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Abstract

Adversarial text defense is a significant strat-
egy to protect modern NLP models from being
attacked. Typical text defense methods usu-
ally enhance the model’s robustness by model
retraining or equipping it with a data prepro-
cessing step, aiming to eliminate the non-robust
features and preserve the robust ones. Although
some efforts have been made to recognize the
robust features, e.g., by the information bot-
tleneck (IB) technique, how to fully disentan-
gle the robust and non-robust representation
remains a big challenge. To alleviate this prob-
lem, we propose a novel text defense method,
named Disentangled Information Bottleneck
(DisIB), with two major merits. Firstly, we
separate the robust features and non-robust fea-
tures with a disentangled two-line framework
rather than the one-line compression network
in IB. This prevents the loss of robust features
caused by information compression and pro-
duces complete robust features. Secondly, we
design a discriminator network to approximate
the minimum mutual information of the two
lines, which sufficiently disentangles robust
and non-robust features. To validate the effec-
tiveness of our DisIB, we conduct a total of 96
defense experiments on four datasets by defend-
ing four popular attack methods. Experimental
results elaborate that our method significantly
outperforms six baselines, with accuracy im-
provements ranging from 3.8% to 20.7%.

1 Introduction

The Transformer-based deep learning frameworks
have achieved milestone success in the Natural Lan-
guage Processing (NLP) community, such as BERT
(Devlin et al., 2019), T5 (Raffel et al., 2020), and
ChatGPT (Wu et al., 2023). However, existing
studies have proven that these deep models are
super vulnerable to adversarial examples, which
are slightly modified inputs (Raman et al., 2023).
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Figure 1: Principles of different defense methods. (a)
Adversarial training pushes the sensitive decision bound-
ary to be more tolerant. (b) IB incompletely disentangles
non-robust and robust features. (c) DisIB completely
disentangles non-robust and robust features.

This phenomenon brings great risk to the security
implementation of modern NLP tasks, including
text classification (Minaee et al., 2022), machine
translation (Popel et al., 2020), language inference
(Li et al., 2022), text generation (Yu et al., 2022),
etc. How to design adversarial defense strategies to
improve the robustness of deep models has become
a significant research topic (Li et al., 2023).

According to whether the defender modifies the
NLP model, existing text defense methods can be
roughly categorized into (1) passive defense, which
usually eliminates the adversarial perturbations
with a data pre-processing step but does not change
the victim model, and (2) active defense, which di-
rectly optimizes the model itself. In the first group,
several data pre-processing operations have been
proposed, such as spell-checking/correction (Li
et al., 2019; Hládek et al., 2020), feature density
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detection (Yoo et al., 2022), AI-generated text de-
coder (Huang et al., 2024), to filter out adversarial
perturbations. The defense performance of these
methods is highly dependent on the perturbation
localization and recovery accuracy, and their de-
fending scopes are usually limited to the defender-
specified attackers.

In the second group, the defender aims to im-
prove the victim model via network parameters or
structure optimization. Specifically, the parameter
optimization, e.g., adversarial training (Formento
et al., 2024) and certified robust boundary train-
ing (Raman et al., 2023), extract robust features
by moving the sensitive decision boundary to be
more tolerant so that the robust feature space can
be enlarged (see Figure 1 (a)). The model structure
optimization targets to disentangle the robust and
non-robust features, such as DiffusionBERT (He
et al., 2023), multi-head confusion (MHC) (Le
et al., 2022), and information bottleneck (IB) layer
insertion (Zhang et al., 2022). Unlike Diffusion-
BERT and MHC who seek robust features with
empirical strategies, the IB defines task-relevant
word embeddings as robust features, showing better
theoretical explainability and practical defense per-
formance. Particularly, the IB constructs a one-line
network structure to extract only robust features
with an information compression layer. However,
information compression usually pushes the robust
features to the non-robust side (a.k.a., information
loss), leading to incomplete feature separation and
limited defense performance (see Figure 1 (b)).

In this work, we propose a novel method, i.e.,
Disentangled Information Bottleneck (DisIB), to
extract complete yet fully disentangled robust fea-
tures and improve the defense accuracy. Specif-
ically, we design the supervised disentanglement
strategy with two major merits. Firstly, we present
a two-line defense framework, consisting of an
encoder-decoder-based robust feature extraction
line and an encoder-reconstructor-based non-robust
feature extraction line to topologically solve the
information loss problem. Secondly, we build a
discriminator network to estimate the joint distribu-
tion probability of the two-line features and define
a feature-disentangle loss function to minimize the
mutual information between the two lines. This
reduces the overlap between the robust features
and non-robust features and improves the degree of
feature disentanglement (see Figure 1 (c)). Owing
to the relatively complete and fully disentangled
robust features, the NLP model can make more ac-

curate decisions even if the input text is perturbed.
In summary, our contributions are as follows.

• We construct a two-line adversarial text de-
fense framework, dubbed DisIB, to disentan-
gle robust and non-robust features. The two-
line topology structure can naturally prevent
information loss caused by the compression
operation as in IB, which ensures the extracted
robust feature is relatively complete.

• We design a discriminator to estimate the joint
distribution probability of the two-line fea-
tures and define a feature-disentangle objec-
tive function to minimize overlapping infor-
mation between them, which fully disentan-
gles the robust features from non-robust ones.

• We evaluate the effectiveness of our DisIB by
comparing it with six typical baselines with to-
tally 96 defense experiments. Qualitative and
quantitative experiments demonstrate the su-
periority of our algorithm in both feature dis-
entanglement and defense performance (with
3.8% to 20.7% accuracy improvements).

2 Related Works

This section briefly reviews the typical text defense
methods, including passive and active defense.

Passive defense methods do not change the
victim model but often equip it with a data pre-
processing step to eliminate adversarial perturba-
tions. For example, (Li et al., 2019) employed
a context-aware spelling check service to defend
character-level attacks. (Yoo et al., 2022) devel-
oped a perturbation detection method against word-
level attacks based on feature density estimation.
To defend both character-level and word-level at-
tacks, (Gupta et al., 2023) trained a model capa-
ble of intercepting and rewriting adversarial inputs.
(Huang et al., 2024) proposed SCRN, which em-
ploys a reconstruction network to add and remove
noise from the text. These methods usually design
perturbation location strategy and recovery method
according to a specific attacker, so their generaliza-
tion ability are relatively limited for unseen attacks.

Active defense approaches directly optimize the
victim model by retraining network parameters
or reconstructing network structure. Typical pa-
rameter optimization strategies include adversarial
training and certified robustness. Adversarial train-
ing was primarily proposed in image domain by
(Goodfellow et al., 2015), which joins adversarial
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examples to the training set and retrains the model.
Subsequently, various improved adversarial train-
ing methods have been proposed and successfully
applied in text defense field. For example, (Zhu
et al., 2020) proposed FreeLB, which minimizes
the adversarial loss across different regions around
input samples by adding adversarial perturbations
to word embeddings. (Li and Qiu, 2021) employs
a token-level accumulated perturbation vocabulary
with a normalization sphere constraint for better
perturbation initialization. (Formento et al., 2024)
proposed Semantic Robust Defense (SemRoDe),
which minimizes the distance between the base
and adversarial domains, thereby aligning the two
domains and producing a smooth decision bound-
ary. In general, adversarial training also relies on
existing attackers to generate adversarial samples,
and as the number of adversarial samples increases,
the model performance will be gradually reduced
on the clean data. The certified robustness tech-
niques provide theoretical guarantees of robustness.
(Shi et al., 2020) derived the robustness bound-
ary of models under Transformer architecture by
boundary propagation techniques. (Moon et al.,
2023) combined randomized smoothing (RS) with
masked inference (MI) to smooth decision bound-
ary and denoise adversarial perturbations. The
proof process of robust boundary is constrained
by various factors, e.g., model structure and opti-
mization method, so their application scope is often
limited.

Model structure optimization methods learn ro-
bust features by empirically or theoretically chang-
ing certain layers of the victim model. (Le et al.,
2022) modified and retrained the last layer with
multi-expert heads to confuse the attackers. (He
et al., 2023) combined the diffusion model with
BERT to enhance the denoising ability. Based on
information bottleneck theory (Tishby and Za-
slavsky, 2015), (Wang et al., 2021) presented
an Information Bottleneck regularizer and an An-
chored Feature regularizer to extract robust features.
(Zhang et al., 2022) inserted an Information Bottle-
neck (IB) layer into BERT to compress non-robust
features and capture robust features relevant to the
task. Recently, (Zhao et al., 2024) proposed disen-
tangled text representation learning (DTRL), which
extracts robust features through a task classifier and
non-robust features via an adversarial example de-
pendent classifier. Generally, theoretical methods
show better theoretical explainability and practical
performance than empirical defense, but they still

meet the information loss and incomplete feature
disentanglement problems.

3 Algorithm

In this section, we first review the most related
baseline IB in §3.1 and then discuss the details of
the proposed DisIB in §3.2. Figure 2 shows the
model framework of our DisIB.

3.1 Information Bottleneck

Let D = {xi, yi}Ni=1 denotes the training set, where
xi ∈ X represents input and yi ∈ Y represents out-
put. The IB method adds an additional layer to
the original network, aiming to compress X into a
robust variable R while retaining enough informa-
tion required to predict Y . This can be achieved by
minimizing the objective function below:

LIB = −I(Y ;R) + βI(X;R), (1)

where β ∈ [0, 1] balances the compression and
prediction, and I(A;B) denotes the mutual infor-
mation between variables A and B:

I(A;B) =
∑

a∈A

∑

b∈B
p(a, b) log

(
p(a, b)

p(a)p(b)

)
, (2)

The larger mutual information indicates a stronger
association. After optimization, the robust feature
R can be more relevant to task prediction Y and
less relevant to input X . However, related studies
have indicated that compression inevitably leads
to information loss (Pan et al., 2021), and the
incomplete robust feature R is hard to guarantee a
satisfactory defense accuracy.

3.2 Disentangled Information Bottleneck

To avoid information loss, we follow the image
information disentangle theory (Pan et al., 2021)
and propose a two-line framework to disentangle
text robust and non-robust features. Specifically,
we introduce an additional variable N = {ni}Ni=1

as non-robust features to complement robust fea-
tures R = {ri}Ni=1. Then we adjust the objective
function LDisIB as:

LDisIB = −I(Y ;R)− I(X;N,Y ) + I(N ;R).
(3)

Similar to Eq. (1), maximizing I(Y ;R) ensures
that the robust feature R contains enough infor-
mation to predict the task-relevant output Y . Dif-
ferent from Eq. (1), we design two novel items
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Figure 2: The framework of the proposed DisIB. In the
training stage (a), we construct a two-line network to
separately extract the robust and non-robust features to
avoid information loss. Then the information overlap
between the two lines is reduced with a discriminator
Dis. In the inference stage (b), the optimized robust
feature is employed to make correct predictions.

I(X;N,Y ) and I(N ;R), where the former recon-
structs X guided by (N,Y ) so that non-robust fea-
ture N covers the Y -irrelevant information of X ,
and the latter minimizes the overlap between R and
N . This disentangled two-line structure is signifi-
cant in avoiding information loss, and the I(N ;R)
helps to sufficiently separate robust and non-robust
features. Next, we will introduce how to optimize
the three items in Eq. (3).

In Eq. (3), the calculation of mutual informa-
tion is challenging due to the complexity of the
joint and marginal distributions. Therefore, we
derive variational approximations to I(Y ;R) and
I(X;N,Y ) terms by applying the classical vari-
ational Bayesian strategy (Barber and Agakov,
2004), which allows for effective estimation of the
variational lower bound without requiring a large
number of samples:

I(Y ;R) = Ep(y,r) log p(y|r)− Ep(y) log p(y)

≥ Ep(y,r) log q(y|r) +H(Y ),
(4)

I(X;N,Y ) = Ep(x,n,y) log p(x|n, y)
− Ep(x) log p(x)

≥ Ep(x,n,y) log q(x|n, y) +H(X),
(5)

where q(y|r) and q(x|n, y) represent variational
probabilistic mappings. H(Y ) and H(X) denote
the information entropy of Y and X , respectively.
Then, we decompose the joint distribution into

multiple conditional probability distributions by
Markov chain Y ↔ X ↔ R and Y ↔ X ↔ N ,
thereby simplifying the computation process:

p(y, r) = Eqdata(x)qdata(y|x)p(r|x), (6)

p(x, n, y) = Eqdata(x)qdata(y|x)p(n|x), (7)

where each element remains conditionally inde-
pendent. qdata(x) denotes the statistics probability
distribution of x in the training data. qdata(y|x)
is variational posterior mappings of y, p(r|x) and
p(n|x) can be viewed as robust and non-robust ex-
tractors. By substituting Eq. (6) and Eq. (7) into Eq.
(4) and Eq. (5) and dropping constants H(X) and
H(Y ), we can calculate I(Y ;R) and I(X;N,Y ):

I(Y ;R) ≥ Ep(y,r) log q(y|r)
= Eqdata(x)Eqdata(y|x)Ep(r|x) log q(y|r),

(8)
I(X;N,Y ) ≥ Ep(x,n,y) log q(x|n, y)

= Eqdata(x) Eqdata(y|x) Ep(n|x) log q(x|n, y).
(9)

Since H(N) and H(R) depend on the unfixed
probabilistic distributions of N and R, they are
no longer constants. Therefore, the above method
cannot compute the I(N ;R) term. To address
this problem, we derive I(N ;R) by the Kullback-
Leibler distance between joint distribution p(n, r)
and the product of marginal distribution p(n)p(r):

I(N ;R) = DKL[p(n, r) ∥ (p(n)p(r)]

= Ep(n,r) log

[
p(n, r)

p(n)p(r)

]
.

(10)

However, p(n, r) and p(n)p(r) are hard to es-
timate due to the dependence between n and r.
Therefore, we utilize density-ratio-trick (Nguyen
et al., 2007; Sugiyama et al., 2012; Kim and Mnih,
2018) to directly calculate the ratio S(n, r) =
p(n,r)

p(n)p(r) with three steps. Firstly, we sample x

from dataset and sample p(n, r) from p(n, r|x) =
p(n|x)p(r|x) by Markov chain N ↔ X ↔ R.
Secondly, we shuffle the sample of p(n, r) along
the batch axis to reduce the correlation between n
and r to sample p(n)p(r) (Belghazi et al., 2018).
Finally, we utilize a discriminator to estimate the
probability, i.e., Dis(n, r). So 1 − Dis(n, r) ap-
proximate the probability of input from p(n)p(r),
the ratio can be calculated:

S(n, r) =
Dis(n, r)

1−Dis(n, r)
(11)
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3.2.1 Training stage
In the training phase, we train the two-line DisIB
framework as shown in Figure 2 (a), including a
robust feature learning line and a non-robust feature
extraction line.

Robust Feature Extraction (Line 1) is im-
plemented through a Transformer-based encoder-
decoder network, as this structure is well-fit the
mainstream NLP models. Specifically, given the
input xi, the output of encoder Er, i.e., Er(xi),
is first processed with a normal sampling step N .
This step can be considered as a simply optimized
variational approximation of robust features space
to learn the robust bottleneck representation ri:

ri = N (Er(xi), σ
2
r ) (12)

where µr = Er(xi) and σr are the mean and stan-
dard variance of sampling, respectively.

Subsequently, the variable ri is fed into a de-
coder Dec, which produces probabilities over possi-
ble outcomes yi. This parameterizes the variational
probabilistic mapping q(yi|ri), so maximizing Eq.
(8) is equivalent to minimizing the cross-entropy
loss of the decoder LDec :

LDec(Dec(ri), yi) = − logDec(ri)yi . (13)

After training the encoder-decoder network branch,
the feature ri contains a high amount of informa-
tion relevant to the task prediction yi.

Non-robust Feature learning (Line 2) is de-
signed as an encoder-reconstructor network, where
the encoder En and the normal sampling N (with
standard variance σn) generate a bottleneck non-
robust representation ni:

ni = N (En(xi), σ
2
n). (14)

Different from Line 1, we designed a reconstruc-
tor Rec in Line 2, which takes the concatenated
(ni, yi) as input and generates corresponding re-
construction x

′
i to parameterize variational proba-

bilistic mappings q(x|n, y). Nevertheless, due to
the discrete nature of textual tokens, direct recon-
struction, as commonly adopted in image domains,
is infeasible. To overcome this, we calculate the
mean embeddings of input tokens as a continuous
proxy target for reconstruction. The reconstruction
loss can be utilized to implement Eq. (9):

LRec(Rec(ni, yi), xi) = ||Rec(ni, yi)− xi||22.
(15)

Algorithm 1 Disentangled Information Bottleneck

Input : Training set D = {xi, yi}Ni=1;
Output : Encoders Er, En, Decoder Dec, Recon-
structor Rec and Discriminator Dis;

1: while not converge do
2: Select batch {xi, yi} randomly
3: Extract ri and ni by Eq. (12) and Eq. (14)
4: Calculate discriminator train loss LDis(ni,ri)

by Eq. (16)
5: Update discriminator Dis

6: Calculate total loss LDisIB by Eq. (17)
7: Update Er, En, Dec and Rec

8: end while
9: return Er, En, Dec, Rec, and Dis.

Maximizing the mutual information between xi
and x

′
i, the feature ni at least covers all task pre-

diction irrelevant information from xi, which is the
non-robust feature.

Disentangle the two lines. We involve a dis-
criminator Dis to eliminate overlapping informa-
tion between ni and ri, which takes the concate-
nated input (ni, ri) and outputs the probability that
the input originates from joint distribution p(n, r)
rather than the product of marginal distribution
p(n)p(r). We introduce feature-space clustering
before feeding embeddings into the discriminator,
rather than clustering at the output layer. This helps
smooth the latent distribution and reduce estima-
tion variance. We train the discriminator with the
feature-disentangle loss LDis :

LDis(ni,ri) = min
p

max
Dis

[Ep(n)p(r) logDis(ni, ri)

+ Ep(n,r) log(1−Dis(ni, ri))],
(16)

which maximizes the output Dis(ni, ri) and mini-
mizes the corresponding probability distribution to
train the discriminator Dis. Ultimately, the overall
loss function is:

LDisIB = LDec + LRec − LDis(ni,ri), (17)

We train the two-line framework by minimizing the
total loss Eq. (17) and train the discriminator by
minimizing Eq. (16) to disentangle robust and non-
robust features. The complete training procedure
is given in Algorithm 1.

3.2.2 Inference stage
As a defender, the inference stage only needs the
complete and sufficiently disentangled robust fea-
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Methods Acc%↑ TextFooler TextBugger Deepwordbug PWWS
AUA%↑ ASR% Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

A
G

N
ew

s

BERT 94.8 18.0 81.0 335.9 43.1 54.5 182.3 34.6 63.5 110.0 38.9 58.9 358.2
TAVAT 95.3 44.2 53.6 443.5 52.7 44.7 235.2 51.1 46.4 117.1 53.3 44.1 374.3

InfoBERT 94.6 28.2 70.2 348.7 41.4 56.2 166.0 36.9 61.0 95.3 38.1 59.7 353.4
DTRL 94.6 69.5 26.3 511.8 64.1 32.1 269.2 64.4 31.9 124.3 77.0 19.0 396.0
RSMI 94.3 61.7 34.6 498.9 64.3 31.8 275.9 61.8 34.7 126.8 78.4 16.9 397.4

IB 95.1 70.8 25.7 515.3 62.7 33.6 293.7 59.4 37.6 117.9 73.5 23.0 389.3
IB+FreeLB 95.0 76.0 19.9 540.3 71.6 24.7 312.2 64.0 32.7 122.9 81.6 14.0 402.3

Ours 94.5 78.0 17.5 543.6 76.2 19.4 330.9 69.3 26.7 127.3 80.6 14.9 399.4
Ours+FreeLB 95.5 87.7 8.1 582.3 85.5 10.5 352.1 77.5 18.9 132.5 88.4 7.4 408.5

SS
T-

2

BERT 91.6 5.6 93.9 93.2 27.5 70.0 47.7 17.1 81.3 33.5 12.9 85.9 135.4
TAVAT 90.9 14.4 84.2 113.3 37.5 58.8 61.7 27.8 69.4 37.1 20.1 77.9 138.1

InfoBERT 92.1 15.0 83.7 94.4 37.3 59.5 44.2 27.0 70.7 29.7 21.0 77.2 131.6
DTRL 88.7 17.7 80.1 120.6 34.0 61.2 66.0 26.5 70.0 37.7 26.8 69.1 139.7
RSMI 86.1 14.4 82.8 123.3 31.5 63.7 57.9 25.9 70.2 38.3 24.2 71.9 145.5

IB 91.5 24.2 73.6 131.5 40.0 56.3 68.0 31.0 66.1 39.3 32.4 64.5 145.9
IB+FreeLB 92.3 23.9 74.3 132.7 40.1 56.9 65.6 33.0 64.5 39.5 31.7 65.8 144.8

Ours 91.2 29.1 67.2 150.1 43.9 50.6 79.6 40.4 54.5 45.9 36.0 59.5 148.1
Ours+FreeLB 92.5 45.7 50.6 166.0 51.9 43.9 105.6 57.7 37.6 45.6 51.3 44.4 152.8

M
R

BERT 83.9 8.7 89.6 116.9 31.3 62.7 55.7 18.8 77.6 40.5 16.0 80.9 149.6
TAVAT 85.7 12.7 85.2 116.7 30.8 64.1 56.0 23.4 72.7 39.3 19.2 77.6 149.4

InfoBERT 68.4 5.5 92.0 108.5 26.6 61.1 47.1 7.4 89.2 37.6 13.4 80.4 150.6
DTRL 82.7 13.1 84.2 118.8 25.4 68.9 69.3 20.4 75.4 40.5 21.5 73.9 152.3
RSMI 82.3 14.4 82.5 135.1 32.3 60.9 62.7 21.9 73.3 42.2 26.9 67.3 162.1

IB 84.2 20.6 75.6 137.5 34.2 59.1 76.1 28.9 65.6 43.1 25.2 70.1 155.9
IB+FreeLB 85.2 30.4 64.4 160.5 43.0 49.5 87.9 41.3 51.5 47.3 37.9 55.6 163.4

Ours 84.2 31.4 62.8 168.7 40.7 51.6 110.2 49.6 41.0 48.8 43.0 48.9 163.6
Ours+FreeLB 85.6 42.4 50.5 190.9 47.0 45.1 122.1 55.4 35.3 52.2 51.6 39.7 172.5

IM
D

B

BERT 92.2 1.2 98.7 730.7 9.0 90.2 592.8 32.8 64.4 340.3 1.8 98.1 1671.6
TAVAT 94.8 55.6 41.4 2302.7 51.8 45.4 1388.6 61.8 34.8 640.0 30.6 67.7 1995.6

InfoBERT 78.6 23.0 70.7 1749.5 5.0 93.6 687.5 35.4 55.0 506.4 16.0 79.6 2077.4
DTRL 91.1 42.7 53.0 1824.4 39.2 56.7 1128.7 48.6 46.7 549.3 42.8 53.3 2123.9
RSMI 91.6 48.1 47.7 1580.8 47.6 47.9 973.5 57.8 36.9 448.3 54.6 40.2 1738.8

IB 93.8 57.4 38.4 2339.2 56.4 40.1 1431.9 65.2 30.6 635.3 53.2 43.3 2283.5
IB+FreeLB 94.5 54.5 42.2 2248.7 47.6 49.8 1304.9 59.8 36.9 624.8 50.0 46.9 2248.5

Ours 93.5 71.6 23.3 2644.0 70.2 25.0 1628.4 73.0 21.8 676.4 46.8 50.0 2116.8
Ours+FreeLB 95.0 84.6 11.0 2868.0 83.4 12.2 1786.7 84.6 11.1 716.8 62.6 34.1 2295.4

Table 1: The Acc, AUA, ASR, and Query of several defense methods on four datasets under four attacks by
protecting the BERT model. The best results are highlighted in bolded, and the second best results are denoted in
underlined. The ↑ (↓) means higher (lower) is better.

ture to make correct decisions. Therefore, only
encoder Er and decoder Dec remain active during
inference as shown in Figure 2 (b).

4 Experiments

We provide experimental detail to ensure all the
results in this section are reproducible. The code
will be made publicly available.

4.1 Datasets

We conduct our experiments on four public datasets.
AG’s News Corpus (AG News) (Zhang et al.,
2015) is a four-class news genre classification task.
The Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013), Movie Reviews (MR) (Pang and Lee,
2005), and Internet Movie Database (IMDB) (Maas
et al., 2011) are sentiment analysis tasks with bi-
nary classification. The average sentence lengths
are 39, 17, 19, and 238 words, respectively.

4.2 Experiment Settings
We reproduce the baselines based on their released
code with author recommended parameters. Dur-
ing the attack on the AG News, SST-2, and MR
datasets, we randomly select 1000 examples, while
on IMDB, we choose 500 examples due to the ex-
cessive number of queries. The learning rates for
the encoders and decoder are set to 1e-5, while
the reconstructor and discriminator are set to 1e-3.
The standard deviations for robust and non-robust
feature sampling are optimized to be σr = 30 and
σn = 5, respectively.

4.3 Attack Methods
We assess the defense capability by defending four
popular text attack methods, including word-level
attacks TextFooler (Jin et al., 2020), PWWS (Ren
et al., 2019), character-level attack Deepwordbug
(Gao et al., 2018), and multi-level attack TextBug-
ger (Li et al., 2019). All the attack experiments are
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Methods Acc%↑
TextFooler Deepwordbug

AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

R
oB

E
R

Ta

InfoBERT 95.1 34.0 64.3 401.7 43.0 54.8 109.6
DTRL 82.5 61.9 33.2 486.5 52.1 43.6 109.4

IB 95.4 75.5 21.0 532.6 59.6 37.3 120.0
Ours 94.6 75.9 19.8 535.2 67.3 28.8 126.2

D
is

til
B

E
R

T InfoBERT 95.4 21.2 77.8 346.6 27.7 71.0 101.6
DTRL 93.9 59.5 36.4 462.2 57.6 38.9 117.0

IB 43.5 3.8 91.3 174.4 6.8 84.2 73.2
Ours 95.4 78.2 18.0 538.9 71.1 24.8 128.2

Table 2: Defense performance comparison on different
pre-trained models using AG News dataset.

conducted on the TextAttack (Morris et al., 2020).

4.4 Baselines and Victim Models

We evaluate the effectiveness of our DisIB by com-
paring it with six baselines, such as Vanilla BERT
(Devlin et al., 2019), TAVAT (Li and Qiu, 2021),
InfoBERT (Wang et al., 2021), DTRL (Zhao et al.,
2024), RSMI (Moon et al., 2023), and IB (Zhang
et al., 2022). Vanilla BERT denotes there is no
defense, which is utilized as the baseline for all
other defense methods. We employ these defense
methods to protect three victim models, i.e., the
fine-tuned BERT, RoBERTa (Liu et al., 2019) and
DistilBERT (Sanh et al., 2019), which are publicly
available from Huggingface1.

4.5 Evaluation Metrics

The performance of defense algorithms is evalu-
ated based on four metrics. (i) Acc% is the accu-
racy of clean samples. Effective defense methods
should maintain the original accuracy. (ii) AUA%
denotes the accuracy under attack. A robust model
exhibiting a higher AUA%. (iii) ASR% indicates
the attack success rate - robust defense methods
will show a low ASR%. (iv) Query is the average
number of attempts by an attacker to query the tar-
get model. Higher Query value indicates that the
model is harder to attack.

4.6 Quantitative Results and Analysis

Table 1 lists the performance of our method and the
baselines by protecting the BERT model. Overall,
our DisIB outperforms the baselines on most of the
96 defense experiments, with accuracy improve-
ments ranging from 3.8% to 20.7%. Particularly,
compared to the best baseline, our DisIB achieves
an average of improvements on three robustness
metrics, i.e., AUA (7.9%), ASR (7.8%), and Query

1https://github.com/huggingface/transformers

Methods PAIR GCG TriviaQA
ASR%↓ ASR%↓ BAR%↑

Vicuna
(7b-V1.5)

None 88 100 98
IB 84 74 94

Ours 78 72 98

LLaMA-2
(7b-chat-hf)

None 18 32 96
IB 18 28 97

Ours 14 24 97

Table 3: Defense results on AdvBench.

(a) robust std σr (b) non-robust std σn

Figure 3: Parameter optimization for standard devia-
tions σr and σn.

(35.2). This indicates that our DisIB properly sepa-
rates and eliminates the non-robust features added
by both word-level and character-level attackers.
Besides, the clean accuracy of our model on the
AG News and SST-2 datasets is nearly equivalent
to BERT, while on the MR and IMDB datasets,
our model demonstrates superior accuracy. This
means our method retains sufficient robust infor-
mation for the model to make accurate predictions.
Another good property is that our DisIB is compat-
ible with traditional adversarial training methods,
e.g., FreeLB (Zhu et al., 2020). As shown in Table
1, the Ours+FreeLB approach consistently outper-
forms all baselines in terms of robustness. We hope
this result could shine new light on the direction of
combined text defense.

Table 2 shows the defense results on RoBERTa
and DistilBERT models. Our DisIB also attains the
top-1 performance in most cases, which illustrates
the good defense capability of our method across
various classification models. More experiments
are available in Appendix A.

Parameter Optimization. As discussed in pre-
vious sections, our model incorporates two primary
hyperparameters, i.e., the robust features sampling
standard deviation (σr) and the non-robust features
sampling standard deviation (σn). We conduct pa-
rameter optimization experiments to identify the
optimal standard deviations for generating higher-
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Methods TextFooler TextBugger Deepwordbug PWWS

DTRL 218 122 80 193

RSMI 5666 2625 1854 5315

IB 254 143 91 200

Ours 351 221 109 186

Table 4: Inference Runtime results on MR. Time is
shown in seconds for 1000 examples.

quality robust and non-robust features. Figure 3(a)
illustrates the parameter tuning results for the stan-
dard deviation of the robust features. It is evident
that both excessively high and low values of σr
negatively impact model performance on both Acc
and AUA. Consequently, the optimal value is de-
termined to be σr = 30. Similarly, the standard
deviation of the non-robust features σn is tuned
and reported in Figure 3(b). By simultaneously
considering the Acc and AUA, we select that AUA
reaches its peak when σn = 5.

Efficiency Analysis This section compares the
inference runtimes of our DisIB and baselines.
From table 4 we can see that the average infer-
ence time of IB and DisIB is 172 seconds and
216.75 seconds, respectively. As the inference
framework of our method and IB are similar, we
attribute the longer inference time to the increase
of model query times. Specifically, attackers need
more times of queries to successfully attack our
model, which increases the inference time. This
also demonstrates that our DisIB is more robust
(harder to be attacked). Additionally, our method
achieves inference speeds that are 11 to 28 times
faster than RSMI and is only 0.063 seconds per
sample slower than DTRL, elaborating a satisfac-
tory computational efficiency.

Defending LLM. This part evaluates the ef-
fectiveness of our DisIB in defending Large Lan-
guage Model (LLM). Particularly, we replace the
encoder in the robust feature extraction line with
a LLM and utilize the LLM head as the decoder.
We test our method on LLaMA-2 (Touvron et al.,
2023) and Vicuna (Jain et al., 2023) against com-
mon jailbreak attacks, including GCG (Zou et al.,
2023) and PAIR (Chao et al., 2023). We adopt Ad-
vBench (Zou et al., 2023) as a harmful benchmark
and generate 100 adversarial prompts with each
attack method for training. To examine whether the
defense methods refuse to answer benign prompts,
we employ Benign Answering Rate (BAR) in the
normal TriviaQA (Joshi et al., 2017) tasks. For

(a) IB (b) DisIB

Figure 4: t-SNE visualization of robust features learned
via (a) IB and (b) DisIB. Clearly, our DisIB can better
separate the two labels.

Figure 5: Visualisation of word significance. A higher
value suggests that the word is more important in mak-
ing predictions (robust features), whereas a smaller
value indicates the word is less significant for models
(non-robust features).

evaluation, we employ the test set of SafeDecod-
ing (Xu et al., 2024). As shown in Table 3, our
method outperforms the baseline IB on both ASR
and BAR. This indicates that our method can also
defend against jailbreak attacks on LLM.

4.7 Qualitative Results and Analysis

Feature Visualization. To validate the feature dis-
entanglement capability of our DisIB, we randomly
select 520 samples from the MR dataset and extract
their robust features with both IB and DisIB. Figure
4 visualizes the labels of these robust features via
t-SNE (Van der Maaten and Hinton, 2008). The
results show that the robust features captured by
our method completely separate the positive and
negative labels by a large margin, while the IB can-
not fully distinguish them. This indicates that our
method is superior to the IB in disentangling the
robust and non-robust features.

Sample Visualization. Except for the feature-
level visualization, we also make a more intuitive
sample-level visualization to show the effective-
ness of our DisIB in capturing task-relevant robust
features. Specifically, we calculate the importance
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Methods TextFooler TextBugger Deepwordbug PWWS
Rec Dis En AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

✓ ✓ ✓ 29.3 67.0 144.9 43.8 50.7 78.1 40.0 15.9 41.8 36.4 58.9 145.9
- ✓ ✓ 23.5 73.7 127.0 37.9 57.6 91.9 38.2 57.2 39.4 29.9 66.5 139.7
✓ - ✓ 24.7 72.6 132.5 40.0 55.6 72.5 35.4 60.6 40.2 31.4 65.2 142.4
- - - 27.4 70.0 135.3 41.9 54.1 75.4 36.9 59.6 40.6 33.2 63.7 142.2

Table 5: Ablation studies. ✓ and - denotes with and without the corresponding module, respectively.

scores of individual words in the input sentence
(Zhang et al., 2022). We conduct a series of nor-
malized importance score calculations on the SST-2
dataset, and two examples are illustrated in Figure
4 (more examples can be found in the Appendix B).
In the first example, our DisIB extracts the impor-
tant words, e.g., ‘perfect’, ‘film’, etc, while the IB
only focuses on the word ‘film’ but ignores ‘per-
fect’, which carries a distinctly positive sentiment.
In the second sentence, our method directly cap-
tures the word ‘failed’, which strongly indicates
negative emotion. In contrast, the IB fails to iden-
tify this word and does not extract any useful infor-
mation. The results demonstrate that our method
can more effectively identify important words than
IB. From these intuitive examples, we confirm that
our proposed DisIB is less likely to lose important
information and extracts more complete robust fea-
tures than IB.

4.8 Ablation Study

We perform ablation studies to examine the effects
of key components of our DisIB, including recon-
structor (Rec), discriminator (Dis), and the entire
non-robust feature extraction line (Rec+Dis+En).
Table 5 reports the ablation study results. From Ta-
ble 5 we know that the removal of the reconstructor
resulted in an average decrease of AUA by 5.0%,
which illustrates the necessity of the I(X;N,Y )
term. Besides, the removal of the discriminator
caused an average of 3.6% AUA reduction, indi-
cating the significance of the feature disentangle-
ment step. The elimination of the entire non-robust
feature extraction line resulted in a 2.0% AUA de-
crease, demonstrating the necessity and superiority
of the two-line defense framework.

5 Conclusion

In this work, we proposed a novel text defense
method, i.e., Disentangled Information Bottleneck
(DisIB), which improves the adversarial robust-
ness of modern NLP models by disentangling ro-
bust and non-robust features. Specifically, the

DisIB is a two-line framework, which contains an
encoder-decoder robust feature extraction line and
an encoder-reconstructor non-robust feature extrac-
tion line. A novel objective function has been de-
vised with a discriminator network to minimize the
mutual information of the two lines. Experimental
results elaborate the superiorities of our method in
defending against both classification models and
Large Language Models (LLMs).

Limitation

We summarize the limitations of this work from
two aspects. Firstly, the two-line framework results
in high computational cost and memory cost espe-
cially for the LLM training stage. Therefore, how
to improve the training efficiency, e.g., optimizing
only the information bottleneck architecture and
distinguishing safety layers to avoid unnecessary
training, should be a potential research direction.
Secondly, multilingual defense scenario, e.g., Chi-
nese text defense, is not sufficiently explored. Fu-
ture work could also focus on investigating the gen-
eralizability of the text adversarial defense across
different languages.
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A Further Experiments

In this section, we give more experiments to evalu-
ate the IBProtector. We first compared the defense
performance between DisIB and FAT (Yang et al.,
2024) in Table 6. From Table 6 we can see that the
DisIB outperforms FAT on multiple experiments in
terms of both AUA and Query metrics. Moreover,
as we mentioned in Sec 4.5 that our approach is
complementary to adversarial training. So, the FAT
can also be combined with our DisIB to achieve
better defense results.

Table 7 lists additional results under the gradient-
based A2T attack (Yoo and Qi, 2021). These re-
sults demonstrate that DisIB exhibits strong robust-
ness under gradient-based attack as well, validating
the generalizability and effectiveness of our method
across different attackers.

Methods Acc% AUA% ASR% Query

DTRL 82.3 47.9 41.8 20.2
IB 81.1 50.5 37.7 21.8

Ours 84.4 56.8 32.7 22.4

Table 6: The Acc, AUA, ASR, and Query of our method
and baselines on MR dataset under A2T attack.

Methods Acc
Textfooler Textbugger

AUA%↑ Query↑ AUA%↑ Query↑

A
G

N
ew

s

FAT 95.1 62.3 505.86 63.6 301.91

Ours 94.5 78 543.62 76.2 330.89

IM
D

B FAT 95 70.8 2574.45 75 1687.15

Ours 93.5 71.6 2644.03 70.2 1628.36

Table 7: The Acc, AUA, and Query of FAT and our
method.

B Sample Visualization

We display ten instances of sample-level visual-
ization to show the effectiveness of our DisIB in
capturing task-relevant robust features on SST-2. A
higher value signifies that the word plays a more
critical role in prediction (robust features), while
a lower value suggests that the word is less influ-
ential for the models (non-robust features). As
shown in Figure 6, our method better attends to the
key words, e.g., ’ted’, ’impossible’, ’problem’, etc,
which the IB largely overlooks. Similarly, in the

Figure 7, our method extracts informative words
’amusing’, ’bree’, ’vast’, etc, while the IB fails to
capture these words. The results suggest that our
method can identify important words more effec-
tively than IB.

Figure 6: Visualisation of negative samples.

Figure 7: Visualisation of positive samples.
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