
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 23301–23319
November 4-9, 2025 ©2025 Association for Computational Linguistics

Searching for the Most Human-like Emergent Language

Brendon Boldt and David Mortensen
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{bboldt,dmortens}@cs.cmu.edu

Abstract

In this paper, we design a signalling game-
based emergent communication environment
to generate state-of-the-art emergent languages
in terms of similarity to human language. This
is done with hyperparameter optimization, us-
ing XferBench as the objective function. Xfer-
Bench quantifies the statistical similarity of
emergent language to human language by mea-
suring its suitability for deep transfer learning
to human language. Additionally, we demon-
strate the predictive power of entropy on the
transfer learning performance of emergent lan-
guage as well as corroborate previous results on
the entropy-minimization properties of emer-
gent communication systems. Finally, we re-
port generalizations regarding what hyperpa-
rameters produce more realistic emergent lan-
guages, that is, ones which transfer better to
human language.

1 Introduction

Emergent language has tremendous potential to
generate realistic human language data for deep
learning methods without the need to collect data
directly (or indirectly) from humans (Boldt and
Mortensen, 2024c). This stems from the fact that
emergent language aims to replicate the commu-
nicative pressures that drive the development of
human language and are hypothesized to explain
various patterns observed in linguistics (Scholz
et al., 2024). Yet little work has been done to
date designing emergent communication systems
to generate languages with high statistical simi-
larity to human languages. Such languages could
better serve as synthetic human language data for
pretraining and evaluating NLP models. Thus, in
this paper, we generate emergent languages with
a signalling game that have a high degree of sim-
ilarity to human languages, demonstrating state-
of-the-art performance on emergent-to-human lan-
guage deep transfer learning. Specifically, we use

0 5 10

Entropy (bits)

5.8

6.0

6.2

6.4

X
fe

rB
en

ch
-d

a

Emergent
Synthetic
Human

Figure 1: Hyperparameter search shows that emergent
and human languages tend towards the Pareto fron-
tier of minimizing entropy and minimizing XferBench
score (lower is better) while non-emergent synthetic lan-
guages less reliably follow this trend. Dashed gray line
represents a lower bound on entropy versus XferBench
score.

Bayesian hyperparameter search to optimize a sig-
nalling game on the XferBench benchmark (Boldt
and Mortensen, 2024b).

Producing emergent languages which are more
realistic (i.e., similar to human language) is one
of the core goals of the field as a whole since the
utility of emergent language is often predicated
on its resemblance to human language (Boldt and
Mortensen, 2024c). This paper takes a direct, prin-
cipled approach to this goal by finding hyperpa-
rameters which maximize an emergent languages
similarity to human language from a statistical per-
spective. Such an approach is in stark contrast to a
more arbitrary approach to selecting hyperparame-
ters which is common in the methods of emergent
communication. For example, vocabulary sizes
in emergent languages are often very small (only
one of eight emergent language environments sur-
veyed in Boldt and Mortensen (2024a) exceeds

23301

a vocabulary size of 70) while our research sug-
gests that the optimal vocabulary size is in the 1k
to 10k range. Increasing vocabulary sizes, then,
not only improves transfer learning performance
but also makes it possible for emergent languages
to replicate the long-tailed, Zipfian word distribu-
tion that is characteristic of human language (Zipf,
1949; Piantadosi, 2014), for example. We produce
a handful of such hyperparameter recommenda-
tions based on our empirical evaluations.

Beyond these recommendations, our experi-
ments also confirm a significant relationship be-
tween transfer learning performance and corpus
entropy. Not only does it appear that the entropy
of a corpus determines a lower bound on Xfer-
Bench score (lower is better) but that emergent
languages minimize entropy with respect to a given
XferBench score in a way that procedurally gener-
ated (i.e., non-emergent, synthetic) languages do
not (see Fig. 1). Such minimization is, significantly,
an emergent phenomenon as neither entropy nor
transfer learning performance are directly involved
in the optimization of the emergent communica-
tion system (and neither entropy nor XferBench
incorporate each other). This observation is signifi-
cant in two regards: First, it suggests that transfer
learning and, consequently, statistical similarity to
human language can be (partially) explained with
information theory. Second, it aligns closely with
prior work that finds that emergent communica-
tion minimizes entropy with respect to task success
within the environment (Kharitonov et al., 2020;
Chaabouni et al., 2022).

We discuss related work in Section 2. Methods
are discussed in Section 3, and the experiments
are presented in Section 4. An analysis of the re-
sults is performed in Section 5 with discussion and
conclusion in Sections 6 and 7.

Contributions We (1) introduce emergent com-
munication environments which produce the most
human language-like emergent languages to date,
as shown by state-of-the-art performance on a deep
transfer learning task using the XferBench bench-
mark; (2) provide concrete recommendations on
better hyperparameter settings for emergent com-
munication experiments so as to make them more
statistically similar to human language; and (3)
provide evidence that entropy minimization is a
general property of emergent communication sys-
tems, finding that it is minimized with respect to
transfer learning performance.

2 Related Work

At a high level, emergent communication (also
called emergent language) combines natural lan-
guage processing, deep multi-agent reinforcement
learning, and linguistics to study how natural
language-like communication systems evolve or
emerge from scratch. One of the primary aims of
this field is to discover what features of human lan-
guage (e.g., compositionality) emerge from the en-
vironment and learning dynamics of the agents. For
a general overview of deep learning-based emer-
gent communication research, see Lazaridou and
Baroni (2020). For the most part, this paper does
not have any directly related work as optimizing
emergent languages themselves across multiple
game instances is relatively unexplored. Below we
present some particular facets of this paper which
overlap with prior work.

This paper shares the goal of producing emer-
gent language corpora that are suitable for transfer
learning to human languages with Yao et al. (2022),
although Yao et al. (2022) do not optimize the emer-
gent languages directly and focus on validating the
corpus transfer technique (i.e., the basis of Xfer-
Bench). Boldt and Mortensen (2023), similarly to
this paper, investigate the effect of hyperparameters
on emergent communication, although their study
focuses primarily on mathematically analyzing and
explaining the effects rather than optimizing the
emergent language for an evaluation metric. Fi-
nally, this paper scales up emergent communication
game hyperparameters in a way that overlaps with
Chaabouni et al. (2022), although the latter focuses
on addressing the practical challenges of scaling
up certain facets of the signalling game (e.g., num-
ber of agents) rather than directly optimizing for a
particular objective.

The task of generating emergent languages for
pretraining NLP models falls within the broad cate-
gory data augmentation with synthetic data but dif-
fers from most other approaches due emergent lan-
guage’s unique nature as an emergent phenomenon.
First, emergent language differs from procedurally
generating data from rules because emergent tech-
niques preclude stipulating the exact process for
generating the data; expert knowledge is incorpo-
rated into designing the system which generates
the data, not generating the data itself. On the
other hand, emergent language differs from using
pretrained language models to generate synthetic
data since emergent communication is derived from

23302

scratch, again precluding any (pre)training on hu-
man language data.

3 Methods

3.1 Objective: XferBench

The ultimate objective that we are optimizing for
is transfer learning performance on downstream
human language tasks. This objective is quantified
by XferBench (Boldt and Mortensen, 2024b, MIT
license), which measures how much pretraining
on an emergent language corpus decreases cross-
entropy on a limited-data, downstream language
modelling task on human languages (illustrated in
the gray box of Fig. 2). While language model-
ing performance does not capture every aspect of
mastery of language, it does serve as the backbone
of many NLP tasks (e.g., generative models, au-
tomatic speech recognition, machine translation).
From a practical point of view, language model-
ing is also one of the simpler and less expensive
downstream tasks to test on (cf. testing on machine
translation in Boldt and Mortensen (2024b)).

Since the output of XferBench is mean cross-
entropy across human languages, a lower score
better. XferBench takes as input a corpus of 15
million tokens, which is used for the pretraining
stage and finetunes on 2 million tokens for each
evaluation (human) language. The language model
used for XferBench is based on GPT-2 (Radford
et al., 2019) and has ∼60 million parameters. Since
XferBench has a long runtime, we use a modified
version only during hyperparameter search termed
XferBench-da which only evaluates on one human
language (viz. Danish) which we found to have
high correlation (R2 > 0.95) with the complete
XferBench; see Appendix A for details.

3.2 Environment: signalling game

The environment we use in our experiments is the
signalling game. In particular we use the discrimi-
nation variant of the signalling game based on the
implementation in EGG (Kharitonov et al., 2021,
https://github.com/facebookresearch/EGG,
MIT license). The discrimination variant of the
signalling game consists of two agents, a sender
and a receiver interacting for a single round. In a
given round, the sender observes an input, sends a
message to the receiver, and the receiver selects an
observation out of a number of candidates based
on the message. Of the candidate observations, one
is correct (i.e., the same as the sender’s input), and

the rest are “distractors”. In the implementation
used in this paper:

• Observations are concatenations of a fixed
number of discrete-valued vectors (see Ap-
pendix B for details).

• Messages are sequences of integers repre-
sented by one-hot vectors.

• Agents are feed-forward neural networks with
one hidden layer and GRU-based RNNs to
generate/read the message.1

• The sender–receiver system is trained end-to-
end with backpropagation using a Gumbel-
Softmax layer (Maddison et al., 2017; Jang
et al., 2017) to generate the message.

Overall, this emergent communication system
is about as “vanilla” as is studied in the literature.
This is advantageous for a number of reasons:

• The environment is fast to run, requiring 10 to
120 minutes depending on the hyperparame-
ters.

• It has a (comparatively) limited number of hy-
perparameters making hyperparameter search
more tractable and reducing potential con-
founding variables.

• It serves as a “lower bound” for optimizing
emergent communication environments since
we can determine the maximum performance
possible in a system with minimal complexity.

• The training is stable, converging to a high
success rate for most hyperparameter combi-
nations.

The data is generated for the input corpus to
XferBench by sampling from the dataset of ob-
servations and feeding these observations into the
sender which generates the message.

3.3 Variables: hyperparameters

The hyperparameters are the independent variable
of the primary experiments presented in this pa-
per; that is, the hyperparameters will be varied
in order to optimize the system for the objective
function. Some hyperparameters manipulated in
this study are unique to the signalling game (e.g.,
how many attributes and values in the signalling
game observations) while others come from deep
learning-based architectures more generally (e.g.,
learning rate, neural network architecture).

We primarily investigate the following hyperpa-
rameters:

1Other architectures were investigated in a follow-up ex-
periment described in Appendix K.

23303

https://github.com/facebookresearch/EGG

Pretrain
language model

Tune on
human languageCross-entropy on HL

Evaluate objective (XferBench)

Sample HPsSpecify HP ranges Run environ-
ment with HPs

Collect EL corpus

Update sampler

Figure 2: Illustration of hyperparameter optimization with XferBench (adapted from Boldt and Mortensen (2024b)
(CC BY 4.0 License)).

Learning rate Multiplication factor for the
weight updates for parameters in the neural
network.

Embedding size Size of embedding layer in both
the sender and the receiver networks; these are
independent layers, but their sizes are varied
in unison for hyperparameter search.

Hidden size The size of hidden layer in both the
sender and the receiver networks; values are
varied in unison.

n attributes Number of one-hot vectors in each
observation.

n values Size of one-hot vectors in observations.
n distractors Number of incorrect observations

shown to the receiver (in addition to the cor-
rect one).

n epochs Number of training examples seen.2

Temperature Temperature of the Gumbel-
Softmax layer which the sender uses to
generate messages during training.

Vocabulary size Dimension of the one hot vectors
which comprise the message.

Message length Number of one-hot vectors in a
message.3

Other hyperparameters that were either not dis-
cussed or not investigated are documented in Ap-
pendix C. Although this set of hyperparameters
only covers a small portion of the possible varia-
tions of the signalling game (let alone other emer-
gent language games), it covers many basic hyper-
parameters which show up commonly in emergent
communication research.

3.4 Optimization: hyperparameter search
Finally, we discuss the method used for optimizing
the hyperparameters of the emergent communica-
tion system (the parameters system itself are opti-

2Since the data is procedurally generated, a new dataset of
1024 observations is sampled for each epoch.

3Technically, the implementation allows for variable length
messages, but optimization led to all messages always being
the max length.

mized with backpropagation, as mentioned above).
The simplest of all hyperparameter search methods
is grid search, where each element of the Carte-
sian product of every set of hyperparameter val-
ues is evaluated. Even using a modest 3 values
per aforementioned hyperparameter would require
310 ≈ 60 000 trials, taking 5 GPU-years (at 1 hour
per trial). Thus, we employ Bayesian parameter
optimization to more efficiently select hyperparam-
eter combinations to evaluate; this additionally al-
lows us to specify a range of hyperparameter values
instead of individual values. This process is illus-
trated in Fig. 2.

We specifically use a Tree-structured Parzen Esti-
mator (TPE) (Bergstra et al., 2011) as implemented
in Optuna (Akiba et al., 2019, MIT license). At
a basic level, TPE works by partitioning hyperpa-
rameter combinations into a “good” set and a “bad”
set based on the objective function value and se-
lects the next combination of hyperparameters by
maximizing the probability of the hyperparameters
being in the good set divided by the probability of
them being in the bad set. These probability es-
timates use multivariate kernel density estimators
and permit discrete, categorical, and conditional
hyperparameter values. After running the environ-
ment with the hyperparameters and the objective
function on the result, the sampler’s probability esti-
mates are updated in accordance with the objective
function’s value. For a more detailed explanation,
see Watanabe (2023).

4 Experiments

The code to run the experiments and analyses is
publicly available at https://github.com/bre
ndon-boldt/signalling-game-search under
the MIT license.

4.1 Hyperparameter searches

In this paper, we present four main searches
(Searches 1–4) with two additional searches

23304

https://github.com/brendon-boldt/signalling-game-search
https://github.com/brendon-boldt/signalling-game-search

|Trials| |Attrs.| |Vals.| |Distrs.| Temp. |Embed.| |Hidden| LR |Vocab| Length |Epochs|
1 578 [3, 7] [3, 7] [1, 127] [0.1, 10] [8, 128] [8, 128] [500µ, 50m] [10, 20k] [1, 40] 500
2 171 [5, 10] [5, 10] — [0.5, 4] [64, 512] [64, 512] [500µ, 5m] [300, 30k] — —
3 140 — — — — — — — — — [500, 5k]
4 282 [6, 20] 6 23 2 128 256 [1m, 3m] [500, 30k] — —
4* 1 11 6 23 2 128 256 1.79m 9721 16 1715

Table 1: All hyperparameters were treated as log-scale hyperparameters. |·| refers to cardinality. “—” means
unchanged from the previous run. µ, m, and k refer to the SI prefixes micro (×10−6), milli (×10−3), and kilo
(×103), respectively.

10−1 100 101

(a) S1, Temperature

X
fe

rB
en

ch
-d

a*

102 104

(b) S1, Vocab Size
27 29

(c) S3, Hidden Size
103 104

(d) S2, Vocab Size

Figure 3: Examples of different hyperparameter–objective relations observed in the various searches and hyperpa-
rameters. From left-to-right, we have: (a) a clear best value, (b) a clear trend outside the provided range, (c) a weak
trend toward a particular value, and (d) no definite trend. The y-axis based on different “sizes” of XferBench-da
normalized to similar scales.

(Searches 5r and 6e) for use in later analyses (Sec-
tion 5). The following is a summary of the hyper-
parameter searches:

Search 1 Large number of hyperparameters var-
ied with a wide range; used small version of
XferBench-da (1M train tokens for 1 epoch,
200k test tokens for 2 epochs).

Search 2 Same number of hyperparameters var-
ied with smaller or larger ranges depending on
results of Search 1; used medium version of
XferBench-da (4M train tokens for 2 epochs,
1M test tokens for 3 epochs)

Search 3 Same parameters as Search 2 while al-
lowing number of epochs to go higher and
using the full version of XferBench-da (15M
train tokens for 5 epochs, 2M test tokens for 10
epochs).

Search 4 Reduces ranges or fixes parameters from
Search 3 to maximize exploitation of good pa-
rameters; 4* in Table 1 is the best-performing
trial from Search 4.

Search 5r Most parameters varied with wide
ranges except using random sampling to re-
move sampling bias; similar to Search 1 with
narrower ranges on learning rate. Discussed in

Section 5.2.
Search 6e Optimized for maximizing entropy af-

ter a number of previous searches (not discussed
in the paper); similar to Search 4 in this regard.
Discussed in Section 5.2.

The parameters of Searches 1–4 are given in Table 1
(for complete table, see Table 3). The implementa-
tion defaults for other hyperparameters were used
unless otherwise specified. Optuna’s default param-
eters for TPE were used across all experiments.

The signalling game takes 5 to 40 minutes to
run (depending primarily on the number of epochs,
and, to a lesser extent, the message length), and the
full version of XferBench-da takes approximately
40 minutes to run. Thus, the average trial (for
the latter searches) takes approximately [0.75, 1.5]
hours. Parallelization was used to run multiple
trials within a search at a time. See Appendix E for
a discussion of computing resources used.

Search design For each iteration of the primary
searches (i.e., 1–4), we changed the search param-
eters based on their correlation with the objective
function. We observed four main univariate pat-

23305

terns4, illustrated in Fig. 3. For parameters with
a clear trend toward the center (Fig. 3a), we nar-
rowed the range to encourage exploiting good val-
ues. Some parameters trended to one side of the
range (Fig. 3b), which indicated needing to extend
the range. Parameters with weak to no trend (Fig-
ures 3c and 3d) were left unchanged for the initial
searches and given an arbitrary value for the final
search to reduce noise. Full hyperparameter plots
given in Appendix J.

Searches 1 and 2 used a reduced version of Xfer-
Bench to execute more trials quickly and prune the
less promising hyperparameter ranges; neverthe-
less, caution was exercised in pruning since scaling
up XferBench could change optimal hyperparame-
ter values. The irregular number of trials per search
were due to executing as many trials as possible
within a certain time (rather than aiming for a par-
ticular number of trials).

4.2 Languages evaluated

We select three categories of languages to eval-
uate with XferBench: human languages, those
generated with the hyperparameter search dis-
cussed above, and extant emergent language cor-
pora from ELCC (Boldt and Mortensen, 2024a,
https://huggingface.co/datasets/bboldt/elcc,
CC BY 4.0). The primary goal is for the search-
derived languages to outperform all existing emer-
gent languages and get as close to human language
performance as possible. For the human languages,
we use a subset of the baselines provided in Boldt
and Mortensen (2024b). In particular, we use Man-
darin and Hindi because they were the best- and
worst-performing human languages, respectively,
and French and Arabic to round out the language
families represented.

For the search-derived languages, we selected
the three best languages from the final primary run
of hyperparameter search (Search 4) and evaluate
them on the full set of evaluation languages in Xfer-
Bench. We additionally include the three highest-
entropy languages from the entropy-maximizing
search (Search 6e, discussed further in Section 5.2).

Finally, for the emergent language-based
points of comparison, we select three of the best
performing languages from ELCC. Most no-
tably, this includes Yao+ (corpus-transfer-
yao-et-al/coco_2014 (Yao et al., 2022))

4While we did look for multivariate effects (i.e., hyperpa-
rameters that are not independent), we did not observe any
notable trends.

M
an

da
rin

Arab
ic

Fren
ch

Hind
i
XB

1
XB

2
XB

3

Entr
op

y 1

Entr
op

y 2

Entr
op

y 3
Yao

+
M

u+

Cha
ab

ou
ni+

Language

5.85

5.90

5.95

6.00

6.05

X
fe

rB
en

ch

Human
HPO
ELCC

Figure 4: Plot of XferBench scores on emergent and hu-
man languages. XB 1–3 are emergent language corpora
derived from Search 4 and Entropy 1–3 from Search 6e.

which performed far better than all other
emergent languages on XferBench. Mu+
(generalizations-mu-goodman/cub-reference
(Mu and Goodman, 2021)) and Chaabouni+
(ec-at-scale/imagenet-10x10 (Chaabouni et al.,
2022)) were also included as more typical high-
performing emergent languages on XferBench.

4.3 Results

Figure 4 shows 3 randomly seeded runs of the full
XferBench score for each corpus. For the emergent
languages from hyperparameter search, the mod-
els were restored from checkpoints saved during
the search, but the corpora were generated indepen-
dently of the search. First, we see that the emergent
languages from the XferBench-based search (XB
1–3) outperform all other emergent languages and
even the Hindi corpus5. While it is indeed signif-
icant that these emergent languages outperform a
human language corpus, this corpus is also an out-
lier, and the emergent languages are still relatively
far from matching the performance of the rest of
the human language corpora. Nevertheless, these
figures show that the XB 1–3 languages achieve
state-of-the-art levels of similarity to human lan-
guage. The corpora from the entropy-based search
(Entropy 1–3) perform well, comparably to Yao+,
but significantly worse than the XferBench-search
languages.

5For a brief discussion of Hindi’s poor performance, see
Appendix F.

23306

https://huggingface.co/datasets/bboldt/elcc

5 Analysis

5.1 Importance of hyperparameters

Vocabulary size The most notable hyperparame-
ter trend we found was with vocabulary size, where
the best-performing languages had unique token
counts of on the order of 1000 and vocabulary sizes
closer to 10 000 (see Fig. 11); that is, the model
could use up to 10 000 unique words but only uses
1000 after training. For reference, it is common
practice in emergent communication research to
use vocabulary sizes well under 100 (e.g., only 1
out of the 8 systems in ELCC produce corpora with
>70 unique tokens).

Scaling up Similarly to vocabulary size, we ob-
serve indications to scale up message length, neu-
ral network layer size, and task information (i.e.,
number of attributes, values, and distractors): the
most human like emergent languages require longer
training, larger networks, and higher-information
tasks compared to common practice in the emer-
gent communication literature. Along with vocab-
ulary size, these hyperparameter are most often
trivial to adjust, meaning there is little reason not
to adjust standard practice in emergent communi-
cation research to using hyperparameters in these
ranges.

Learning rate Finally, in terms of raw impor-
tance with respect to XferBench score, learning
rate was most significant; this result is not sur-
prising as learning rate is significant in any deep
learning algorithm. Nevertheless, part of the dif-
ficulty with learning rate is that there is no one
best learning rate, and so performing at least some
hyperparameter tuning with learning rate will be
necessary for optimal performance.

Summary of recommendations We recommend
the following hyperparameters as a rule of thumb:
vocabulary size: 10 000, hidden layer size: 256,
embedding layer size: 128, message length: 20,
observation diversity: the higher the better (e.g.,
612 ≈ 2 trillion unique observations), epochs: train
until task success plateau (not just until arbitrary
threshold), learning rate: tune on final setting, neu-
ral architecture: 2-layer LSTM with 2 hidden lay-
ers6.

6Based on follow-up experiments in Appendix K.

5.2 Entropy and XferBench

The most striking correlation we observe in our
experiments is between XferBench score and uni-
gram token entropy, which is illustrated in Fig. 1
(Pearson’s r = −0.57 for Search 5r only). The
emergent languages pictured are all those generated
by Searches 4 and 5r, while the human languages
are taken from Boldt and Mortensen (2024b). We
see that low entropy languages tend to score poorly
on XferBench while high scoring languages have
higher entropy; this aligns with the observed corre-
lation between XferBench and entropy in Boldt and
Mortensen (2024a). Furthermore, this correlation
follows the same trend we see in human languages
with respect to entropy.

Entropy’s lower bound In particular, we have
illustrated a lower bound of low entropy–low Xfer-
Bench score that describes both emergent and hu-
man languages (the gray dashed line in Fig. 1).
This suggests that given a certain entropy, there is a
hard limit on the performance XferBench that can
be achieved. While further theoretical and empir-
ical analysis would be required to verify that this
a true lower bound, this aligns with the notion of
language models as entropy-minimizers: Language
models, in order to reduce the entropy on a target
language, require a certain degree of entropy (i.e.,
information) in the pretraining data. Hence, low-
entropy, low-information pretraining data leads to
language models which reduce entropy less (i.e.,
yielding higher cross-entropy).

Entropy minimization Looking again at Fig. 1,
we also see that the high-entropy, high-XferBench
quadrant (upper right) is also sparsely inhabited. In
fact, emergent and human languages seem to lie pri-
marily near the Pareto frontier of low-entropy, low-
XferBench score mentioned above. This comes in
contrast to the XferBench scores of a variety of syn-
thetic languages (descriptions of which are given
in Appendix G) which often do not demonstrate
this Pareto efficiency, even for synthetic languages
performing well on XferBench.

This result is concordant with the related claim
that entropy is “minimized” inside of emergent
communication systems (Kharitonov et al., 2020;
Chaabouni et al., 2021). Such work has shown
that emergent communication systems tend to find
Pareto efficient solutions in terms of maximizing
task success and minimizing entropy (this corre-
lation in the hyperparameter search is discussed

23307

0.0 0.2 0.4 0.6 0.8 1.0

Top 1% Accuracy

5.9

6.0

6.1

X
fe

rB
en

ch
-d

a

Figure 5: Accuracy versus XferBench for Search 5r.
Accuracy is measured as proportion of rounds for which
the correct observation is ranked in the top-1 percentile
among all distractors.

briefly in Appendix H).

Optimizing on entropy directly The correlation
between entropy and XferBench naturally leads
to a potential performance improvement: Why not
use entropy as the hyperparameter objective instead
of XferBench? Entropy takes seconds to compute
instead of close to an hour. This is the experiment
performed in Search 6e which was successful in
producing languages with good XferBench scores
but which still performed significantly worse than
optimizing on XferBench directly (see Fig. 4).

Given that the lower bound of entropy versus
XferBench score is tighter than the upper bound, it
is roughly the case that low entropy implies poor
XferBench performance, but high entropy does not
necessarily imply good XferBench performance.
Furthermore, it is also possible that optimizing di-
rectly for entropy results in degenerate solutions
that find trivial or otherwise unhelpful ways to
boost entropy. Thus, the fact that the entropy-
based search finds good but not optimal emergent
languages fits with the earlier observation about
bounds of entropy and XferBench score. With
these observations in mind, a refinement to the hy-
perparameter search algorithm would be to prune
low-entropy trials before running XferBench while
fully evaluating the trial on XferBench if it has high
entropy.

Task success The correlation between task suc-
cess and XferBench score (Fig. 5, Pearson’s r =
−0.40) is not as dramatic as with entropy. Never-
theless, the negative correlation (better task success,
better XferBench score) matches the expectation
that the realism of emergent language is positively

correlated with the efficacy of the language. This
relationship is a foundational assumption of emer-
gent communication techniques generally: the re-
alism of simulation-derived language comes, in
part, from its development out of the functional
pressures to communicate. Thus, if the emergent
communication does not function well, we would
not have reason to think it would be similar to hu-
man language, absent evidence.

6 Discussion

Similarity to human language The primary mo-
tivation for optimizing emergent communication
systems on XferBench is to create more human
language-like emergent languages. In this way,
this environment and the recommended hyperpa-
rameters provide a better baseline environment for
future emergent communication research to work
from. This similarity to human language is criti-
cal for nearly every application of emergent com-
munication research, not only related to machine
learning and NLP but also areas with more linguis-
tic focus (Boldt and Mortensen, 2024c). Although
XferBench quantifies a decidedly more deep learn-
ing, data-driven notion of similarity, this account
is complimentary with more explicitly linguistic
notions of similarity to human language.

For example, linguistic phenomena such as parts
of speech fundamentally concern whole classes of
words behaving predictably in a variety of envi-
ronments. Thus, trivially small languages are not
suitable for addressing such phenomena as there
are not classes of words and no variety to gener-
alize over. Even something as fundamental as the
Zipfian distribution of words in human language
presupposes a large vocabulary size (Zipf, 1949; Pi-
antadosi, 2014).7 Furthermore, smaller-scale emer-
gent languages are a greater risk for overfitting
since the capacity of a neural network quickly en-
ters the overparameterization regime when the lan-
guage has as small vocabulary, message length, etc.
(Gupta et al., 2020).

Emergent properties The relationship between
entropy, task success, and XferBench score demon-
strated in the hyperparameter searches emphasizes
the presence of truly emergent properties and pro-
cesses in emergent communication: Neither en-
tropy nor transfer learning performance are directly

7A follow-up experiment in Appendix I shows that even
high-performing emergent languages from our experiments
have a decidedly non-Zipfian distribution.

23308

optimized for (cf. task success). Just as Pareto ef-
ficient entropy has been found for task success in
emergent languages (Kharitonov et al., 2020), we
find some degree of Pareto efficiency with entropy
and XferBench performance (and to a limited de-
gree with task success and XferBench). What this
shows is that the communicative pressures and in-
formation theoretic considerations are a key ingre-
dient in emergent language’s similarity to human
language. Thus, task success and entropy serve as
additional ways to reason about emergent language
and how to apply it to human language. Neverthe-
less, the limited correlation we find among these
properties also tells us that emergent language is
not trivially explained by these factors either.

Future work On the front of creating more hu-
man language-like emergent languages, a next step
is to introduce new variations of the signalling
game, entirely new environments, or more sophisti-
cated neural architectures and optimize them on a
metric like XferBench in order to progress towards
the long-term goal of producing realistic emergent
languages for transfer learning. Because this pa-
per has wrung as much performance as is possible
from the basic signalling game environment, there
can be greater certainty that innovations producing
higher-performing languages are actually causing
the improvement. Otherwise, more trivial factors
like better learning rate tuning could become con-
founding variables.

As far as investigating the entropy minimization
pressure in emergent languages, further theoretical
work needs to build models and generate testable
hypotheses; theoretical models are the key to scien-
tific explanation beyond merely showing the exis-
tence of correlations. Nevertheless, this paper has
shown that hyperparameter turning can be an effec-
tive tool for producing a large variety of emergent
language that preclude hyperparameters being con-
founding variables. Such methods of generating
datasets will be invaluable in empirically testing
theoretical models of emergent language.

7 Conclusion

In this paper we have used hyperparameter search
to generate the most human language-like emer-
gent language to date, as quantified by XferBench.
Not only does this represent a step forward for us-
ing emergent languages as realistic synthetic data
for transfer learning but also provides insight into
how hyperparameters can be better addressed in

future emergent communication research. Finally,
the hyperparameter search reveals further impor-
tance of the role of entropy in emergent language.
High entropy appears to be a necessary condition
for good transfer learning performance while at the
same time, emergent language appears to minimize
entropy for a given level of transfer learning per-
formance. Furthermore, this entropy minimization
is not replicated in synthetic languages suggesting
that emergent language is more than just “synthetic
languages with extra steps”.

Limitations

In terms of finding the most human language-like
emergent language, this study is limited in terms of
the simplicity of the environment and agent design.
A single round signalling game with a fixed sender
and receiver and uniform, synthetic observations
is a no-frills environment which, while good for
stability and simplicity, is limited in the richness of
information to be communicated, and as a result,
the languages it can produce. Thus, while the pre-
sented insights can apply, in part, to many settings,
it does not come close to providing a comprehen-
sive account of the effects of hyperparameters in
emergent communication.

Regarding the investigation of the link between
entropy and XferBench score and task success, we
were not able to build any theoretical models to
scientifically test particular hypotheses about the
relationships between the variables; instead, we
are only able to offer empirical evidence that there
are trends warranting further investigation. Finally,
the recommendations we can given regarding the
hyperparameters of emergent communication sys-
tems are limited because hyperparameter search is
relatively “messy”; it is geared toward maximizing
performance more than uncovering generalizable
trends. Additionally, we perform our experiments
with a signalling game which provides only limited
evidence for the behavior of emergent communica-
tion systems with different tasks.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In The 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
2623–2631.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and

23309

Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In Advances in Neural Information
Processing Systems, volume 24. Curran Associates,
Inc.

Brendon Boldt and David Mortensen. 2023. Mathe-
matically modeling the lexicon entropy of emergent
language. arXiv, 2211.15783.

Brendon Boldt and David Mortensen. 2024a. ELCC:
the Emergent Language Corpus Collection. Preprint,
arXiv:2407.04158.

Brendon Boldt and David Mortensen. 2024b. Xfer-
Bench: a data-driven benchmark for emergent lan-
guage. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1475–1489,
Mexico City, Mexico. Association for Computational
Linguistics.

Brendon Boldt and David R Mortensen. 2024c. A
review of the applications of deep learning-based
emergent communication. Transactions on Machine
Learning Research.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel
Dupoux, and Marco Baroni. 2021. Communi-
cating artificial neural networks develop efficient
color-naming systems. Proceedings of the National
Academy of Sciences, 118(12):e2016569118.

Rahma Chaabouni, Florian Strub, Florent Altché, Eu-
gene Tarassov, Corentin Tallec, Elnaz Davoodi,
Kory Wallace Mathewson, Olivier Tieleman, An-
geliki Lazaridou, and Bilal Piot. 2022. Emergent
communication at scale. In International Conference
on Learning Representations.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Abhinav Gupta, Cinjon Resnick, Jakob Foerster, An-
drew Dai, and Kyunghyun Cho. 2020. Composi-
tionality and capacity in emergent languages. In
Proceedings of the 5th Workshop on Representation
Learning for NLP, pages 34–38, Online. Association
for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Eugene Kharitonov, Rahma Chaabouni, Diane Boucha-
court, and Marco Baroni. 2020. Entropy minimiza-
tion in emergent languages. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 5220–5230. PMLR.

Eugene Kharitonov, Roberto Dessì, Rahma Chaabouni,
Diane Bouchacourt, and Marco Baroni. 2021. EGG:
a toolkit for research on Emergence of lanGuage in
Games. https://github.com/facebookresearc
h/EGG.

Angeliki Lazaridou and Marco Baroni. 2020. Emergent
multi-agent communication in the deep learning era.
Preprint, arXiv:2006.02419.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Jesse Mu and Noah Goodman. 2021. Emergent commu-
nication of generalizations. In Advances in Neural
Information Processing Systems.

S.T. Piantadosi. 2014. Zipf’s word frequency law in nat-
ural language: A critical review and future directions.
Psychon Bull Rev, 21:1112––1130.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Barbara C. Scholz, Francis Jeffry Pelletier, Geoffrey K.
Pullum, and Ryan Nefdt. 2024. Philosophy of Lin-
guistics. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy,
Spring 2024 edition. Metaphysics Research Lab,
Stanford University.

M.P. Schützenberger. 1963. On context-free languages
and push-down automata. Information and Control,
6(3):246–264.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Shuhei Watanabe. 2023. Tree-structured parzen esti-
mator: Understanding its algorithm components and
their roles for better empirical performance. arXiv,
2304.11127.

Shunyu Yao, Mo Yu, Yang Zhang, Karthik R
Narasimhan, Joshua B. Tenenbaum, and Chuang
Gan. 2022. Linking emergent and natural languages
via corpus transfer. In International Conference on
Learning Representations.

GK Zipf. 1949. Human behavior and the principle of
least effort. Addison-Wesley, Cambridge, MA.

23310

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://arxiv.org/abs/2211.15783
https://arxiv.org/abs/2211.15783
https://arxiv.org/abs/2211.15783
https://arxiv.org/abs/2407.04158
https://arxiv.org/abs/2407.04158
https://doi.org/10.18653/v1/2024.naacl-long.82
https://doi.org/10.18653/v1/2024.naacl-long.82
https://doi.org/10.18653/v1/2024.naacl-long.82
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://openreview.net/forum?id=AUGBfDIV9rL
https://openreview.net/forum?id=AUGBfDIV9rL
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.18653/v1/2020.repl4nlp-1.5
https://doi.org/10.18653/v1/2020.repl4nlp-1.5
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://proceedings.mlr.press/v119/kharitonov20a.html
https://proceedings.mlr.press/v119/kharitonov20a.html
https://github.com/facebookresearch/EGG
https://github.com/facebookresearch/EGG
https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/2006.02419
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=yq5MYHVaClG
https://openreview.net/forum?id=yq5MYHVaClG
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.1016/S0019-9958(63)90306-1
https://doi.org/10.1016/S0019-9958(63)90306-1
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2304.11127
https://openreview.net/forum?id=49A1Y6tRhaq
https://openreview.net/forum?id=49A1Y6tRhaq

All Human Emergent

Basque 0.340 0.685 0.318
Danish 0.992 0.966 0.987
Finnish 0.971 0.968 0.969
Hebrew 0.967 0.967 0.977
Indonesian 0.988 0.952 0.983
Japanese 0.973 0.930 0.974
Kazakh 0.983 0.936 0.977
Persian 0.972 0.951 0.971
Romanian 0.985 0.945 0.982
Urdu 0.951 0.849 0.929

Table 2: R2 values for individual target XferBench lan-
guages predicting the full XferBench score. Human and
Emergent refer to the R2 value considering only the
human or emergent languages, respectively.

A Correlation of Evaluation Languages

One of XferBench’s chief weaknesses is its long
runtime, taking 2 to 6 hours depending on the GPU
used. Approximately 30% of that time is spent on
the initial pretraining with the emergent language
corpus, with the other 70% spent on finetuning and
testing on the 10 downstream languages. We ob-
serve from the XferBench scores on the emergent
languages of ELCC and the human language base-
lines of Boldt and Mortensen (2024b) that 9 out of
the 10 evaluation languages are highly correlated
with each other, that is, the XferBench score on one
language is highly predictive of the overall Xfer-
Bench score. In particular, test cross-entropy on
Danish (da) alone can predict >95% of the varia-
tion of the overall XferBench score (i.e., the linear
regression has an R2 > 0.95). For this reason, in
the hyperparameter optimization trials, we com-
pute XferBench-da (XferBench evaluated on Dan-
ish only) which is around 3× faster than the full
XferBench; the final evaluation nevertheless uses
the full set of evaluation language for XferBench.

In Table 2, we show the R2 values derived from
training a linear model on just one of the target
language’s XferBench scores to predict the overall
XferBench score. The emergent languages are all
of the corpora from ELCC (Boldt and Mortensen,
2024a), and the human language corpora are the
baselines from the original XferBench paper (Boldt
and Mortensen, 2024b). R2 value corresponds
to the percent of the variance in the full Xfer-
Bench score explained by just the score (i.e., cross-
entropy) on that particular target language. We find,

strikingly enough, that all of the target languages,
with the exception of Basque, are highly correlated,
having R2 values above 0.95 all languages, and
greater than 0.80 even when considering human
languages alone. Danish, of all of the languages,
has the highest R2 value (>0.99), which is the
reason we select it as the sole target for a more
time-efficient variant of XferBench (which we term
XferBench-da).

B Representation of Signalling Game
Observations

The originally intended representation for obser-
vations in the signalling game was to concate-
nate one-hot vectors each of which represented
the value of of one attribute. For example, the
2-attribute, 3-value vector [1, 2], would be repre-
sented as [0, 1, 0, 0, 0, 1] with the first three entries
corresponding to the first attribute the last three
corresponding to the second attribute. Due to a
mistake in the implementation, the actual represen-
tation used was simply a vector of the raw integer
values such that [1, 2] was simply represented as
[1, 2]. This to say instead of observations being el-
ements of {0, 1}|A|·|V | as originally intended, they
were implemented as elements of Z|A|. The agents
did not seem to struggle playing this signalling
game even with higher numbers of values.

C Hyperparameters Not Discussed

In this section we briefly discuss hyperparameters
that were tried but not not documented in the paper
or that were not investigated at all. We selected a
batch size of 32 based on comparing the compute
efficiency of different sizes. Larger batch sizes
could process more data faster but would not up-
date the parameters often enough. On the other
hand, smaller batch sizes would not process enough
data to maximize the utility of each update. Mixed
precision training was tested but not found to im-
prove runtime. For learning rate scheduling, we
found cosine annealing to be slightly more effective
than no schedule, but further schedules were not
investigated. Weight decay was investigated in ear-
lier experiment but found not to have a noticeable
effect.

The implementation of the signalling game we
used could also be optimized using REINFORCE
to handle the discrete message, but we only tested
with a Gumbel-Softmax layer as it is faster and
more stable to optimize with.

23311

D Full Table of Hyperparameters

In Table 3, we show all of the hyperparameters
selected for the searches and trials referenced in
the paper.

E Computing Resources Used

Experiments were performed across about 20–30
NVIDIA A6000 (or equivalent) GPUs (one trial
per GPU) on an institutional cluster. We estimate
approximately 5500 GPU-hours were used for all
experiments directly related to this paper, including
those not documented or directly referenced. The
primary searches for the best-performing emergent
languages on XferBench (Searches 1–4) took about
1300 GPU-hours.

F Hindi’s Outlying Score on XferBench

Both in this paper as well as the original XferBench
paper (Boldt and Mortensen, 2024b), Hindi appears
to be an outlier in terms of XferBench performance
compared to other human languages. A priori, we
do not have any reason to expect this, especially
since the embeddings (and hence lexical informa-
tion) are not transferred from training to tuning in
XferBench. A posteriori, we can see that based
on the entropy of the Hindi corpus from the Xfer-
Bench baselines, Hindi’s poor performance is not
an outlier as it follows the trend depicted in Fig. 1
(it is the cluster of green square points along the
bottom of the cluster of blue circular points); that
is, Hindi’s entropy of ∼7 bits is unexpectedly low
for human language (cf. ∼11 bits), but given this
low entropy, it performs as expected on XferBench.

While a general data quality program could be
causing this low entropy (although Wikipedia data
should be relatively clean), we also suspected an
encoding problem for Hindi, in part because it
is the only baseline language using the particu-
lar script (viz. Devanagari, although we do not
have a guess why this script would be problem-
atic as compared to others.). Thus, in an informal
follow-up experiment, we encoded a parallel text in
Mandarin, French, and Hindi (best-, middle-, and
worst-performing languages) using both byte-level
BPE as well as character-level BPE. The results in
Table 4 show that Mandarin is the most efficient for
encoding the corpus with byte-level BPE tokens
followed by French with Hindi taking more than
double the tokens of French. Since XferBench is
token-limited, taking more tokens to represent the
same data effectively lowers the amount of data that

the language model trains on for Hindi, which has
a negative effect on downstream performance (i.e.,
the XferBench score). Using character-level BPE
instead yields similar corpus sizes, and, indeed,
running XferBench with character-level BPE dur-
ing training yields similar scores for all three lan-
guages (although they have all regressed to Hindi’s
byte-level BPE performance). Additionally, run-
ning XferBench with character-level BPE training
led to instabilities with 1 out of 3 runs extremely
poor performance, possibly due to character-level
BPE being more sensitive to the complete set of
characters is the training and tuning corpora.

G Synthetic Languages

G.1 Definitions

We use four probabilistic synthetic languages
which span a large portion of the Chomsky hier-
archy ranging from trivial to beyond context-free.
All synthetic languages contain a unique begin- and
end-of-sentence token in each utterance.

Zipf-Mandelbrot Distribution The basis for our
synthetic languages will be a Zipf–Mandelbrot dis-
tribution, a generalization of Zipf’s law, where the
unnormalized probability weight of the word wi is

f(wi) =
1

(i+ β)α
, (1)

where i is the 1-based index of the word, α con-
trols the weight of the tail, and β shifts where the
distribution starts (roughly speaking). Empirically,
α = 1 and β = 2.7 have been found to be good
approximations for human language and will be
the default parameters of the distribution unless
otherwise specified (Piantadosi, 2014).

Bag of Words The simplest synthetic language
we introduce is a bag-of-words language where
each token in a sentence is sampled independently
from the Zipf-Mandelbrot distribution. The length
of the sentence is independent of the sampling
method, so in interest of simplicity, we sample
from a discrete uniform distribution.

Regular The simplest non-trivial language we
introduce is a regular language which partitions the
tokens uniformly at random into k different sets
(s1, . . . , sk), keeping their initial Zipf–Mandelbrot-
derived weight. Each sentence starts with a token
sampled from s1; each subsequent token is sampled
from the next class (si + 1) with probability c or

23312

|Trials| |Attrs.| |Vals.| |Distrs.| Temp. |Embed.| |Hidden| LR |Vocab| Length |Epochs|
1 578 [3, 7] [3, 7] [1, 127] [0.1, 10] [8, 128] [8, 128] [500µ, 50m] [10, 20k] [1, 40] 500
2 171 [5, 10] [5, 10] — [0.5, 4] [64, 512] [64, 512] [500µ, 5m] [300, 30k] — —
3 140 — — — — — — — — — [500, 5k]
4 282 [6, 20] 6 23 2 128 256 [1m, 3m] [500, 30k] — —
4.1 1 11 6 — — — — 1.79m 9721 16 1715
4.2 1 12 6 — — — — 1.86m 12496 22 1593
4.3 1 13 6 — — — — 1.74m 8096 18 1511
5r 411 [4, 20] [3, 10] [1, 127] [0.1, 10] [8, 512] [8, 512] [500µ, 10m] [2, 30k] [1, 40] [10, 3k]
6e 109 10 10 [63, 511] 2 32 32 2.7m 25k 15 5k
6e.1 1 — — 228 — — — — — — —
6e.2 1 — — 372 — — — — — — —
6e.2 1 — — 165 — — — — — — —

Table 3: All hyperparameters were treated as log-scale hyperparameters. |·| refers to cardinality. “—” means
unchanged from the previous run. µ, m, and k refer to the SI prefixes micro (×10−6), milli (×10−3), and kilo
(×103), respectively. 4.1 is the best-performing trial of Search 4 (and likewise for 4.2, 6e.1, etc.).

Lang Byte BPETs Char BPETs Char XB

zh 470 k 950 k 5.95
fr 900 k 900 k 5.95
hi 2100 k 840 k 5.94

Table 4: BPE token counts for a parallel corpus in vari-
ous languages and encoding methods. XferBench score
with character-level BPE training corpus also provided.

sampled from the same class (si). After sk, the
sentence terminates. Thus, the language is defined
by the regular expression

s+1 s
+
2 . . . s+k , (2)

where a+ = aa∗, si represents any token in the set
si, and appropriate BoS and EoS tokens are added.

Dyck-n Dyck-n can be thought of as “balanced
nested delimiters” (where the delimiters are the
same token) (Schützenberger, 1963). Each token
in the sentence is generated as follows: With prob-
ability p, a new token is sampled from the Zipf–
Mandelbrot distribution and pushed onto a stack
(the “opening delimiter”), and with probability
1−p, the token on top of the stack is popped off. A
sentence always begins with an “open” token and
ends when the stack is empty. An example of such
a sentence is (3, 1, 1, 2, 1, 1, 2, 3) which could be
illustrated as “{()[()]}”.

Shuffle Dyck-n Finally, we use Shuffle Dyck-n
as our last language which lies beyond context-free
in the Chomsky hierarchy Suzgun et al. (2019).
Technically speaking, this language should be
called Shuffle of n Distinct Dyck-1 Languages
since it is the result of randomly interleaving mul-
tiple Dyck-1 languages with distinct tokens. To

generate a sentence in Shuffle Dyck-n, we first fol-
low the same procedure as for Dyck-n but keep the
individual tokens separate. We then interleave the
separate strings by appending to the sentence uni-
formly at random from one of the individual strings
until they are empty. For example, if Dyck-n gen-
erated “{([()])[]}”, the separated strings would be
“{}”, “(())”, and “[][]”, which could then be inter-
leaved into “{[}(()])”.

G.2 Hyperparameters
Each variation of the synthetic language maintains
the default values while varying a single hyperpa-
rameter. We vary the common hyperparameters as
follows:

Vocabulary size takes the values 10, 100, 1k, 5k,
10k, 30k (default: 30k). A vocab size of 10 is
incompatible with the Regular language and
was skipped.

Zipf–Mandelbrot α takes the values 0, 0.25, 0.5,
1, 2, and 4 (default: 1).

n tokens (in the whole corpus) takes the values 1k,
10k, 100k, 1M, 5M, and 15M (default: 15M);
this hyperparameter was not varied for the
Unigram language.

The Unigram language has an additional hyper-
parameter stop probability which takes the values
0.05, 0.1, and 0.2 (default: 0.1). The Regular lan-
guage has two additional hyperparameters: repeat
probability (c) which takes the values 0.2, 0.4, 0.5,
and 0.6 (default: 0.4), and n classes which takes
the values 5, 10, 20, and 40 (default: 10). The
Dyck and Shuffle Dyck languages take the addi-
tional hyperparameter open probability with values:

23313

0 2 4 6 8

Entropy (bits)

0.00

0.25

0.50

0.75

1.00
To

p
1%

A
cc

ur
ac

y

Figure 6: Entropy versus accuracy for Search 5r.

0.2, 0.3, 0.4, 0.5, and 0.6 (default: 0.5); Shuffle
Dyck is not generated with the value 0.6 due to
implementation constraints.

H Task Success and Entropy

Previous work (Kharitonov et al., 2020; Chaabouni
et al., 2021) has analyzed entropy minimization
with respect to the amount of information or,
roughly speaking, task success. We performed a
brief analysis the relationship between entropy and
accuracy (task success) shown in Fig. 6. While we
do find significant correlation (Pearson’s r = 0.57
for Search 5r), we would not characterize it as any
strict sort of entropy minimization. That is, we ob-
serve many emergent languages which are from the
Pareto frontier of high accuracy and low entropy.
Hyperparameter search demonstrates itself to be
a powerful tool for investigating such correlations
since it is able to generate a wide variety of emer-
gent languages with minimal additional work from
the researchers. Nevertheless, more investigation
would have to be done on this front to conclusively
support or reject prior claims of entropy minimiza-
tion.

I Rank–Frequency Plots

Figure 7 shows Zipf’s Law–style plots of rank ver-
sus frequency on a log–log scaled plot (Zipf, 1949)
for human languages and high-performing emer-
gent languages. As Zipf’s Law predicts, the human
languages show a roughly linear relationship in
log–log space. On the other hand, the emergent
languages exhibit more of a “cliff” where higher-
ranked tokens have a more similar frequency before
quickly falling to near-zero frequency. This implies
that human language displays a long tail which is
not present in the emergent languages. The fact
that the emergent languages studied exhibit this
behavior is somewhat expected as the underlying

0 1 2 3 4

log10 Rank

−6

−5

−4

−3

−2

−1

lo
g
1
0

Fr
eq

ue
nc

y

Type
Emergent
Human

Figure 7: Token log rank versus log frequency plots for
emergent and human languages. Logarithms are in base
10.

data distribution that they are representing is itself
uniform.

J Hyperparameter Scatter Plots

Figures 8 to 11 show the univariate scatter plots
for hyperparameter Searches 1–4. The y-axis
is XferBench-da score (or some smaller variant
thereof, for Searches 1 and 2), and the x-axis is one
of the hyperparameters varied for that search. Note
that other variables are not held constant while one
is varied; instead all hyperparameters are varied for
each trial.

K Varying Neural Architecture

In a follow-up experiment we test different neu-
ral architectures for the sender and receiver
agents. In particular, we test different numbers
of fully connected layers ({1, . . . , 5}), RNN layers
({1, . . . , 5}), and RNN types (GRU, LSTM, El-
man) (Elman, 1990; Hochreiter and Schmidhuber,
1997; Cho et al., 2014). The number of epochs was
also allowed to vary in the event that increasing
the number of parameters benefited from longer
training. Figure 12 displays the results of this ex-
periment.

The fully connected layers (which surround the
sender’s and receiver’s RNN) have the same hidden
size and are separated by tanh activations. The
RNN layers vary according to a standard stacked
architecture. The RNN cell type refers to a plain
Elman RNN. The small variant of XferBench-da
was used for the objective.

From Fig. 12, we see that LSTMs outperform

23314

Uniform RampJoint

Distribution

8.10

8.15

8.20

8.25

8.30

X
fe

rB
en

ch
-d

a
,

sm
a
ll

0.001 0.01

Learning rate

1 3 10 30

Message length

3 4 5 6 7

n attributes

1 3 10 30 100

n distractors

8.10

8.15

8.20

8.25

8.30

X
fe

rB
en

ch
-d

a
,

sm
a
ll

3 4 5 6 7

n values

10 30 100

Embedding size

10 30 100

Hidden size

0.1 0.3 1 3 10

Temperature

8.10

8.15

8.20

8.25

8.30

X
fe

rB
en

ch
-d

a
,

sm
a
ll

100 10000

Vocab size

Figure 8: Objective values for Search 1 by individual hyperparameter.

23315

0.001

Learning rate

7.00

7.05

7.10

7.15

X
fe

rB
en

ch
-d

a
,

m
ed

iu
m

1 3 10 30

Message length

5 6 7 8 9 10

n attributes

1 3 10 30 100

n distractors

5 6 7 8 9 10

n values

7.00

7.05

7.10

7.15

X
fe

rB
en

ch
-d

a
,

m
ed

iu
m

100 300

Embedding size

100 300

Hidden size

1 3

Temperature

1000 10000

Vocab size

7.00

7.05

7.10

7.15

X
fe

rB
en

ch
-d

a
,

m
ed

iu
m

Figure 9: Objective values for Search 2 by individual hyperparameter.

23316

0.001

Learning rate

5.80

5.85

5.90

5.95

6.00

X
fe

rB
en

ch
-d

a

3 10 30

Message length

5 6 7 8 9 10

n attributes

1 3 10 30 100

n distractors

1000 3000

n epochs

5.80

5.85

5.90

5.95

6.00

X
fe

rB
en

ch
-d

a

5 6 7 8 9 10

n values

100 300

Embedding size

100 300

Hidden size

1 3

Temperature

5.80

5.85

5.90

5.95

6.00

X
fe

rB
en

ch
-d

a

1000 10000

Vocab size

Figure 10: Objective values for Search 3 by individual hyperparameter.

23317

0.001

Learning rate

5.80

5.85

5.90

X
fe

rB
en

ch
-d

a

3 10 30

Message length

6 7 8 910 20

n attributes

1000 3000

n epochs

1000 10000

Vocab size

5.80

5.85

5.90

X
fe

rB
en

ch
-d

a

Figure 11: Objective values for Search 4 by individual hyperparameter.

2000 4000
n epochs

8.1

8.2

Xf
er

B
en

ch
-d

a,
 s

m
al

l

1 3
n FC layers

1 3
n RNN layers

GRU RNN LSTM
RNN type

Figure 12: Objective values for Search 7 by individual hyperparameter.

23318

GRUs (used for the main experiments) and RNNs
by a large margin. On the other hand, Using 2
instead of 1 layer (used for the main experiments)
provides a smaller performance gain on XferBench-
d while further increasing the layers does not show
improvement. The number of epochs did not have
a notable effect.

23319

