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Abstract

Different languages are known to have typical
and distinctive prosodic profiles. However, the
majority of work on prosody across languages
has been restricted to monolingual discourse
contexts. We build on prior studies by asking:
how does the nature of the discourse context
influence variations in the prosody of mono-
lingual speech? To answer this question, we
compare the prosody of spontaneous, conversa-
tional monolingual English and Spanish both
in monolingual and in multilingual speech set-
tings. For both languages, we find that monolin-
gual speech produced in a monolingual context
is prosodically different from that produced
in a multilingual context, with more marked
differences having increased proximity to mul-
tilingual discourse. Our work is the first to in-
corporate multilingual discourse contexts into
the study of native-level monolingual prosody,
and has potential downstream applications for
the recognition and synthesis of multilingual
speech.

1 Introduction

Prosodic analysis has been a cornerstone of speech
processing research for decades (Cutler et al., 1997;
Wagner and Watson, 2010). Much of the early work
in this area has traditionally focused on monolin-
gual productions of highly-resourced languages,
partly due to practical concerns of data availabil-
ity and modeling capabilities (Xu, 2011). With
the field’s growing interest in lower-resourced lan-
guages and multilingual domains (Hasija et al.,
2022; Nikolaev et al., 2015), there is considerable
scope for exploring prosody in diverse language
settings. In particular, the impact on prosody of
multilingual discourse contexts is one area in which
our understanding remains incomplete, but would
be essential for improving both the comprehension
and synthesis of human-like monolingual and mul-
tilingual speech, among other applications.

In this work, we take the first step toward filling
this gap by exploring the prosodic features of mono-
lingual speech across different types of multilingual
discourse context. Such contexts exist on a spec-
trum, at one end of which are purely monolingual
settings, followed by domains consisting primarily
of monolingual speech in one language alternat-
ing infrequently with other languages between sen-
tences, paragraphs, or even entire documents. At
the opposite end of the spectrum are code-switched
domains where various languages are interspersed
more granularly and typically at the intra-sentential
level. This work compares monolingual speech
from two extremes of the multilingual spectrum:
one involving little to no contact between distinct
languages, and the other involving code-switching.
We define the former as a monolingual discourse
context in which all speech consists of a single lan-
guage; in contrast, the latter is a multilingual dis-
course context consisting of code-switched speech
alternating between two languages within and be-
tween utterances.

We specifically examine the prosody of spon-
taneous, informal productions of monolingual En-
glish and Spanish, situated in both monolingual and
multilingual, i.e. code-switched, contexts. To do so,
we investigate U.S. English and Spanish as spoken
in the monolingual CallHome corpora (Canavan
et al., 1997; Canavan and Zipperlen, 1996) and
compare this to the U.S. English and Spanish spo-
ken in the Bangor Miami corpus of multilingual
and code-switched speech (Deuchar, 2011).

We find evidence of monolingual speech pro-
duced in a monolingual context having significant
prosodic differences from that produced in a mul-
tilingual context, which holds true across both En-
glish and Spanish. These differences are marked
enough to be learned by end-to-end predictive mod-
els, and become even more pronounced with in-
creased proximity of monolingual utterances to
multilingual discourse. Overall, we find that multi-
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lingual speech settings have a meaningful influence
on the prosody of monolingual speech. Our work is
the first to study monolingual prosody across differ-
ent types of discourse context, and our main contri-
bution is a novel insight on nuanced prosodic pro-
duction in varied contexts. We hope that our work
will inform innovation in downstream speech appli-
cations, including predicting, recognizing, and syn-
thesizing multilingual and code-switched speech.

2 Related work

There exists an extensive literature on the prosodic
patterns of various languages. Computational work
on intonation has focused on analyzing native-
level monolingual speech (Schack, 2000; Torres,
2024), for which the ToBI framework (Silverman
et al., 1992), along with its extensions, has been
particularly important. Related studies such as
Rosenberg et al. (2012) have shown that differ-
ent languages have distinct, typical prosodic pro-
files, which can be leveraged to perform language
identification (LID) on both read and spontaneous
speech (Rouas et al., 2003) across many languages
including English, German, Japanese, Mandarin,
Spanish, and Hindi, among others (Cummins et al.,
1999; Rao et al., 2015; Bhattacharjee and Sarmah,
2013). Such prosodically-driven LID systems have
used a variety of front- and back-ends and configu-
rations such as hierarchical and fusion classifiers
(Ambikairajah et al., 2011), but almost all have im-
plicitly assumed a monolingual discourse context.
Prior work that has explicitly considered contex-
tual influence on prosody, such as Cole (2015),
has largely defined context in terms of syntactic,
lexical, and discourse levels which vary according
to the spontaneity of the speech situation. While
prosody has been interpreted relative to features
of neighboring words, syntactic boundaries, and
discourse units, it is yet to be considered relative to
the broader multilingual status of the conversation
as a whole.

Studies most closely related to our work have
examined prosodic interference, e.g. Nikolaev
et al. (2015), and focused on the interaction of
prosodic elements in second language acquisition
settings (Bowen, 1956; Graham, 1978; Kainada
and Lengeris, 2015; Ding and Hoffmann, 2015).
Some of these studies performed very fine-grained
analyses – for instance, only comparing pitch and
intonational contours between questions and declar-
ative statements in English and Spanish (Delattre

et al., 1962). Such work, however, has been re-
stricted to the effect of native prosody on foreign
language speech, rather than the prosodic interplay
between two first languages. The few studies that
have considered a speech setting involving inter-
actions between multiple native languages have
generally conducted small-scale studies focused on
language development and prosodic mixes among
young children (Schmidt and Post, 2015; Cruz-
Ferreira, 1999), or on listeners’ ability to anticipate
upcoming monolingual and code-switched speech
(Piccinini and Garellek, 2014).

Overall, prior work indicates that close contact
between languages influences prosody particularly
as produced by children and language learners, but
it remains unclear what the impact of more dis-
tant language contact in multilingual discourse set-
tings is on the prosody of adult, native-level speak-
ers. To address this gap, we ask RQ: How does
the prosodic character of monolingual speech in a
given language vary depending on its monolingual
versus multilingual discourse context? In other
words, how does a multilingual discourse context
influence the prosody of monolingual speech pro-
ductions?

3 Data

We examine two monolingual corpora, CallHome
English (CH-E) and CallHome Spanish (CH-S)
(Canavan et al., 1997; Canavan and Zipperlen,
1996), and one multilingual corpus, Bangor Miami
(BM) (Deuchar, 2011). Both CallHome English
and CallHome Spanish are made available under
the LDC User Agreement for Non-Members. The
Bangor Miami corpus is made available under the
GNU General Public License version 3 or later.

As specified in individual corpus documentation,
all three data sets were recorded in similar time peri-
ods and consist of spontaneous, informal conversa-
tions among friends or relatives on common topics
of discussion (e.g. family life, relationships, hob-
bies, etc.), limiting systematic differences between
corpora in discourse theme or interlocutor rapport.
Each corpus is reasonably gender-balanced over
the represented speakers. The monolingual corpora
include recorded telephone speech, while BM com-
prises recordings of in-person conversations. From
BM, we use the monolingual English and Spanish
subsets of the corpus, which respectively make up
about 63% and 26% of the data set. The remaining
11% of BM comprises code-switched utterances
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Total hours Number of Number of Mean [SD] utterance
Corpus of speech dialogues speakers length (s)
CH-E 33 71 142 3.7 [6.8]
CH-S 26 84 168 3.4 [6.0]
BM 35 56 84 3.1 [87.5]

Table 1: Summary of corpus statistics for each data set. Further detail on the idiosyncrasies of BM is in Appendix A.

and non-speech segments, e.g. laughter, which we
exclude from our analysis. We summarize addi-
tional corpus statistics in Table 1 and share further
detail about the BM corpus in Appendix A.

4 Method

4.1 Feature extraction and statistical testing.
For each corpus, we extract the Disvoice set1 of
103 utterance-level prosodic features derived from
fundamental frequency, energy, and duration across
voiced and unvoiced segments and six statistical
functionals: mean, standard deviation, maximum,
minimum, skew, and kurtosis. These features are
grouped into three prosodic categories: the first 30
features are related to pitch, the next 48 are related
to energy, and the last 25 are related to duration.
We transform the extracted features into vector rep-
resentations again using DisVoice (Dehak et al.,
2007; Vasquez et al., 2018). We compare these
features of English and Spanish across the two
discourse contexts using feature-level independent
t-tests over feature distributions of a) English in
CallHome versus Bangor Miami, and b) Spanish in
CallHome versus Bangor Miami. Later, to examine
the specific, positional influence of the multilingual
discourse context on prosody, we use the same sta-
tistical testing method to compare monolingual BM
utterances that are "closer" to the multilingual con-
text, i.e. a code-switched utterance, to those that
are further away.

4.2 Model building.
Inspired by existing literature on the use of prosody
for LID (see Section 2), we attempt a novel ap-
proach that leverages LID models to understand
variations in prosody. Note that LID as a task is not
the primary focus of this work; we only use LID as
a tool for understanding prosody. We hypothesize
that a prosodic LID model trained on monolingual
English and Spanish from a monolingual discourse
context will perform better when tested on speech

1https://disvoice.readthedocs.io/en/latest/
Prosody.html

from a monolingual context than when tested on
speech from a multilingual context, due to inherent
prosodic differences that occur from the broader
discourse setting. We expect the opposite to be
true for the performance of a prosodic LID model
trained on monolingual speech from a multilingual
discourse context.

To test this hypothesis, we build two custom
prosodic LID models for binary classification,
both using a Transformer base model architecture
(Vaswani et al., 2017). We select these models
by performing an extensive hyperparameter grid
search over 30 epochs, testing the efficacy of 50
different combinations of viable hyperparameters
across 6 different model architectures, and choos-
ing the ones that maximize accuracy (val. accu-
racy: 0.51 and 0.61). We do so using the Optuna
hyperparameter optimization framework.2 Each
model takes utterance-level prosody vector rep-
resentations as input, and outputs a language la-
bel for that utterance: either English or Spanish.
One model (Transformer-CH) is trained on the
prosodically-encoded combined train sets of CH-
E and CH-S with a learning rate of 8.84 x 10−5,
while the other (Transformer-BM) is trained on
the prosodically-encoded monolingual train set of
BM with a learning rate of 1.89 x 10−4. Both
are trained over 200 epochs using the Adam opti-
mizer, chosen for its adaptive learning rate and ef-
ficient convergence properties. Additionally, both
models employ a batch size of 32, ensuring sta-
ble and efficient gradient updates. Architecturally,
the encoder in Transformer-CH comprises a sin-
gle layer, in contrast to the three-layer encoder in
Transformer-BM. In both cases, the encoder’s feed-
forward network is configured with a hidden size of
128 to facilitate the learning of complex non-linear
representations. To enrich the embedding space,
Transformer-CH uses a projection dimension of
320, while Transformer-BM utilizes a projection
dimension of 256. In terms of overall model com-
plexity, Transformer-CH comprises 848,450 param-

2https://optuna.org
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Figure 1: p-values for prosodic feature distribution comparisons between CallHome and Bangor Miami: English
(top) and Spanish (bottom). Blue indicates feature-level statistical significance; red indicates insignificance. Orange
ticks indicate pitch features, green ticks indicate energy features, and pink ticks indicate duration features.

eters, while Transformer-BM contains 1,273,474
parameters. The data used follows a 70%-20%-
10% train-test-val split. To prevent the models
from learning biases toward the majority class, we
ensure that the training, testing, and validation sets
are balanced in terms of class distribution. We run
experiments on three v100 GPUs, on which hyper-
parameter search took about 8 hours and training
took about 2 hours.

To confirm the reliability of our custom models,
we also perform inference with a large (1B param-
eters) off-the-shelf LID model, Facebook-MMS-
LID (Pratap et al., 2024), pre-trained on monolin-
gual speech in 256 languages, including English
and Spanish, from monolingual contexts. We use
this model to perform the same binary classifica-
tion task, i.e. prosodic LID, as above, testing it on
data from both the monolingual and multilingual
discourse contexts. Note that this large pre-trained
model makes use of acoustic features in addition
to the prosodic ones that we focus on. We would
have preferred to use a prosody-only LID model for
controlled comparison, but such pre-trained models
are not openly accessible.

5 Results

5.1 Prosodic profiles differ significantly in
monolingual versus multilingual discourse
contexts.

We begin with a statistical comparison of the
prosodic features of monolingual English and Span-
ish between the monolingual discourse contexts of
CH-E and CH-S and the multilingual discourse
context of BM. We find that the vast majority of
prosodic features in both English and Spanish are
significantly different (p < 0.05) in a monolingual
context than in a multilingual one (Figure 1). A few

prosodic features diverge from this general trend,
e.g. MSE and tilt of voiced fundamental frequency
(F0) linear estimation3 (features 8 and 14) are not
significantly different for monolingual English in
CH-E compared to BM, while pause duration (fea-
ture 95) is not significantly different for monolin-
gual Spanish in CH-S compared to BM. However,
the overall prosodic profile of a language does in-
deed differ meaningfully depending on the nature
of the discourse context, which is especially strik-
ing given that we compare monolingual instances
of the same language in each case.

The above result holds true even when we ac-
count for 1) the differing noise conditions of the
CallHome and Bangor Miami corpora – only the
latter corpus contains babble noise as a byprod-
uct of its public recording setup; 2) the variation
in utterance length distribution beyond 7 seconds
in each language (Figure 2); and 3) the differing
recording conditions of the CallHome and Ban-
gor Miami corpora, whereby the former data were
collected over the telephone and the latter using in-
room microphones. We replicate our results using
1) denoised versions of the BM data sourced from
prior work (Bhattacharya et al., 2024)4 (Figure 3),
2) the subset of monolingual utterances in each cor-
pus of length less than 7 seconds (Figure 4), and
3) downsampled BM audio files of 8 kHz, which
match the audio sampling rate of both CallHome
corpora (Figure 8 in Appendix A.4).

Over the corpus as a whole, when considering
prosodic features by type (pitch, energy, or du-
ration), group-level statistically significant differ-
ences are similar in proportion for both English
and Spanish; each prosodic feature group con-

3We provide a glossary of these terms in Appendix A.
4Please see Bhattacharya et al. (2024) for complete

methodological details of how denoising was carried out.
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Figure 2: Comparing utterance length distributions of English (left) and Spanish (right) in CallHome to Bangor
Miami.

Figure 3: p-values for prosodic feature distribution comparisons between CallHome and denoised Bangor Miami:
English (top) and Spanish (bottom). Blue indicates feature-level statistical significance; red indicates insignificance.
Orange ticks indicate pitch features, green ticks indicate energy features, and pink ticks indicate duration features.

tains at least one feature that shows statistically
insignificant differences in both languages. For
neither language is there a prosodic feature group
that consistently represents a greater proportion of
statistically significant differences than the other
groups across the various experimental control set-
tings (Figures 1, 3 , 4, and 8). This suggests that
even granular prosodic differences in monolingual
speech between monolingual and multilingual dis-
course contexts may be similar for both English
and Spanish.

We further inspect the nature of these differences
in prosodic profiles, highlighting a few observa-
tions from our qualitative comparison of monolin-
gual English and Spanish in each discourse context.
For both English and Spanish, F0 contours gener-
ally have lower values in the multilingual setting
of BM compared to the monolingual settings of
CH-E and CH-S, with less variation in F0 con-
tour in the multilingual discourse context. Initial
voiced segments in both languages have lower av-
erage F0 in a multilingual setting. This is also true
for final voiced segments in Spanish. In terms of

energy, initial and final voiced segments in both lan-
guages have greater mean values in a multilingual
setting than in a monolingual one. This difference
is even more marked for the average energy of un-
voiced segments. Finally, voicing rate and the ratio
of duration of pauses to combined voiced and un-
voiced segments are lower in a multilingual context
than in a monolingual one. We visualize some of
these trends in Figure 5. Cumulatively, we find
that English and Spanish produced in a multilin-
gual context tend to sound lower-pitched, louder,
less rhythmic, and less disjointed than English and
Spanish produced in a monolingual context. The
consistency of these qualitative patterns across both
languages is striking, and suggests that a multilin-
gual discourse context has a uniform impact on
the prosody of monolingual speech. In sum, these
results provide the motivation for the remainder of
the work.

23324



Figure 4: p-values for prosodic feature distribution comparisons between CallHome and denoised Bangor Miami
over length-controlled utterances (<=7 seconds): English (top) and Spanish (bottom). Blue indicates feature-level
statistical significance; red indicates insignificance. Orange ticks indicate pitch features, green ticks indicate energy
features, and pink ticks indicate duration features.

(a) (b) (c)

Figure 5: Visualizing trends in (a) mean F0 in monolingual Spanish, (b) mean energy of initial unvoiced segments
in monolingual English, and (c) voicing rate in monolingual Spanish across monolingual (CH; CallHome) and
multilingual (BM; Bangor Miami) discourse contexts.

5.2 Models can learn prosodic profile
differences between monolingual and
multilingual discourse contexts.

Next, we examine whether end-to-end predictive
models can learn the underlying differences in
monolingual English and Spanish prosody that
seem to arise from the discourse context.

5.2.1 Evaluating our custom models.

We find that our custom model trained on English
and Spanish in monolingual contexts (Transformer-
CH) performs better at the LID task when tested on
monolingual data from a monolingual context than
when tested on monolingual data from a multilin-
gual context (Table 2). This difference in perfor-
mance is statistically significant with p < 0.001 ac-
cording to a z-test of proportions comparing model
accuracy on the test samples. This is also consistent
with the results from our custom model trained on
a multilingual context (Transformer-BM), which
performs better at LID when tested on monolingual
English and Spanish from a multilingual context
than from monolingual contexts. Again, the differ-
ence in performance, according to a z-test of pro-

portions, is statistically significant with p < 0.001.
While the overall performance of our custom mod-
els in each testing configuration is modest, the key
aspect of these results is the relative performance
in distinct discourse contexts. Since the languages
and conversational genre under consideration in
each of these settings are identical, and we have
already shown that the impact of noise, utterance
length, and recording channel discrepancies across
settings is minimal, these differences in model per-
formance provide further support for prosodic vari-
ation in monolingual speech depending on the mul-
tilingual nature of the broader discourse context.

5.2.2 Ablating our custom models.

To develop further insight into which types of
prosodic features matter the most to prosodic vari-
ation that is driven by the nature of the discourse
context, we evaluate the contribution of each group
of features to overall model performance through
feature-group-level ablations. In other words, we
re-train each model after removing each of the
pitch, energy, and duration feature groups and as-
sess the corresponding change in model perfor-
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Model Train set Test set Accuracy F1 Score
Transformer-CH CH-E+CH-S CH-E+CH-S 0.592 0.591
Transformer-CH CH-E+CH-S BM 0.482 0.479
Transformer-BM BM CH-E+CH-S 0.478 0.478
Transformer-BM BM BM 0.551 0.540
Facebook-MMS – CH-E+CH-S 0.817 0.816
Facebook-MMS – BM 0.803 0.806

Table 2: Comparing model accuracy and F1 score on monolingual versus multilingual discourse context train/test
configurations. Baseline accuracy associated with random/blind guessing in each case is 0.5. For associated
confusion matrices, see Appendix A.3. For the equivalent custom model results on sampling-rate-matched audio
data, see Table 10 in Appendix A.4.

mance at inference time. In each case, changes
in model performance relative to the baseline show
that pitch features play the most important role,
followed by energy, and finally duration features
(Table 3). This suggests that prosodic variation in
monolingual speech between monolingual and mul-
tilingual contexts may primarily stem from pitch
variations. However, since the absolute differences
between the feature groups’ contributions to over-
all model performance are relatively small, further
work is required to definitively quantify any mean-
ingful impact of variation in each of pitch, energy,
and duration features on shaping overall prosodic
differences between monolingual and multilingual
discourse settings.

5.2.3 Replication with a large pre-trained
model.

To rule out the performance differentials between
monolingual and multilingual contexts found in
Section 5.2.1 as being unique to our custom models,
we replicate these results using Facebook-MMS-
LID (Table 2). As with Transformer-CH, the test
performance of Facebook-MMS-LID on data from
a monolingual setting exceeds that on data from a
multilingual setting, with a performance gap is that
statistically significant according to a z-test of pro-
portions (p = 0.045).5 Since Facebook-MMS-LID
was pre-trained on data from monolingual contexts
only (Pratap et al., 2024), which importantly do
not include any of the corpora we use, and both the
CallHome and Bangor Miami corpora are out-of-
distribution for this model, its relative performance
across contexts lends validity to our custom model
results. We note the moderate performance of this

5We speculate that this relatively small performance gap
between discourse contexts could be due to acoustic, rather
than exclusively prosodic, feature contributions to distinguish-
ing between languages, but further work is required to confirm
or refute this.

large pre-trained model is slightly surprising given
its position as a state-of-the-art model, but the rel-
evant takeaway from its inference results is the
difference in performance between discourse con-
texts, rather than the absolute performance metric
values.

Note that we do not perform ablations over
Facebook-MMS-LID, as we lack the resources to
re-train such a large, pre-trained model in multiple
ablation settings.

Overall, our model performance evaluation re-
sults reinforce the statistically significant differ-
ences in prosodic profile of monolingual English
and Spanish between monolingual and multilin-
gual settings. Not only do such differences exist,
these can also be learned by prosodic models whose
downstream predictions are, in turn, influenced by
such variation. In sum, this provides further evi-
dence in support of the influence of discourse con-
text on prosodic variation in monolingual English
and Spanish.

5.3 Prosodic profile differences are enhanced
with increased proximity to multilingual
discourse.

To complete our investigation, we examine the spe-
cific impact of proximity to multilingualism on
the prosody of monolingual speech in BM. We
define monolingual BM utterances that are pre-
ceded or followed by code-switched utterances as
being close to the multilingual discourse context
of the conversational data; all other monolingual
BM utterances are defined as being far from the
multilingual context. Statistical testing again re-
veals significant differences over the vast majority
of prosodic features between monolingual BM ut-
terances spoken close to the multilingual context,
compared to monolingual BM utterances spoken
far from the multilingual context (Figure 6). This
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Model Train set Test set Excluded feature group Accuracy F1 Score
Transformer-CH CH-E+CH-S CH-E+CH-S – 0.592 0.591
Transformer-CH CH-E+CH-S CH-E+CH-S Pitch 0.493 0.380
Transformer-CH CH-E+CH-S CH-E+CH-S Energy 0.585 0.585
Transformer-CH CH-E+CH-S CH-E+CH-S Duration 0.598 0.598
Transformer-CH CH-E+CH-S BM – 0.482 0.479
Transformer-CH CH-E+CH-S BM Pitch 0.476 0.476
Transformer-CH CH-E+CH-S BM Energy 0.477 0.476
Transformer-CH CH-E+CH-S BM Duration 0.494 0.395
Transformer-BM BM BM – 0.551 0.540
Transformer-BM BM BM Pitch 0.477 0.460
Transformer-BM BM BM Energy 0.539 0.522
Transformer-BM BM BM Duration 0.553 0.548
Transformer-BM BM CH-E+CH-S – 0.478 0.478
Transformer-BM BM CH-E+CH-S Pitch 0.456 0.454
Transformer-BM BM CH-E+CH-S Energy 0.493 0.478
Transformer-BM BM CH-E+CH-S Duration 0.516 0.484

Table 3: Comparing our custom models’ accuracy and F1 score across subsets of the entire prosodic feature set. The
first row for each model train/test configuration, where no features are excluded, denotes the performance of that
model on the entire feature set, as originally shown in Table 2, and serves as the baseline for that configuration.

Figure 6: p-values for prosodic feature distribution comparisons between monolingual BM utterances close to
and far from multilingual discourse context. Blue indicates feature-level statistical significance; red indicates
insignificance. Orange ticks indicate pitch features, green ticks indicate energy features, and pink ticks indicate
duration features.

is supported by a qualitative inspection whose re-
sulting patterns mirror those found in Section 5.1;
monolingual utterances that are close to the multi-
lingual context generally have lower fundamental
frequency feature values, higher energy feature val-
ues, and lower voicing rate and pause duration ratio
than monolingual utterances that are further away
from the multilingual context (see Figure 7 for se-
lected visualizations). So, increased proximity to
the multilingual discourse context results in further
variation in the prosodic profile of monolingual
speech uttered in a broadly multilingual setting, for
both English and Spanish. In sum, these results
strengthen our finding on the variation in prosodic
profile of monolingual speech by discourse context,
while adding another dimension of insight as to the
specific contribution of a multilingual discourse
context to such prosodic differences.

6 Discussion

We examine how the prosody of monolingual En-
glish and Spanish varies between monolingual and
multilingual discourse contexts. Most studies of
prosody have focused on monolingual contexts;
our work explores how multilingual environments
influence even monolingual speech, a research di-
rection that is original and under-explored, in a way
that bridges aspects of sociolinguistics and compu-
tational modeling. We find and interpret consistent
statistically significant differences in the prosodic
profile of both languages in distinct language set-
tings, which become more pronounced with in-
creased proximity of monolingual utterances to
multilingual discourse, i.e. code-switching. Since
statistical relationships in data inform model be-
havior, we apply the contextual differences we find
toward interpreting the performance of end-to-end
predictive LID models; our models seem to be able
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(a) (b) (c)

Figure 7: Visualizing trends in (a) mean F0, (b) mean energy of initial unvoiced segments, and (c) voicing rate in
utterances close to and far from a multilingual, i.e. code-switched (CSW), discourse context.

to indirectly learn these significant prosodic dif-
ferences, though further work is required to im-
prove their absolute task performance. Our use of
LID models for diagnostic rather than predictive
purposes is novel and under-utilized in prosody re-
search, and enables quantitative interpretation of
latent variation, allowing us to show that our mod-
els can internalize context-driven prosodic cues.

We conclude that the multilingual nature of the
discourse context has a meaningful influence on
the prosodic profile of both monolingual English
and monolingual Spanish. It would be valuable to
examine how our findings on prosodic differences
across discourse contexts affect real-world speech
systems, including their impact on the performance
of speech recognition, synthesis, or speaker iden-
tification, thereby informing and guiding practical
improvements in multilingual downstream applica-
tions; we plan to do so in future work that builds
directly on the present study.

The main novelty of our work is based on our
exploration of the broader discourse context in rela-
tion to prosody, and our largely language-agnostic6

approach that leverages LID models to do so. In
addition, we focus on speech produced by na-
tive speakers and, differing from prior work, on
prosodic characteristics across types of utterances
as opposed to specific speech acts, at a higher level
of abstraction than any individual prosodic fea-
ture. These conditions in our research question
and methodology enable us to work toward the
goal of extending our research to additional lan-

6In using this term, we refer specifically to the nature of
the input features to our models. These prosodic input features
are suprasegmental and are not tied to any single language’s
phonemic or lexical structure. This is in contrast to much ex-
isting work on prosody that is inherently language dependent,
through the study of highly language-specific intonational con-
tours, pitch accents, or lexical tone, e.g. Delattre et al. (1962);
Torres (2024).

guages, including lower-resourced ones, in the fu-
ture, an objective that would be difficult to achieve
if only considering stand-alone, highly language-
specific measures of prosody, e.g. any of intona-
tional contour, pitch accent, or lexical tone alone.
Our work contributes novel insight and a nuanced
understanding of the subtleties of prosodic produc-
tion in distinct discourse contexts, which can be
further developed in future studies investigating
other languages from different typological families,
accented and dialectal monolingual speech, as well
as code-switched speech.

Limitations

Our work focuses on only two languages spoken
within the United States. Fruitful extensions of
our work would examine additional languages and
cultural contexts to verify the robustness of our find-
ings. While the corpora that we use were recorded
in a single country, we note that this does not imply
a lack of linguistic and cultural diversity therein.
Across the three data sets, represented speakers are
from over two-thirds of the 50 U.S. states, among
which there is notable state-level and regional di-
versity in linguistic patterns and culture, in both
spoken English and spoken Spanish. Each corpus
also consists of speakers of a variety of ages. These
factors combined indicate the extent of linguistic
and cultural diversity of the speech we analyze.

To prevent our analyses from becoming overly
complex, we assume that the distribution of di-
alects and accents of both English and Spanish
across the CallHome and Bangor Miami corpora
are comparable, since all three data sets are col-
lected in the same country and have broad over-
lap in the Latin American origin countries of rep-
resented speakers. We acknowledge that our as-
sumption may not necessarily hold true in the face
of more fine-grained regional differences or other
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hidden variables that could lead to undiagnosed
corpus mismatches. However, we note that it is re-
quired to enable the best use of currently available
resources, given the scarcity of large-scale, openly-
available monolingual and multilingual data in
two languages, with both spoken in the same ac-
cent/dialect. We believe this was a reasonable de-
sign choice for this work, which represents a first
step toward studying prosody across discourse con-
texts, and we highlight that the effects of dialectal
variation are an important future direction of re-
search on prosody in such contexts.

Separately, there may be interesting associa-
tions between the prosodic differences we find
and phonological and/or pragmatic concepts from
speech literature. We omit any such analyses in the
present study due to lack of relevant annotations
rendering this out of scope, but believe this would
be another fruitful direction for future work.

Our study intentionally focuses on discourse-
level context as a driver of prosodic variation, rather
than on the linguistic mechanisms (e.g. syntactic
structure, lexical content, or phonological phrasing)
that often require fine-grained annotations. Enrich-
ing the data sets under investigation with such an-
notations would allow for a more detailed analysis
of how prosodic cues relate to underlying linguis-
tic form and could potentially provide insight into
the structural mechanisms underlying or interact-
ing with prosodic differences in varied discourse
contexts. However, large-scale, multilingual cor-
pora with aligned syntactic or phonological labels
are rare, and our aim in the present study was to
assess whether prosodic traces of multilingual con-
text are detectable without relying on such detailed
supervision. We view our work as complemen-
tary to linguistically annotated studies and hope
it will motivate future research that integrates dis-
course context with fine-grained linguistic structure
in more richly labeled corpora.

Ethics Statement

This study was conducted exclusively on secondary
data, and did not require human experiments. We
did not access any information that could uniquely
identify individuals within each corpus, as the orig-
inal authors de-identified all speakers as outlined
in the documentation of each data set. We did not
collect any of the data used in this work, but note
that all participants in the corpora had explicitly
consented to sharing the data analyzed in our study.

We believe this work is important and highly
relevant in a globalized world where multilingual-
ism is growing in prevalence. We hope our work
will lead to further study of multilingual prosody,
possibly in a communication oriented framework.
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A Appendix

A.1 Notes on the Bangor Miami corpus.
As shown in Table 1, the BM corpus consists of 84
unique speakers across 56 dialogues. One impor-
tant idiosyncrasy of the data set is that 15 of the
56 dialogues involve the same speaker (“Maria”)
in conversation with different interlocutors. The
justification for this data collection design choice
can be found in the original corpus documentation
(Deuchar, 2011). Relatedly, “Maria” tends to speak
very long utterances that represent outliers in the
corpus in terms of utterance length. Excluding this
speaker from utterance length statistics, the corpus-
level mean and standard deviation are 1.89s and
1.45s respectively.

Below, we share examples of monolingual En-
glish and monolingual Spanish utterances, on
which we conduct our analyses in this work, and
contrast these with examples of Spanish-English
code-switched utterances, which we do not use in
the present study.

• Monolingual English Example 1: “So we
went to the Heat game.”

• Monolingual English Example 2: “You
know, I’m just saying, I’m nice to people in
general.”

• Monolingual Spanish Example 1: “Ay, qué
estúpida.”

• Monolingual Spanish Example 2: “Vamos
a ver qué dice pues.”

• Code-switched Spanish-English Example
1 [not used in any analysis in this work]:
“Pero mi printer doesn’t work.”

• Code-switched Spanish-English Example
2 [not used in any analysis in this work]:
“Pero no la puedes hacer because you can’t
start checking it.”

A.2 Glossary of selected prosodic features.
• Voiced F0. This refers to the fundamental

frequency, i.e. perceptual pitch, of voiced
segments of speech, which primarily involve
vowels and certain groups of consonants. It
is measured in terms of the rate of vibration
of vocal folds, and can be estimated using sig-
nal processing techniques that leverage linear
approximation.
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• Tilt. When vocal folds vibrate during speech
production, this produces a complex sound
wave with a fundamental frequency as well as
a series of higher frequencies known as har-
monics. Tilt, or spectral tilt, describes how
the energy of these higher frequency harmon-
ics is distributed across the frequency range.
Greater tilt indicates a greater difference in
amplitude between lower and higher harmon-
ics, and is perceived as a breathier voice.

• Voicing rate. This refers to the rate at which
a speaker’s vocal cords vibrate during the pro-
duction of voiced sounds in speech.

A.3 Confusion matrices associated with
models in Section 5.2.

Predicted: P Predicted: N
True: P 2481 2132
True: N 1633 2980

Table 4: Confusion matrix for Transformer-CH model
tested on CH-E and CH-S. P and N refer to positive and
negative classes, respectively.

Predicted: P Predicted: N
True: P 975 1397
True: N 1063 1309

Table 5: Confusion matrix for Transformer-CH model
tested on BM.

Predicted: P Predicted: N
True: P 2189 2424
True: N 2393 2220

Table 6: Confusion matrix for Transformer-BM model
tested on CH-E and CH-S.

Predicted: P Predicted: N
True: P 1663 709
True: N 1422 950

Table 7: Confusion matrix for Transformer-BM model
tested on BM.

Predicted: P Predicted: N
True: P 4090 523
True: N 1162 3451

Table 8: Confusion matrix for Facebook-MMS model
tested on CH-E and CH-S.

Predicted: P Predicted: N
True: P 1711 661
True: N 248 2124

Table 9: Confusion matrix for Facebook-MMS model
tested on BM.
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A.4 Replications using
sampling-rate-matched utterances.

Below, we present additional results for the
sampling-rate-matched data.
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Figure 8: p-values for prosodic feature distribution comparisons between CallHome and downsampled Bangor
Miami over length-controlled utterances (<=7 seconds): English (top) and Spanish (bottom). Blue indicates feature-
level statistical significance; red indicates insignificance. Orange ticks indicate pitch features, green ticks indicate
energy features, and pink ticks indicate duration features.

Model Train set Test set Accuracy F1 Score
Transformer-CH CH-E+CH-S CH-E+CH-S 0.581 0.576
Transformer-CH CH-E+CH-S BM 0.472 0.466
Transformer-BM BM CH-E+CH-S 0.467 0.467
Transformer-BM BM BM 0.557 0.546

Table 10: Comparing model accuracy and F1 score on monolingual versus multilingual discourse context train/test
configurations, using sampling-rate-matched audio data. Baseline accuracy associated with random/blind guessing
in each case is 0.5. These results are consistent with those presented in Table 2 and provide further evidence of the
lack of channel-driven effects in a modeling setting.
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