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Abstract

Modern Question Answering (QA) and Rea-
soning approaches with Large Language Mod-
els (LLMs) commonly use Chain-of-Thought
(CoT) prompting but struggle with generating
outputs faithful to their intermediate reasoning
chains. While neuro-symbolic methods like
Faithful CoT (F-CoT) offer higher faithfulness
through external solvers, they require code-
specialized models and struggle with ambigu-
ous tasks. We introduce Faithful Logic-Aided
Reasoning and Exploration (FLARE), which
uses LLMs to plan solutions, formalize queries
into logic programs, and simulate code execu-
tion through multi-hop search without external
solvers. Our method achieves SOTA results on
7 out of 9 diverse reasoning benchmarks and
3 out of 3 logic inference benchmarks while
enabling measurement of reasoning faithful-
ness. We demonstrate that model faithfulness
correlates with performance and that success-
ful reasoning traces show an 18.1% increase
in unique emergent facts, 8.6% higher overlap
between code-defined and execution-trace rela-
tions, and 3.6% reduction in unused relations.

1 Introduction

Complex Reasoning in natural Question Answer-
ing (QA) tasks requires exploring a problem space
with formalized facts, relations, commonsense
knowledge and logical implications. In line with
this, LLMs have been enhanced with CoT (Wei
et al., 2022) prompting, which supplements the
QA process by generating intermediate reasoning
chains given a set of in-context examples (Brown
et al., 2020a), as shown in fig. 1. This allowed
for advancement in commonsense (Madaan et al.,
2022), symbolic (Wang et al., 2022; Sprague et al.,
2024) and mathematical (Jie et al., 2023) reason-
ing. Although CoT allows for a problem explo-
ration in natural language steps, such an approach
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has been shown to cause performance degrada-
tion for reasoning tasks involving multi-step plan-
ning (Valmeekam et al., 2022; Suzgun et al., 2023),
problem exploration (Yao et al., 2022), and arith-
metic tasks (Hendrycks et al., 2021a; Madaan and
Yazdanbakhsh, 2022a). These discrepancies arise
as CoT suffers from a limited ability to decompose,
search, verify and backtrack using intermediate
rationale chains (Yao et al., 2022), cascading hal-
lucinations and errors (Ling et al., 2023) and that
natural language might not be an optimal repre-
sentation for describing the reasoning process (Li
et al., 2024). Simultaneously, LLM output has
been shown to be unfaithful and inconsistent w.r.t.
the intermediate CoT rationale (Jacovi et al., 2024;
Lanham et al., 2023b; Turpin et al., 2023).

To mitigate the problem of CoT faithfulness and
allow for more robust reasoning during QA, Lyu
et al. (2023, Faithful CoT) and Logic-LM (Pan
et al., 2023) suggested generating code which is
further executed using an external symbolic solver.
Producing and executing code enables the genera-
tion of outputs guided by external solvers, leverag-
ing search with backtracking to explore the prob-
lem space effectively. However, strict translations
of natural language queries into code, such as auto-
Sformalisation (Szegedy, 2020; Wang et al., 2018),
is a non-trivial task involving direct inference of
implicit commonsense and domain-specific knowl-
edge and the ability to align abstract and informal
concepts directly to constrained formal definitions
for further execution (Wu et al., 2022). An example
query, “Do all parts of the aloe vera plant taste
good?”, is challenging to formalize or address with
a strict algorithmic solution, as it requires interpre-
tative, deductive and context-dependent reasoning,
referred to as soft or fuzzy reasoning. Using exter-
nal solvers makes such fuzzy reasoning impossible
and requires consistently generating syntactically
correct executable code. While some LLMs have
coding capabilities stemming from their pretraining
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\Question: Do all parts of the aloe vera plant taste good? \
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Figure 1: A depiction of the plan, code and simulated search in FLARE. Each module is generated separately and
iteratively, allowing us to obtain the final answer. The green and yellow highlighted text shows the overlap between
the facts and the relations between the code and the simulated search.

(Jiang et al., 2024; Aryabumi et al., 2024), relative
code consistency is more probable with models
explicitly trained for coding (Chen et al., 2021).
To overcome these problems, we propose
Faithful Logic-Aided Reasoning and Exploration
(FLARE), an interpretable method that allows for
planning, fuzzy reasoning, and traversing the prob-
lem space with backtracking, exact task decom-
position, and measuring faithfulness. In FLARE,
given a natural language query, we prompt an LLM
to sequentially generate a plan that includes an
analysis and the logical steps necessary for for-
malising and answering the question, a logic pro-
gramming (Wielemaker et al., 2012) code that al-
lows formalising the query into a set of facts, re-
lations and their composition forming the space
for exploring that query and the search, which is
an LLM-generated code execution simulation. An
illustration of FLARE can be seen in fig. 1. This
work focuses on models that have not been explic-
itly trained on CoT on other reasoning traces, as
these models have been shown to struggle with gen-
eralisation towards differing reasoning paradigms
(Chen et al., 2024), consistency in intermediate rea-
soning steps (Wang et al., 2025) and instruction
following (Zhang et al., 2025). In our framework,
the generated code must not be consistently exe-
cutable by an external solver, allowing for the soft-
formalisation of natural language. Although we
see that even generalist LLMs are able to produce
executable code in > 50% of cases. FLARE allows
us to measure the faithfulness of the outcome w.r.t.
the simulated code execution by directly comparing
the search paths produced by the external solver to
that LLM generation. This comparison also allows
for pinpointing model hallucinations and inconsis-

tencies. We systematically study the effectiveness
of our method using 4 general-purpose LLMs of
varying scales across 9 diverse QA and 3 logical
inference benchmarks, covering Math World Prob-
lems, Multi-hop QA, Relation inference, deductive
and analytical reasoning and show that our method
achieves state-of-the-art results in 7 out of 9 QA
datasets and 2 out of 3 logic datasets in compari-
son to CoT, F-CoT and Logic-LM. We also show
that the method is competitive for models tuned for
coding, with an average overall increase of 16%
over F-Cot and 10% over CoT. Our key contribu-
tions are the following: (i) We introduce FLARE,
a novel paradigm for logic-aided and interpretable
formalisation and search over the problem space in
QA and logic reasoning tasks. (ii) We perform a
systematic evaluation across 9 QA and 3 logical in-
ference benchmarks and 4 models of varying scales,
showing the advantages of using FLARE for QA
in a few-shot setup over prior approaches. (iii) The
modularity of FLARE allows defining a simple in-
grained method for measuring model faithfulness,
which is further shown to be strongly correlated
with performance. (iv) We further show that using
FLARE allows us to interpretably and rigorously
detect hallucinations along with sub-optimal and
inconsistent reasoning patterns.

2 Related Work
Reasoning in Natural Language

Reasoning in Natural Language Few-shot
prompting (Brown et al., 2020b) improves
LLM reasoning, and extensions like Chain-of-
Thought (CoT)(Wei et al., 2022), “think step
by step”(Kojima et al., 2022), and Least-to-

23398



Most (Zhou et al., 2023) explicitly decompose
problems into intermediate steps. Despite their
promise, these methods exhibit arithmetic er-
rors (Lewkowycz et al., 2022; Hendrycks et al.,
2021b) and logical inconsistencies (Madaan and
Yazdanbakhsh, 2022b). Planning-based variants
introduce a separate plan—execute loop (Yao et al.,
2023b; Wang et al., 2023a). The plan stage in
FLARE draws on these ideas but focuses on gener-
ating a natural-language strategy for later formali-
sation into code.

Reasoning with Search Recent work augments
LLM reasoning by explicitly searching the prob-
lem space. Self-consistency decoding (Wang
et al., 2023b) samples multiple chains of thought
and selects the majority answer, while Tree-
of-Thoughts (ToT; Yao et al., 2023a) performs
tree-structured exploration with LLM-evaluated
states. Later methods adapt classical search—DFS,
BES (Besta et al., 2024), A*(Lehnert et al., 2024),
and hybrids(Gandhi et al., 2024)—via direct tuning,
imitation learning (Yang et al., 2022), or few-shot
prompting (Zhang et al., 2024). So far, evaluations
focus on toy puzzle and algorithmic domains such
as the 24 Game, Countdown, Sorting, mazes, and
Sokoban (Yang et al., 2022; Wikipedia, 2024; Besta
et al., 2024; Lehnert et al., 2024). Although the
search module of FLARE shares this multi-path
exploration spirit, it targets more general tasks and
yields interpretable multi-hop reasoning via simu-
lated code execution.

Reasoning with Formalisation Another re-
search direction explores formalising natural lan-
guage queries into code (Gao et al., 2023; Li et al.,
2024) or pseudo-code (Chae et al., 2024; Gandhi
et al., 2024). This enables translating queries into
strict structures, delegating reasoning and search to
deterministic solvers such as Python (Chen et al.,
2023), PDDL (Lyu et al., 2023; Liu et al., 2023), or
Datal.og (Lyu et al., 2023). Models can synthesize
programs (Austin et al., 2021; Nijkamp et al., 2023)
and benefit from code in numerical and algorithmic
reasoning (Chen et al., 2023; Gao et al., 2023), yet
their use for general QA remains underexplored.
This is due to the challenge of translating natural
language into strictly executable code (Wu et al.,
2022), the syntactic rigidity of underrepresented
programming languages during pre-training (Liu
et al., 2024), and the need for models explicitly
tuned for coding (Chen et al., 2021). Additionally,
relying on external solvers restricts soft reasoning

over commonsense knowledge and implications. In
FLARE, we formalise queries as logic programs
in Prolog during the code generation step but do
not require executability or external solvers at in-
ference. This allows LLMs to simulate code exe-
cution via soft reasoning over logic-based traver-
sals—similar to Prolog—while avoiding the need
for code-specific tuning.

Reasoning Faithfulness An explanation is con-
sidered faithful if it explicitly and accurately de-
scribes the reasoning process of the model during
inference (Gilpin et al., 2018; Jacovi and Goldberg,
2020). In the context of prompting techniques such
as CoT, we are interested in the faithfulness of the
intermediate reasoning chains towards the final out-
put. Faithful intermediate reasoning chains should
not just look plausible (Herman, 2017) but have
exact reflections of the problem exploration and
reasoning used to arrive at the final answer. Natural
language reasoning chains prevalent in CoT and
similar methods are shown to be unfaithful, either
masking the reasoning biases (Turpin et al., 2023)
of the model or outright ignoring the intermedi-
ate reasoning (Lanham et al., 2023a). In FLARE,
we introduce a method to seamlessly measure the
faithfulness of the final outcome w.r.t. completed
search.

3 Methodology
3.1 LLM-Simulated Search

FLARE comprises three modules for generating a
plan, code and simulated search for answering a
natural language query Q = {Tlg e Té‘}, where

each TiQ is a token in the query Q.

Generating A Plan For each query Q, given an
LLM M, we initially use instructions Z” to prompt
it to generate a plan P, which should be comprised
of task explanation, analysis and a plan for further
formalising the query. An example of this can be
seen in the plan section in fig. 1. We use in-context
few shot examples Ep of such plan generations for
obtaining the final plan:

P~ o (T7 | TE 1,89, Q,I7), (1)

where P; and Ti73 is the ¢-th token in the generated
plan P and p 4 is the probability of the next token
over the vocabulary obtained from model M.

Generating Code After generating the plan, we
use instructions Z¢ to prompt the LLM M to gen-
erate a Prolog code C, an example of which can

23399



Math Word Problems Multi-hop QA Relation
Method GSM8K SVAMP MultiArith ASDiv  AQuA ‘ StrategyQA  Date  Sport ‘ CLUTRR
Llama-3.1-8BrLARE 72.7 86.0 96.3 83.1 62.9 70.2 593 76.6 36.8
Llama-3.1-8Bg.cot 0 0 0 0 12.2 53.2 0 0 32
Llama-3.1-8Bcor 85.2 82.4 91.6 79.1 51.6 43.5 74.1 894 45.7
CmDREARE 524 74.0 84.5 72.2 43.7 67.0 523 789 29.1
CmDRE.cor 0 0 0 0 0 59.7 0 0 8.6
CmDRcor 46.5 57.3 83.1 37.2 28.3 21.3 474 552 29.5
CmDR+£LARE 71.4 83.5 90.4 81.3 55.9 70.8 61.8 777 41.0
CmDR+E.cor 0 0 0 0 15.4 57.6 0 0 35.3
CmDR+cor 48.7 81.1 86.6 44.6 44.1 48.4 791 62.6 42.5
GPT-3.5FLARE 82.1 82.7 98.3 854 55.1 65.5 824 85.6 49.8
GPT-3.5.cot 75.8 83.0 95.3 81.7 535 51.5 73.5 52.3 12.1
GPT-3.5¢or 79.8 82.4 98.2 75.8 59.4 51.7 69.9 958 43

Table 1: The following table shows the performance of each of the tested models given a technique for reasoning.
Each bold, underlined, and italicised element highlights the best, second best and worst technique per specific
model. The overall best method per dataset is highlighted in green .

be seen in fig. 1. We append executable code gen-
eration samples Cgample to the previous in-context
examples Ep and obtain few-shot code generation
demonstrations &¢ = [Ep; Csample]

Ci~ pm(Tf | T 1€, Q.I7,P.I) ()
F code ,R'code? gcode = EXTRACT(Cz)a

where C; and T¢ is the i-th token in the generated
code C. We detail the benefits of Prolog and the
reasoning behind our choice in appendix A.S.

Simulating Search After generating the logic-
programming code, we want to simulate program
execution by generating a problem space traver-
sal trace with our LLM M. We use instructions
7S and update our in-context samples by append-
ing search traces Sgmple constructed from Pro-
log execution of sample codes Csample, i.6. s =

[g(,'; Ssample] .

Si~ pm(T7 | T 1€, Q. 17, P, 1°,C, T°)
(3)
Asearchv fsearchy Rsearch - EXTRACT(SZ)7

where TiS is the i-th token in the generated search
trace S. During iterative problem space traversal,
we can segment the facts Fieqcn, relations Rearchs
completed and backtracked paths with their an-
swers Ageqren used during the search simulation.
To get the final answer we update in-context sam-
ples with their correct final answers Agample from
the executed search Sgmple, €4 = [Es; Asample)

and use instructions Z to obtain the final answer
from the model.

Afinal ~ pm (T | T e, Q, 4)
1%.p,1¢,¢,1°5,8,14)

The prompts used for generating each part in
FLARE can be seen in appendix A.1 along with a
complete example in table 9 and a pseudo-code in
appendix A.S5.

3.2 Detecting Reasoning Inconsistencies

For each query Q given the code C and the sim-
ulated search S along with the extracted facts
F codeaJr search and relations RcodevRsearch from
each designated module, we aim to detect the incon-
sistencies during the reasoning process of the LLM.
We use exact string matching between all these
facts and relations in code and simulated search.

¥i,3j suchthat Fipg=Flpw )
and Vv,3¢ Riode = Reearen

Vj,3i suchthat F! ;. = ]:Sjearch (0)
and  Vgq,3v  Ripge = Ricarch

With this framework in mind, we define two rea-
soning failure modes. In the first failure mode,
given that some fact or relation was used in the
simulated search but did not exist in the generated
code, i.e. 3j suchthat F, . ¢ Feode, We claim
that the LL.M has hallucinated. We postulate that
the model either produced incomplete knowledge
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Figure 2: The trend of mean model accuracy w.r.t mean faithfulness for all the models.
Dataset ChatGPT (gpt-3.5-turbo) ‘ GPT-4 (gpt-40)
Standard CoT Logic-LM FLARE FLAREgRr—» ‘ Standard CoT Logic-LM FLARE FLAREgr—»
PrOntoQA 47.40 67.80 61.00 73.40 79.40 77.40 98.79 83.20 98.87 99.24
LogicalDeduction ~ 40.00  42.33 65.67 58.60 64.43 7133 75.25 87.63 88.00 90.33
AR-LSAT 20.34 17.31 26.41 27.39 30.73 3333 35.06 43.04 39.82 45.02

Table 2: Comparison of results across datasets for ChatGPT (gpt-3.5-turbo) and GPT-4 (gpt-40) using Standard,
CoT, Logic-LM, FLARE, and FLAREgr_» approaches. SR=2 refers to a maximum of 2 iterations of code self-

refinement.

during formalisation to code or created a piece of
non-existing information during the search. We do
not consider facts that emerged during a direct in-
ference step within the simulated search during our
calculation. For example, if we are dealing with
a mathematical query 4 - (5 + 6) =7, the search
would involve separately evaluating the expression
5+ 6 = 11. In this case, 11 will not be treated as a
hallucinated fact within the search but rather as an
emergent fact obtained from direct inference. The
second failure mode is the reciprocal case, where
a fact or relation present in the code is not used
during the search. We refer to this phenomenon
as sub-optimal reasoning as it shows that the LLM
could not explore the problem space completely or
injected unsuitable knowledge during formalisation
into code.

3.3 Measuring Faithfulness

We propose a method to measure the faithfulness

of the LLM reasoning process when using FLARE.

As mentioned in section 3.1, for each query in a

dataset D = [Qy, ..., Q|D|], we generate a set of
codes ® = [C1,...,C|p|| and simulated problem
space searches ¥ =[Sy, . . ., S|y|]. We use the Pro-
log engine to execute all of the codes ® and obtain
a set of correctly written programs @’ and exact
search paths ¥U’. As we do not require explicit pro-
grammatic correctness during inference in FLARE
for any code C;, some Prolog executions resulting
in an error are filtered out in ¥’. To assess model
reasoning faithfulness towards code formalisations,
we compare the search paths @’ obtained from Pro-
log execution with their designated counterparts
®y,, generated by the LLM from the same code.
We use ROUGE (Lin, 2004) to compute the match-
ing score for each executed and simulated search
path. In particular, we use ROUGE-Lsum, which
uses the longest common subsequence (LCS) over
each line to obtain the final score. This method fits
our cause as a line in a Prolog search execution rep-
resents a single logic step within the traversal. This
allows us to measure the similarity of the reason-
ing contents and structure in exact and simulated
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searches. We have also used other string-matching
techniques, all of which show the same trends; thus,
we report our results with ROUGE-Lsum.

4 Experimental Setup

Datasets To evaluate FLARE, we use a bench-
mark of 9 tasks spanning Math Word Problems
(MWP), multi-hop QA, relation inference, and 3
logical reasoning datasets. For numerical and math-
ematical reasoning, we follow CoT (Wei et al.,
2022) and include GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), MultiArith (Roy and
Roth, 2015), ASDiv (Miao et al., 2020), and
AQuA (Ling et al., 2017). GSM8K, SVAMP, Mul-
tiArith, and ASDiv focus on elementary and mid-
dle school arithmetic with integer or decimal an-
swers. AQuA involves multiple-choice symbolic
reasoning with expressions not explicitly defined
in the query. We also test FLARE on three multi-
hop QA tasks. StrategyQA (Geva et al., 2021)
requires boolean reasoning with sub-goal decom-
position (e.g., “Do all parts of the aloe vera plant
taste good?” in fig. 1). We further use the
Date and Sports Understanding subsets from BIG-
Bench (bench authors, 2023), which involve tem-
poral and feasibility-based reasoning. For relation
inference, we use CLUTRR (Sinha et al., 2019),
which requires deducing familial relations from par-
tial graph descriptions in natural language. We eval-
uate logical reasoning using ProntoQA (Saparov
and He, 2023), AR-LSAT (Zhong et al., 2021),
and LogicalDeductions from BIG-Bench (et al.,
2023), focusing on the challenging subsets of (Pan
et al., 2023). These cover deductive, analytical,
and logical tasks. Dataset details and examples are
in table 7 of appendix A.1. We also study how
model size affects performance and faithfulness
(appendix A.1).

Benchmarks We compare FLARE with
CoT (Wei et al.,, 2022), which uses natural
language reasoning chains, and with F-CoT (Lyu
et al., 2023) and Logic-LM (Pan et al., 2023),
which formalise queries into code and delegate
reasoning to external solvers. Evaluated models
include Llama3.1 (8B)(Dubey et al., 2024), CmDR
(30B) and CmDR+ (100B)(Cohere, 2024), and
GPT-3.5 (Brown et al., 2020b) (>100B (Ye
et al., 2023)). As OpenAl Codex (code-DaVinci-
002) (Chen et al., 2021) used in F-CoT has been
deprecated, we replace it with the new GPT3.5 as
suggested by OpenAl and recalculate the results.

5 Results

5.1 Few-shot prompting

To evaluate FLARE, we use a set of models of vary-
ing sizes on diverse benchmarks, as defined in sec-
tion 4. We compare the performance of each model
while using FLARE, CoT and F-CoT prompting.
The results for F-CoT and CoT on all the models
are computed using the codebase of the original
study (Lyu et al., 2023). We additionally compare
Logic-LLM and FLARE using the logic reasoning
benchmarks proposed in (Pan et al., 2023).

LLMs for general reasoning Our results, pre-
sented in table 1, show that using FLARE allows
the LLMs to achieve state-of-the-art results on 7
out of 9 datasets, with an average 28% increase
over CoT. We can see a clear trend that FLARE
increases the performance compared to CoT and
F-CoT for all the models of varying scales. We
also see that LLMs not explicitly tuned for coding
suffer massive degeneracies when using F-CoT. We
postulate that they cannot consistently produce ex-
ecutable programs that satisfy a predefined scheme
in F-CoT, thus resulting in an error during execu-
tion. This further highlights the value of simulating
program execution using an LLM instead of exter-
nal solvers. The results show that using FLARE
yields more benefit on datasets that require longer
chains of multi-hop and symbolic reasoning, like
AQuA and StrategyQA. Our findings in table 2
show that FLAREachieves state-of-the-art results
on 2 out of 3 logic inference benchmarks with 10%
increase over CoT and 7% increase over Logic-
LM. Following the practice in (Pan et al., 2023,
Logic-LM), we also add 2 iterations of code self-
refinement to FLARE and show that the model
model is able to achieve SOTA results on all 3
benchmarks.

LLMs for code generation To understand the ef-
fect of FLARE on models tuned for coding, we use
GPT3.5 (Brown et al., 2020a) as it was the OpenAl
suggested succession model for Codex (Chen et al.,
2021) which is used in F-CoT and possesses strong
coding capabilities (Ye et al., 2023). The results
in table 1 show that using FLARE is beneficial
for models tuned for coding and boosts accuracy
with a 16% increase over F-CoT and 9% over CoT.
The reason is that many natural language queries
with non-trivial formalisations are more suited to
be tackled with more commonsense soft reasoning
than direct code execution. This is evident in table 1
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Method CmDRplan_only CmDRFLARE CmDR+p]an_0n1y CmDR+FLARE GPT-3 -5plan—only GPT-3 -SFLARE
GSMSK 24.7 524 40.7 71.4 36.1 68.1
AQuA 35.0 43.7 55.1 55.9 54.3 55.1
StrategyQA 65.5 67.0 75.7 70.8 62.3 65.5

Table 3: The table shows the accuracy of an LLM with FLARE compared to prompting for a final answer directly

after generating (plan-only) a plan P.

Model UEF (%) in Search  OR (%) UR (%) in code

Model #Paths #Hops/p #Fails/p TotHops TotFails
Incorrect Answers
Llama-3.1-8Bpare 1.55 11.12 1.52 15.09 2.26
CmDRELARE 1.51 6.55 0.68 10.56 1.39
CmDR+gARE 0.92 7.52 1.13 8.57 1.32
GPT-3.5 0.68 5.22 0.71 5.32 0.74
Correct Answers
Llama-3.1-8Bpare 1.43 9.12 0.62 12.36 0.96
CmDREpARE 1.19 7.10 0.42 11.29 0.66
CmDR+5ARE 0.97 7.19 0.42 8.22 0.61
GPT-3.5p.ARE 0.82 5.65 0.26 5.69 0.27

Table 4: #Paths: Avg. number of reasoning paths tried
by the model. #Hops/p: Avg. number of hops per path.
#Fails/p: Avg. number of fails (unsuccessful hops) per
path. TotHops: Avg. total hops (summed across all
paths). TotFails: Avg. total fails (summed across all
paths). The purple cells show that incorrect reasoning
paths often have fewer failed search paths.

where FLARE and CoT are consistently better than
F-CoT in StrategyQA, Sports and CLUTRR. The
opposite case of numeric and algorithmic heavy
reasoning tasks is also covered by FLARE as it
maintains strong performance similar to F-CoT on
MWP problems table 1. Consequently, FLARE
allows combining algorithmic formalisation with
simulated soft-reasoning, circumventing the pitfalls
of using a deterministic external solver while still
producing a query formalisation and problem space
traversal.

5.2 Is simulating search useful?

To understand if simulating a search over the prob-
lem space is useful, we compare the performance
of FLARE where we only generate the plan with-
out the subsequent code or search components. We
refer to this framework setup as plan-only, which
can be seen in fig. 1 if we were to use only the
plan for answer generation. We completed this ab-
lation using CmDR, CmDR+, and GPT-3.5, and
we used GSM8K, AQuA, and StrategyQA as our
baselines. The results in table 3 confirm that all
of the models suffer massive performance degra-
dation from 61.1 — 49.9 when omitting the code
and the search components of FLARE. We hypoth-
esise that this is caused by insufficient problem

Correct Answers

Llama-3.1-8BgpARE 74.14 43.65 5.73
CmDRFLARE 59.06 35.96 4.02
CmDR+p ARE 64.30 34.47 4.54
GPT-3.5FLARE 64.46 37.55 1.90
Avg. (Correct) 65.49 37.91 4.05

Incorrect Answers

Llama-3.1-8Bpp ARE 54.69 35.04 9.28
CmDR+FLARE 44.12 24.98 8.22
GPT-3.5FLARE 36.02 24.44 6.94
Avg. (Incorrect) 47.33 29.31 7.67
A 18.16 8.60 -3.62

Table 5: The table shows how the percentage of unique
emergent facts (UEF) in search, overlapping relations
(OR) between code and search, and unused relations
(UR) in code impact answer correctness.

space exploration when using the plan-only setting.
Furthermore, we have already seen in table 1 that
in methods, like F-CoT, that do not use simulated
problem space exploration for soft-reasoning and
only rely on plan and code, the performance also
deteriorates even resulting in a complete break-
down of reasoning over the designated datasets.
This can be viewed as a constrained version of
FLARE with code-only execution. Consequently,
our results show that simulating problem space
traversal is highly beneficial as it avoids the pit-
falls posed by plan-only and code-only modes by
exploring the problem space more rigorously and
soft-reasoning during that traversal instead of using
external solvers.

5.3 Faithful Reasoning Improves Performance

As described in section 3, using FLARE allows us
to measure the faithfulness of the LLM reasoning
process by comparing the simulated problem space
traversals @, with actual traces ®' produced from
a symbolic Prolog solver. To do this, we initially
compute the percentage of syntactically correct
executable code each LLM produces. We have
observed that all of the models are capable of pro-

ducing correct executable Prolog code in 67% of
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cases on average and > 50% of cases at the very
least. The complete details can be seen in the top
part of fig. 3 in appendix A.5. This shows that
the simulated searches @}, can be considered a
representative sample that will be further used to
accurately measure the faithfulness of the simu-
lated search w.r.t. the generated code. After mea-
suring the reasoning faithfulness for each model,
we want to understand what impact it has on the
performance of the LLM. In fig. 2, we segment
the models w.r.t. their ROUGE-Lsum scores. The
results show that model performance is strongly
positively correlated with reasoning faithfulness.
However, we also observe that executing seman-
tically precise code results in an accurate answer
only in 47% of cases on average. Refer to the
bottom part of fig. 3 in appendix A.5 for more de-
tails. Indeed, having a simulated search trace with
a ROUGE-Lsum faithfulness score of 1, would be
equivalent to simply executing the program as pro-
posed in F-CoT. Yet we have priorly shown that F-
CoT struggles with reasoning tasks that are hard to
formalise and require multi-hop commonsense and
soft reasoning. These two discoveries show that
optimal LLM reasoning, conditioned on a search in
the problem space, should be increasingly faithful
toward the facts, relations and the search strategy
defined within the code while simultaneously main-
taining the capability for soft-reasoning along more
abstractly defined concepts. Our results show that
FLARE allows LLMs to maintain a similar reason-
ing capacity.

5.4 What is important during the search?

We also analyze the reasons which can lead to opti-
mal reasoning within an LLM. We calculate several
statistics, like the average number of explored paths
and the average and total hops and failures per path,
for each model during the simulated traversal. The
failure in a path is an invalidation of a solution for
a sub-goal explored during the search, which is
used for backtracking, as explained in section 3.
Calculating these statistics is simple as the search
component of FLARE, seen in fig. 1, is a struc-
tured simulation of a Prolog trace, where each line
contains a hop of reasoning inference. We split
these statistics for the reasoning paths that lead
to correct or incorrect outcomes. Our results in
table 4 show that LLM performance and reason-
ing optimality are not directly connected to the
amount of explored paths or multi-hop inferences
per path. We also see that traces that lead to incor-

rect answers have a higher number of failures per
path and in total. We hypothesise that LLMs with
traces that were optimal for reasoning and led to
correct answers could skip exploring degenerate
solutions due to strong commonsense reasoning
capabilities. Further analyses focus on identifying
inconsistencies and failure modes (section 3.2). By
comparing relations in code with those in search
traces, we measure emergent hallucinations and
unused relations, highlighting areas of sub-optimal
reasoning. We also assess the uniqueness of emer-
gent facts per inference hop, indicating the extent
of problem-space exploration (table 5). The results
in table 5 show consistently over each model that,
on average, traces that lead to correct answers had a
higher percentage of unique emergent facts (UEF)
and overlap in the relations (OR) used between the
code and search, while the portion of underutilized
relations (UR) was lower. This means that opti-
mal reasoning with an LLM requires a great degree
of problem-space exploration with fewer relation
hallucinations during the search and more relation
utilization from the defined code. This aligns with
our prior discoveries, which show a strong correla-
tion between simulated search faithfulness towards
the formalised code and model performance.

6 Conclusion

This work introduces FLARE, a novel approach for
logic-aided interpretable formalisation and reason-
ing with simulated search over the problem space.
We show that models of varying scales obtain state-
of-the-art results compared to prompting paradigms
like CoT, F-CoT and Logic-LM. We further pin-
point that using FLARE allows us to perform soft
reasoning with simulated search, making it flexible
for diverse reasoning benchmarks. We introduce
a method to measure model reasoning faithfulness
w.r.t. the problem formalization ingrained within
FLARE. Our results show that model performance
is positively correlated with the faithfulness of the
reasoning process. The systematic studies of the
method show the benefits of using simulated search
compared to natural language reasoning and exter-
nal symbolic solvers. We further show that using
FLARE allows us to interpretably and rigorously
detect hallucinations and sub-optimal and inconsis-
tent reasoning patterns.
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Limitations

While FLARE offers significant improvements in
faithfulness and interoperability, it depends on the
quality of LLM-generated plans and code; errors or
omissions in formalisation can propagate through
the simulated search, potentially leading to incor-
rect or incomplete answers. The generation of for-
mal code and simulated search traces depends heav-
ily on the LLM’s prompt-following ability. The
simulation of code execution may not fully explore
extremely large or open-ended problem spaces, and
prompt sensitivity can affect search thoroughness.

Risks and Impact Statement

FLARE advances the capabilities of large language
models in logical reasoning and problem-solving,
with potential positive impacts on applications re-
quiring transparent and verifiable decision-making
processes. The ability of the method to formalise
reasoning steps and detect inconsistencies could
improve reliability in high-stakes domains like
healthcare decision support, educational assess-
ment, and automated planning systems. However,
this advancement also raises important considera-
tions — the improved reasoning capabilities could
be misused to automate deceptive or manipulative
argumentation, and the increased persuasiveness
through logical formalisation could mask underly-
ing biases or false premises. Additionally, while
FLARE improves transparency in reasoning, it may
create a false sense of rigour in cases where the un-
derlying logic is flawed but presented in a formally
convincing manner.
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Figure 3: The figure shows the percentage of executable
code per model (top) and the accuracy of the executable
code when answering the queries (bottom).

Model Avg. hops per path Hal. (%) UK. (%)
Llama-3.1-8B 94 63.3 62.9
CmDR 6.7 54.7 56.9
CmDR+ 7.2 54.3 56.3
GPT-3.5 5.5 493 52.1

Table 6: Changes in simulated search statistics when
using FLARE across model scales (8B to 100B+). Hal-
lucinations (Hal.) are facts/predicates used only in the
trace, while unutilised knowledge (UK.) denotes fact-
s/relations appearing only in the code.

A Appendix
A.1 The effect of scale

We want to assess the impact of the number of pa-
rameters in the model on the overall performance
and faithfulness. The results in fig. 4 show no pre-
cise relation between model scale, performance
and faithfulness. However, scaled models from
the same family, i.e. CmDR (30B) and CmDR+
(100B), show improvements in reasoning faithful-
ness and model performance. We can also see in
table 6 that as the model size increases, the average
number of hops and the portion of hallucinations
and unutilised knowledge decreases. This further
confirms our prior assumptions that models with
strong commonsense soft-reasoning capabilities

can skip steps during the search while maintain-
ing the knowledge and structure of the traversal
strategy outlined in the code.

A.2 LLM Prompts

We define straight-forward prompts for generating
plan, code and search simulation in FLARE, which
can be observed in appendix A.5.

A.3 Dataset Statistics

The datasets used in this study encompass a variety
of domains, specifically targeting the performance
of the models in interpreting Math Word Problems,
multi-hop question answering, and relational infer-
ence. Table 7 provides a detailed breakdown of
each dataset, including the number of few-shot in-
context samples (shots), the number of test samples,
and representative examples from each dataset. The
datasets provide a comprehensive basis for evaluat-
ing the models’ abilities to handle complex tasks
across different domains, facilitating an in-depth
analysis of model performance under few-shot con-
ditions.

A.4 FLARE Pseudo-code

Below, we present the pseudo-code for the execu-
tion of the plan, code, and search procedures in
FLARE. The pseudo-code describes the modular
pipeline in FLARE for tackling natural language
queries with faithful simulated search. (i) Plan
Generation: This stage creates a structured natural
language outline of the reasoning process, break-
ing down the query into logical steps and analysis.
The plan serves as the foundation for formaliza-
tion into a logic-based representation. (ii) Code
Generation: Based on the generated plan, a logic
programming code (e.g., in Prolog) is synthesized.
This code formalizes the query into a set of facts,
relations, and goals, which collectively define the
problem space for reasoning. (iii) Search Simula-
tion: The generated code is utilized to simulate a
search trace over the problem space. This includes
iterative reasoning, backtracking when goals are
unmet, and extracting emergent facts or relations
during the process. Each of these stages is imple-
mented as a modular component. The generation
from each of the stages feeds into the next, allowing
seamless integration and incremental improvement
in reasoning accuracy. A detailed pseudo-code is
provided below in appendix A.5.
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(right).
Domain Dataset Shots  Test Samples Example
Q: A robe takes 2 bolts of blue fiber and half that much white fiber.
GSM8K 8 1,319 How many bolts in total does it take?
Math A3
Word SVAMP 8 1,000 Q: Dan had $3 left with him after he bought a candy bar. If he had $4 at the start, how much did the candy bar cost?A: 1
Problems . .
Q: A pet store had 13 siamese cats and 5 house cats. During a sale they sold 10 cats.
MultiArith 8 600 How many cats do they have left?
A:8
Q: Adam has five more apples than Jackie. Jackie has nine apples. How many apples does Adam have?
ASDiv 8 2,096
A: 14
Q: A man walks at 5 kmph for 6 hrs and at 4 kmph for 12 hrs. His average speed is
AQuA 8 254 Answer option: A)4 1/3 km/h, B)7 2/3 km/h, C)9 ¥2 km/h, D)8 km/h, E)81 km/h
A A
Multi- . .
: 9
hop StrategyQA 6 2290 Q: Did Aristotle use a laptop?
A: False
QA
Date 10 359 Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?
Understanding - A:"05/02/2021"
Sports Q: Is the following sentence plausible? Lionel Messi was called for icing?
. 10 977
Understanding A: False
Q: [Carlos] is [Clarence]’s brother. [Carlos] and his sister, [Annie], went shopping.
Relational CLUTRR 3 1.042 asked her mom [Valerie] if she wanted anything, but [Valerie] said no.

Inference

How is [Valerie] related to [Clarence]?
A: "mother”

Table 7: The statistics and examples of the datasets used in benchmarking. Shots refers to the number of few-shot

in-context samples used during benchmarking.

A.5 Benefits of Prolog

Prolog is a symbolic logic-programming engine
(Bowen, 1979) used for heuristic search over Horn
Clauses (Chandra and Harel, 1985). It is a declara-
tive programming paradigm (Lloyd, 1994), mean-
ing that the code is expressed as the logic of com-
putation. In particular, this logic is formalised as a
set of facts F and relations R forming our problem
space, while the final goal G is a first-order logic
combination of them. As a default, Prolog uses a
depth-first search (DFS) strategy (Bowen, 1979)
for sub-goal decomposition and feasible traversal
of the problem space that satisfies the goal G. Such
a traversal is referred to as the frace. At each trace

step, the program can either confirm or invalidate
the sub-goal using the feasibility of fact and rela-
tion combinations, expand the search tree or retry
satisfying a failed sub-goal with new combinations.
An example of such a search can be observed in
fig. 1. It is possible to complete an exhaustive
search, exploring all possible paths that do or do
not satisfy the goal. These characteristics are bene-
ficial as we can explicitly access and segment the
facts and relations that form the problem space and
the search strategy used for query formalisation. As
Prolog is declarative, it is sufficient to use a regexp
heuristic for the segmentation, which is referred to
as EXTRACT in eq. (2) and eq. (3). Furthermore,
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including exhaustive traversal traces in-context al-
lows the LLM to simulate sub-goal decomposition,
backtracking, intermediate goal invalidation, etc.
We discuss this in more depth in the next paragraph.
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Algorithm 1 FLARE Methodology: Faithful Logic-Aided Reasoning and Exploration

Require: Query Q, Language Model M
Ensure: Answer A
. Initialization: Load few-shot examples for plans (£p), code (£¢), and search traces (£g)
Input: Natural language query Q
procedure GENERATE PLAN
Prompt M with instructions Zp and examples £p to generate a plan P
P « argmax pm(Tp|Tr.<isEp, Q,Ip)
end procedure
procedure GENERATE CODE
Append examples ¢ to Ep
Prompt M with instructions Z¢ to generate logic programming code C
C + argmax pm(Te|Te.<i Ec, Q, P, Lo)
(FCOdC7 Rcodea Gcode) — EXTRACT(C)
: end procedure
: procedure SIMULATE SEARCH

—_

R A A

—_ = = =

14: Append search trace examples Eg to ¢

15: Prompt M with instructions Zg to simulate a search trace S
16: S + argmax pM(Ts‘Ts;<i,gs,Q,P,C,IS)

17: (Fsearchp Rsearcha Asearch) — EXTRACT(S)

18: while Goal G..qc is not satisfied do

19: Explore next sub-goal in &

20: if Sub-goal fails then

21: Backtrack to the previous state (Learned through in-context sampels)
22: end if

23: end while

24: end procedure

N
[

: procedure FINAL ANSWER GENERATION

Append correct answers from Agearch to examples
Prompt M with instructions Z4 to finalize answer .4
A+ arg max p/\/l(TA|TA:<Z‘7 Ea,9,P,C, S,IA)

: end procedure

return A

WO N NN
@ 2 23D
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Task

Prompt

Description

Plan Generation

Generate an explanation and anal-
ysis, and plan to generate a
prompt for writing a swi-prolog
code for the last task. The 3
sections should be exactly out-
lined. Your plan should show
enough intermediate reasoning
steps towards the answer. Con-
struct the plan as much as you
can and describe the logic specif-
ically. When constructing the
plan for the code prompt, actively
use swi prolog search capabili-
ties.

Detailed instructions for gener-
ating an outline and plan, with
an emphasis on reasoning steps
and using Prolog’s search capa-
bilities.

Code Generation

Write a Prolog code to solve us-
ing the plan. If there are un-
known or stochastic atoms or
predicates, fill in the values for
them as a logical assumption
and add a comment in the same
line Assumed atom/predicate".
Do not use write and read com-
mands within the code. The code
should be very detailed and uti-
lize swi prolog capabilities to the
fullest. To run the program, at
the end create a predicate named
"query" that returns the correct
numerical answer. The last line
of the program should be the
commented-out driver predicate
"query". Write only the code.

Instructions for generating a Pro-
log code based on the plan with
assumptions for unknown atoms.
Emphasizes code details and a fi-
nal “query” predicate.

Simulated Search

Ignoring the read commands, ex-
plicitly write out the search paths
that are explored by the code:
#### Here are the paths [Starting
Search Simulation]: #### [Path

1]:

A task to simulate and display the
search paths that the Prolog code
would follow during execution.

Final Answer

Given the plan, the code and the
explored search paths answer the
question above. Answer with the
correct numerical answer. #####
Here is the answer:

Final prompt asking for the cor-
rect numerical answer based on
the previous steps.

Table 8: Table of Prompts for Plan, Code, Simulated Search, and Final Answer generation for GSM8K (Cobbe

etal., 2021).
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Section

Content

Question

"Can Reiki be stored in a bottle?"

Explanation

Reiki is a form of alternative therapy that involves the channeling of energy to promote
healing and relaxation. It is often administered through the practitioner’s hands, with
the energy flowing directly to the recipient. The question raises the possibility of
storing Reiki energy in a bottle, which may be a common query due to the abstract
nature of energy healing.

Analysis

To address the question of whether Reiki can be stored in a bottle, it is important to
consider the nature of Reiki energy, the principles of energy healing, and the practical
implications of containing and preserving such energy.

Plan

* Understand Reiki Energy: ...

* Explore Energy Storage: ...

* Consider Symbolism and Intention: ...
* Evaluate Practicality: ...

¢ Reflect on Tradition: ...

Code

% Define the nature of Reiki energy
reiki_energy(spiritual_energy).
reiki_energy(channeling_through_touch).
% Define the feasibility of storing energy in a bottle
store_energy_in_bottle(feasible) :-
reiki_energy(spiritual_energy),
reiki_energy(channeling_through_touch).
% Storing Reiki energy is not a common practice
not_common_practice(store_reiki_in_bottle).
% Query to determine if Reiki can be stored in a bottle
query :-
store_energy_in_bottle(feasible),
not_common_practice(store_reiki_in_bottle).
% :- query.

Search Paths

Start of execution: Beginning Search
Call: query

Call: store_energy_in_bottle(feasible)
Call: reiki_energy(spiritual_energy)

0:
1:
2:
3:
* 4: Call: reiki_energy(channeling_through_touch)
5: Call: not_common_practice(store_reiki_in_bottle)
6: Call: feasible=no
7: Fail: feasible=no | 'Result’: ’Search Failed’
8:

Fail: query | 'Result’: ’Search Failed’

Answer

"No, Reiki energy cannot be stored in a bottle based on the logical evaluation of its
abstract, non-physical nature and traditional practices of Reiki."

Table 9: Complete example of FLARE
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