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Abstract

Understanding natural language commands in
situated Human-Robot Interaction (HRI) re-
quires linking linguistic input to perceptual
context. Traditional symbolic parsers lack the
flexibility to operate in complex, dynamic en-
vironments. We introduce a novel Multimodal
Grounded Semantic Role Labelling (G-SRL)
framework that combines frame semantics with
perceptual grounding, enabling robots to inter-
pret commands via multimodal logical forms.
Our approach leverages modern Vision Lan-
guage Models (VLMs), which jointly process
text and images, and is supported by an au-
tomated pipeline that generates high-quality
training data. Structured command annota-
tions are converted into photorealistic scenes
via LLM-guided prompt engineering and diffu-
sion models, then rigorously validated through
object detection and visual question answer-
ing. The pipeline produces over 11,000 image-
command pairs (3,500+ manually validated),
while approaching the quality of manually cu-
rated datasets at significantly lower cost.

1 Introduction

Robots operating in human-centred environments
require robust methods for situated language un-
derstanding, enabling the interpretation of natu-
ral language commands grounded in their current
perceptual context (Tellex et al., 2011; Shridhar
et al., 2020; Padmakumar et al., 2022; Xiao et al.,
2024). Such interpretation benefits from structured
semantic representations, or primitives, that bridge
linguistic instructions and executable robot plans
while remaining intuitive for users (Vanzo et al.,
2020).

Consider the instruction “Bring the phone on
the bed in the living room” (see Figure 1). To
execute this command, a robot must resolve lin-
guistic references to concrete visual entities (e.g.,
identifying the phone), reason about spatial rela-
tionships (e.g., the position of the phone relative to

Figure 1: Example of linking command roles to visual refer-
ents in the perceived scene.

the bed), and ground symbolically represented lo-
cations (e.g., the living room) to known topological
places. We formalise this task as grounded seman-
tic role labelling (G-SRL), a hybrid representation
combining predicate-argument structures with ex-
plicit perceptual grounding (Gildea and Jurafsky,
2002; Yang et al., 2025), in the form of absolute
position bounding boxes that refer to the mentioned
linguistic entities in the image:

BRINGING(
(THEME, “phone” , [170, 541, 852, 940])
(GOAL, “living room”, <ROOM>)

)

Here, [170, 541, 852, 940] refers to the bound-
ing box drawn around the phone entity in the im-
age and is expressed as a list of absolute numbers
[x1, y1, x2, y2]. Notably, the instruction is ambigu-
ous: the phrase “on the bed in the living room”
could refer either to the current location of the
phone or to the intended destination. If the phone
is not located on the bed, interpreting the bed as the
GOAL is to be preferred to it being the SOURCE.
Our G-SRL framework captures such ambiguities
by adapting roles according to the perceived scene.

Unlike existing approaches that typically assume
fixed, context-agnostic semantic role structures (He
et al., 2017), our Grounded SRL framework dynam-
ically adjusts the argument interpretations accord-
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ing to the perceptions of the robot about the envi-
ronment. This allows the same command statement
to yield different frames and grounding strategies,
depending on the observed scene. The emergence
of such dynamic context-sensitive representations
captures more closely the iconic and categorial na-
ture of non-symbolic elements in the environment
(Harnad, 1990). It thus realises a symbol grounding
mechanism as a suitable bridge between language
and the real world and a better model for robotic
command understanding processes (Harnad, 1990).
To our knowledge, this is the first framework to
combine fine-grained semantic parsing with percep-
tual grounding in the context of situated Human-
Robot Interaction (HRI). While existing resources
like the HuRIC corpus (Vanzo et al., 2020) provide
structured semantic annotations of natural language
commands, they are inherently limited to symbolic,
textual representations and fully neglect perceptual
grounding, required for realistic human-robot in-
teraction. Building multimodal datasets that align
linguistic instructions with corresponding visual
contexts is both costly and labour-intensive (Yang
et al., 2025; Zhao et al., 2023), often requiring
controlled environments or complex Wizard-of-Oz
setups (Anderson et al., 2018). Moreover, map-
ping linguistic expressions to a knowledge base
can be challenging and error-prone, thus requiring
extensive manual intervention.

To address these limitations, we propose a scal-
able, end-to-end pipeline for the direct genera-
tion of grounded multimodal training data from
text commands. Our approach comprises three
core components: i) extracting structured frame-
semantic representations from natural language
commands, from which we derive explicit con-
straints on entities, spatial relations, and object
states; ii) generating photorealistic images us-
ing LLM-guided prompt engineering that reflects
these semantic constraints; and iii) validating
the generated scenes to ensure consistent seman-
tics and prevent hallucinations. This final stage
combines object detection and visual question an-
swering (VQA) to check whether the generated
images satisfy the constraints extracted in step
(i). Object detectors verify the visual accessibil-
ity of relevant entities (e.g., visible(phone), not
visible(living room)), while VQA models as-
sess relational, spatial or other object properties
(e.g., whether the phone is near the bed, or whether
the oven is open). In our implementation, we
use GroundingDINO (Liu et al., 2023) for open-

vocabulary object detection and MiniCPM-V for
visual reasoning. This design builds on the princi-
ples of domain randomisation (Tobin et al., 2017)
and synthetic data generation for embodied tasks
(Gao et al., 2022; Lin et al., 2022; Pramanick et al.,
2023), allowing the automatic creation of diverse,
contextually accurate visual scenes. Unlike text-
only annotated corpora, our method captures both
the linguistic and perceptual dimensions, making
it a comprehensive approach to grounded semantic
role labelling. We applied our pipeline to augment
the HuRIC corpus, generating over 11,000 image-
command-logical form triplets. The data is used
to fine-tune state-of-the-art vision-language mod-
els. Our experiments show that models trained
on the automatically validated data sets perform
comparably to those trained on manually curated
instances, significantly reducing the cost and effort
of multimodal data creation.
Contributions. We present: i) a novel G-SRL
framework for perceptually grounded, context-
aware interpretation of robot commands; ii) an au-
tomatic pipeline that synthesises high-quality mul-
timodal training data from text-only input; iii) a
robust validation procedure combining object de-
tection and VQA to ensure rich and diverse seman-
tics in synthetic data1.

The remainder of this paper surveys related work
(Section 2). Section 3 presents our G-SRL frame-
work. Section 4 details the multimodal data gener-
ation pipeline. Section 5 reports the experimental
results. Section 6 concludes the paper.

2 Background and Related Work

Situated Language Understanding (SLU) seeks to
ground natural language commands in the percep-
tual context of an agent. Early symbolic systems
mapped language to handcrafted spatial or action
templates (Tellex et al., 2011; Chen and Mooney,
2011), but lacked robustness to ambiguity and gen-
eralisation beyond predefined environments.

Recent approaches adopt a multimodal perspec-
tive, leveraging visual and textual inputs to improve
grounding performance. Simulated environments
like ALFRED (Shridhar et al., 2020) and TEACh
(Padmakumar et al., 2022) have played a cen-
tral role, offering large-scale datasets of language-
conditioned tasks in 3D domestic environments.
However, these frameworks are constrained by

1Data and code are released via a public repository, acces-
sible at https://github.com/crux82/GroundedSRL4HRI.
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fixed libraries and limited scripted scene logic,
making it difficult to generate visually diverse and
semantically precise scenarios. For example, en-
suring that an object is simultaneously “on the bed”
and “near the window” often requires manual scene
tuning. HOLODECK (Yang et al., 2024), which
procedurally generates 3D scenes from textual de-
scriptions, addresses scalability but lacks mech-
anisms for enforcing fine-grained spatial or rela-
tional constraints: this often results in semantically
inconsistent renderings. Grounded SRL provides
a principled way to map linguistic predicates and
arguments to real-world referents, bridging sym-
bolic semantics and perceptual grounding (Gildea
and Jurafsky, 2002; He et al., 2017). Prior systems
(Bisk et al., 2018; Misra et al., 2017) modelled this
alignment through direct symbolic mappings, with
limited linguistic coverage and generalisation ca-
pabilities. More recent efforts like SHERLOCK
(Hessel et al., 2022) integrate perception and lan-
guage via probabilistic inference or cross-modal
attention, but still treat parsing and grounding as
separate stages. These heavily rely on manually an-
notated datasets with constrained visual variation.
Notably, few existing methods allow dynamic adap-
tation of frame structures based on visual context,
a critical ability for situated agents operating in
partial observability conditions. (Yang et al., 2016)
address grounding by visually aligning arguments
of a given frame with perceptual entities, assum-
ing the frame is already provided as textual input.
While this represents an important step toward con-
necting language with visible objects, the approach
remains largely symbolic and template-driven, and
does not support interpretation for free and infor-
mal natural language commands. In contrast, a
G-SRL framework should jointly interpret entire
commands and dynamically adapt frame-semantic
structures to the perceptual context, offering greater
flexibility and more context-sensitive grounding in
HRI scenarios.

Vision-Language Models (VLMs) such as
UNITER (Chen et al., 2020), BLIP (Li et al.,
2023), and PaLM-E (Driess et al., 2023) have dra-
matically improved multimodal understanding by
learning joint embeddings across text and images.
Instruction-tuned models like MiniCPM-V (Yao
et al., 2024) push this further, enabling composi-
tional visual reasoning. However, most VLMs are
trained for free-form tasks (e.g., captioning, VQA)
and lack the ability to produce structured outputs
(e.g., logical forms or frame-role graphs) required

for symbolic execution. Furthermore, their reliance
on large, human-curated datasets creates a bottle-
neck for adapting to new robotic domains or low-
resource instruction types.

Synthetic generation techniques have been
widely adopted to address data scarcity. Do-
main randomisation (Tobin et al., 2017) and 3D
simulation-based augmentation (Anderson et al.,
2018; Shridhar et al., 2020) offer scalable alterna-
tives but often fail to enforce relational constraints.
Diffusion-based methods like those used in DIAL-
FRED (Gao et al., 2022) or EGOVLP (Lin et al.,
2022; Pramanick et al., 2023) improve visual re-
alism, yet suffer from a lack of fine-grained con-
trol: objects may be hallucinated, spatial relations
misrepresented, and constraints violated. These
systems also typically assume fixed visual layouts
or asset constraints, limiting diversity and domain
transfer. The HuRIC corpus (Vanzo et al., 2020)
provides FrameNet-style semantic annotations for
robot commands, but lacks visual grounding for
situated execution. Building on this, we introduce
a fully automated pipeline that transforms logical
forms into photorealistic, semantically validated
training data. Our approach uniquely combines
frame-semantic parsing, perceptual grounding, and
scalable multimodal data generation, without man-
ual scene design.

3 Grounded Semantic Interpretation

Robust situated HRI requires a representation that
(i) is directly executable by a robot, (ii) adapts to
what the robot perceives, and (iii) remains human-
interpretable. We therefore cast command under-
standing as a mapping f : ⟨C, I⟩ −→ l, where l is a
relational, frame-based representation (Baker et al.,
1998; Fillmore, 1985) consisting of a list of frames
l = [F1, . . . , Fm], whose Fk = {(rj , hj , gj)}nk

j=1

correspond to a set of nk of roles, whose triples
include frame element types rj , lexical heads hj
and grounding information gj .

Notice that gj can be visual, when expressed as a
bounding box [xmin, ymin, xmax, ymax] relative to
the image (I), or symbolic, as a linguistic naming
of abstract concepts, such as known locations, e.g.
<ROOM> or operational states, e.g., <STATUS>.

For instance, given the command “Bring the
phone on the bed in the living room” and an image
containing a phone and a bed, the only frame in l
might be:

BRINGING(
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(THEME, “phone” , [170, 541, 852, 940])
(GOAL, “living room”, <ROOM>)

)

where two frame elements are found: the THEME

role is visually grounded to the bounding box rep-
resenting the phone, while the GOAL role is sym-
bolically linked to a known location. Note that the
bed is not explicitly included, as the bounding box
around the phone is sufficient for the robot to re-
solve the reference, reflecting the way robots often
simplify spatial reasoning.

The structure adapts to perception. If the phone
is already visible in the living room, the command
yields a different frame:

BRINGING(
(THEME, “phone”, [483, 548, 531, 633] ),
(GOAL, “bed”, <MISSING>)

)

In this case, the implicit spatial context changes
the action that must be carried out by changing the
destination, i.e., the GOAL role, allowing the robot
to proceed to bring the phone to the new location.
However, not all frame elements can be visually
grounded. To capture these cases, we define a set
of symbolic tags: <ROBOT> for the agent (e.g., the
command executor); <PERSON> for a human inter-
locutor (e.g., the speaker or recipient); <ROOM> for
known locations from the internal knowledge base;
<POSITION> for deictic or underspecified spatial
references (e.g., here, there); <STATUS> for opera-
tional states (e.g., on, closed); <ITEM> for unspec-
ified or pronominal references (e.g., it, this); and
<MISSING> for expected referents that are not vis-
ible in the current perceptual domain, i.e., a not
visible object. More examples of logical forms
and their corresponding prompts can be found in
Appendix A.

To generate the structured logical form l, we
fine-tune a Vision-Language Model as a perceptual
semantic parser: given a command C and an image
I , it autoregressively outputs a grounded, frame-
based interpretation. Models such as MiniCPM-V
2.6 (Yao et al., 2024) or Qwen2.5-VL (Bai et al.,
2025) are well suited for this task, as they can
attend to both modalities while producing struc-
tured outputs. The command C is tokenized into
language embeddings hC ∈ Rn×d, and the image
I is mapped to visual embeddings hI ∈ Rm×d

using a visual encoder (e.g., SigLIP (Zhai et al.,
2023) or ViT (Dosovitskiy, 2020)). These are fused
(via cross-attention or joint projection) into a mul-

timodal representation hC,I ∈ R(n+m)×d, which
conditions the decoder. The decoder generates a
logical form l as a sequence of frame labels, roles,
semantic heads, and groundings (e.g., BRINGING(,
(Theme, phone, [170,541,852,940]), (Goal,
living room, <ROOM>)).

Despite the finite set of frames, the task demands
fine-grained multimodal reasoning: entity recog-
nition, reference resolution, and spatial ground-
ing. This process is data-intensive, especially for
grounding via bounding boxes, which requires visu-
ally consistent supervision across diverse contexts.
To address this, we generate semantically validated
multimodal training data directly from textual in-
puts.

4 Multimodal Data Generation

Multimodal training data required in grounded lan-
guage understanding must reflect both the linguis-
tic structure of commands and some spatial or re-
lational constraints reflected in the possible per-
ceptual grounding. However, collecting such data
at scale remains a challenge. Existing simulators
offer limited visual diversity and require manual
scene design, while diffusion-based image gener-
ators, though visually rich, lack semantic control
and can easily hallucinate and result in misleading
training evidence.

To overcome these limitations, we introduce an
intelligent pipeline capable of generating consis-
tent and photorealistic training data from structured
semantic representations. By combining prompt
generation, image synthesis, and automated post-
hoc validation, our method aims to ensure that each
generated image is both visually plausible and se-
mantically aligned with the intended interpretation
of the command. Notice that the intended interpre-
tation refers specifically to the semantic interpreta-
tion that each individual generated image satisfies,
depending on the visible context. The primary
motivation is precisely to expose future models to
genuine perceptual ambiguities that naturally arise
in embodied situations. Accordingly, the intelligent
pipeline generates multiple distinct images for each
command, explicitly representing diverse semantic
groundings. For instance, the instruction “Bring
the phone on the bed” may yield:

• An image with a visible bed and the phone
placed somewhere else, grounding the GOAL

(the bed) visually with a bounding box.
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Command + Logical Form

Constraint Extraction

Constraints

Prompt Generator (e.g., GPT-4o)

Image Generation

Generated Images

Constraint Validation (Detection + VQA)

Confidence-based Ranking

Final Image Set

Figure 2: Dataset generation pipeline from semantic interpre-
tation to validated multimodal data.

• An image without any visible bed, thus
grounding the GOAL role symbolically as
<MISSING>.

Crucially, this process should involve no human
intervention, enabling the scalable creation of
grounded multimodal datasets. Figure 2 provides
an overview of the proposed pipeline, outlining the
four main stages: constraint extraction, prompt gen-
eration, image synthesis, and multimodal valida-
tion. Unlike traditional 3D simulators, our method
decouples linguistic interpretation from physical
scene construction, enabling the generation of di-
verse and contextually rich training data without
relying on handcrafted environments. Each train-
ing instance begins with a natural language com-
mand and its corresponding logical form, which
jointly define the intended semantics. The logi-
cal form specifies both the core requests as frames
(e.g., BRINGING or TAKING) and grounded frame
elements through bounding boxes or symbolic ref-
erences (e.g., <ROOM>, <STATUS>). These structures
guide the generation of photorealistic images that
faithfully reflect the spatial, relational, and referen-
tial constraints expressed in the original command.

Constraint Extraction. In real-world human-
robot interaction, visual access to all referenced
entities cannot be assumed: a robot may perceive
some, all, or none of the objects mentioned in a
command. To reflect this variability, we target mul-
tiple perceptual situations for one instruction C,
each corresponding to a distinct combination of

visible and nonvisible referents. These scenarios
drive the construction of alternative logical forms:
sometimes, frame elements are visually realised
via a bounding box. Alternatively, they are symbol-
ically annotated (e.g., <MISSING>). This approach
enables robust and flexible generalisation: a com-
mand such as “Take the phone on the bed in the
living room”, has two roles (Theme, Location) and
yields four distinct interpretations based on visibil-
ity: phone and bed can be both, or independently,
visible, with bounding boxes, or not. The variants
result in four distinct logical forms for an image
I , which in turn defines semantic constraints: a set
C(C) = A∪S∪O can be used to guide the prompt
generation and image validation stages. Here Ac-
cessibility constraints (A) enforce the visibility of
specific objects. The Spatial constraints (S) spec-
ify geometric relationships, such as ontop(phone,
bed), that are the formulas to be satisfied in a target
image I , e.g. true only if the phone is on the bed.
Finally, Object State constraints (O) are true only
when an object is in a given state in the target image
I , such as open(door) or switched-on(tv).

For instance, a command C in a partially visible
scenario might yield constraints C(C) such as:

A ={visible(phone), visible(bed),
¬visible(living room)}

S ={ontop(phone, bed)} O = ∅

C(C) not only governs what should appear in the
image, but also determines the format of the log-
ical form that the model should learn to predict.
By varying perceptual conditions in this controlled
way, we ensure that the model is exposed to realis-
tic ambiguities and learns to treat visual grounding
in a visual context-dependent manner, and not just
by linguistic descriptions.

Prompt Generation. Given a set of constraints
C(C), we use an LLM, such as GPT-4o, to gener-
ate rich, semantically controlled textual prompts
suitable for guiding diffusion-based image synthe-
sis. Inspired by recent approaches like Holodeck
(Yang et al., 2024), which use LLMs to orches-
trate entire simulated home layouts, we adopt a
lighter but equally expressive strategy: we pro-
duce short but vivid scene descriptions that encode
all semantic constraints specified in C(C), includ-
ing required entities, spatial relationships, and ob-
ject states. This generation process supports two
key goals. First, it ensures that each prompt re-
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flects the intended configuration of visible and non-
visible elements, including explicit negations (e.g.,
“no cups or robots”) or symbolic references (e.g.,
<MISSING>). Second, it introduces visual diver-
sity by prompting the same scenario from multiple
viewpoints, such as close-up, wide shot, long shot,
low-angle, and high-angle, thus enabling the train-
ing of grounding models that are robust to position
changes. For example, a BRINGING frame involv-
ing a phone and bed could yield prompts such as:

“A close-up of a smartphone clearly visible on the
bed in a cozy bedroom”, or “A high-angle view of
a bedroom where a phone is resting near the foot
of the bed”. The LLM ensures that each variation
remains fluent, realistic, and consistent with the
constraints C(C) , even in negative or ambiguous
cases. Prompts are generated using metaprompt
templates that embed the content of C(C) via slot
filling, while allowing for lexical variability and
contextual naturalness. This setup avoids rigid tem-
plates while maintaining strict control over consis-
tency. Full metaprompt examples, including cases
of entity inclusion and exclusion, are provided in
Appendix B.

Image Generation. Each structured prompt is
passed to a diffusion-based image synthesis model
(e.g., FLUX.1-schnell2), which transforms the
textual description into a photorealistic scene that
visually expresses the semantic constraints encoded
in C. The use of diffusion models enables high-
quality image generation without requiring manual
scene assembly or rigid 3D simulation pipelines.
Compared to simulation platforms like AI2-THOR
(Kolve et al., 2022), which rely on fixed assets
and scripted layouts, our approach enables greater
diversity and flexibility. It produces semantically
faithful yet visually varied scenes across a range
of indoor contexts, as each image is directly condi-
tioned on constraint-driven prompts aligned with
the original command C.

Constraint Validation. To ensure that each gen-
erated image faithfully reflects the intended seman-
tics of the command, we validate it against the
constraint set C(C) = A∪S∪O using a two-stage
process. This step is crucial, as diffusion-based
models often produce visually plausible yet seman-
tically inaccurate outputs, including hallucinated
objects, incorrect spatial relations, or missing refer-

2https://huggingface.co/black-forest-labs/
FLUX.1-schnell

ents. In the first stage, we apply GroundingDINO3,
an open-vocabulary object detection model, to ver-
ify accessibility constraints A. For each constraint
ai ∈ A, i.e., an expected or forbidden object, the
model returns a bounding box and an associated
probability pi: for all ai ∈ A, the confidence score
σGD
i (I) = pi. The missing detection (or very low

bounding box probability scores) is interpreted as a
strong signal that an object is not visually available.
This is a direct support to negative constraints, for
which σGD

i (I) = 1−pi. In cases where objects are
expected to be visible, we extract both the detection
probability and the spatial grounding, which can
be reused during training if the image is retained.

In parallel, we use MiniCPM-V 2.64 to verify
spatial (sj ∈ S) and state-based (ok ∈ O) con-
straints through targeted yes/no questions auto-
matically derived from the constraint set. The
model’s confidence in the first generated token
(“yes” or “no”) is used as the probability (σS

j = pj
or σO

k = pk) of the expected outcome, and inverted
(σS

j = 1 − pj or σO
k = 1 − pk) when support-

ing negative cases. This process results in a set of
|A|+ |S|+ |O| probabilistic scores σ, each indicat-
ing how well the image satisfies specific constraints
in C(C). These scores are combined into a global
consistency score σ(I) for a generated image I , via
log-likelihood summation:

σ(I) =
∑

ai∈A

log(σGD
i ) +

∑

sj∈S

log(σS
j ) +

∑

ok∈O

log(σO
k )

Confidence-Based Ranking and Selection.
Rather than enforcing rigid thresholds on indi-
vidual constraints (e.g. ai), the high-throughput
of our pipeline is exploited to generate multiple
candidate images I per command and select those
with the highest aggregate scores σ(I). The top-k
selection strategy over σ(I) balances precision
and coverage: while some semantically inaccurate
samples may still receive high σ(I), this happens
very rarely, as confirmed by our empirical analysis.

Crucially, even without assuming perfect filter-
ing, the ranking mechanism supports the emer-
gence of rich semantic phenomena, i.e. scenes
where language, structure, and perception are most
tightly aligned. In later sections, we show how
training on these sets of decreasing quality levels
(i.e. σ(I) scores) supports good generalisation and

3https://github.com/IDEA-Research/
GroundingDINO

4https://huggingface.co/openbmb/MiniCPM-V-2_6
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Top-k Malformed Anomalous
Elements BBox Errors State

Errors
Spatial
Errors

Top-1 1.18% 1.40% 2.32% / 2.37% 0.16% / 0.88% 1.26% / 2.87%
Top-2 1.34% 1.45% 2.40% / 2.43% 0.32% / 1.75% 1.42% / 3.23%
Top-3 2.30% 1.95% 2.69% / 2.74% 0.32% / 1.75% 1.50% / 3.42%

Table 1: Manual validation error rates across Top-1, Top-2, and Top-3 image subsets. For BBox, State, and Spatial categories,
both absolute error rates (over all images) and relative rates (only over applicable cases) are reported.

maximises the benefits from increasing data diver-
sity: residual noise is evidently limited. The pro-
posed validation pipeline, beyond its filtering role,
acts as an effective inductive scaffold for grounded
learning by pushing for weak but effective supervi-
sion.

5 Experimental Evaluation

We evaluate our approach by (i) measuring the
precision of our dataset validation, and (ii) fine-
tuning VLMs on validated vs. unvalidated data to
assess robustness and grounding quality at scale.

Data Generation and Validation. To assess the
quality of the generated data, we apply our mul-
timodal pipeline to the HuRIC corpus5, which in-
cludes 650 commands annotated with frame seman-
tics. After discarding utterances involving human
references (e.g., “follow John”), we retain 619 com-
mands suitable for visual rendering.

Each command is used to generate approxi-
mately 90 candidate images via prompt-based syn-
thesis. These are scored through our multimodal
constraint validation process (GroundingDINO for
object detection, MiniCPM-V for spatial and state
verification). Images are ranked by σ(I) confi-
dence score, i.e. the cumulative log-likelihoods
across accessibility, spatial and object constraints.

We define the resulting collection as the Com-
plete Dataset, comprising all automatically val-
idated samples across Top-1, Top-2, and Top-3
ranking levels. Here, Top-k indicates the reten-
tion of the k highest-scoring images per command.
This yields approximately 1,265 images per level
and 3,796 total (about 6 per command), which are
used for both training and evaluation. To estimate
the true quality of these samples, we perform a
full manual validation of the Complete Dataset.
Two annotators independently reviewed all im-
ages according to five criteria: malformed render-
ing, anomalous or implausible elements, incorrect
bounding boxes, inconsistent object states, and in-

5https://github.com/crux82/huric

valid spatial relations. An image was accepted into
the Validated Dataset only if it passed all five vali-
dation dimensions without any flagged errors. In
case of disagreement between annotators, conflicts
were resolved through discussion until consensus
was reached. The resulting set includes 3,399 im-
ages (about 93% of the Complete set, up to Top-3),
averaging 5.5 verified samples per command.

Annotation was conducted by two annotators
via a structured interface presenting each image
alongside the corresponding command, required
and forbidden entities, expected object states, and
spatial constraints. Validation options followed
standardised categorical labels, with minimal sub-
jectivity. More information in Appendix D. Table 1
reports the distribution of error types across the
Top-1, Top-2, and Top-3 subsets. For bounding
box, state, and spatial errors, we report both ab-
solute values (over the full set) and relative val-
ues (restricted to applicable cases). Malformed
and anomalous images remain below 2% for Top-
1 and Top-2 sets, but rise to 2.30% for the Top-3
set. Bounding box errors affect 2.32% of Top-1
images (2.37% relative), while state and spatial vi-
olations remain under 1.5%. As expected, noise
increases slightly with lower-ranking images, re-
flecting the trade-off between data volume and se-
mantic precision. This validation confirms that
our ranking strategy reliably filters noise, yielding
high-quality, semantically consistent images. The
Validated Dataset serves as a robust benchmark
for evaluation, while the larger Complete Dataset
supports scalable training with minimal annotation
cost. In the next experiments, we compare model
performance across both sets and assess robustness
to unvalidated data.

Model Fine-Tuning and Evaluation. We eval-
uate the task of grounded semantic interpretation
using two recent vision-language models: Qwen-
VL 2.5 and MiniCPM-V 2.6. The objective is to
generate a structured FrameNet-style logical form
from a natural language command and an associ-
ated image. Outputs include the correct semantic
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Fine
Tuning Frames Frame

Elements
Semantic

Head
Grounding

F1 IoU IoU
(match-only)

NO 62.39% 33.83% 24.52% 48.63% 6.94% 20.82%

Top-1 97.69% / 97.69% 96.09% / 95.79% 94.78% / 94.90% 84.78% / 83.81% 44.72% / 43.75% 57.68% / 54.84%
Top2 97.32% / 95.79% 95.84% / 94.42% 93.22% / 93.13% 83.15% / 83.26% 47.30% / 39.31% 66.82% / 58.32%
Top-3 96.58% / 96.12% 94.37% / 95.18% 93.51% / 94.74% 86.15% / 88.6% 52.12% / 52.44% 71.37% / 67.64%

Table 2: MiniCPM-V 2.6 performance on grounded semantic interpretation. Metrics (micro-F1 %) cover Frames, Frame+Element
pairs, and full semantic structures (incl. surface forms). Grounding is evaluated via F1 on symbolic tags (e.g., <ROOM>, <SPEED>),
average IoU on all expected boxes, and IoU on correctly matched elements (match-only). Results shown for zero-shot (NO) and
fine-tuning on Top-1/2/3 ranked images from Complete and Validated sets (format: Complete / Validated).

frame, its frame elements (FEs), their lexical fillers,
and, when applicable, grounded bounding boxes.
Representative examples are shown in Appendix A.

We consider both zero-shot and fine-tuned set-
tings. In the supervised case, models are trained
on either the Complete or Validated version of the
dataset, enabling a direct comparison of perfor-
mance under different levels of annotation noise.
All experiments use English text and follow an
80/10/10 split for training, validation, and test. We
thus consider three progressively larger training
sets: Top-1, Top-2, and Top-3, containing respec-
tively 1,016, 2,031, and 3,046 training instances,
corresponding to the top-ranked 1, 2, or 3 images
per command, cumulatively. A manually validated
subset of these sets includes 953 (Top-1), 1,911
(Top-2), and 2,865 (Top-3) examples. The corre-
sponding development sets contain 124, 248, and
372 instances (or 104, 216, and 327 for the vali-
dated subset). Evaluation is performed on the val-
idated Top-1 set for all experiments to ensure a
consistent test benchmark across training condi-
tions6. Full training details and hyperparameters
are provided in Appendix E. We report microav-
eraged Precision, Recall, and F1 scores over mul-
tiple levels of interpretation: i) frame classifica-
tion, ii) frame plus frame element (FE) assignment,
and iii) full semantic tuples including the lexical
head of each FE (case insensitive, whitespace nor-
malised). We additionally report: iv) F1 for special
symbolic tags (e.g., <ROOM>, <SPEED>) that do not
require visual grounding, and v) average Intersec-
tion over Union (IoU) for visually grounded argu-
ments. All metrics are computed per command,

6To increase training diversity, we apply a basic data aug-
mentation technique by horizontally flipping each image and
adjusting the corresponding bounding boxes. This procedure
doubles the number of training samples for each set. Although
flipping may occasionally introduce inconsistencies with the
original command, e.g., left / right references, it consistently
improves performance across all training configurations.

enabling a comparison between models and train-
ing conditions. Table 2 reports the performance
of MiniCPM-V 2.6 on the Visual Grounded SRL
task on the Validated Test Set, both in zero-shot
(row NO) and after fine-tuning on progressively
larger subsets of the generated dataset. Metrics are
micro-averaged, and scores are reported as trained
on the Complete / Validated sets, where applicable.
In the zero-shot setting, the model exhibits limited
interpretive ability: while Frame prediction reaches
62.39% F1, performance sharply drops for Frame
Elements (33.83%) and for surface-level realisa-
tions (24.52%). Visual grounding is particularly
weak, with average IoU at 6.94% and semantic tag
F1 at 48.63%, indicating that the zero-shot model
lacks the inductive bias to associate structured se-
mantics with visual evidence. Fine-tuning leads to
a substantial performance boost. On Top-1 training
data, the model surpasses 97% F1 on Frame pre-
diction, over 95% on Frame Elements, and around
95% on complete semantic tuples. While interpre-
tive scores are nearly identical across the Com-
plete and Validated datasets, grounding quality
is slightly higher for the Complete dataset, with
better F1 (84.78% vs. 83.81%), IoU (44.72% vs.
43.75%), and bounding box alignment. As more
image candidates are added (Top-2 and Top-3), in-
terpretive performance slightly declines due to in-
creased noise, yet grounding consistently improves.
Average IoU grows from 44.72% to 52.12% (Com-
plete), and from 43.75% to 52.44% (Validated).
The IoU (match-only) metric, which only considers
elements correctly identified and grounded, also
improves markedly (from 57.68% to 71.37% in
the Complete dataset), confirming that visual diver-
sity enhances spatial grounding quality. To further
investigate whether grounding performance contin-
ues to improve with additional data, we extended
training to include Top-4 through Top-10 images
per command (see Figure 3). Each increment adds
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Figure 3: Grounding accuracy improves with larger training
sets. The figure shows the IoU on the Validated Set as more
Top-k image candidates per command are used during training.
Each Top-k batch includes roughly 1, 000 new examples.

approximately 1,000 new training examples, all
without manual validation. Results show a consis-
tent increase in the IoU score, which reaches nearly
64.66% on Top-10 (with 10,153 images used for
training and 1,240 for validation, over 11,300 im-
ages in total), compared to 52.44% for Top-3. This
confirms that spatial grounding consistently ben-
efits from increased visual coverage, suggesting
that diminishing returns have not yet been reached
and that further gains may be possible with even
larger sets. A full error analysis is provided in Ap-
pendix F. To contextualise these results, we also
evaluated Qwen-VL 2.5 in zero-shot. Its perfor-
mance aligns with that of MiniCPM in the same set-
ting, with F1 scores of 63.81% (Frames), 40.28%
(Frame Elements), and average IoU of 6.02%. We
additionally tested GPT-4 in zero-shot, but results
were inconsistent, likely due to the lack of exposure
to FrameNet semantics, an observation consistent
with Cheng et al. (2024). Given these factors, and
to optimise training resources, we focused fine-
tuning efforts exclusively on MiniCPM. Overall,
these findings confirm that increasing visual cover-
age, even with some noise, meaningfully improves
multimodal grounding and strengthens the connec-
tion between language and perception.

6 Conclusion and Future Work

We presented a novel framework for Grounded
Semantic Role Labelling (G-SRL) to interpret
robot commands through joint linguistic and visual
grounding. Our main contributions are: i) a unified
semantic representation that links FrameNet roles
to perceptual anchors; ii) a scalable pipeline for
generating and validating multimodal data from
symbolic input; and iii) empirical evidence that
such data notably improves both interpretation
and grounding in vision-language models. To the
best of our knowledge, no public dataset currently

supports the full scope of our G-SRL framework,
which integrates frame semantics, visual and sym-
bolic grounding, and perceptual variability. We
therefore built such a resource, demonstrating its
effectiveness, while leaving adaptation to new do-
mains as future work. Results confirm that train-
ing on diverse, ranked visual contexts, even with
some noise, substantially enhances grounding. Al-
though our evaluation relies on synthetic images,
this controlled setting enabled us to rigorously as-
sess perceptual-semantic alignment at scale, while
manual validation ensured that the test set remained
synthetic and close to the real-world but free of hal-
lucinations or missing information. Future work
will explore how models can autonomously infer vi-
sual constraints from language, and how our struc-
tured outputs can align with broader semantic for-
malisms such as AMR (Banarescu et al., 2013).
We are also interested in training and evaluation
on data from 3D simulation environments such as
Holodeck (Yang et al., 2024) or DIALFRED (Gao
et al., 2022), though their visual outputs are typ-
ically less realistic than diffusion-based images.
Ultimately, we aim to enable robots to interpret nat-
ural instructions by reasoning about both what they
see and what they should expect to see, including
multimodal instruction following (e.g., virtual or
assistive agents), visual question answering, sym-
bolic planning tasks and evaluating generalisability
to real-world, noisy perceptions and actual Human-
Robot Interaction scenarios.
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Limitations

While our resource provides a rich and coherent
mapping between linguistic expressions and visu-
ally grounded situations, it currently exhibits some
limitations. First, the domain is restricted to do-
mestic environments, reflecting the original scope
of the HuRIC dataset. Although this focus ensures
coverage depth and contextual realism, it may limit
the immediate applicability to other domains such
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as outdoor or industrial scenarios. Second, all im-
ages are synthetic, synthesised via diffusion models
to enable full control and annotation. Neverthe-
less, human annotators were involved to ensure the
perceived realism and plausibility of each scene,
especially for evaluation purposes. Moreover, our
current diffusion-based image generation approach
is scene-agnostic: while we focused specifically
on per-image semantic alignment, future work will
consider topological consistency across multiple
scenes (e.g., coherent views of multiple rooms).
Third, our current setup is based on 2D render-
ings, without incorporating 3D geometry or depth
information, which could be relevant in future ex-
tensions involving spatial reasoning. Fourth, the
selected frame set, while representative of every-
day interactions, does not exhaustively cover the
full range of FrameNet frames; future work may
explore extending the coverage. Lastly, the dataset
is grounded in English and reflects a culturally
specific domestic setting; multilingual and cross-
cultural extensions would be valuable directions to
enhance generalizability.
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A Appendix: Grounded Semantic Representation Examples

This Section shows different examples for grounded semantic role labelling applied to natural language
commands. Each command (C) is mapped to one or more FRAMES with role (Frame Elements) grounded
either visually (bounding boxes) or symbolically (e.g., <ROBOT>, <ROOM>). For each example, we present
the natural language command (C), the constraints (C(C)) derived from the environment as described in
Section 4 and its corresponding interpretation.

(a). The image for Example 1. (b). The image for Example 2. (c). The image for Example 3.

Example 1 – Navigating to a room.
Command: C =“could you go to the kitchen please”
Constraints: A = {¬visible(kitchen)} S = ∅ O = ∅.
The robot must move to a known location. The GOAL is grounded symbolically via its internal map.

MOTION(
(AGENT, “you”, <ROBOT>), // symbolic grounding
(GOAL, “kitchen”, <ROOM>) // symbolic grounding

)

Example 2 – Delivering an object.
Command: C =“bring me the bottle”
Constraints: A = {visible(bottle)} S = ∅ O = ∅.
The robot is asked to bring the visible object in Figure 4b to a person.

BRINGING(
(THEME, “bottle”, [402, 171, 576, 821]]), // visual grounding
(BENEFICIARY, “me”, <PERSON>) // symbolic grounding

)

Example 3 – Retrieving an object not currently visible.
Command: C =“take the wallet from the table”
Constraints: A = {¬visible(wallet), visible(table)} S = ∅ O = ∅.
The wallet is not in the current scene; the table is grounded visually.

TAKING(
(THEME, “wallet”, <MISSING>),
(SOURCE, “table”, [201, 597, 1021, 1020])

)

Example 4 – Turning on a device.
Command: C =“turn on the tv”
Constraints: A = {visible(tv)} S = ∅ O = {on(tv)}.
The device is visible; the state is symbolically grounded.

CHANGE_OPERATIONAL_STATE(
(DEVICE, “tv”, [313, 348, 854, 652]),
(OPERATIONAL_STATE, “on”, <STATUS>)

)
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(a). The image for Example 4. (b). The image for Example 5. (c). The image for Example 6.

Example 5 – Placing an object in a vague location.
Command: C =“put the keys there”
Constraints: A = {visible(keys), visible(table)} S = ∅ O = ∅.
The destination is deictic (“there”) and symbolically marked.

PLACING(
(THEME, “keys”, [783, 884, 947, 994]),
(GOAL, “there”, <POSITION>)

)

Example 6 - Handling pronominal references.
Command: C =“pick it up”
Constraints: A = {visible(phone), visible(apples)} S = {near(phone, apples)} O = ∅.
The object “it” (referring to the phone) is underspecified and grounded symbolically.

TAKING(
(THEME, “it”, <ITEM>)

)

(a). The image for Example 7. (b). The image for Example 8. (c). The image for Example 9.

Example 7 – Switching off a device.
Command: C =“switch off the lamp”
Constraints: A = {visible(lamp), visible(sidetable)} S = {ontop(lamp, sidetable)}

O = {on(lamp)}.
The device is grounded visually; the state “off ” is symbolic.

CHANGE_OPERATIONAL_STATE(
(DEVICE, “lamp”, [385, 139, 714, 804]),
(OPERATIONAL_STATE, “off ”, <STATUS>)

)

Example 8 – Composed command with two frames.
Command: C =“can you go to the kitchen and bring me some bread”
Constraints: A = {visible(kitchen), visible(countertop), visible(bread)}

S = {ontop(bread, countertop)} O = ∅.
The instruction involves a sequential action: navigating to a room and then bringing an object to the
speaker.
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MOTION(
(AGENT, “you”, <ROBOT>),
(GOAL, “kitchen”, <ROOM>)

)

BRINGING(
(BENEFICIARY, “me”, <PERSON>),
(THEME, “bread”, [746, 547, 864, 615])

)

Example 9 – Multiple bounding boxes required.
Command: C =“bring the box near the closet of the bedroom”
Constraints: A = {visible(bedroom), visible(box), visible(closet)}

S = {far(box, closet)} O = {closed(closet)}.
The instruction requires moving an object near another, both of which must be grounded in the image.

BRINGING(
(THEME, “box”, [415, 694, 608, 863]),
(GOAL, “closet”, [445, 481, 607, 636])

)

B Appendix: Metaprompt Examples for Controlled Image Generation

This Section presents two examples of metaprompts used to generate natural language descriptions
that serve as inputs to a diffusion-based image synthesis model (FLUX.1-schnell). These prompts are
crucial for generating grounded visual scenes aligned with robot commands, particularly for training
vision-language models to perform semantic grounding.

The first metaprompt enforces the exclusion of specific entities, producing images where target objects
such as Person, Robot, or Cup are absent. This is useful for generating negative samples: examples in
which grounding should fail or where references are visually unsupported. The second metaprompt, in
contrast, ensures the inclusion of a specified entity, thereby supporting the generation of positive samples
where visual grounding is explicitly correct and interpretable. Both strategies are essential for learning
robust multimodal grounding functions.

Each metaprompt generates five diverse image descriptions, each corresponding to a different visual
perspective (close-up, wide-shot, long-shot, low-angle, and high-angle). This variation helps the model
generalise across different spatial framings and enhances its robustness to visual composition changes.

Metaprompt: Entity Exclusion

This prompt is designed to synthesise scenes in which specific entities must not appear. It was used to
generate images that challenge the grounding model by omitting objects referenced in the command.
Such examples are important for ensuring that the model does not hallucinate entity bindings when visual
evidence is absent.

You are a prompt engineer and an expert in computer vision.

Your task is to generate five detailed prompts that will be used to create images for a grounding detection model
based on the FLUX.1-schnell model. These images will be paired with robot commands to support grounded
interpretation in real-world environments.

Input Description:

You will receive:

• Important ENTITIES to exclude: Objects that must never appear in any prompt.
• Optional ENTITIES: Objects that may appear in some prompts but not all.
• Spatial Relations: Positional relationships between important entities (if any).
• Entity Location: The environment in which entities should be situated.
• Frame Semantics: A semantic representation of a robot command, describing the intended action.

Prompt Requirements:
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• All five prompts must omit the excluded entities.
• Describe the scene from five distinct visual perspectives:

– Close-up
– Wide-shot
– Long-shot
– Low-angle
– High-angle

• Use a domestic indoor setting.
• Vary optional entities across prompts.
• Maintain realism and contextual plausibility.

Example Input:

• Entities to exclude: Person, Robot, Cup
• Optional entities: Plate, Cabinet, Pasta, Can, Bag
• Location: Apartment
• Command: “please carry the mug to the bathroom”

• Frame Semantics:
– Frame: Bringing
– Theme: Cup
– Goal: Bathroom

The following output was generated based on this metaprompt:

[
"A wide shot of a modern kitchen interior with a plate and a cabinet visible. The focus is on an empty table, and
there are no cups, robots, or people present.",
"A close-up shot of a dining room table with a can of pasta and a paper bag. The image is cropped tightly to exclude
any view of a cup or person.",
"A high-angle shot of a bathroom entrance showing the floor and a cabinet. A plate is barely visible in the hallway,
emphasising the path to the bathroom.",
"A long shot from the living room toward the kitchen, with no cup, person, or robot visible. A bag and a can are
placed near the door.",
"A low-angle shot from the corridor looking up at a cabinet near the bathroom door. Optional objects like pasta are
included, but all excluded entities are absent."
]

These prompts help ensure that the resulting images do not contain visual evidence for entities that
should not be grounded. This discourages over-reliance on textual priors during multimodal training and
supports more reliable detection of false positives.

Metaprompt: Entity Inclusion
This second metaprompt is used to enforce the inclusion of a specific visual entity in every generated
image. In this case, the target object (e.g., Cup) must be clearly visible and semantically consistent with
the frame semantics interpretation of the command. Such prompts are vital for generating positive training
instances where grounded references are unambiguous and visually present.

You are a prompt engineer and an expert in computer vision.

Your task is to generate five detailed prompts that will be used to create images for a grounding detection model
based on the FLUX.1-schnell model. These images will be paired with robot commands to support grounded
interpretation in real-world environments.

Input Description:
You will receive:

• Important ENTITIES to include: Objects that must appear in every prompt.
• Entities to exclude: Objects that must not appear.
• Optional ENTITIES: Objects that may or may not appear.
• Spatial Relations: Positional relationships to enforce (if any).
• Entity Location: The setting of the scene (e.g., apartment).
• Frame Semantics: A semantic representation of the command.

Prompt Requirements:

• All five prompts must include the target entity.
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• Describe the scene from five distinct visual perspectives:
– Close-up
– Wide-shot
– Long-shot
– Low-angle
– High-angle

• The target object must be clearly visible and not occluded.
• Use a realistic domestic setting.
• Vary optional entities across prompts.

Example Input:

• Entities to include: Cup
• Entities to exclude: Person, Robot
• Optional entities: Plate, Cabinet, Pasta, Can, Bag
• Location: Apartment
• Command: “please carry the mug to the bathroom”
• Frame Semantics:

– Frame: Bringing
– Theme: Cup
– Goal: Bathroom

The LLM-generated output for this configuration was:
[
"A close-up of a ceramic cup resting on a wooden countertop in a kitchen, with a bag of pasta in the background.
The cup is clearly visible.",
"A wide-angle shot of an apartment living area showing a cup placed centrally on a table. Other optional objects like
a cabinet are visible.",
"A long shot of a corridor leading to the bathroom, with a cup on a tray carried by an unseen agent. No person or
robot is visible.",
"A low-angle shot of a shelf where a cup is positioned, taken from the floor perspective. Optional cans and bags are
out of focus in the corner.",
"A high-angle shot of a bathroom entrance with a cup on the floor near the door. The cup is the primary object of
focus, with no occlusion."
]

C Appendix: Question Templates for Constraints Validation

In this Appendix Section, we report the templates used during the automatic Constraints Validation process
with GroundingDINO and MiniCPM for computing the quality scores of an image. These templates asses
the C(C) = A ∪ S ∪O set of constraints from Section 4:

• A, i.e., Accessible Entities, constraints are validated through the invocation of GroundingDINO over
an image with a simple request “a entity_name”. For instance, for Figure 1 we would ask for “a
phone” or “a bed”, to exploit its Object Detection capability from short sentences.

• S, i.e., the Spatial Relations, constraints are checked using MiniCPM over an image with a natural
language question “Is the entity_name_1 {far from/close to/on top of} entity_name_2? Answer
only yes or no.” in order to exploit its Question Answering capability as a Visual LLM. As an
example, for Figure 1, a question would be “Is the phone on the bed? Answer only yes or no.”.

• O, i.e., the Object State Properties, constraints are validated using MiniCPM again over an image
with a natural language question “Is the entity_name {closed/open/on/off}? Answer only yes or no.”
in order to exploit its Question Answering capability as a Visual LLM. For example, for Figure 1, a
question could be “Is the phone on? Answer only yes or no.”.

D Appendix: Annotation Guidelines for Image Validation

This appendix details the protocol followed for manually validating the automatically generated dataset.
Each image was assessed independently by two annotators along five distinct dimensions covering visual
realism, object plausibility, grounding accuracy, and semantic consistency. The goal of the annotation was
to identify and exclude images exhibiting any form of visual or semantic failure, thereby constructing
a high-precision evaluation set. The following definitions clarify the criteria applied to each validation
dimension and correspond directly to the error categories reported in Table 1.
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Annotation task. Each generated image was manually evaluated along five dimensions to assess its
semantic and visual correctness. Two annotators performed the validation process using a structured
interface. Each dimension is linked to a specific error category reported in Table 1. An image was retained
in the Validated Dataset only if it exhibited no errors in any category.

Malformed. Flags visually broken or stylistically inconsistent images. An image was marked as
malformed if it appeared corrupted, incoherent, or rendered in a non-photorealistic style (e.g., cartoon,
sketch).

Anomalous Elements. Captures physically implausible or semantically inconsistent elements, such as
floating objects, disembodied limbs, or presence of irrelevant figures (e.g., robots or humanoids without
justification).

Bounding Box Errors (BBox). Evaluates whether all expected entities listed as “must be visible” are
correctly localised with bounding boxes. Errors include missing boxes, inaccurate placements, or false
positives for entities that should be absent. Errors are reported both as absolute percentages (over the full
dataset) and relative percentages (restricted to cases where bounding boxes are required).

State Errors. Applies when the command specifies expected object states (e.g., “oven should be open”).
Errors are marked if the visual depiction contradicts the expected state. Only images with explicit state
constraints were considered for this check.

Spatial Errors. Assesses whether spatial relationships (e.g., “on top of”, “near to”, “inside”) are
correctly realised. A relation was considered violated if the visual arrangement contradicted the specified
constraint. “Far from” conditions are considered satisfied if one of the entities is absent, as this implies
distance.

Notes. Annotators selected the most appropriate category via dropdown fields. When uncertain, com-
ments were recorded for review. All errors were treated as independent, and no partial credit was assigned:
a single violation in any category led to exclusion from the Validated Dataset.

E Appendix: Training Hyper-parameters

All models were trained using 2 NVIDIA A100 80GB GPUs in parallel with bfloat16 (bf16) precision.
We adopted the DeepSpeed framework with ZeRO Stage 3 for memory and compute optimisation.

Training Strategy. All model components were fine-tuned end-to-end. The optimal training configura-
tion was selected based on performance on the development set. Unless otherwise specified, the following
hyperparameters were used:

• Learning rate: 1e-6

• Batch size: 1

• Gradient accumulation steps: 1

• Epochs: 3

MiniCPM-V Specifics. MiniCPM was fine-tuned using the AdamW optimiser with default parameters.
The model was trained using full-resolution images without pixel downscaling. The best results were
achieved with:

• weight_decay = 0.1

• adam_beta2 = 0.95

• warmup_ratio = 0.01
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Optimisation and Checkpoints. Training progress was monitored on the development set using the
Cross-Entropy Loss as the main criterion for early stopping and hyperparameter selection. All runs used
the default AdamW settings and did not require any form of gradient clipping or loss stabilisation beyond
the specified max_grad_norm. Checkpoints were saved at regular intervals, and the best model according
to development performance was used for final evaluation.

Training and Inference Prompt. The following structured prompt is used for both models during
Training and Inference.

You are given a natural language command and a corresponding image depicting a domestic environment. Your task is
to convert the command into a structured, grounded semantic representation in the form of predicate-argument
structures.

This means you must:

• Identify the semantic frames expressed in the command (e.g., MOTION, TAKING, BRINGING, LOCATING,
PLACING, CHANGE_OPERATIONAL_STATE, etc.)

• For each frame, extract a list of frame elements, grounded visually whenever possible.

Your output must be a list of dictionaries, one per frame. Each dictionary contains:

• "frame": the name of the frame (string), following FrameNet conventions.
• "elements": a list of dictionaries, each with:

– "name": the role of the frame element (e.g., Theme, Goal, Agent, Beneficiary, etc.)
– "surface": the exact text span from the command. It must be the semantic head, i.e., the word referring to

the object.
– "bbox_2d", either:

* a list of four integers [x1, y1, x2, y2] representing a visible object’s bounding box in the image
* or a symbolic tag among <ROBOT>, <PERSON>, <ROOM>, <POSITION>, <STATUS>, <MISS-

ING> and <ITEM>

Important guidelines:

• Only annotate what is visually present in the image and is relevant for the command (as a frame element).
• Use <MISSING> if the referred object cannot be seen.
• Use <ROBOT> for the robot, and <PERSON> for a human addressee.
• Use <POSITION> when the target is an abstract spatial reference like "there" or "here".
• Use <STATUS> for expressions of operational state (e.g., "on", "off").
• Use <ITEM> for references to unspecified or deictic objects (e.g., pronouns like "this", "that", or "it" when

referring to a visible item).
• All tags must be typed exactly as given, with no added characters or typos.
• Always extract surface spans literally from the input command.
• Your output must be in valid JSON, and formatted as a single line.

—

Examples:

<IMAGE>
Command: could you go to the kitchen please

Output:

[{'frame': 'MOTION', 'elements': [{'name': 'Agent', 'surface': 'you', 'bbox_2d': '<ROBOT>'},
{'name': 'Goal', 'surface': 'kitchen', 'bbox_2d': '<ROOM>'}]}]

—

<IMAGE>
Command: bring me the bottle

Output:

[{'frame': 'BRINGING', 'elements': [{'name': 'Agent', 'surface': 'you', 'bbox_2d': '<ROBOT>'},
{'name': 'Theme', 'surface': 'bottle', 'bbox_2d': [210, 612, 780, 830]},
{'name': 'Beneficiary', 'surface': 'me', 'bbox_2d': '<PERSON>'}]}]
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—

<IMAGE>
Command: take the wallet from the table

Output:

[{'frame': 'TAKING', 'elements': [{'name': 'Agent', 'surface': 'you', 'bbox_2d': '<ROBOT>'},
{'name': 'Theme', 'surface': 'wallet', 'bbox_2d': '<MISSING>'},
{'name': 'Source', 'surface': 'table', 'bbox_2d': [480, 660, 960, 900]}]}]

—

<IMAGE>
Command: turn on the tv

Output:

[{'frame': 'CHANGE_OPERATIONAL_STATE', 'elements': [{'name': 'Agent', 'surface': 'you',
'bbox_2d': '<ROBOT>'}, {'name': 'Operational_state', 'surface': 'on', 'bbox_2d': '<STATUS>'},
{'name': 'Device', 'surface': 'tv', 'bbox_2d': [251, 337, 832, 708]}]}]

—

Now do the same for the following example:
<IMAGE>
Command: <INPUT_COMMAND>

Notice: For illustrative purposes, throughout the main text and appendix, the model outputs are displayed
in a bracketed format. However, in the actual prompts, the expected output is in standard JSON format,
which is also the format natively generated by the trained models.

F Appendix: Error Analysis

In this section, we provide an error analysis of the trained models on our multimodal dataset for the
Grounded Semantic Role Labelling task. Each input consists of an image, a textual system prompt
(Appendix E), and the natural language command. The expected output is a well-structured JSON object,
as defined in Appendix E. We categorise the observed errors into three main types, illustrated below with
representative examples:

• Semantic Misinterpretation: The model misrepresents the intended meaning of the input command.
For instance, it may classify an action as Bringing (involving both a Source and a Goal) instead of
the correct Taking frame, where the action involves only picking up an object. These errors reflect a
failure to capture the semantics of the command.

• Structural Inconsistency: The model produces an output that deviates from the expected frame
structure. This includes introducing superfluous frames or frame elements, or omitting mandatory
ones. For example, in a command involving a sequential action (e.g., moving and then interacting),
the model might omit the Motion frame or wrongly insert it when it is not required. These issues are
not about semantics but about conformance to the expected structure.

• Grounding Errors: The model fails to correctly associate frame elements with visual objects in
the image. It may hallucinate an object and provide a bounding box for an entity that is not present,
or omit a required bounding box entirely. These errors point to failures in visual grounding and
perceptual alignment.

Additionally, a fourth hypothetical category could be defined as Invalid Output, referring to completely
malformed or irrelevant generations outside the frame semantics domain. However, such cases did not
occur in our experiments, likely due to the strong language modelling capabilities of the underlying LLMs.
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Semantic Misinterpretation. This is the rarest category of error and was observed in a single case
involving the command: “go to the table and take the fork near the microwave on the shelf ”, paired with
the image in Figure 7. The correct interpretation requires a Motion action towards the table, followed by a
Bringing action involving the fork to a place near the microwave. Due to a degree of linguistic ambiguity,
the model incorrectly interprets the command as a simple Taking action, and produces an incomplete
grounding:

MOTION(
(GOAL, “table”, [2, 498, 1021, 1019]),

)

TAKING(
(THEME, “fork”, <MISSING>)

)

Interestingly, the model trained on the Top-5 dataset (with broader image exposure) is able to produce
a bounding box for the fork, albeit still within the incorrect Taking frame. This suggests that increased
visual variety enhances grounding capabilities, even when semantic disambiguation remains an issue.

Figure 7: The image associated with the command “go to the table and take the fork near the microwave on the shelf ”, where
the models misinterpret the command with a Taking action instead of Bringing.

Structural Inconsistency. This type of error is infrequent, as most models learn to respect the structure
of Semantic Role Labelling and the correct associations between Frames and Frame Elements. However,
some models occasionally introduce unnecessary Frames. Consider the command “take the bottle of water
on the table” and the corresponding image in Figure 8. The model trained on the Top-1 dataset produces
the following output:

TAKING(
(THEME, “table”, [210, 612, 780, 830]),

)

BEING_LOCATING(
(THEME, “bottle”, <MISSING>),
(LOCATION, “table”, [480, 660, 960, 900])

)
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Although this output is not semantically incorrect, the inclusion of the Being_Located frame is unnec-
essary. The added frame provides further detail by reiterating that the bottle is located on the table,
but this level of elaboration was not required. Hence, the output may be considered redundant rather
than erroneous. Models trained on the Top-2 and Top-3 datasets correctly omit the additional frame,
demonstrating that broader visual coverage helps reinforce structural precision too.

Figure 8: The image associated with the command “take the bottle of water on the table”, where the models introduce a Frame
in the interpretation.

Grounding Errors. These errors form almost 27% of the cases and occur when the model fails to
associate the relevant frame elements with corresponding visual entities in the image. Some of them are
due to the fact that the entities are blurred or are in the back of the represented environment. For instance,
in the command “get me my catalogue near the bed” for the image in Figure 9, the expected interpretation
is:

BRINGING(
(BENEFICIARY, “me”, <PERSON>),
(THEME, “catalogue”, [492, 624, 644, 684])
(SOURCE, “bed”, [653, 332, 1022, 1018])

)

While all the models succeed in generating the correct frame structure and surface forms, they consistently
fail to ground either the catalogue or the bed. One explanation could be the fact that the catalogues are in
the back and are blurred. This points to limitations in visual alignment rather than linguistic interpretation.

A similar failure is observed for the command “take the wine bottles in the kitchen” for Figure 10. Here,
the expected output is:

TAKING(
(THEME, “bottles”, [419, 227, 583, 910])

)

Despite the clear and prominent presence of the bottle in the foreground of the image, none of the models
is able to generate the correct bounding box. The object is fully visible, centrally located, and unoccluded,
making this failure particularly unexpected. One reason could be due to the plural usage of the entity
name (the wine bottles and the fact that there are several other bottles in the back of the image, so the
model may be unsure about which bottle.
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Figure 9: The image associated with the command “get me my catalogue near the bed”, where the models fail to ground the
mentioned entities.

Figure 10: The image associated with the command “take the wine bottles in the kitchen”, where the models fail to ground the
wine bottle.

Finally, a common instance of Grounding Errors (the most frequent error type) occurs when the model
misgenerates the bounding box coordinates, producing a box that does not match the Gold Standard and
thus fails to fully capture the target entity. Consider the command “switch on the tv”, associated with the
image in Figure 11a. In Figure 11b, we show the bounding boxes overlaid in post-processing for the entity
TV, which must be correctly grounded in the scene. The Gold Standard bounding box is shown in cyan,
while the outputs from the models trained on different subsets are colour-coded as follows: red (Top-1),
orange (Top-2), purple (Top-3), and blue (Top-5). A clear trend emerges: as the training dataset becomes
more diverse, the predicted bounding boxes become more accurate. The best-performing model (Top-5)
achieves an Intersection over Union (IoU) score of 94% for the TV, well above the threshold for accurate
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localisation. In summary, grounding errors, especially in visually ambiguous or underspecified contexts,
remain the main source of mistakes, while semantic and structural errors are infrequent. Crucially, our
results show that expanding visual diversity in training data leads to consistent reductions in both error
types, highlighting the importance of large-scale, diverse synthetic datasets for robust multimodal semantic
interpretation.

(a). The original image associated with the command
“switch on the tv”, where you can see the tv in the top
left corner.

(b). The same image where we added the Gold bounding
boxes (in cyan) and the bounding boxes predicted by the
models (other colours).

G Appendix: Frames and Frame Elements Distribution

This section briefly presents some statistics in Table 3 about the distribution of the elements in the
interpretation of the commands. The dataset exhibits a rich and diverse distribution of semantic frames
and frame elements. Among the most frequent frames are BRINGING (328 occurrences), MOTION (260),
TAKING (195), and LOCATING (189), all of which are central to spatial and manipulation tasks. Each
frame is associated with a variable set of frame elements: for instance, BRINGING includes up to seven
distinct roles such as Theme (328), Goal (200), and Beneficiary (123), while MOTION prominently features
Goal (239) and Theme (39). Less frequent but semantically precise frames, such as MANIPULATION,
CLOSURE, and ATTACHING, maintain a smaller yet well-defined set of elements. This distribution reflects
the linguistic complexity of grounded robotic commands and supports the design of models capable of
fine-grained semantic parsing across a broad range of contexts.
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Frame (Total) Frame Element Frequency Coverage (%)

ARRIVING (22)
Goal 22 100.0%
Manner 2 9.1%
Path 11 50.0%

ATTACHING (20)
Goal 20 100.0%
Item 12 60.0%

BEING_IN_CATEGORY (21)
Category 21 100.0%
Item 21 100.0%

BEING_LOCATED (84)
Location 77 91.7%
Place 2 2.4%
Theme 86 102.4%

BRINGING (328)

Agent 74 22.6%
Area 2 0.6%
Beneficiary 123 37.5%
Goal 200 61.0%
Manner 2 0.6%
Source 48 14.6%
Theme 328 100.0%

CHANGE_DIRECTION (11)

Angle 3 27.3%
Direction 11 100.0%
Speed 1 9.1%
Theme 1 9.1%

CHANGE_OPERATIONAL_STATE (104)
Agent 33 31.7%
Device 104 100.0%
Operational_state 91 87.5%

CLOSURE (39)

Agent 13 33.3%
Container_portal 16 41.0%
Containing_object 23 59.0%
Degree 4 10.3%

COTHEME (4)
Cotheme 4 100.0%
Manner 1 25.0%

GIVING (22)

Donor 9 40.9%
Reason 3 13.6%
Recipient 22 100.0%
Theme 22 100.0%

INSPECTING (55)

Desired_state 18 32.7%
Ground 53 96.4%
Inspector 10 18.2%
Unwanted_entity 4 7.3%

LOCATING (189)

Cognizer 7 3.7%
Ground 74 39.2%
Manner 4 2.1%
Perceiver 15 7.9%
Sought_entity 189 100.0%

MANIPULATION (12) Entity 12 100.0%

MOTION (260)

Area 3 1.2%
Direction 13 5.0%
Distance 1 0.4%
Goal 239 91.9%
Manner 5 1.9%
Path 18 6.9%
Source 2 0.8%
Theme 39 15.0%

PERCEPTION_ACTIVE (12) Phenomenon 12 100.0%

PLACING (107)

Agent 15 14.0%
Area 2 1.9%
Goal 105 98.1%
Theme 107 100.0%

RELEASING (19)
Goal 11 57.9%
Theme 19 100.0%

TAKING (195)
Agent 18 9.2%
Source 43 22.1%
Theme 195 100.0%

Table 3: Detailed distribution of Frame Elements per Frame. The frequency column indicates how often each element appears in
association with a given frame; the percentage indicates its relative frequency with respect to the total frame occurrences.
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