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Abstract

Softmax self-attention often assigns dispropor-
tionate weight to semantically uninformative
tokens such as special tokens and punctuation,
a phenomenon known as attention noise. While
recent methods like Cog Attention and the Dif-
ferential Transformer have addressed this by
introducing negative attention scores, they risk
discarding useful information. In this paper, we
propose the Integral Transformer, a novel self-
attention mechanism that denoises attention by
integrating signals sampled from the logit distri-
bution. Our approach mitigates noise while pre-
serving the contributions of special tokens crit-
ical for model performance. Extensive experi-
ments demonstrate that our model outperforms
vanilla, Cog, and Differential attention variants
on well-established knowledge and reasoning
language benchmarks. Moreover, our analy-
sis reveals that employing vanilla self-attention
in the lower Transformer layers enhances per-
formance and that the Integral Transformer ef-
fectively balances attention distributions and
reduces rank collapse in upper layers.

1 Introduction

Self-attention, a core component of the Trans-
former architecture (Vaswani et al., 2017), has re-
mained a dominant component in state-of-the-art
language modeling (Dubey et al., 2024; Yang et al.,
2024), computer vision (Rombach et al., 2022; Rad-
ford et al., 2021), and speech recognition (Radford
et al., 2023) models. Consequently, research ef-
forts continue to focus on enhancing the perfor-
mance (Shen et al., 2019; Chang et al., 2021), la-
tency (Dao, 2023; Shah et al., 2024), and memory
efficiency (Xiao et al., 2024; Liu et al., 2024) of
vanilla self-attention mechanism.

The tendency of Vanilla Transformer Language
Models (Touvron et al., 2023) to allocate dispropor-
tionately large attention scores to tokens that lack
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Figure 1: The attention scores (from all tokens in the
sequence) in the last layer of Vanilla, Differential, and
Integral Transformers with 1.2 billion parameters are
measured relative to the beginning-of-sequence [BOS]
token. The figure shows the mean (curve) and standard
deviation (shaded area) of the attention scores across all
attention heads. It is drawn from a randomly selected
subset of 1600 samples from the 8 language modeling
datasets considered in this study.

semantic importance (e.g. blue curve in Figure 1),
such as special tokens or punctuation, has long been
a subject of interest (Kovaleva et al., 2019; Clark
et al., 2019b). With the rise of large language mod-
els (LLMs) (Hurst et al., 2024; Liu et al., 2024), this
phenomenon has recently attracted attention from
machine learning researchers (Sun et al., 2024; Yu
et al., 2024), who have labeled such tokens as non-
informative or irrelevant context tokens and often
referred to this phenomenon as attention noise.
Cog Attention (Lv et al., 2024) and the Dif-
ferential Transformer (Ye et al., 2025) propose
new self-attention mechanisms that not only di-
minish the noise but also allow attention scores
to become negative for such tokens (red curve in
Figure 1), thereby reallocating attention to tokens
deemed informative and relevant. Although these
approaches have shown empirical gains compared
to the Vanilla Transformer, they partially contradict
findings from both well-established (Clark et al.,
2019b) and recent (Xiao et al., 2024; Son et al.,
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2024) literature regarding the role and importance
of attending to these tokens.

In this paper, we propose a novel self-attention
mechanism that aims to denoise attention by in-
tegrating signals sampled from the distribution of
logits of the attention layer. We call the result-
ing model the Integral (INTG) Transformer. Com-
pared to subtracting the scores signals in the Dif-
ferential (DIFF) Transformer, our method still mit-
igates the noise while retaining attention to spe-
cial tokens (green curve in Figure 1) important
for performance. Comprehensive pretraining from
scratch experiments demonstrate that our INTG
Transformer outperforms both Vanilla, COG, and
Di1FF Transformers on 8 well-established knowl-
edge and reasoning language evaluation bench-
marks.

In addition, we empirically show that maintain-
ing vanilla self-attention in the lower Transformer
layers benefits performance. This finding applies
not only to our INTG but also to COG and DIFF
Transformers. Extensive analysis of the attention
head distribution shows that INTG effectively re-
duces excessive attention to special and punctua-
tion tokens without eliminating it completely, help-
ing to balance the attention score distribution across
different token types. Moreover, our analysis re-
veals that INTG reduces rank collapse (Noci et al.,
2022) in Transformer upper layers more effectively
than COG and DIFF.

2 Background

We first formulate the self-attention mechanism
in the Vanilla Transformer (Vaswani et al., 2017),
applied to a single attention head, in § 2.1. Then,
we provide an overview of how the Cog (§ 2.2)
and Differential (§ 2.3) methods aim to eliminate
attention noise in the vanilla self-attention.

2.1 Self-Attention

Let X € RV*4m be a sequence of input represen-
tation vectors (e.g., hidden state representations of
tokens) for the self-attention module, where IV is
the length of the sequence and d,,, is the dimension
of the model. The output of the generalized atten-
tion layer is computed as the aggregation of the
linear transformation of the input with the attention
score which non-linearly depends on the input:

Self-Attn(X) = ¢(X)V, (1)

where V = X Wy, for a d,, X d,, matrix Wy,, and
#(X) € RV*N is the attention score. One of the

key properties of the score ¢;;(X) is that it should
capture the degree of relevance of the j-th token
representation, X[, :] € R%, with respect to the i-
th token representation. The original choice for the
score computation in self-attention of the VANILLA
Transfomer (Vaswani et al., 2017) is softmax (Bah-
danau et al., 2014):

oy (X) = softmax(QKT), 2)
Q=XWo, K=XWk/\Vdn, 3

where W¢ and Wy are d,,, X dj, matrices and dj,
is a hidden dimension of the score computation
(practically, it is a head dimension in a multi-head
attention setting). VANILLA Transformer with the
softmax self-attention block is proven to be a uni-
versal approximator of sequence-to-sequence func-
tions (Yun et al., 2020). However, this architecture
suffers from several representation learning issues
like representational collapse (Liu et al., 2020),
entropy collapse (Zhai et al., 2023) and attention
noise (Ye et al., 2025) and the recently proposed
modifications of softmax self-attention aims at fix-
ing this.

2.2 Cog Attention

Lv et al. (2024) proposed a method to increase
the flexibility of self-attention by introducing the
negative attention scores. For that, they replaced
the softmax operation with the signed softmax:

P9 (X) = sign(QKT) ® softmax(abs(QKT)), )

where Q and K are computed as in Formula 3, ® is
an element-wise product and the functions sign
and the absolute value are also applied element-
wise. The authors demonstrate that their ap-
proach improves robustness to representational col-
lapse (Noci et al., 2022): the phenomenon where
token representations at many positions become
homogeneous in deeper layers. Moreover, negative
weights help eliminate the tendency to focus on
non-informative and irrelevant tokens (e.g., special
tokens and punctuation).

2.3 Differential Transformer

Ye et al. (2025) proposed another approach to mit-
igate the overallocation of the self-attention to ir-
relevant context. They replaced the softmax-score
computation with a difference of two softmax:

PM(X) = ¢%1 (X) = AG2(X), (5
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Figure 2: An illustration of the computation of a single attention head representation in the self-attention module of
Vanilla (left), Differential (center), and our Integral (right) Transformers, following the notation in § 2 and § 3. The
example illustrates the sampling of 4 signals (S =4) for our Integral Transformer.

where A € R is a learnable parameter (depending
on an initialization hyperparameter) and ¢°(X) is
the softmax score from Formulas 2 and 3 computed
with two different sets of d,,, X dj-matrices Wé,
W}( and Wé, WIZ( In practice, for efficiency, the
hidden dimension of the score computation dy, is
taken to be half of the head dimension in a multi-
head attention setting. This approach is based on
the differential amplifier technique (Karki, 2001)
from signal processing literature, which primarily
calculates the difference between two signals to
eliminate common-mode noise in the input. In this
context, the authors define this noise primarily as
attention to special and less informative tokens.

3 Method
3.1 Motivation

The tendency of VANILLA Transformer models to
allocate significant attention to special or less se-
mantically meaningful tokens, such as punctuation,
has been regarded not only as a naturally emerg-
ing phenomenon (Clark et al., 2019b) but also as
important for performance. For instance, Han et al.
(2024) demonstrates that dropping such tokens dur-
ing KV-cache compression (Zhang et al., 2023)
detrimentally affects LLM performance. Xiao et al.
(2024); Oren et al. (2024) have demonstrated that
attending to the first tokens in the sequence (specif-
ically, the [BOS] token) is also crucial for model
performance. Furthermore, Dong et al. (2024) and
Darcet et al. (2024) found that intentionally adding
special tokens at the beginning of the sequence
during training phases improves the performance
of both language and vision models, respectively.
Recently, Zhang et al. (2025) theoretically studied
the importance of these tokens acting as attention
sinks for Transformer performance, particularly for
few-shot learning (Brown et al., 2020) and chain-

of-thought reasoning (Wei et al., 2022).

While these studies suggest that it is preferable
to keep attending to special tokens, we observe that
the approaches in § 2.2 and § 2.3 not only remove
attention to these tokens but also allow the weights
for these tokens to be negative. For instance, we
found that 50% of COG and 41% of DIFF atten-
tion weights to the [BOS] token are negative (see
Appendix C.3 for a detailed analysis). The partial
contradiction between the empirical gains obtained
by the approaches in § 2.2 and § 2.3, and the find-
ings of studies mentioned in the first paragraph of
this section, motivate us to propose an alternative
method that reduces the noise without completely
removing it or allowing the weights for those to-
kens to go negative.

3.2 Integral Transformer

We address attention noise from a different per-
spective than the differential amplifier technique
used by (Ye et al., 2025), with an approach inspired
by spatial antenna diversity from communication
system design (Brennan, 1959), where signals are
diversified to mitigate signal fading and improve
the signal-to-noise ratio.

In this approach, we treat logits Z = QK €
RVXN a5 signals sampled from some latent distri-
bution: Z ~ P(X). We can modify the common-
mode noise assumption from the differential trans-
former. Specifically, we reinterpret noise as zero-
mean fluctuations in the logit signals. Then, the
natural way to denoise the attention map is to in-
tegrate it, which leads to our design of Integral
(INTG) Transformer with a new score computation:

¢(X) = softmax(Ep(x)[QK']).  (6)

The term Integral was adopted by analogy to the
Differential Transformer, which follows a differen-
tial amplifier paradigm. We propose to integrate
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multiple signals into an attention score function to
achieve the attention denoising effect. In practice,
we construct the model with an estimation of this
integral by averaging. Assuming that S is the num-
ber of signals we want to consider, we set up the
score computation as a softmax of a signal average:

S
in 1 SIS
¢""MI(X) = softmax (S ;Q K T) )

Q= XW, K* = XWi/\Vdp, (8

where s = 1,...,5, W¢ and Wi are dp, X dp-
matrices. It is important to note that this can be
implemented in practice without a significant in-
crease in parameters or a loss of efficiency, similar
to the original attention mechanism. We do so by
choosing the hidden dimension dj, to be the head
dimension divided by the number of signals S.

3.3 Signal Design Choice

In our INTG attention, we define the signal to be
the logits Z = QK" € RY*N | but in differential
attention (Ye et al., 2025) the signal is taken to
be the softmax scores ¢f;,(X). We will present
two theoretical arguments to support our choice.
First, integrating signals after the softmax leads to
oversmoothing. To demonstrate this, assume that
z 18 an IN-dimensional Gaussian vector. Then, as
Shekhovtsov et al. (2018) show, the expectation of
its softmax can be approximated as follows:

E[softmax(z)] & softmax(E[z]/\/1 + 02), (9)

where o is a nontrivial function of the covari-
ance matrix of the Gaussian distribution (see
(Shekhovtsov et al., 2018) for details). This implies
that integrating signals after softmax increases the
temperature, and hence makes the probability distri-
bution flatter leading to unstable training and worse
performance (Anagnostidis et al., 2022).

The second argument concerns the treatment
of outliers. The signal after softmax is a cate-
gorical probability distribution proportional to the
exponential vector: softmax(z) ~ exp(z). Av-
eraging the logits corresponds to finding a geo-
metric mean in the score space: exp(+ >, 2%) =
v/ 11, exp(z*%). Because taking geometric mean is
more resistant to outliers than the arithmetic mean
(Gupta and Kapoor, 1982), choosing logits as a

signal for the integral attention design is a prefer-
able theoretical choice. We further validate our
signal design choice empirically in Table 8 in Ap-
pendix B.

3.4 Partial Depth Attention Denoising

Both older and recent studies (Clark et al., 2019b;
Xiao et al., 2024) report different behaviors of
deeper and shallower attention layers in their scor-
ing of special tokens. In particular, Xiao et al.
(2024) remarks that lower layers exhibit local atten-
tion whereas deeper layers demonstrate increased
attention to initial tokens. Additionally, Lv et al.
(2024) observe that keeping softmax attention in
the first layer of COG Transformer significantly
enhances the performance. Motivated by findings
from prior work on the non-uniformity of the atten-
tion mechanism across layers, it is intuitive to ques-
tion whether applying attention denoising mech-
anisms to all VANILLA Transformer layers is op-
timal for performance. In the next section, we
attempt to address this question through extensive
empirical experiments with a hybrid Transformer
model that combines VANILLA and denoising at-
tention layers.

4 Experiments

4.1 Experimental Setting

We conduct pretraining experiments for LLMs
from scratch in two settings: a small-scale set-
ting with 125M parameters and 28B tokens, and a
large-scale setting with 1.2B parameters and 128B
tokens. We use the Llama2 (Touvron et al., 2023)
architecture as the backbone in our main experi-
ments in line with prior works on attention noise
cancellation (Lv et al., 2024; Ye et al., 2025). We
perform standard zero-shot evaluations on eight
well-established datasets for commonsense reason-
ing and knowledge-based language understanding
from the LM Eval Harness benchmark (Gao et al.,
2024). A detailed description of the pretraining cor-
pora, implementation details, evaluation datasets,
and metrics is available in Appendix A. Addition-
ally, we conduct a long-context benchmark evalua-
tion, detailed in Appendix C.4.

4.2 Main Results

Table 1 shows the zero-shot accuracy performance
of VANILLA (Touvron et al., 2023), DIFF, INTG,
and CoG Transformers on 5 knowledge and 3 rea-
soning language tasks. All models are pretrained
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Model Reasoning Knowledge

Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.

125M parameters and 28B tokens
VANILLA 51.3 44.3 24.7 29.7 62.8 23.8 57.1 249 39.8
CoaG 50.8 41.3 24.0 29.8 63.2 26.2 60.4 26.4 40.3
all layers 51.1 41.3 24.2 30.2 61.8 24.8 61.8 25.2 40.1
DIFF 52.0 41.6 24.2 29.6 63.4 254 62.9 24.7 40.5
all layers 52.3 41.9 243 29.9 62.3 24.8 62.1 24.9 40.3
INTG 51.8 41.5 26.9 304 63.6 28.0 62.2 24.8 41.2
all layers 51.9 41.8 25.7 304 62.9 25.0 62.3 25.1 40.6

1.2B parameters and 128B tokens
VANILLA 55.6 62.0 32.0 43.7 72.8 26.0 62.1 23.1 472
DIFF 54.1 62.8 32.7 43.8 73.6 26.4 62.2 25.0 47.6
INTG 56.9 62.4 34.3 43.9 74.8 29.8 62.2 26.9 48.9
all layers 56.2 63.3 33.3 43.9 73.3 28.4 62.3 24.6 48.2

Table 1: Zero-shot accuracy performance of 4 Transformer architectures, pretrained from scratch under two
experimental settings, on 8 language reasoning and knowledge tasks. The main configuration for COG, DIFF,
and our INTG (with S = 8) Transformers consists of these layers in the top 50% of the Transformer, while the
rest are VANILLA Transformer layers. All layers indicates results for Transformers when using all layers for the
aforementioned three architectures. The highest scores for each task under each setting are highlighted in bold.

from scratch under the two experimental settings
described in § 4.1. The main configuration for the
Cog, DIFF, and INTG Transformers involves apply-
ing them to only the top 50% of the layers, while
the bottom 50% use VANILLA Transformer layers.
On the small 125M parameter scale, we present
ablation results (marked as all layers) when COG,
DIFF, and INTG are applied to all layers, along with
results for the 1.2B scale of our INTG Transformer.

We observe that, at the small scale setting, all
three approaches for attention noise cancellation
lead to improvements over the VANILLA Trans-
formers by 0.5%, 0.7% for COG and DIFF, respec-
tively, with the largest gain of 1.4% for our INTG
on the average across 8 tasks. In addition, we ob-
serve a slight yet systematic gain across the three
approaches when applying them to the top 50%
of VANILLA Transformers, compared to using all
layers. More precisely, COG and DIFF saw gains of
0.2%, 0.2%, and 0.6%, respectively, compared to
their respective all layers variants. Interestingly, de-
spite lagging behind the top 50% INTG, our INTG
all layers still outperforms the best COG and DIFF
variants, though by a small margin. Moreover, our
best INTG variant achieves the highest performance
on 4 out of 8 benchmarks when compared against
all 5 competing baselines collectively, rather than
through one-to-one comparisons. In contrast, each

of the remaining baselines ranks highest on at most
a single task.

Based on these small-scale performances, we
scale up our experiments to 1.2B parameters pre-
trained on 128B tokens for the VANILLA Trans-
former, as well as the top three most promising vari-
ants under that setting: DIFF and both of our INTG
variants. Overall, we observe similar trends at large
scale compared to small scale, where the best pre-
vious architecture, DIFF, outperforms VANILLA
by 0.4%, and our INTG reports the best perfor-
mance of 0.7%, outperforming its all layers variant.
More precisely, our INTG model achieves the best
performance on 6 out of 8 benchmarks, with the
remaining 2 top scores reported by our all-layers
INTG variant. These results highlight the poten-
tial of INTG for improving the pretraining of large
language models, as well as the importance of ap-
plying it (or any equivalent approach) only to the
top layers of the model.

4.3 Full vs. Partial INTG Transformer

We conduct ablation studies on our approach, test-
ing variants that replace INTG layers with VANILLA
at different ratios within the Transformer. Table 2
presents the average scores on 3 Reasoning (Rsn.)
and 5 Knowledge (Klg.) tasks, as well as the aver-
age across all 8 tasks, using INTG layers at 100%,
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25%, 50%, and 75%, as well as in the bottom 50%
(-50%). All experiments are conducted in the small-
scale 125M parameters setting, and the full results
are presented in Table 9 in Appendix B.

25% 50% 5% 100% -50%
Rsn. | 38.6 395 382 399 388
Klg. | 40.1 41.2 40.7 406 39.2
Avg. | 39.6 40.6 39.7 404 39.0

Table 2: Performance of models using INTG in their top
25%, 50%, and 75% of Transformer layers (with the rest
being VANILLA layers), as well as the full (100%) and
bottom 50% (-50%) INTG Transformer. Bold and un-
derline indicate the highest and lowest scores under the
average of reasoning (Rsn.) and knowledge (Klg.) tasks,
as well as the overall average across all 8 tasks. Ex-
periments are performed in the small-scale pretraining
setting

First, it is important to note that we use a mini-
mum of 2 signals in these ablation experiments to
avoid any potential impact from a mismatch in head
size between VANILLA and INTG Transformer lay-
ers. Results show that the top 50% INTG Trans-
former consistently performs the best across both
reasoning and knowledge task categories. Mean-
while, making the entire model consistent by em-
ploying INTG across all layers (100%), is on par but
slightly worse than this variant. Interestingly, we
notice that applying the INTG Transformer to the
bottom 50% of layers leads to significant underper-
formance compared to the VANILLA Transformer
(first line in Table 1), while applying it to the top
25% or 75% results in slightly worse performance
compared to the VANILLA Transformer.

Finally, it is worth noting that the results show no
direct correlation between reducing the effective at-
tention head dimension (due to signal sampling) in
INTG Transformer layers and model performance,
as the top 25% and 75% of models perform roughly
the same. These empirical results suggest that at-
tention noise is not of the same nature across layers
and that not all noise necessarily needs to be can-
celed for optimal performance. However, deeper
and more theoretical studies are needed to fully
understand this phenomenon.

4.4 Integral Signals and Heads

We further study the potential impact on the per-
formance of the hidden dimension d;, in the INTG
Transformer, exploring different combinations of

attention heads and number of signals S. Table 3
shows the models’ (top 50%) performance ' when
ablating with 2, 4, and 8 signals, using 8 and 16
attention heads in the small-scale 125M parameter
and 28B token pretraining setting. We observe a
significant increase in performance when scaling
up the number of signals from 2 to 8 while using
8 attention heads. This is expected, as sampling
more signals provides a better estimation of the
expectation of the signals in Eq. 6.

In contrast, when doubling the number of heads
to 16, we observe a systematic degradation in per-
formance as more signals are sampled, with 16
heads and 8 signals INTG underperforming the
VANILLA Transformer. However, it is important
to recall that the hidden score size dj, in INTG de-
creases by a factor equal to the number of signals,
which may lead to a very small effective head size.
For instance, in a 125M parameter model (hidden
model size, d,, = 768), using 16 heads and 8 sig-
nals results in d, = 6, which most likely causes
poor performance.

heads=8 heads=16
S 2 4 8 2 4 8
Rsn. 395 39.8 40.1 | 40.7 394 37.7
Klg. 412 41.1 41.8 | 41.2 41.1 407
Avg. 40.6 40.6 41.2 | 41.0 405 39.6

Table 3: Performances of top 50% INTG models when
ablating the number of attention heads and signals (S)
values under a small-scale pretraining setting. Bold text
indicates the highest scores for each task group.

However, increasing the number of heads gen-
erally decreases the performance of INTG, which
follows the trend observed in the VANILLA Trans-
former (see Table 11 in Appendix B). This also
aligns with Michel et al. (2019); Brown et al.
(2024), who show that adding more heads can de-
grade performance in the VANILLA Transformer
due to redundant information encoding. Therefore,
it is important to determine the maximum number
of signals that leads to a sufficient head size, while
using the same number of heads recommended for
a specific VANILLA Transformer configuration.

4.5 Transformer Backbone Ablation

In this section, we analyze whether the gains of
our INTG Transformer are tied to design choices

"Full results are presented in Table 10 in Appendix B
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Figure 3: Normalized attention scores of continuation tokens (see Appendix A.4) attending to all tokens in the
sequence, grouped into four token types. These scores are computed for all layers of the VANILLA, DIFF, and INTG
1.2B-scale Transformer models. The curve represents the mean, and the shaded area indicates the standard deviation

across all attention heads.

of the Llama2 architecture by experimenting with
Pythia (Biderman et al., 2023) and Qwen2 (Yang
et al., 2024) as backbone architectures.

LLama2 Pythia Qwen2
VANL INTG VANL INTG VANL INTG
Rsn.  40.1 399 398 411 400 409
Klg. 397 406 393 400 399 414
Avg. 398 404 395 403 400 41.0

Table 4: Performance of the VANILLA and INTG Trans-
former models using different backbone architectures
under a small-scale pretraining setting. Bold text indi-
cates the highest scores for each task group.

Table 4 shows the performance of pretraining
from scratch under the small-scale setting (125M
parameter and 28B token) on reasoning and knowl-
edge language tasks for the VANILLA and INTG 2
Transformer models. The results show systematic
gains for INTG over VANILLA in Pythia (a prede-
cessor to Llama2) and Qwen?2 (a slightly enhanced
version of Llama2). Additionally, we observe that
the relative performance of the VANILLA Trans-
former persists when we apply INTG, suggesting
that the surrounding blocks of self-attention mod-
ules complement the gains achieved with INTG.

5 Analysis

We investigate attention score matrices to under-
stand better how our method shifts the distribution
of token types (§ 5.1), the concentration of atten-
tion (§ 5.2), and the potential link between attention
noise and rank collapse (§ 5.3). The analyses in
this section are conducted on a randomly selected

>We conduct this ablation with INTG when using it at

all layers. Detailed results are presented in Table 12 in Ap-
pendix B

subset of 200 samples from each of the 8 tasks,
resulting in a total of 1600 samples.

5.1 Token Type Attention Distribution

We start by analyzing the distribution of attention
weights in denoising attention methods across dif-
ferent types of tokens, depending on their degree
of informativeness or semantic meaning. To this
end, we use a POS tagger (Honnibal et al., 2020) to
assign a tag to each token in the sequence, with the
tags then grouped into the following 4 categories:
special tokens (e.g., [BOS]), content words (e.g.,
nouns), function words (e.g., prepositions), and a
category for numbers, symbols, and other tags.’
As illustrated in Figure 3, we conduct this anal-
ysis across all 22 layers of the 1.2B VANILLA,
DIFF, and INTG Transformers. Each sub-figure
displays the normalized attention scores for one
category (across all layers), with the scores normal-
ized within each layer such that the sum of attention
scores across all four categories is 1.0. The curves
represent the mean across all attention heads, while
the shaded areas indicate the standard deviation.
On one hand, we observe that the VANILLA
Transformer assigns the highest attention weights
to special and punctuation tokens (Figure 3 (a)),
which is in line with findings from both older and
recent studies (Clark et al., 2019b; Oren et al., 2024,
Zhang et al., 2025). Additionally, we observe that
the VANILLA Transformer assigns the lowest at-
tention weights to the other three token categories
(Figure 3 (b, ¢, d)) compared to both the DIFF and
INTG Transformers. On the other hand, we observe
that the DIFF model radically reverses these pat-

3In the experiment the source consists of continuation
tokens only (see Appendix A.4), and the target is all tokens
in the sequence. The POS-to-category mapping and other
implementation details are listed in Appendix C.1.

2344



terns by significantly shifting excessive attention
from special and punctuation tokens to the other
three categories, which are considered more infor-
mative.

However, we notice that our INTG model also
shifts the attention distribution towards more in-
formative tokens, though not as sharply as DIFF,
as can be clearly seen in Figure 3, where INTG
mostly falls in between VANILLA and DIFF. These
findings, combined with performance gains over
VANILLA in Table 1, strongly indicate that atten-
tion noise should not be fully removed, as demon-
strated by our INTG Transformer. Finally, we no-
tice that in most cases, DIFF and INTG have a sig-
nificantly higher standard deviation compared to
VANILLA. This suggests that the attention heads
within the same layer of these two models are not
concentrated on the same type of tokens. This find-
ing is further explored in the next section.

5.2 Attention Concentration

We study the impact of INTG and other methods
on the shift in attention distribution in terms of
concentration (spikiness). We do so by measuring
the entropy of the attention score distribution for
the last token in the continuation segment of the
sample sequence.*
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Figure 4: Entropy of the attention score distribution
for the last continuation token in each layer of the four
125M parameter Transformer models. The curve repre-
sents the mean, and the shaded area indicates the stan-
dard deviation over the selected subset of samples.

On one hand, we notice that VANILLA has the
lowest entropy, meaning that a large amount of
attention is focused on a few tokens. On the other
hand, COG and DIFF have the highest overlapping
entropy values across all layers, indicating a more

“See Appendix C.2 for implementation details.

uniform dispersion of attention scores over tokens,
which the authors of both works intend to achieve
with their respective methods. Interestingly, our
INTG method stands in the middle at most layers,
indicating that it reduces the sparsity of VANILLA,
but not as much as the other two methods. This
seems to be the most beneficial for performance, as
seen in the end-task results in Table 1.

5.3 Rank Collapse

Rank Collapse in the context of LLMs (Noci et al.,
2022; Skean et al., 2025) refers to a phenomenon
where the effective rank of the layer representations
gradually decreases as the model deepens. This im-
plies that the model representations become more
repetitive or less informative, which is often asso-
ciated with poor end-task performance. We follow
the common approach for analyzing the effective
rank of the attention score matrix (¢ € RV*V)
for each attention head in the last four layers of
various Transformers, which are more prone to
rank collapse. For each data sample, we compute
the median rank across all heads and perform a
sample-wise comparison between the median rank
of VANILLA and each of the COG, DIFF, and INTG
Transformer models.

125M 1.2B

12 3,1 2 3
CoG | 58% 70% 100% | - - -
DIFF | 59% 81% 100% | 54% 71% 63%
INTG | 69% 100% 100% | 62% 93% 93%

Table 5: Average percentage (higher is better) of sam-
ples where the rank of an attention-denoising Trans-
former (row) exceeds that of VANILLA for the 125M
and 1.2B parameter scales on the last 3 layers.

Table 5 shows the average percentage of cases
where the rank of an attention-denoising Trans-
former exceeds that of VANILLA for both the 125M
and 1.2B parameter scales. First, we notice that all
methods help to mitigate rank collapse compared
to VANILLA (all values are > 50%) under both
settings. However, INTG reports the best improve-
ments, with 11% and 10% higher performance on
the 125M scale compared to COG and DIFF, respec-
tively, on the last layer. Secondly, we observe that
mitigating rank collapse becomes increasingly chal-
lenging as the model depth and size increases, with
the rank gap between VANILLA and the denoised
attention models narrowing in both settings. These
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findings suggest that mitigating attention noise is
an effective strategy for addressing rank collapse.

6 Conclusion

We introduce Integral Transformer, a novel self-
attention mechanism that denoises attention by in-
tegrating signals sampled from the distribution of
the logits. Our approach effectively mitigates at-
tention noise while preserving the influence of spe-
cial tokens, which are vital for model performance.
Experiments on knowledge and reasoning bench-
marks demonstrate that the INTG consistently out-
performs vanilla and recent alternatives such as
CoG and DIFF Transformers.

Limitations

Due to limited computational resources, we could
not train the model of more than two billion param-
eters and larger scale and hence, could not properly
investigate the scaling law for Integral Transformer.
Our evaluation is focused on short-context inputs
from an NLP perspective, with an emphasis on at-
tention mechanisms and their treatment of noise
and special tokens, and so our method’s effective-
ness on long-context inputs was not tested. Besides
that, the experiments were conducted on a spe-
cific set of NLP benchmarks, and additional eval-
uation on more diverse domains—such as coding
and other specialized tasks—could further validate
the generalizability of our technique. Future work
will aim to address these limitations.
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A Experimental Setting

Due to limited computational resources, we define
an experimental pretraining protocol that involves
conducting most of the ablations at a scale of 125M
parameters and a 28B token corpus, while the main
experiment is run on 1.2B parameter models and a
128B token corpora.

A.1 Pretraining Corpora

We leverage the Cosmopedia v2 (28B tokens)
and the deduplicated FineWeb-Edu (220B tokens)
subsets of the SmolLM-Corpus (Ben Allal et al.,
2024b) as pretraining data in our experiments.
Cosmopedia v2 is a collection of synthetic data
generated by prompting Mixtral-8x7B-Instruct-
v0.1 (Mixtral Al team, 2023) to complete text-
books and stories from chunks carefully selected
from RefinedWeb (Penedo et al., 2023) and RedPa-
jama (Weber et al., 2024). FineWeb-Edu is a dedu-
plicated version containing high-quality data from
educational web pages, filtered from the FineWeb
v1 collection (Penedo et al., 2024).

It is worth noting that the SmolLM-Corpus has
recently been used as a high-quality pretraining
resource in the field, for example by Hymba (Dong
et al., 2024) and Zamba (Glorioso et al., 2024).
When referring to pretraining on a 28B token cor-
pus (with 125M parameter models), we use the
Cosmopedia v2 corpus. Conversely, when mention-
ing the use of 128B tokens (with 1.2B parameter
models), we refer to a randomly sampled subset of
100B tokens from FineWeb-Edu, added to the 28B
tokens from Cosmopedia v2.

A.2 Model Configurations

All reported results use the Llama2 (Touvron et al.,
2023) architecture as the backbone in our main
experiments, in line with prior works on attention
noise cancellation (Lv et al., 2024; Ye et al., 2025),
unless otherwise specified. The 125M configura-
tion, which partially follows Pythia-125M (Bider-
man et al., 2023), uses a hidden size of 768, an
intermediate size of 1155, 8 attention heads, and
20 hidden layers. For the 1.2B configuration, we
follow the TinyLLama model (Zhang et al., 2024),
which has 22 layers, a hidden size of 2048, an in-
termediate hidden size of 5632, and 32 attention
heads.

For both configurations, we tie embeddings to
maximize the number of parameters in the encoder
and use the Mixtral (Mixtral Al team, 2023) to-

kenizer and its vocabulary (32k tokens), as it is
the model used to generate the 28B-token Cosmo-
pedia v2 corpus. When performing ablation with
Pythia (Biderman et al., 2023) and Qwen2 (Yang
et al., 2024) as backbone architectures in § 4.5, we
use the same number of layers, hidden size, and
attention heads as Llama2, while slightly adjusting
the intermediate size to ensure the total number of
parameters matches 125M.

A.3 Implementation Details

For both Cog Attention (Lv et al., 2024) and Differ-
ential Transformer (Ye et al., 2025), we used their
respective open-source code for implementation
and adhered to their recommended architectural hy-
perparameter values for initialization, where appli-
cable (e.g., A for DIFF). If not otherwise specified,
we use 8 signals (the value of S in § 3.2) in our
default experiments for the INTG Transformer for
both 125M and 12.B parameters scale.

While increasing the number of signals (.5) en-
hances denoising, but it also an excessively large S
reduces per-signal dimension and hence decreases
the performance. Analyzing this trade-off is done
in subsection 4.4. Hyper-parameter selection of S
was conducted at the 125M scale and the resulting
number of signals (8) was adopted as-is for our
main 1.2B experiment. Similarly, the denoising
layer ratio was selected based on experiments at
the smaller 125M scale, and the same value was di-
rectly applied to the main 1.2B-scale experiments.

Each model is pretrained on a single GPU server
that consists of 8 NVIDIA A800 cards with 80GB
of memory each. The pre-training code is based
on the PyTorch (Paszke et al., 2019) version of
the Transformers library (Wolf et al., 2020). For
all models, we use the AdamW (Loshchilov and
Hutter, 2017) optimizer with a learning rate decay
setting the initial learning rate to 3e-4 with 10,000
warm-up steps.

To speed up the pretraining in our experiments,
we use mixed-precision training (Micikevicius
et al., 2018), and Flash Attention 2 library (Shah
et al., 2024). In addition, we train all models on
fully packed sequences of 2048 tokens in length,
and set the maximum per-GPU batch size for each
model, which is 16 for 125M parameter models
and 4 for 1.2B parameter models. We further speed
up the training by setting the gradient accumula-
tion step > to 8 and 32 with the 125M and 1.2B
parameters models respectively.

>The values were chosen to achieve a total batch size of
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Pretraining experiments approximately took 4
days for the 125M parameter models and 3 weeks
for the 1.2B parameter models, respectively. In
terms of pre-training dynamics (convergence speed
and stability) INTG, Cog, and DIFF behave the
same as standard self-attention. This is because
they introduce no additional trainable parameters
and rely only on lightweight operations, we observe
no measurable slowdown in pre-training compared
with self-attention.

A.4 Benchmark Evaluation

We conduct comprehensive evaluations of the base
language models we pretraining from scratch on
the following datasets: Winogrande (Sakaguchi
et al., 2021), ARC (Easy and Challenge) (Clark
et al., 2018), HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov
et al., 2018), BoolQ (Clark et al., 2019a), and
MMLU (Hendrycks et al., 2021). The first three
tasks test models’ common sense reasoning, while
the remaining five tasks assess language under-
standing knowledge. We perform zero-shot eval-
uations on all tasks and report the accuracy for
each task, as well as the unweighted average score
across eight tasks. For visualization purposes in ta-
bles, we use the following acronyms to refer to the
eight tasks respectively: Winogrd for Winogrande,
ARCe for ARC Easy, ARCc for ARC Challenge,
Hellaswag for HellaSwag, PIQA, OBQA for Open-
BookQA, BoolQ, and MMLU.

A single data sample is constructed by concate-
nating the following elements: [BOS] [INST] {sys
prompt} [/INST] {context} {continuation} [EQS],
where [*] represents special tokens, while {sys
prompt}, {context}, and {continuation} serve as
placeholders for different textual segments. Specifi-
cally, {sys prompt} corresponds to a generic system
prompt, {context} represents the task’s question/-
query/prompt context, and {continuation} denotes
the potential answer.

Model evaluation is performed as follows: both
the ground truth answer and the distractor options
are independently scored by placing each within the
{continuation} placeholder in the prompt described
above. Perplexity is then calculated for each se-
quence, and the answer from the sequence with
the lowest perplexity is selected as the predicted
response. Accuracy is then computed based on the
predicted response, which is a common practice for

2M tokens, as recommended by (Tang et al., 2024).

evaluating language models, particularly those that
have not undergone supervised fine-tuning.

B Results

B.1 Results Integrity

We compare the results obtained with our VANILLA
Transformer pretrained from scratch with 1.2B pa-
rameters and 128B tokens against two off-the-shelf
models that have similar properties to our experi-
mental setup. This comparison is made to ensure
the validity of our experimental design and, conse-
quently, the integrity of our results. Otherwise said,
the purpose of the integrity check is not to compare
against off-the-shelf models, but rather to validate
the soundness of our design choices within a unique
experimental protocol—specifically pretraining at
the 1.2B scale using a 128B tokens corpus.

The first model is TinyLLama (Zhang et al.,
2024), which has exactly the same number of pa-
rameters as ours but was trained on 23 times more
data. The second is Cosmo (Huggingface, 2024),
which is 50% larger than our model and uses a pre-
trained corpus that is 50% larger than ours. It is
worth mentioning that the latter model is pretrained
on the Cosmopedia vl dataset (Ben Allal et al.,
2024a), which is a 25B subset of the Cosmopedia
v2 dataset that we use. However, the authors pre-
trained their model for 7 epochs to reach a total
of 180B tokens. All three models use the same
Llama?2 Transformer backbone architecture.

Table 7 shows the results of TinyLLama and
Cosmo (directly copied from their respective re-
ports), along with our VANILLA Transformer under
the same evaluation protocol of § A.4 (the results
are comparable). We notice that, despite using
23 times less data compared to TinyLLama, our
model lags behind by only 2.4% on the 8-task aver-
age. Similarly, we are only outperformed by 2.2%
on average compared to the Cosmo model, which
is 50% larger and uses 50% more training data.
These observations support the validity of our de-
sign choices and, consequently, the reliability of
our findings.

C Analysis

C.1 Token Type Attention Distribution

We use the default Part of Speech (POS) tagger
from spaCy (Honnibal et al., 2020) to annotate all
samples considered in our analysis with univer-
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sal dependency® POS tags. These tags are then
grouped into four categories based on their seman-
tic and syntactic meaning:

* Special Tokens/Punctuation includes all spe-
cial tokens list in the prompt of § A.4, in addi-
tion to PUNCT tag.

Content Words includes words of high se-
mantic weight that carry the core meaning of
a sentence. The list of tags includes: NOUN,
VERB, ADJ, ADV, and PROPN.

Function Words includes words with struc-
tural role that are critical for grammar but
low semantic value. The list of tags includes:
DET,ADP, CCONJ, SCONJ, PART, AUX, and
PRON.

* Num/Symbols/Others includes number, sym-
bols and other Rare or ambiguous tokens,
which are consider as edge cases. The list
of tags includes: NUM, SYM, X, SPACE, and
INT/J.

For a given sample, we accumulate the attention
scores from the continuation tokens (source) to all
tokens in the sequence (target), grouping them ac-
cording to the four aforementioned categories. We
then compute the mean attention score for each
head across all continuation tokens in the sample.
Afterward, we calculate the mean attention score
over all 1,600 samples in the experiment. Finally,
we apply softmax normalization across the four
categories, ensuring that the attention scores to the
four categories sum to one, making them compara-
ble across models. Figure 3 shows the mean and
standard deviation across the attention heads for
the same process applied at each layer.

C.2 Attention Concentration

We compute the entropy of the last token in the
continuation segment, as it is the most meaningful
one that attends to the maximum number of source
tokens in the sequence. For each attention head, we
compute the entropy of a given sample as follows:

N
E=-) a;log(a), (10)
=1

where ¢ € RY is the normalized attention score
over the sequence of the last continuation token.

®https://universaldependencies.org/u/pos/

Note that we need to normalize the attention be-
cause some of the values can be negative for COG
and DIFF. We apply the normalization as follows:
for an unnormalized attention score a € RY, we
first calculate @ — min(a) and then divide by the
sum of its elements. After obtaining the entropy for
each attention head, we compute the mean to get a
single entropy value for each token per layer. Fig-
ure 4 shows the mean and standard deviation across
the selected samples, with the process applied at
each layer.

C.3 Negative Attention Score

For each token in a given sample, we compute the
percentage of heads with negative attention scores
to the [BOS] special token. We then calculate the
mean of this percentage across the selected samples
that we described at the beginning of § 5 and used
there for all analyses. This process is applied to
each layer of the small-scale COG and DIFF Trans-
former models. Figure 5 shows the mean (curve)
and standard deviation (shaded area) over the atten-
tion heads of the percentage of heads with negative
attention scores to the [BOS].

100

801

60 1

40

20+

% Negative Heads to [BOS]

0 5 10 15 20
Layer Idx

Figure 5: Percentage of attention head scores with neg-
ative values from all tokens in the sequence that point
to the [BOS] token. These scores are computed for all
layers of the COG and DIFF 125M scale Transformer
models. The curve represents the mean, and the shaded
area indicates the standard deviation across all attention
heads.

Overall, we notice that across all layers (with a
few exceptions), the attention scores with negative
values are quite significant for both models, gener-
ally remaining above 20% in the majority of cases.
It is worth mentioning that, on average across all
layers, 50% and 41% of the attention heads point-
ing to [BOS] have negative values for COG and
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DIFF Transformer, respectively. This observation
suggests that these approaches aggressively elimi-
nate attention to [BOS].

C.4 Long Context Evaluation

We perform long-context benchmark evaluation of
large-scale LLMs on tasks from LongBench (Bai
et al., 2024) framework. For all models, we per-
form zero-shot extrapolation of the context length
by replacing the default RoPE positional encod-
ing (Su et al., 2024) with the Yarn context window
extension technique (Peng et al., 2024). This allows
us to achieve meaningful generation at up to 4x the
original context length (from 2K to 8K tokens),
without any additional finetuning for long-context
handling (Wang et al., 2024).

VANILLA DIFF INTG
Single-Document QA
MultiFieldQA 28.26 18.71  18.66
NarrativeQA 7.84 6.11 10.76
Qasper 9.20 7.99 15.97
Multi-Document QA
2WikiMQA 14.27 1296  11.69
HotpotQA 591 5.55 11.78
Musique 7.96 342 2.32
Summarization
GovReport 8.43 4.35 10.93
MultiNews 6.98 6.32 8.18
QMSum 8.63 11.07 15.14
Code Completion
LCC 9.82 1598 15.53
RepoBench-P 7.31 16.65 18.25
Synthetic Tasks
Passage Count 2.18 1.04 1.81
PassageRetrieval 0.00 1.54 3.08
Few-shot Learning

SAMSum 0.45 0.86 13.71
TREC 8.50 250  11.50
TriviaQA 11.07 6.95 19.26

Table 6: Long-context benchmark evaluation scores for
the VANILLA, DIFF, and our proposed INTG Trans-
former models across 16 datasets, grouped into 6 tasks
from the LongBench benchmark. Bold indicates the
highest score for each dataset.

Table 6 presents performance (ROUGE
scores (Lin, 2004)) for the 1.2B-scale VANILLA,
DIFF, and INTG Transformer models on English

long-context benchmarks from LongBench,
grouped by task type according to the LongBench
format’. Results show that our INTG Transformer
outperforms other methods on 12 out of 16
datasets, achieving the highest scores across all
datasets in 3 out of the 6 tasks. This observation
suggests that attention denoising has the potential
to enhance the long-context capabilities of LLMs.
However, it worth noting that COG, DIFF, and our
INTG methods all focus specifically on addressing
noisy attention, without claiming improvements in
long-context performance. In fact, COG did not
evaluate on long-context tasks at all, while DIFF
conducted only synthetic Needle-in-a-Haystack 3
evaluations and only after post-training their
models on long context.

"https://github.com/THUDM/LongBench/tree/main/
LongBench

8https://github.com/gkamradt/LLMTest_
NeedleInAHaystack
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Model Reasoning Knowledge

#P #T | Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
TinyLlama | 1.2B 3T 59.1 55.2 30.1 59.2 73.3 36.0 57.8 259 49.6
cosmo 1.8B  180B 54.2 56.8 33.0 55.1 71.3 354 53.5 324 49.0
QOurLlama | 1.2B 128B 55.6 62.0 32.0 437 72.8 26.0 62.1 23.1 472

Table 7: Benchmark evaluation scores of Transformer models, all using Llama2 as the backbone architecture.
The models vary in size in terms of the number of parameters (#P) and are pretrained from scratch on corpora
of different sizes, measured in the number of tokens (#T). The results of TinyLLama (Zhang et al., 2024) and
Cosmo (Huggingface, 2024) are taken directly from their respective reports.

. Reasoning Knowledge
Signals
Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
softmax output 49.6 27.5 23.2 25.9 52.8 18.0 61.9 25.0 355
logits (our) 51.1 41.3 26.2 30.2 62.9 24.8 62.1 26.2 40.6

Table 8: Benchmark evaluation performance of INTG Transformer when ablating the signal design choice of either
using logits or softmax output as signals. Experiments are run on the 125M parameter Llama2 backbone model and
28B pretraining tokens settings. All models use the INTG Transformer applied to all layers, utilizing 2 signals. Bold
shows the highest score for each task. Results clearly justify our theoretical design choice of logits as signals.

Model Reasoning Knowledge
Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
INTG
top 25% 50.7 40.5 24.6 304 62.7 22.6 60.1 24.9 39.6
top 50% 51.1 41.3 26.2 30.2 62.9 24.8 62.1 26.2 40.6
top 75% 50.9 40.2 23.4 30.3 62.4 24.2 61.1 25.3 39.7
top 100 % 51.5 42.9 25.3 30.3 63.3 23.2 61.9 24.4 40.4
bottom 50 % 50.1 41.6 24.6 30.4 62.5 23.6 54.7 24.7 39.0

Table 9: Benchmark evaluation scores of INTG Transformer models when ablating the percentage of layers where
Integral is used, with Vanilla being used otherwise. Experiments are run on the 125M parameter Llama backbone
model and 28B pretraining tokens settings with a default number of 8 attention heads and 2 signals. Bold shows the
highest score for each task.

Reasoning Knowledge
Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
INTG with 8 heads

Model

signal=2 51.1 41.3 26.2 30.2 62.9 24.8 62.1 26.2 40.6

signal=4 534 41.9 24.2 30.1 62.3 28.0 61.1 24.1 40.6

signal=8 51.8 41.5 26.9 30.4 63.6 28.0 62.2 24.8 41.2
INTG with 16 heads

signal=2 50.9 43.9 27.3 30.3 63.8 252 60.9 25.8 41.0

signal=4 50.9 43.4 23.8 29.7 63.7 27.0 60.3 24.8 40.5

signal=8 50.0 39.8 23.4 29.0 62.3 27.4 60.0 24.9 39.6

Table 10: Benchmark evaluation scores of INTG Transformer models when ablating the number of signals and
the number of attention heads. Experiments are run on the 125M parameter Llama2 backbone model and 28B
pretraining tokens settings. All models use INTG Transformer layers in the top 50% and VANILLA Transformer
layers in the bottom 50%. Bold shows the highest score for each task across all settings.
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Reasoning Knowledge

Model
Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
Llama2
heads=4 50.3 42.4 24.7 29.9 63.3 22.8 59.7 25.1 39.8
heads=8 51.3 44.3 24.7 29.7 62.8 23.8 57.1 249 39.8
heads=16 51.0 39.8 23.5 30.2 62.6 24.4 57.8 25.1 39.3
heads=32 48.2 38.7 23.1 29.0 61.7 23.0 62.1 25.0 38.8

Table 11: Benchmark evaluation scores of vanilla Transformers (LLaMA 2 backbone) when ablating the number of
attention heads. Experiments are conducted on the 125M-parameter LLaMA backbone model with 28B pretraining
tokens. Bold indicates the highest score for each task.

Model Reasoning Knowledge
Winogrd ARCe ARCc Hellaswag PIQA OBQA BoolQ MMLU Avg.
Llama2 51.3 44.3 247 29.7 62.8 23.8 57.1 24.9 39.8
INTG 51.5 42.9 25.3 30.3 63.3 23.2 61.9 24.4 404
Pythia 50.0 454 23.9 29.8 61.8 21.8 58.7 24.4 39.5
INTG 534 43.3 26.6 30.6 63.2 24.2 55.4 26.5 40.3
Qwen2 50.8 43.0 26.2 29.1 63.1 24.6 59.1 24.1 40.0
INTG 50.3 45.7 26.7 31.8 63.1 26.0 59.2 26.8 41.0

Table 12: Benchmark evaluation scores of Vanilla and our INTG Transformer models when ablating with the
backbone model architectures, namely Llama2, Pythia, and Qwen2. Experiments are run on the 125M parameter
Llama backbone model and 28B pretraining tokens settings. Bold and underline indicate the highest score under all
and per-backbone settings, respectively.
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