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Abstract

Human language use is robust to errors: com-
prehenders can and do mentally correct utter-
ances that are implausible or anomalous. How
are humans able to solve these problems in
real time, picking out alternatives from an un-
bounded space of options using limited cog-
nitive resources? And can language models
trained on next-word prediction for typical lan-
guage be augmented to handle language anoma-
lies in a human-like way? Using a language
model as a prior and an error model to encode
likelihoods, we use Sequential Monte Carlo
with optional rejuvenation to perform incremen-
tal and approximate probabilistic inference over
intended sentences and production errors. We
demonstrate that the model captures previously
established patterns in human sentence process-
ing, and that a trade-off between human-like
noisy-channel inferences and computational re-
sources falls out of this model. From a psy-
cholinguistic perspective, our results offer a
candidate algorithmic model of rational infer-
ence in language processing. From an NLP
perspective, our results showcase how to elicit
human-like noisy-channel inference behavior
from a relatively small LLM while control-
ling the amount of computation available dur-
ing inference. Our model is implemented in
the Gen.jl probabilistic programming language,
and our code is available at https://github.
com/thomashikaru/noisy_channel_model.

1 Introduction

A fundamental question in psycholinguistics is how
comprehenders form interpretations of utterances
that they hear or see. Of particular interest are
cases where comprehenders form an interpretation
despite the presence of errors or anomalies; these
instances showcase the robustness of human lan-
guage comprehension to noise, while simultane-
ously posing a puzzle — when a comprehender
observes an ill-formed or implausible utterance,
but still derives a meaning from it, how exactly

are these alternative interpretations generated and
evaluated?

(1) a. The storyteller could turn any incident
into an amusing antidote.

b. The test of the devices were carried out
before packaging.

In Example 1a, from Ryskin et al. (2021), the
word antidote is incongruous in context, but is a
possible typo or malapropism for a more plausible
alternative, anecdote. In Example 1b, from Qian
and Levy (2023), there is an agreement mismatch
between subject and verb, but there is uncertainty
about what the correct intended message was be-
cause either the subject or verb could be corrected.
In all of these cases, comprehenders carry out some
form of error correction under uncertainty.

The noisy-channel theory of language process-
ing provides an explanation for human behavior
in terms of rational inference (Gibson et al., 2013;
Levy, 2008). According to this account, compre-
henders have a probabilistic model of how noise
can intervene on intended messages, and thus use
both the prior probability of messages and the error
likelihood when forming interpretations s from a
noisy utterance u, in line with Bayes’ Rule:

P (s | u) = P (u | s)P (s)∑
s′ P (u | s′)P (s′)

.

However, marginalizing over the space of possi-
ble intended messages (the denominator) is typi-
cally intractable, inviting the question of how hu-
mans may form approximations to this probability
distribution. In general, there has been a lack of
implemented computational models that simulate
noisy-channel processing at the incremental, word-
by-word level, and for an open-ended space of al-
ternatives interpretations (as opposed to evaluating
some limited set of alternatives). In Section 5, we
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elaborate on differences between our model and
some existing models from the literature (Li and
Futrell, 2024b; Li and Ettinger, 2023; Nour Eddine
et al., 2024; Meylan et al., 2023).

Some prior work has considered whether large
language models (LLMs), given their strong per-
formance at language tasks in general, may ex-
hibit human-like “noisy-channel inference” behav-
ior (Cai et al., 2024). However, it is unclear whether
language models trained on next-word prediction
are the right model of this behavior; in particular,
humans differ from autoregressive LMs in their
ability to a) reanalyze previous material in light of
new observations (Hanna and Mueller, 2024), b)
explicitly model error operations to reason about
alternative interpretations of utterances, and c) vary
the amount of mental computation devoted to in-
ference in a resource-rational way (Hoover et al.,
2023).

In this work, we model language comprehension
as solving a probabilistic inference problem: given
some noisy utterance u possibly containing errors,
what is the probability distribution over intended
sentences s and the errors that may have intervened
on it? We leverage the existing framework of Se-
quential Monte Carlo (SMC), which provides an
incremental and approximate inference algorithm
that is well suited to modeling the processing of
sentences one word at a time. At the same time,
motivated by non-linear, regressive reading behav-
ior in humans (Frazier and Rayner, 1982; Wilcox
et al., 2024), we implement a mechanism for reanal-
ysis of previously processed material using MCMC
rejuvenation within SMC. We investigate the re-
lationship between noisy-channel inferences and
algorithmic constraints, specifically computational
resources (number of particles in SMC) and algo-
rithmic inductive biases (the location and type of
rejuvenation strategies). In the following sections,
we introduce our model and inference algorithm,
report two experiments where our model shows
a trade-off between algorithmic constraints and
noisy-channel behavior, and discuss implications
for both cognitive science and NLP.

2 Model

Our model consists of a generative model, sub-
divided into a language model prior and an error
model, and an inference algorithm. The generative
model (Figure 1) describes how “noisy” sentences
may be generated, and places probability distri-

Figure 1: Overview of random variables in the genera-
tive model.

butions over relevant random variables, while the
inference algorithm solves the problem of invert-
ing the generative model (Tenenbaum et al., 2011;
Griffiths et al., 2010; Kersten et al., 2004).

2.1 Language Model

This module consists of an autoregressive language
model (LM) whose role is to sample words from
a vocabulary according to the statistics of typical
language usage (i.e., without explicitly modeling
errors). In this paper, we report results using the
GPT-2 model (Radford et al., 2019) from Hugging-
Face (Wolf et al., 2020). Within this framework, the
LM expresses a prior P (s) over intended sentences
but is not expected to capture noisy-channel behav-
ior on its own, thus we can use a relatively small
LM without specialized mechanisms aimed at elic-
iting reasoning-like behavior (Wei et al., 2023),
so long as the LM captures the statistics of typi-
cal language well. GPT-2 has been shown to en-
code predictability in a way that correlates more
strongly with human reading times than larger mod-
els (Shain et al., 2024; Kuribayashi et al., 2022; Oh
and Schuler, 2023).1

The LM module assumes a fixed-size vocabulary
V . Since GPT-2 uses subword tokens, we create
custom functions to sample and score words using
the LM, subject to the constraint of membership in
V . This is achieved by iteratively extracting logits
from GPT-2, zeroing out the logits of tokens in-
compatible with any word in V , renormalizing the
probability distribution over tokens, and repeating
until a valid vocabulary word has been generated.

1We use the llamppl library (Lew et al., 2023) for lan-
guage model caching to speed up inference.
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This allows words (as delimited by whitespace) of
any number of subword tokens to be generated, as
long as the words are within V . For the experiments
reported below, we set V to be the intersection of
all words in the test suites with the top 5000 most
frequent words from the SUBTLEX-US word fre-
quency corpus (Brysbaert and New, 2009). This
method, known as locally constrained decoding
(LCD), distorts the original GPT-2 distribution over
strings (see Lipkin et al. (2025); Loula et al. (2025)
for a discussion). Empirically, the correlation be-
tween GPT-2 surprisal with and without LCD was
0.95 in a set of 500 sentences (see Appendix A for
details).

2.2 Error Model

Given a sentence s sampled from the LM, the error
model generates a possibly noisy utterance u one
word at a time. At each time step t, an action at is
sampled independently from a categorical probabil-
ity distribution π over the following 6 actions: nor-
mal production, insertion, skip, and form-based,
semantic, and morphological substitutions. This
probability distribution over actions is drawn from
a Dirichlet prior with concentration parameter 10
for normal and 1 for each of the 5 errors. Because
of insertions and deletions, the index of the current
intended word within s may not be equal to t; we
use the notation idx(t) to denote the index in s that
should be produced at time t under normal. The
model additionally samples a binary lookahead
random variable from a Bernoulli distribution; this
governs whether or not the sentence s generates
0 or 1 intended words beyond the number of ut-
terance words, and is necessary to allow inferring
a skip action, which would imply that s is longer
than u.

At time t, given sidx(t) and at, the error model
generates the output word by applying symbolic
rules. For the normal action, the output word will
simply be sidx(t) itself. For skip, the output word
will be sidx(t)+1. For form-based substitutions, the
output word is sampled from a probability distri-
bution over V where each word’s probability is
monotonic decreasing in its Levenshtein distance,
denoted Lev(·, ·), from sidx(t) (Levenshtein, 1965):
P (a | b) ∝ βLev(a, b)

1 , where β1 ∼ Beta(2, 11) is
a latent variable quantifying how peaked or flat
the distribution is, and where P (a | b) is clamped
to 0 for pairs where Lev(a, b) > 5 or if a = b.
For semantic substitutions, the output word is

sampled from a probability distribution over V
where each token’s probability is monotonically
decreasing in its cosine distance from sidx(t) in
the GloVe semantic embedding space (Penning-
ton et al., 2014): P (a | b) ∝ cosineSim(a, b)β2 ,
where β2 ∼ Gamma(6, 1) is another latent vari-
able governing the distribution’s peakedness, and
where P (a | b) is clamped to 0 for items outside
the 20 closest neighbors or if a = b. For inser-
tions, the output word is sampled randomly from
the unigram frequency distribution over V , indepen-
dently of context. For morphological substitutions,
we apply a grammatical number change to sidx(t),
changing it from singular to plural or vice versa,
assuming both forms are in V , e.g. kick→ kicks.

2.3 Inference Algorithm: Sequential Monte
Carlo

Given an utterance u, we perform inference on la-
tent variables using Sequential Monte Carlo (Naes-
seth et al., 2024) with custom rejuvenation pro-
posals (see Appendix B: Algorithms 1, 2, 3). We
maintain a set of K particles, {x(i)t }, i = 1 . . .K,
each corresponding to a hypothesis about the model
state, i.e. the values of all latent random vari-
ables in the generative model, denoted as xt =
(s1:t+lookahead,a1:t, idx1:t, π, β1, β2), up to the cur-
rent time step. Each particle is associated with
a weight w

(i)
t , which, when normalized across

particles, serves as an approximation to the prob-
ability of the particle’s state given the observa-
tions (Chopin and Papaspiliopoulos, 2020). We
use the set of particles to infer the posterior dis-
tribution over states, given a set of observations:
P (xt | u1:t). At time t, the algorithm samples
a new extended state for each particle, which ex-
presses a hypothesis about sidx(t) and at. In prin-
ciple, each particle can now be scored in terms of
how well it explains the new observation ut.

However, due to the symbolic rules in the error
model, new particle states randomly sampled from
the generative model are likely to be incompatible
with the observation, resulting in particles with a
probability of zero. We thus use a custom proposal
function q(·), which assigns sidx(t) heuristically, by
either setting it equal to ut, sampling a form-based
or semantic neighbor of ut, or sampling from the
LM-induced next-word distribution given the con-
text s1:idx(t)−1. Intuitively, this heuristic combines
three sources of information that a rational compre-
hender might use during inference: the linguistic
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context, the observation itself, and set of items that
resemble the observation. The proposal function
then samples an action from the set of actions with
non-zero probability of generating ut. We then ap-
ply an importance weight correction in the weight
update to offset the bias introduced by this proposal
function. The new weight w(i)

t for particle x
(i)
t at

time t is:

w
(i)
t = P (ut | x(i)t )

P (x
(i)
t | x

(i)
t−1)

q(x
(i)
t | x

(i)
t−1,ut)

This is calculated automatically in Gen based on the
specification of the generative function. Particles
are resampled at each time step, which resets their
weights to a uniform distribution.

We define surprisal as the negative log of the
mean particle probability, which itself approxi-
mates the conditional probability of an observation
in context:

P (ut | u1:t−1) =

∫
P (ut | xt)P (xt | u1:t−1)dxt

≈ 1

K

K∑

i=1

w
(i)
t

Intuitively, surprisal is lowest when the current ob-
servation is explainable as a high-probability con-
tinuation in normal production.

2.4 Rejuvenation
While incremental processing is the default in our
model, we also optionally include rejuvenation
as an algorithmic operationalization of the reanal-
ysis of earlier commitments. Rejuvenation for
SMC refers to modifying the random choices of
a particle in light of new observations (Gilks and
Berzuini, 2001; Doucet et al., 2001; Andrieu et al.,
2010). Without rejuvenation, each particle’s ran-
dom choices are never revised; this is problematic
in a setting with finite particles, where globally
promising particles may be filtered out in favor
of locally higher-scoring ones. We speculate that
there is a cognitive significance to rejuvenation
in the context of rational models of cognition —
rejuvenation can bring the inferred posterior distri-
bution closer to the target distribution, but comes at
the cost of additional computation, thus providing
a way to model a trade-off between the quality of
inferences and cognitive effort.

A given rejuvenation proposal function takes an
existing particle xt and returns a modified parti-
cle xt

′, which has different choices for some of

the random variables in the particle. One such
proposal function is the Form-based Neighbor
Proposal, which takes an existing particle and a
specific index t in u, and proposes a different in-
tended word sidx(t). We sample this word from the
form-based substitution distribution as defined in
the error model. The model also proposes a change
to the corresponding action at, flipping it from nor-
mal to form-sub or vice versa. For example, given
the utterance in ?? and a particle which assigns the
normal action to all words, the algorithm may pro-
pose a new particle which designates the intended
word kicked in place of licked, and whose value for
a3 is form-sub. Once the proposal function has
generated x′t, we employ the Metropolis-Hastings
algorithm to accept or reject this new particle with
the following probability:

P (xt
′)

P (xt)
· g (xt | xt

′)
g (xt′ | xt)

Thus rejuvenation moves which result in particles
with better scores under the generative model are
more likely to be accepted, but rejuvenation pro-
posal functions must be carefully designed to be
reversible so that they assign non-zero probability
to both transitions xt → xt

′ and xt
′ → xt (Neklyu-

dov et al., 2020; Cusumano-Towner et al., 2020).

In addition to the Form-based Neighbor Pro-
posal, we additionally employ the analogous Se-
mantic Neighbor Proposal and Morphological
Error Proposal (these operate identically to the
Form-based Neighbor Proposal, except that alterna-
tives are sampled from the distribution over se-
mantic neighbors and morphological errors, re-
spectively), and the Insertion/Deletion Proposal
(which proposes a different intended sentence that
contains either one additional or one fewer word).

We implement two distinct rejuvenation strate-
gies, second-pass rejuvenation and conditional
rejuvenation. Second-pass rejuvenation is per-
formed on all words in the utterance after the entire
utterance has been observed, and is parametrized
by an iters parameter, governing how many it-
erations of all possible rejuvenation proposals to
perform. Meanwhile, conditional rejuvenation is
initiated probabilistically, with the probability of
rejuvenation depending on the surprisal of the most
recently observed word in context relative to its
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unigram surprisal − logP uni:

δt = logP uni(ut)− log
1

K

K∑

i=1

exp(w
(i)
t )

P rejuv = exp(δt)/(1 + exp(δt))

The term δt above can be interpreted as an estimate
of the negative pointwise mutual information2 be-
tween the context and the observation ut: positive
values mean that it is more surprising in this partic-
ular context than would be expected based only on
its unigram frequency. We posit this as a plausible
signal that there may be an error somewhere in the
sentence. Conditional rejuvenation is parametrized
by a lookback parameter λ, which governs how far
back in the sentence to consider for reanalysis. At
each time step and for each particle, conditional
rejuvenation is triggered with probability P rejuv,
and the observations from time t−max(1, λ) to t
are targeted for rejuvenation. Higher values of λ
make it more likely that regions farther back in the
sentence are reanalyzed.

Intuitively, second-pass rejuvenation uses com-
putation indiscriminately, considering all parts of
a sentence for reanalysis; conditional rejuvenation,
meanwhile, aims to avoid unnecessary computation
when utterance words already make sense in con-
text, focusing effort instead on regions preceding
likely errors.

3 Experiment 1: The role of particle
count in purely incremental inference

What is the relationship between computational
resources and the quality of inference, as mea-
sured by the ability to handle anomalous words
in a human-like way?

A context c induces some next-word proba-
bility distribution P LM(w | c) under some lan-
guage model LM. Under a LM trained on typi-
cal language, a word wA having high probability
P LM(wA | c) does not imply that, on average, word
wB with high error probability P err(wA → wB)
will have an elevated probability P LM(wB | c)
compared to other low-probability words, except
insofar as such errors wA → wB are well-attested
in the training data. However, there is evidence
that humans are less surprised by such errors, com-
pared to completely unrelated or unexplainable er-
rors (Ryskin et al., 2021; Li and Futrell, 2024a).

2Pointwise mutual information is defined as pmi(x; y) =
log p(x,y)

p(x)p(y)
= log 1

p(x)
− log 1

p(x|y)

In particular, Ryskin et al. (2021) found a neural
index of error correction using EEG data from par-
ticipants reading linguistic stimuli belonging to one
of four conditions (Table 1), in terms of the N400
(Kutas and Hillyard, 1980; Kutas and Federmeier,
2011) and P600 (Osterhout and Holcomb, 1992;
Kaan et al., 2000; van Herten et al., 2005) event-
related potentials. Errors from which recovery was
possible showed a small N400 effect and high P600
effect, while unrelated, difficult-to-repair errors in-
duced a large N400 but smaller P600 effect.

The storyteller could turn any incident
into an amusing [BLANK]
Condition Completion
Normal anecdote.
Ungrammatical anecdotes.
Neighbor antidote.
Unrelated hearse.

Table 1: Experiment 1 materials from Ryskin et al.
(2021).

Our generative model explicitly models errors,
thereby decomposing the probability of observing
such an error into the probability of the intended
word in context and the probability of the error tak-
ing place. Our inference algorithm approximates
the distribution over these latent variables, such as
the intended word and type of error, sampled using
a set of K particles. Crucially, although SMC per-
forms asymptotically correct inference as K →∞,
in practice the constraint on number of particles
impacts whether the choices that best explain the
observation are sampled. Thus there may be cases
where inference using a small K leads to qualita-
tively different results than a larger K.

We pass each sentence of the N=504 sentences
from Ryskin et al. (2021) to our inference model.
We perform SMC inference with K ranging from
4 to 128 in powers of 2. For this experiment, we
do not apply any rejuvenation, in order to evaluate
purely incremental inference. For each sentence,
we compute incremental surprisal from the noisy-
channel model and from the baseline LM, which
uses the same restricted-vocabulary generative pro-
cess as the noisy-channel model, but lacks an error
model or SMC inference.

3.1 Results

Figure 2 shows the average noisy-channel surprisal
of the critical word across items as a function of
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Figure 2: Surprisal from noisy-channel model compared
against baseline surprisal, as a function of condition and
number of particles. Small colored points denote indi-
vidual negative particle weights. Error bars and shaded
bands denote 95% confidence intervals. In the resolv-
able error conditions only, given sufficient computation,
noisy-channel surprisal is lower than baseline surprisal.

condition and number of particles, with baseline
surprisal for comparison. As particle count in-
creases, noisy-channel surprisal of the observed
word tends to decrease, as expected. More inter-
estingly, comparing the value of noisy-channel and
baseline surprisal shows a dissociation between
recoverable errors (the Neighbor and Ungrammat-
ical conditions) compared to the other conditions
(Normal and Unrelated). For recoverable errors,
given sufficient particles (here more than 8), noisy-
channel surprisal was on average lower than base-
line surprisal, while for the other two conditions,
average noisy-channel surprisal asymptotically ap-
proached average baseline surprisal but never went
below it. For K = 128, noisy-channel surprisal
was on average 1 to 2 bits lower than baseline sur-
prisal.

An illustrative example of one sentence is shown
in Figure 3. For the word “inflection”, some
particles sample the much more contextually pre-
dictable “infection” as the intended word, corre-
sponding to a form-sub action. These particles
drive down the overall surprisal of this observation
in comparison to the baseline LM, whose surprisal
is well-approximated by particles that sampled the
normal action to explain the observed word. The
noisy-channel surprisal benefit can also extend to
following words or punctuation, as correcting the
error can allow better prediction of subsequent ma-
terial.

We also observe that the it is precisely the recov-
erable error conditions that exhibit a high posterior
probability of an error at the critical word (Figure
4, top panel). While it might initially seem surpris-
ing that the Unrelated condition does not induce a
high posterior of the action being an error, this is

Figure 3: Example sentence containing a Neighbor
anomaly comparing noisy-channel and baseline sur-
prisal. Vertical axis is cropped to the range (0, 25)
for visual clarity.

because critical words in the Unrelated condition
are not explainable within the generative model
of errors; therefore, the model must simply treat
them as low-probability continuations of the sen-
tence. Interestingly, this pattern is analogous to
that seem in EEG data from Ryskin et al. (2021),
in which a strong P600 signal was observed in the
recoverable error conditions but not the normal or
unrelated error conditions. Turning to model infer-
ences about the intended word, the mean posterior
placed on the target word (i.e., the critical word in
the Normal condition) increased monotonically as
a function of particle count for the two recoverable
error conditions, while it remained at zero in the
Unrelated condition (Figure 4, bottom panel). This
indicates that greater computational resources help
the approximate inference algorithm to discover
high-probability explanations for noisy sentences,
but only if the error is explainable.

4 Experiment 2: The role of algorithmic
constraints in reanalysis of potential
errors

What is the role of algorithm parameters, in partic-
ular those governing rejuvenation, on the similar-
ity of model and human inferences, for sentences
which invite reanalysis (as opposed to purely in-
cremental processing)? We address this question
using the materials of Qian and Levy (2023), where
participants were asked to correct items with agree-
ment errors (Table 2), such that either the subject
of the verb could be edited to form a grammatical
sentence. We considered a subset of N=120 items
with singular subjects and plural verbs. We quan-
tify the verb-edit preference for an item as the ratio
of the probability of a verb edit to the probability
of an edit at either subject or verb. Human partici-
pants made edits to the verb 60% of the time, and
edits to the subject 29% of the time, which could
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Figure 4: Mean posterior probability placed by the
model on the critical word being an error (top) and on
the intended word being the word from the Normal con-
dition (bottom), as a function of condition and number
of particles. Error bars denote the 95% confidence in-
terval, across items. For the resolvable error conditions,
more computation is associated with greater model con-
fidence that the critical word is an error, and higher
accuracy at retrieving the ‘correct’ intended word.

potentially indicate a bias towards editing more
recently processed material. Yet they a displayed
fine-grained sensitivity to items, making edits that
were broadly consistent across individuals, with a
mean split-half correlation of 0.81 (95% CI: 0.80-
0.81), computed across 500 random 50-50 splits of
participants.3

Condition Sentence
Sg Sg Pl The test of the device were car-

ried out before packaging.
Sg Pl Pl The test of the devices were car-

ried out before packaging.

Table 2: Experiment 2 materials from Qian and Levy
(2023). The condition name denotes whether each of
the subject, intervening noun, and verb are singular (Sg)
or plural (Pl).

We use our model to run inference on the ex-
perimental items using either second-pass rejuve-
nation or conditional rejuvenation, while system-
atically varying two key algorithmic parameters.
For second-pass rejuvenation, the iters parameter
controls how many iterations of rejuvenation are
performed after the first incremental pass through

3The items with plural subjects and singular verbs had
considerably lower split-half reliability, at 0.65 (95% CI: 0.64-
0.65). These were not part of our analysis.

the sentence. We interpret model results for each
sentence as follows: at each of the subject and verb,
we compute the posterior probability that the word
is an error (i.e., a non-normal action). For condi-
tional rejuvenation, we vary the lookback param-
eter λ, which controls how far back the algorithm
proposes rejuvenation moves. For both rejuvena-
tion strategies, we define the model verb-edit pref-
erence as P (averb = error | u)/(P (averb = error |
u) + P (asubject = error | u)), and compare this to
the verb-edit preference across participants for the
same item.

4.1 Results

Figure 5a shows model verb-edit preferences using
second-pass rejuvenation, plotted against human
verb-edit preferences. Pearson’s r is shown for
each value of iters. Compared to the baseline of
0 rejuvenation iterations, adding rejuvenation con-
sistently improved the fit to the human data, with
the greatest correlation when iters = 2. This in-
dicates that up to a point, performing additional
iterations of rejuvenation (at the cost of computa-
tional resources) yields inferences about error lo-
cation that more closely resemble those of humans.
Figure 5b compares different values of λ within
conditional rejuvenation. Pearson’s r is shown for
each value of λ. Values of λ ≥ 2 fit the human data
better than purely incremental inference. However,
our results also indicate that even the best model
correlation with human inferences is lower than
the mean split-half human correlation of 0.81, thus
the model does not fully capture all features that
humans may use to infer intended meanings (see
Limitations).

5 Discussion

Noisy-channel language processing refers to how
comprehenders may interpret anomalous utterances
inferentially, rather than literally. While this phe-
nomenon is well-studied empirically, there are open
questions surrounding what algorithms people may
use to arrive at noisy-channel inferences, what ef-
fect constraints on computational resources may
have on these inferences, and how biases such
as incrementality (Altmann and Mirković, 2009;
Williams, 2006; Cho et al., 2017; Kamide et al.,
2003), recency (Gibson, 1990; Bartek et al., 2011),
or resource-rationality (Griffiths et al., 2015; Lieder
and Griffiths, 2020) may explain patterns of human
comprehension. For example, in Experiment 2,
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(a) Second-pass rejuvenation

(b) Conditional rejuvenation

Figure 5: Model verb-edit preference plotted against
human verb-edit preference, across items, for second-
pass rejuvenation (a) and conditional rejuvenation (b).
Darker hues indicate more iterations of rejuvenations.
Shaded bands denote 95% confidence intervals. Scat-
terplot shows datapoints when iters = 3 (a) and when
λ = 6 (b).

purely incremental inference would be biased to-
wards correcting subject-verb agreement errors by
editing the verb, which is when the error becomes
apparent, while reanalysis of earlier parts of the
sentence might find better edits.

From the perspective of cognitive science
and psycholinguistics, our framework provides
an implemented algorithmic model of resource-
rationality in noisy-channel language processing.
Our results demonstrate that qualitatively differ-
ent patterns of surprisal and inferences emerge by
changing the value of parameters that govern com-
putational limitations and reanalysis scope. Pre-
vious work has considered computational mod-
els of the time-course and neural correlates of

noisy-channel inferences (Li and Futrell, 2024b; Li
and Ettinger, 2023), or Bayesian models of word
recognition under noise for children’s speech (Mey-
lan et al., 2023). Work in the predictive coding
paradigm has also modeled differences between
predictable words, neighbors of predicted words,
and other errors (Nour Eddine et al., 2024; Laszlo
and Federmeier, 2009), while the effect of memory
constraints on the processing of syntactic garden
paths has been modeled with approximate SMC
inference with varying numbers of particles (Levy
et al., 2008). Our model complements such work
by showing how an approximate sampling-based al-
gorithm can discover and evaluate alternative inter-
pretations of an utterance; under this model, quali-
tatively different patterns emerge for recoverable
and non-recoverable errors (Experiment 1), similar
to the dissociation found by Ryskin et al. (2021).
Additionally, our work extends earlier models by
incorporating a plausible algorithmic account of
reanalysis of earlier material, which we show in-
creases the fit of model inferences to human infer-
ences compared to purely incremental inference
(Experiment 2). Finally, our model provides a way
to instantiate the notion of resource-rationality in
noisy-channel processing at a fine-grained level
by varying particle count and iterations of reju-
venations. Future work may consider processing
policies where computational resources can dynam-
ically adapt to the difficulty of inference (Hoover
et al., 2023), and can evaluate whether experimen-
tal manipulations such as speeded judgments or
incentives for accuracy can elicit human behavioral
profiles that match inference with varying compu-
tational resources.

From the perspective of NLP practitioners, our
framework of constructing a generative model of
errors and performing approximate inference yields
a method for eliciting human-like noisy-channel
inference behavior from relatively small LLMs like
GPT-2. By implementing an error model as a gen-
erative function, this approach allows for customiz-
ing the error model based on domain-specific prior
knowledge about the types of errors one expects
in the world. Our framework also implements cus-
tomizable inference, where the amount of computa-
tion can be scaled using parameters for the number
of particles and the amount of lookback during reju-
venation; these parameters allow a user to navigate
the tradeoff between computational resources and
the exactness of inference. Previous work has con-
sidered the role of SMC algorithms in controlled
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generation from language models (Lew et al., 2023;
Lipkin et al., 2025; Loula et al., 2025), but here we
show how such approaches, combined with an error
model informed by domain knowledge, can model
human rational inferences and provide robustness
against noise. Other work bridging NLP and cog-
nitive science has shown how probabilities from
LLMs can be adapted based on alternatives to bet-
ter model human cognitive processes (Giulianelli
et al., 2025; Meister et al., 2024).

6 Conclusion

In this work, we introduce an implemented model
of noisy-channel language comprehension using
generative functions, probabilistic programming,
and Sequential Monte Carlo inference. The model
is modular and customizable, allowing different
assumptions to be encoded via choice of language
model, implementation of the error model, and pa-
rameters of the inference algorithm. This allows
our model to instantiate varying hypotheses about
the computational resource constraints available
during inference, which we can manipulate to as-
sess their influence on noisy-channel inferences.
Our results indicate that resource constraints can
affect whether or not an inferential interpretation
of a given anomalous utterance is discovered, and
show that augmenting a purely incremental pro-
cessing algorithm with reanalytical rejuvenation
moves can improve fit . Our model offers a candi-
date algorithmic-level account of rational inference
in language processing, and can be used to inter-
rogate open questions in the field, such as what
explains the variation between individuals and be-
tween items in whether inferential interpretations
are formed.

Limitations

We acknowledge some limitations of this work.
Our proposed error model is limited in its ex-

pressive power, leaving out some purported basic
error operations such as word exchanges (Poppels
and Levy, 2016). The implementation of skip er-
rors is currently limited by the lookahead random
variable, which allows a maximum of one skipped
word per sentence to avoid needing to generate mul-
tiple words beyond what is needed to explain an
utterance. This reflects an inherent tension between
incremental inference, which builds up latent vari-
ables word by word based on observed utterances,
and more flexible global inferences where the num-

ber of words in s may be quite different from the
number of words in u. Additionally, the current
model assumes that form-based subsitution errors
always still generate a vocabulary word (as op-
posed to a non-word). Thus, the model is at present
ill-suited for modeling inferences for degraded lan-
guage containing non-word errors. We note that hu-
mans do a show a lexical bias effect during speech
production errors – errors thar result in real words
(e.g. “darn bore”→ “barn door”) are more likely
than errors that result in non-words (Baars et al.,
1975). Future work will extend the error model to
also handle non-words (this would imply that any
non-vocabulary word in u will have zero probabil-
ity of being assigned the normal action). While it
can generate a wide range of plausible transforma-
tions of a given intended sentence, the probabilities
it assigns to these transformations are not calibrated
to the actual statistics of production errors (for ex-
ample, our model treats the erroneous pluralization
of a singular word as equally likely as the singular-
ization of a plural word). Some sources of uncer-
tainty are encoded as latent variables and included
in the inference problem (e.g., the parameters β1
and β2 governing the distributions over form-based
and semantic substitutions). Other model choices,
such as the use of GloVe embeddings or the concen-
tration parameters for the Dirichlet prior, are fixed
properties of the model. We leave further explo-
ration of the space of error models, and calibration
of its free parameters, to future work.

Another limitation is our language model. We
use a single LM as our prior P (s) in our model,
but have not thoroughly investigated the sensitivity
of inference to different choices of language model
or different prompts given to the model. Addition-
ally, we employ token masking to restrict the model
vocabulary to a predefined set of frequent words,
so the LM does not assign probability mass to the
potentially long tail of low-probability utterances
in English (Loula et al., 2025; Lipkin et al., 2025).
The iterative process of token masking and sam-
pling at each step also creates a slowdown, which
could in theory be addressed by utilizing an LM
which natively produces probability distributions
over words, rather than tokens. The choice of En-
glish as the language of our experiments is also a
limitation – while English is relatively morphologi-
cally simple, thus making it amenable to inference
over discrete words, it would be non-trivial to adapt
our model to morphologically complex languages
where errors might be more readily analyzed at the
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morpheme level.
Finally, our approach to rejuvenation contains

limitations. Our inference algorithm uses heuristics
to propose reanalyses of earlier material. However,
it still resembles brute force search in that it pro-
poses changes across a wide range of word posi-
tions, dependent on the algorithmic parameter λ.
An alternative would be to first identify the most
likely positions of errors, then focus rejuvenation
effort on those locations, thus reducing unneces-
sary computation. In either case, our inference
algorithm is an approximate inference algorithm –
in the limit of infinite particles, the inferred distribu-
tion approaches the target distribution, but running
inference to convergence may require impractical
numbers of particles or iterations of rejuvenation.
Future work can consider the relationship between
computational resources available to the model and
humans places under differing cognitive loads (e.g.
under time pressure or attentional demands).

We do not foresee any novel risks introduced by
our work, due to our use of existing and publicly
accessible datasets and models.
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A Appendix: Locally Constrained
Decoding vs. Base Model

To investigate the degree of distortion of sur-
prisal values introduced by performing locally con-
strained decoding (LCD) to enforce a restricted
vocabulary, we compare word-level surprisal val-
ues from GPT-2 with and without LCD applied. For
GPT-2 without LCD, we sum sub-word token sur-
prisals to calculate word-level surprisals. Surprisals
were computed for 504 sentences from Ryskin et al.
(2021). The restricted vocabulary was set to be
the union of the 5000 most frequent words in the
SUBTLEX-US dataset (Brysbaert and New, 2009)
and the vocabulary used in the experimental items.
Figure 6 shows that surprisal values obtained via
LCD have a correlation of 0.95 with the original
surprisal values. Qualitatively, LCD has a slight
tendency to underestimate surprisal compared to
the base model, due to eliminating the long tail
of low-frequency possible completions. Based on
manual inspection, LCD is most likely to underes-
timate surprisal for low-frequency words.

B Appendix: Inference Algorithm

Algorithm 1 shows pseudocode for the Sequen-
tial Monte Carlo inference algorithm used in our
model. The abbreviation MH denotes a Metropolis-
Hastings accept-reject step, implemented via the
Gen mh() function. Algorithm 2 shows pseu-
docode for the Form-Based Neighbor Proposal.
The function formSubProbs() denotes a function
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Figure 6: Comparison of surprisal values from locally
constrained decoding (LCD) and the GPT-2 base model.

which returns a probability distribution over the
vocabulary based on form-based similarity, as de-
scribed in the main paper. The Semantic Neighbor
Proposal and Morphological Error Proposal are
highly similar and are thus omitted, simply using
functions that return probability distributions based
on semantic similarity and morphological similar-
ity, respectively. Algorithm 3 shows pseudocode
for the Insertion/Deletion Proposal.

In Algorithms 2 and 3, the notation x[·] denotes
accessing the value of a random choice stored by
a particle x. Algorithm 3 omits some of the low-
level bookkeeping involved in inserting or deleting
a word from the intended sentence, which needs
to be done carefully to ensure that the resulting
sentence still has non-zero probability under the
generative model.

C Appendix: Use of Artifacts and Models

We utilize the GPT-2 language model, which has
137M parameters and which is available on Hug-
gingface via the MIT license. Experiments were
run on CPUs on our institution’s compute cluster.

We also utilize existing datasets from Ryskin
et al. (2021) (unknown license) and Qian and Levy
(2023) (CC-By Attribution 4.0 International li-
cense), which are publicly available via OSF. We
use this data purely for evaluating the psycholin-
guistic explanatory power of our model, and not for

training new models or any commercial purposes.
We make our code available to scientific re-

searchers for non-commercial use.
We acknowledge the use of ChatGPT for help

with debugging code.
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Algorithm 1 Sequential Monte Carlo with Rejuve-
nation

1: Inputs: Observations u1:T , number of par-
ticles K, Lookback parameter λ, Iterations
iters

2: Initialize: For i = 1, . . . ,K, sample x
(i)
0 ∼

P (x0) and set w(i)
0 = 0

3: for t = 1 to T do
4: Propagate: x(i)t ∼ q(xt | x(i)t−1,ut)

5: Weight: w
(i)
t ← P (ut | x

(i)
t )P (x

(i)
t |

x
(i)
t−1)/q(x

(i)
t | x

(i)
t−1,ut)

6: Convert weights to normalized probabilities:

w̃
(i)
t ←

exp(w
(i)
t )

∑K
j=1 exp(w

(j)
t )

7: Resample: For i = 1, . . . ,K, draw ancestor
index a

(i)
t ∼ Categorical(w̃(1)

t−1, . . . , w̃
(K)
t−1);

x
(i)
t ← x

(a
(i)
t )

t

8: // Conditional Rejuvenation
9: prejuv ← σ(log 1

K

∑
iw

(i)
t − P uni(ut))

10: for i = 1 . . .K do
11: if not Bernoulli(prejuv) then
12: continue
13: end if
14: for t′ in shuffle(max(1, t− λ) . . . t) do
15: x

(i)
t′ ← MH(x

(i)
t′ ,Form Proposal)

16: x
(i)
t′ ← MH(x

(i)
t′ ,Semantic Proposal)

17: x
(i)
t′ ← MH(x

(i)
t′ ,Morpho Proposal)

18: x
(i)
t′ ← MH(x

(i)
t′ , Ins/Del Proposal)

19: end for
20: end for
21: end for
22: // Second-Pass Rejuvenation
23: for j = 1 . . . iters do
24: for i = 1 . . .K do
25: for t′ = 1 . . . T do
26: x

(i)
t′ ← MH(x

(i)
t′ ,Form Proposal)

27: . . . (other proposals)
28: x

(i)
t′ ← MH(x

(i)
t′ , Ins/Del Proposal)

29: end for
30: end for
31: end for
32: Output: Approximate posterior distribution
{x(i)t , w

(i)
t }Ki=1 for each t = 1, . . . , T

Algorithm 2 Form-Based Neighbor Proposal

1: Inputs: Original particle xt, Target timestep τ

2: ps = formSubProbs(sidx(τ), xt[β])
3: v ∼ Categorical(V, ps)
4: x′t[sidx(τ)] = v
5: Output: New particle x′t

Algorithm 3 Insertion/Deletion Proposal

1: Inputs: Original particle xt, Target timestep τ

2: stemp ← xt[s]
3: insert ∼ bernoulli(0.5)
4: if insert then
5: word ∼ P LM(· | xt[s1:idx(τ)−1])
6: insert(stemp, idx(τ),word)
7: else
8: delete(stemp, idx(τ))
9: end if

10: x′t[s]← stemp
11: Output: New particle x′t
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