A
s ' '
8B
Input speech ™ A Imitated speech
Feature Inverse T A~ ANV [0 | vocoder
extractor model

. ! Lp 1
I \ I
1 2 [ R VWAVt PVATIVN 1
1 zZ 1
1 J 1
: Source parameters :
1 Minimize: 1
1 2 PP W/\M\J\/ 1
N Z -z 1
1 - A~ PC !
- 121112 -
1 1
1 1

__________________________

Figure 1: Architecture of the speech imitation model. The system consists of four components: (1) a feature
extractor that encodes the raw speech waveform into a sequence of representations, (2) an inverse model that maps
these representations to articulatory parameters, (3) an articulatory synthesizer that combines these parameters with
source parameters to generate mel-spectrograms, and (4) a vocoder that converts mel-spectrograms to waveforms.
During training, only the inverse model is optimized to minimize a cosine similarity loss function between the
input speech segment and the imitated speech segment in the representational space. All other components remain
frozen, allowing targeted investigation of sensorimotor mapping acquisition. JH: Jaw Height, TB: Tongue Body,
TD: Tongue Dorsum, TT: Tongue Tip, LP: Lip Protrusion, LH: Lip Height, PP: Pitch Period, PC: Pitch Coefficient.

into the final imitated speech segment, completing
the production pathway. The vocoder effectively
"gives voice" to the articulatory plans, producing
acoustic output that mimics the perceived input
stimuli. This final component enables objective
and perceptual evaluation of imitation quality, mea-
suring how successfully the model has captured
and reproduced the target speech.

2.2 Training procedure

We focus on the acoustic-to-articulatory mapping
by optimizing only the inverse model while keep-
ing all other components frozen. While this is a
simplification of actual infant development — who
experience simultaneous changes in how they per-
ceive speech sounds (Werker and Tees, 1984; Kuhl
and Iverson, 1995) and in the physical structure of
their vocal tracts (Archibald et al., 1994; Sasaki
et al., 1977) — this experimental design allows us
to rigorously analyze the development of inverse
mappings from perception to articulation without
confounding variables (but see Limitations).

2.3 Datasets

PB2009. This corpus consists of 37 minutes of
French speech (from simple vowels and consonants
to full sentences) from a single male speaker (Badin
et al., 2022). The participant’s tongue, jaw, and lips

movements were recorded using a 2-D ElectroMag-
netic Articulograph (EMA) with a sampling rate
of 200 Hz. HMM-generated phonetic transcrip-
tions which were manually corrected are provided.
PB2009 was split into 64% training, 16% valida-
tion, and 20% test sets.

We use this corpus to train the vocoder and the
articulatory synthesizer (not central to this paper),
and to train the complete imitation model in a sin-
gle speaker setting. This dataset was crucial for
establishing baseline performance under optimal
conditions (same speaker for input and synthesizer)
and for validating our learned articulatory trajecto-
ries against ground truth measurements.

Barnig’s text-to-speech (TTS). This dataset of 20
hours of read speech in Luxembourgish, German,
French, English, and Portuguese from 18 speakers
was used to train the vocoder.

Audiocite. We subsampled 104 hours of French
read speech produced by 8 speakers (4 females)
from the Audiocite corpus (Felice et al., 2024). We
used 100 hours in its raw, untranscribed form to
train our imitation model. The remaining 4 hours
were set aside as test audio files, which we automat-
ically transcribed, aligned, and spliced to remove
non-speech segments using Whisper-small (Rad-
ford et al., 2023; Bain et al., 2023). This setup
allows us to assess the model’s generalization capa-
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bilities across different vocal tract configurations
and speaking styles.

Librispeech. We used Librispeech (Panayotov
et al., 2015) exclusively for probing experiments to
analyze the phonetic and speaker information en-
coded in different layers of wav2vec 2.0 via linear
classification. We used the original training set to
train the linear probes and the test set to compute
phone and speaker accuracies.

2.4 Implementation details

The model. The feature extractor uses either:
1) a baseline MFCC extractor providing 39-
dimensional features (13 base coefficients plus first
and second derivatives), implemented via forchau-
dio for gradient backpropagation support (Yang
et al., 2022), or 2) a wav2vec 2.0 model' with 12
layers and hidden size of 768 pretrained on VoxPop-
uli (Wang et al., 2021). The inverse model employs
a 2-layer bidirectional LSTM with 64-dimensional
hidden states, outputting 6-dimensional articulatory
parameter vectors. Each inverse model was trained
using Adam’s scheduler with a learning rate (Ir)
of 1.7 x 1073, The articulatory synthesizer uses 4
feed-forward (FF) layers (512 units each) and was
pre-trained on PB2009 using Adam’s scheduler
(Ir =5 x 10™%, Badin et al., 2022). The vocoder
uses a HiFi-GAN architecture (Kong et al., 2020)
pre-trained on Barnig’s TTS corpus (Barnig, 2022)
and fine-tuned on PB2009 (Badin et al., 2022) us-
ing Adam’s scheduler (Ir = 2 X 10~%). All com-
ponents except the inverse model are kept frozen
during imitation learning.

Data processing. All audio samples were prepro-
cessed to 16 kHz single-channel recordings.

Regarding acoustic features, MFCCs and mel-
spectrograms were computed using a short-time
Fourier transform with a frame length of 640 sam-
ples and hop size of 320 samples, followed by a
mel-filterbank projection with 80 mel bands span-
ning frequencies from 0 to 8 kHz. MFCCs were
extracted as 13-coefficient representations, which
were z-scored, with first and second derivatives.
This gives us one feature vector for every 20 mil-
liseconds of audio, which matches the frame rate
used in wav2vec 2.0.

Regarding articulatory features, EMA trajecto-
ries from PB2009 were downsampled at 50 Hz
to match the acoustic frame rate. Similarly to
Georges et al. (2024), raw EMA coordinates were

1https://huggingface.co/facebook/
wav2vec2-base-10k-voxpopuli

projected into lower dimension vectors, referred
as articulatory parameters (depicted in Figure 1),
using guided Principal Component Analysis (PCA)
(Maeda, 1990; Serrurier et al., 2012). Guided PCA
begins by extracting a specific articulatory param-
eter (e.g., Jaw Height) from a designated set of
measurements (€.g., lower incisor coil data). The
contribution of this parameter to other articulator
movements is then estimated using linear regres-
sion. This contribution is subtracted from the orig-
inal measurements of other articulators, creating
"residual movements" that are independent of the
first parameter. PCA 1is then applied to these resid-
ual movements to extract the next articulatory pa-
rameter. This sequential process of extraction, re-
gression, subtraction, and further PCA is repeated
until all relevant articulatory parameters (JH, TB,
TD, TT, LP, LH) are derived (Maeda, 1990).

2.5 Evaluation metrics

We evaluate our model using complementary met-
rics that assess both the learned articulatory trajec-
tories and the resulting imitated speech.
Correlation with ground-truth articulatory pa-
rameters. Correlations were computed as follows:
For each articulatory parameter (JH, TB, TD, TT,
LP, LH), we computed Pearson’s correlation coeffi-
cient between the predicted and ground-truth trajec-
tories across all time frames in the test set. The final
correlation score represents the average correlation
across all six articulatory parameters. This analysis
enables us to evaluate whether our model learns
physiologically realistic motor patterns rather than
solutions that are acoustically plausible but physi-
cally implausible from an articulatory standpoint.
Place of articulation ABX score. Since human
articulatory trajectories naturally organize conso-
nants by place of articulation, we evaluate whether
our learned articulatory trajectories distinguish be-
tween different places of articulation.

We do so using the ABX discrimination test
(Schatz et al., 2013). We extract vowel-consonant-
vowel sequences and construct triplets where A and
X are instances of the same consonant (potentially
in different vocalic contexts), while B has a differ-
ent place of articulation but the same manner. The
model is considered correct if d(A, X) < d(B, X),
with d computed using cosine distance along the
shortest dynamic time warping path — see Georges
et al. (2024) for implementation details.

Phone and speaker accuracy. We separately
evaluate wav2vec 2.0’s layers by training linear
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probes that measure: (1) Phone accuracy using a
linear CTC model with 256-dimensional projection
trained on LibriSpeech phonemic transcriptions.
Phone accuracy is calculated as (1 - PER), where
PER (Phone Error Rate) is computed using frame-
level phoneme predictions, and phonemic labels are
derived from orthographic transcriptions using the
LibriSpeech lexicon with grapheme-to-phoneme
(G2P) conversion; (2) Speaker identification accu-
racy using a linear classifier over frame-level fea-
tures for predicting speaker identity at each audio
frame.

Intelligibility of the imitated speech. To evalu-
ate how well our model preserves linguistic con-
tent in its imitations, we measure the intelligibil-
ity of the synthesized speech output. For the 8
French speakers of Audiocite, we process test utter-
ances through our imitation model and transcribe
the resulting imitated speech using Whisper-small
(Radford et al., 2023). We then compute WER
by comparing: (1) the reference transcription of
the original input speech, and (2) the transcription
of our model’s imitated speech. This evaluation
presents a more substantial cross-speaker general-
ization challenge, as our model must map diverse
acoustic inputs to articulatory patterns appropriate
for a vocal tract with different characteristics than
those of the original speakers.

3 Experiments

Audio examples of our model’s imitation across
different experimental conditions are available
at https://marvinlvn.github.io/projects/
from_perception_to_production.

3.1 Single-speaker setting

Here, we focus on evaluating how well the model
succeeds in learning articulatory trajectories (G in
Figure 1) that resemble those of a human speaker.

3.1.1 Correlation with ground truth
articulatory trajectories

Figure 2 shows correlations between predicted and
ground-truth articulatory trajectories on PB2009.
When using MFCC features to encode speech in-
put, the resulting articulatory predictions showed
a moderate correlation with ground-truth parame-
ters (R ~ 0.37). In contrast, wav2vec 2.0 embed-
dings as speech representations yielded substan-
tially stronger correlations in an inverted U-shaped
pattern across layers. Peak performance occurred
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Figure 2: Pearson’s R correlation between predicted
and ground truth articulatory parameters for the model
imitating in the MFCC feature space (left) versus the
wav2vec 2.0 space at different layers (right). Error bars
represent standard deviation obtained across 5 different
splits of the PB2009 dataset.

at intermediate layers (6-7), where articulatory pre-
dictions reached correlations of approximately 0.51
with ground truth measurements — a 38% improve-
ment over the MFCC baseline. Both lower layers
(0-2, R ~ 0.42) and higher layers (10-12) per-
formed worse, suggesting articulatory-relevant in-
formation is lost at both extremes. Audio examples
are available at https://your-website.com
These findings show our model learns human-
like articulatory trajectories without explicit super-
vision, with the representational space used to opti-
mize the loss significantly affecting trajectory qual-
ity (see Appendix A for examples of trajectories).

3.1.2 Organization along the place of
articulation (single-speaker)

Human articulation organizes consonants by place
(labial, coronal, dorsal), with distinct configura-
tions for each. Here, we measure the extent to
which our model captures these distinctions.
Figure 3 shows the place of articulation ABX
discrimination score for articulatory parameters
learned by our model across different feature
spaces. In the MFCC feature space, the in-
verse model learned articulatory trajectories that
achieved an ABX score of approximately 74%.
This exceeds the acoustic baseline (orange hori-
zontal line) of 68% obtained from using MFCCs di-
rectly for discrimination, indicating that our model
transforms these basic acoustic features into ar-
ticulatory patterns that better distinguish place of
articulation. However, this remains well below the
ground-truth articulatory topline (blue horizontal
line) of approximately 94%, which represents opti-
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Figure 3: Place of articulation ABX scores (%) obtained
by the articulatory parameters learned by the model
imitating in the MFCC feature space (left) versus the
wav2vec 2.0 space (right). Horizontal lines show scores
obtained by ground truth articulatory parameters (blue)
and MFCCs extracted directly from the input audio (yel-
low). Error bars represent standard deviation obtained
across 5 different splits of the PB2009 dataset.

mal discrimination based on human trajectories.

In the wav2vec 2.0 feature space, we observe
another inverted U-shaped pattern across layers,
mirroring our correlation findings. Lower layers (0-
3) produced poor place discrimination (63-64%),
performing worse than our MFCC-based model,
while intermediate layers peaked at 80% (layers
6-7) — substantially improving over MFCC base-
lines though remaining below ground-truth toplines.
Higher layers (9-12) show a marked decline in per-
formance, with scores dropping to around 62% at
layer 12, below even the MFCC-based model.

Overall, this suggests that our model success-
fully learns articulatory trajectories that reflect the
natural organization of consonants by place of artic-
ulation. Notably, intermediate wav2vec 2.0 layers
(6-7) consistently yield the best performance across
both evaluation metrics: they produce articulatory
trajectories that both correlate most strongly with
human trajectories and most effectively discrimi-
nate between different places of articulation.

3.2 Multi-speaker setting

Infants face a more challenging scenario than imi-
tating their own voice: imitating diverse speakers
with varied vocal tracts. We now investigate this
more realistic multi-speaker setting.

3.2.1 Organization along the place of
articulation (multi-speaker)
Figure 4 shows place of articulation ABX scores for

our multi-speaker imitation model. In the MFCC
feature space, the model learns articulatory trajec-
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Figure 4: Place of articulation ABX scores (%) obtained
by the articulatory parameters learned by the model
imitating in the MFCC feature space (left) versus the
wav2vec 2.0 space (right). The horizontal orange line
shows scores obtained by MFCCs extracted directly
from the input audio. Error bars represent standard
deviation across the 8 speakers of the Audiocite test set.
All models are trained on the Audiocite training set.

tories with a place discrimination score of approxi-
mately 56%, below the acoustic baseline (orange
horizontal line) of about 62% obtained from us-
ing MFCC:s directly for discrimination. This con-
trasts with our single-speaker results, where MFCC-
derived trajectories outperformed the acoustic base-
line. This suggests MFCCs contain sufficient in-
formation for articulatory learning within a single
speaker but lack the speaker-invariant properties
necessary for cross-speaker generalization.

In the wav2vec 2.0 feature space, we again ob-
serve a clear inverted U-shaped pattern across lay-
ers. Lower layers (0-3) produced articulatory trajec-
tories with relatively poor place discrimination (56-
58%), performing similarly to the MFCC-based
model. However, performance improved dramat-
ically for intermediate layers, peaking at layer 8
with scores of approximately 77% — a substantial
improvement over both the MFCC-based model
and the acoustic discrimination baseline. Higher
layers (9-12) show a decline in place discrimina-
tion performance, with scores dropping to around
65% at layer 12, though still better than the MFCC-
based model. The optimal layer shifts from layer
7 (single-speaker) to 8 (multi-speaker), suggesting
higher-level representations benefit cross-speaker
generalization by offering increased speaker invari-
ance while maintaining sufficient phonetic detail.

These results suggest that our model fails to
learn human-like articulatory patterns from diverse
speakers when representing speech using low-level
acoustic features. However, intermediate layers
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of self-supervised models provide representations
that enable effective learning of place-distinctive
articulatory patterns across multiple speakers.

3.2.2 What speech representations best
support articulatory learning?

So far, our results show that articulatory learn-
ing performance varies dramatically depending on
which representations are used to encode speech
input and optimize the objective. This raises an im-
portant question: What properties of speech repre-
sentations enable successful articulatory learning?

To answer this question, we conducted probing
experiments to examine the information encoded
at different layers of the wav2vec 2.0 model (z de-
picted in Figure 1). In the left column of Figure
5, we compute for each layer: 1) place of articu-
lation ABX score: how well the representations
discriminate between different places of articula-
tion, 2) phone accuracy: how accurately phonetic
categories can be recognized, and 3) speaker accu-
racy: how well speakers can be identified. Results
are shown in Figure 5. The right column correlates
these scores with the ABX discrimination perfor-
mance of the learned articulatory space a.

Layer-wise analysis reveals that place and phone
accuracy peak at intermediate layers (6-9), while
speaker accuracy shows the opposite pattern with
minimum around layers 7-8. How are these linked
to articulatory learning outcomes?

Correlation plots (right column) indicate that
both place discriminability and phone accuracy pos-
itively correlate with articulatory learning perfor-
mance. On the contrary, speaker accuracy shows a
negative correlation — layers with lower speaker
discriminability correspond with better articula-
tory learning outcomes. Layer 8 (highlighted in
red) appears to represent an optimal balance point
where phonetic information is well-preserved while
speaker-specific characteristics are minimized.

This suggests successful articulatory learning
depends on representations that maintain strong
phonetic discriminability while abstracting away
speaker-specific information - precisely the proper-
ties exhibited by intermediate wav2vec 2.0. layers.

3.2.3 Intelligibility of the imitated speech

Having analyzed articulatory trajectories, we now
evaluate the intelligibility of the imitated speech.
Figure 6 shows WER for speech imitated us-
ing different wav2vec 2.0 layers. The results re-
veal a clear U-shaped pattern: lower layers (0-2)
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Figure 5: Left column: performance across wav2vec
2.0 layers (0-12) for place of articulation ABX (top),
phone accuracy (middle), and speaker accuracy (bot-
tom). The red dashed line indicates layer 8, which
yielded articulatory parameters most discriminative of
place of articulation. Right column: Correlation be-
tween each metric from the left panels and the place of
articulation ABX scores obtained by the articulatory pa-
rameters learned by the model imitating in the wav2vec
2.0 space. Layer 8 is highlighted in red. ABX scores are
computed on Audiocite (Felice et al., 2024) and phone
and speaker identification accuracies are computed via
linear probing on LibriSpeech (Panayotov et al., 2015).
All imitation models are trained on Audiocite.

yield high WER (40-53%), intermediate layers per-
form best with WER reaching 15% at layer 7, and
higher layers (10-12) show degraded performance
(25-35% WER). This pattern confirms our earlier
findings: lower layers preserve acoustic detail but
retain speaker-specific characteristics, causing high
WERs. Intermediate layers (6-8) provide optimal
representations that support cross-speaker articula-
tory mapping while abstracting away speaker char-
acteristics. Higher layers lose phonetic discrimina-
tion, making them less effective.

4 Discussion

In this paper, we presented a computational ap-
proach to understanding speech imitation and pro-
duction learning through a self-supervised model.
Our model consists of a feature extractor that trans-
forms speech into latent representations, an inverse
model that maps these representations to articu-
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Figure 6: Word Error Rate (%) of the imitated speech
transcribed using Whisper-small when using different
layers of wav2vec 2.0 as input speech representations.
Error bars represent standard deviation across the 8
speakers from the Audiocite test set.

latory parameters, and a pre-trained (and frozen)
articulatory synthesizer and vocoder that generate
speech from these parameters. The inverse model
is trained to minimize the cosine distance between
input and imitated speech representations, bridging
the gap between perception and production.

We found that representations that simultane-
ously encode phonetic information while minimiz-
ing speaker-specific characteristics lead to a low-
dimensional and interpretable articulatory space
that effectively discriminates between different
places of articulation. This, in turn, produces
more intelligible imitated speech. Our findings
align with Cho et al. (2023), who found a high
correlation between self-supervised speech repre-
sentations and articulatory trajectories using su-
pervised linear probing. Similarly, Cho et al.
(2024) demonstrated high-quality articulatory syn-
thesis and cross-speaker generalization using self-
supervised representations, but trained their inverse
model with supervised learning on articulatory data.
In contrast, our approach achieves similar physio-
logically aligned representations through entirely
unsupervised learning without requiring any articu-
latory training data (the latter being used only for
pre-training the synthesizer).

Our work provides an interesting perspective on
research in the development of speech perception
and production. According to Kuhl et al. (2008)’s
Native Language Magnet theory: “sensory learn-
ing occurs first, based on experience with language,
and this guides the development of motor patterns®.
Our results are consistent with this view, as they
demonstrate that representations that effectively
discriminate between phonetic categories while
being speaker invariant provide optimal founda-
tions for articulatory learning. If this developmen-

tal sequence holds, then the increasingly special-
ized perception for native language phonetic con-
trasts that emerges between 6-12 months (Werker
and Tees, 1984; Kuhl et al., 2006) should pro-
vide the foundation for subsequent advances in
speech production. This prediction is supported
by Hochmann and Papeo (2014), who used pupil-
lometry to demonstrate that 6-month-olds, but not
3-month-olds, can solve the acoustic invariance
problem by recognizing the same consonant across
different vowel contexts. Crucially, this perceptual
ability emerged before canonical babbling: only
3 of 14 six-month-olds who showed the percep-
tual effect had acquired canonical babbling, while
several pre-babblers showed even stronger effects.
Just as our model requires phonetically organized,
speaker-invariant representations to learn effective
articulatory mappings, infants may need to develop
similar perceptual representations before their vo-
calizations can take on the systematic properties of
their ambient language.

5 Conclusion

Our experiments demonstrate that articulatory im-
itation performance in our model is strongly in-
fluenced by the nature of input representations.
Representations that effectively encode phonetic
distinctions while minimizing speaker variability
yielded substantially better articulatory trajectories
and speech outputs. The superior performance
observed with these balanced representations pro-
vides computational evidence supporting develop-
mental theories proposing that perceptual learning
of phonetic categories guides articulatory develop-
ment. These findings suggest a possible mechanism
through which infants might solve the acoustic-to-
articulatory mapping problem: by developing rep-
resentations that normalize across speakers while
preserving phonetic contrasts, and then using these
as targets for articulatory learning. Our approach
could be extended by incorporating anatomical
development of the vocal tract, intrinsically mo-
tivated exploration mechanisms, and more natural-
istic training data. By continuing to refine com-
putational models that bridge perception and pro-
duction, we can gain a deeper understanding of the
remarkable emergence of speech in early human
development.
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6 Limitations

While our model captures important aspects of
speech motor control development, several limita-
tions should be acknowledged. Our computational
findings demonstrate plausible mechanisms con-
sistent with developmental theories; however, we
cannot establish whether this reflects the temporal
sequence of human development. Here, we dis-
cuss several limitations that need to be overcome
to develop more developmentally realistic models.

First, our approach keeps the vocal tract param-
eters fixed, whereas infant vocal tracts undergo
significant anatomical changes during develop-
ment. Future work could incorporate a dynami-
cally changing articulatory synthesizer to model
how anatomical development interacts with speech
production learning. Indeed, a more realistic model
could either: (1) use a neural-network synthesizer
with parameterized development stages, though
this would require longitudinal articulatory data
from infants, which remain particularly challeng-
ing to collect, or (2) rely on physical models
of the vocal tract based on fluid dynamics and
biomechanics that directly simulate how chang-
ing anatomical properties affect acoustic output
(Birkholz et al., 2020; Serrurier and Neuschaefer-
Rube, 2023). While physical models would provide
more interpretable parameters for developmental
changes, they typically lack differentiability — but
see Georges et al. (2024) for using a differentiable
forward model that approximates the potentially
non-differentiable synthesizer.

Second, our model does not incorporate vocal
exploration or babbling phases that characterize
infant speech development. Research shows that
infant vocal exploration serves crucial purposes
in establishing foundations for speech by forming
new vocal categories (Yoo et al., 2024). Warlau-
mont and Finnegan (2016)’s computational mod-
els demonstrate how infants might discover new
speech sounds through self-guided exploration,
with sounds that are more acoustically interesting
receiving internal rewards that encourage further
practice. This approach complements Moulin-Frier
et al. (2014)’s work on curiosity-driven learning,
where exploration is guided by seeking maximal
information gain in the sensorimotor space. Future
work could integrate these intrinsically motivated
exploration mechanisms with our imitation frame-
work to model the full developmental progression
from early vocal play to intentional imitation.

Third, while our study made progress by train-
ing on multiple unknown speakers, future work
should incorporate more naturalistic training data,
as argued in (Lavechin et al., 2022). This presents
challenges, including background noise, overlap-
ping speech, and variable acoustic environments
that better reflect what infants actually experience
(Lavechin et al., 2024). On such noisy data, visual
information could serve as a crucial guiding mecha-
nism, providing stable anchor points when acoustic
signals are ambiguous or degraded (Hueber et al.,
2020). The visibility of articulatory gestures, par-
ticularly lip movements, offers consistent cues that
could help constrain the mapping between acoustic
input and articulatory configurations.
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A Examples of inferred articulatory trajectories

—— Ground truth MFCCs —==- wav2vec 2.0 (layer 7)

Figure 7: Examples of articulatory trajectories inferred by the model imitating in the MFCC or the wav2vec 2.0
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