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Abstract

The rapid advancement of large language mod-
els (LLMs) has heightened concerns about
benchmark data contamination (BDC), where
models inadvertently memorize evaluation data
during the training process, inflating perfor-
mance metrics, and undermining genuine gener-
alization assessment. This paper introduces the
Data Contamination Risk (DCR1) framework, a
lightweight, interpretable pipeline designed to
detect and quantify BDC risk across four gran-
ular levels: semantic, informational, data, and
label. By synthesizing contamination scores
via a fuzzy inference system, DCR produces a
unified DCR Factor that adjusts raw accuracy to
reflect contamination-aware performance. Vali-
dated on 9 LLMs (0.5B-72B) across sentiment
analysis, fake news detection, and arithmetic
reasoning tasks, the DCR framework reliably
diagnoses contamination severity and with ac-
curacy adjusted using the DCR Factor to within
4% average error across the three benchmarks
compared to the uncontaminated baseline. Em-
phasizing computational efficiency and trans-
parency, DCR provides a practical tool for inte-
grating contamination assessment into routine
evaluations, fostering fairer comparisons and
enhancing the credibility of LLM benchmark-
ing practices.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional performance across a wide
range of Natural Language Processing (NLP) tasks.
This success is largely attributed to their pre-
training on vast amounts of data, followed by
task-specific fine-tuning (Zhao et al., 2023). Typ-
ically, LLM performance is evaluated using stan-
dard benchmarks designed to measure performance
across various tasks (Chang et al., 2024). However,
as LLMs grow in size and are trained on increas-
ingly extensive corpora, an important challenge

1https://github.com/chengxuphd/dcr

emerges: Benchmark Data Contamination (BDC)
(Xu et al., 2024a, 2025). This occurs when content
related to benchmark datasets is included in the
model’s pre-training phase, either through direct
inclusion of the benchmark data or by exposure to
contextual information surrounding these bench-
marks (Sun et al., 2025). Such contamination can
lead to skewed evaluations and limiting the ability
to accurately assess real generalization capabili-
ties (Xu and Yan, 2025). The increasing body of
research recognizes that addressing this issue is
critical for ensuring the reliability and fairness of
LLM evaluations (Lee et al., 2022; Sainz et al.,
2023; Zhou et al., 2023; McIntosh et al., 2024;
Deng et al., 2024).

Detecting and mitigating BDC is a complex chal-
lenge, particularly in the scenario that many of the
state-of-the-art LLMs are closed-source commer-
cial products, with proprietary architectures and
training methodologies that remain inaccessible to
the public (OpenAI, 2024; Anthropic, 2024; Team
et al., 2024). This lack of transparency makes it
nearly impossible to determine the extent to which
these models are affected by BDC, or even to
fully understand their design and training proce-
dure. However, in the case of open-source LLMs,
the situation is not much better. Although model
architectures and weights are publicly available,
the pre-training corpus are often undisclosed (Tou-
vron et al., 2023a; Jiang et al., 2023). This opac-
ity raises concerns about the credibility of perfor-
mance claims made in papers and technical reports.

Recent efforts to detect BDC have employed
a variety of techniques, ranging from direct
matching-based methods, such as n-gram match-
ing (Balloccu et al., 2024; OpenAI, 2024; Ippolito
et al., 2023; Brown et al., 2020) and pre-training
corpus membership inference (Li and Flanigan,
2024; Shi et al., 2024; Chang et al., 2023; Duarte
et al., 2024; Ye et al., 2024), to more sophisti-
cated comparison-based approaches by analyzing
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the behavior of LLMs on benchmark tasks, using
metrics such as similarity (Riddell et al., 2024),
preference (Golchin and Surdeanu, 2024a), per-
plexity (Li, 2023), chronological order (Golchin
and Surdeanu, 2024b; Roberts et al., 2023; Yang
et al., 2023), sequence alignment (Kandpal et al.,
2022; Oren et al., 2024), and prediction distribu-
tion (Magar and Schwartz, 2022; Shi et al., 2024).
Although these approaches have shown promise,
they face several significant challenges that many
are computationally expensive, requiring substan-
tial resources to execute at scale, and often lack
interpretability, making it difficult to draw clear
conclusions or apply them effectively during the
development of LLMs (Xu et al., 2024a). These
limitations hinder the broader adoption of BDC de-
tection methods in practical settings, highlighting
the need for more efficient and transparent tech-
niques to ensure the integrity of LLM evaluations.

In this paper, we present a novel and light frame-
work for detecting BDC in LLMs, called the Data
Contamination Risk (DCR) framework. Designed
to address key limitations in existing methods, the
DCR framework emphasizes both interpretability
and computational efficiency, making it suitable
for real-world applications with limited resources.
Our main contributions are as follows: (1) we in-
troduce the DCR framework, a more interpretable
and resource-efficient approach to BDC detection;
(2) we propose a new metric, the DCR Factor,
to quantify the contamination risk of LLMs and
benchmarks. This metric not only identifies poten-
tial BDC but also provides a mechanism to adjust
performance results on contaminated benchmarks;
(3) We extensively conducted tests of three bench-
marks on 9 LLMs (0.5-72B parameters) using the
DCR framework to understand their BDC risks.

2 DCR Framework

2.1 Motivation

With the rapid rise of LLMs, research on BDC has
gained significant attention, leading to increasingly
sophisticated and fancy approaches. However, an
intriguing phenomenon has emerged: despite the
growing body of work on BDC detection and miti-
gation, few of these methods have been integrated
into the actual LLM development process. Instead,
much of the research seems to operate in isolation,
without practical impact - a situation that under-
mines its value, which is not what we want to see.

Through a detailed investigation into LLM de-

velopment practices and current BDC research,
we have identified a primary reason for this dis-
connect: the enormous scale of pre-training cor-
pora, often exceeding one trillion tokens (Touvron
et al., 2023a; OpenAI, 2024; GLM et al., 2024;
DeepSeek-AI et al., 2025), and even involves steps
like distillation (Xu et al., 2024b) and RLHF (Kauf-
mann et al., 2024). Processing such large datasets
using complex BDC detection or mitigation tech-
niques demands extensive computational resources,
and crucially, does not result in substantial improve-
ments in the final model performance. As a result,
developers are reluctant to invest heavily in BDC
prevention, typically opting for simpler and less
resource-intensive methods, such as n-gram match-
ing (Touvron et al., 2023b).

Additionally, even when state-of-the-art BDC
detection or mitigation techniques are applied, they
cannot fully guarantee a contamination-free model,
especially in cases of more nuanced, semantic level
BDC (Xu et al., 2025). Furthermore, the effec-
tiveness of BDC mitigation is difficult to quantify,
making it hard to justify the considerable resource
expenditure. In essence, allocating substantial com-
putational resources to ensure perfect evaluation
integrity is often seen as an effort with diminishing
returns, offering little practical benefit to model
performance.

When designing the DCR evaluation framework,
we primary focus on optimizing efficiency, aim
to assess the BDC risk using minimal test cases
while still maintaining the reliability and validity
of the evaluation results. To facilitate this, we in-
troduced a novel metric, the DCR Factor, which
quantifies BDC risk more intuitively during bench-
mark evaluations. Another key consideration was
interpretability. Rather than relying on abstract
metrics such as perplexity (Li, 2023) or model pref-
erences (Li et al., 2025), which often operate as
black-box indicators (Fang et al., 2025; Hu et al.,
2024), we sought to provide clear, easily under-
standable explanations for BDC risk. The DCR
framework offers transparent insights into the BDC
risks, allowing developers to grasp the implications
of the results directly.

Our ultimate goal is to encourage LLM devel-
opers to integrate BDC evaluation into standard
benchmark testing. By doing so, a more objec-
tive and reliable result can be provided to ensure
that the performance metrics of LLMs are accu-
rate and contamination-aware. We believe that this
approach will improve the integrity of LLM evalu-
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ations in the field.

2.2 Problem Definitions

In this section, we formulate the problem of BDC
and its detection, characterize its different levels,
and outline the challenges it poses.

Let Dtrain be the pre-training dataset of LLMs,
consisting of a large corpus of text; B be the bench-
mark dataset used for evaluating the performance
of LLMs; Dinfo

train and Binfo be the sets of all infor-
mation in Dtrain and B, respectively.

Benchmark Data Contamination occurs when
there is an overlap between Dtrain and B, either di-
rectly or indirectly, leading the model to have prior
exposure to the evaluation data or related knowl-
edge. This overlap may not be detectable through
direct token matches, but can significantly impact
the model evaluation process. Formally, BDC risk
can be quantified by the following equation:

BDC =
|Dinfo

train ∩Binfo|
|Binfo| (1)

However, in order to accurately assess the BDC
risk during the evaluation of LLMs, it is clear that
Equation 1 is too general, and a more fine-grained
system for quantifying BDC needs to be estab-
lished. To this end, we adopt the work of Xu et al.
(2024a), who categorize BDC into four levels: Se-
mantic Level (L1), Information Level (L2), Data
Level (L3) and Label Level (L4). For example,
imagine an LLM as a student about to take a final
exam. Semantic level BDC occurs when students
receive exam questions in different wording before
the test. Information level BDC happens when the
student obtains information beforehand, such as
"over 60% of the answers to the multiple-choice
questions are option C" or "the exam content fo-
cuses on Chapter 3 of the textbook." Data level
BDC involves students getting the actual exam
questions in advance, while label level BDC in-
volves having both the questions and the correct
answers beforehand. All these factors can influence
the student’s performance in varying degrees.

Based on this system, BDC can be quantified
and defined more systematically and at a more fine-
grained level, detailed definitions and examples of
the four BDC levels are provided in Appendix B.1.

2.3 Objectives

Given a pre-trained LLM M , its pre-training corpus
Dtrain, and a benchmark dataset B, our goal is to:

1. Detect BDC: Identify the presence of contam-
ination at each BDC level Li, i ∈ {1, 2, 3, 4}.

2. Quantify BDC: Compute contamination
scores Si for each level Li, reflecting overlap
on various dimensions between Dtrain and B.

3. Adjust Evaluation Metrics: Adjust the per-
formance metrics of LLMs to account for the
detected BDC risk, ensuring a more accurate
assessment of its generalization capabilities.

2.4 DCR Workflow
The DCR framework provides an efficient method
to detect and quantify the BDC risk during the
LLMs evaluations. The DCR framework is struc-
tured into two key stages: the Quantification Stage
and the Adjustment Stage, depicted in Figure 1.

2.4.1 Quantification Stage
The quantification stage focuses on detecting and
quantifying contamination risk across predefined
BDC levels. Central to this process is the DCR
Test Sheet, a structured set of prompts designed
to evaluate contamination risks at different levels,
denoted as Li.

For each contamination level Li, a contamina-
tion score Si is calculated based on the responses
Ri of the model to a series of test prompts Pi. The
contamination score is defined as:

Si =
1

Ni

Ni∑

k=1

Check
(
pki , r

k
i

)
(2)

where pki ∈ Pi and rki ∈ Ri represent specific
prompt-response pairs. Ni is the number of test
prompts for contamination level Li, and the func-
tion check determines whether the response rki ex-
hibits contamination based on the prompt pki .

Ideally, test prompts Pi should be provided by
the benchmark creators to ensure relevance and
consistency. In the absence of such prompts, testers
may design prompts retrospectively based on the
topic, context, and structure of the benchmarks.

For the hyperparameter Ni, it can be determined
based on the resources and practicality of the tester.
Intuitively, one would assume that increasing the
size of Ni, i.e., increasing the amount of testing,
would result in less error. A more in-depth investi-
gation of Ni is presented in Appendix B.3.

For the Check step, our default approach is to do
this manually and in a binary presentation of the
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Figure 1: The Data Contamination Risk (DCR) evaluation framework diagram.

results, since the purpose of the DCR framework is
to complete the assessment of the BDC risk with
as few resources as possible, so that the tester can
quickly record the results based on the responses
of the model when collecting or organizing the test
prompts. Certainly, the check step can be replaced
by another model, e.g., BERT (Devlin et al., 2019),
and the presentation of results can also be changed
from discrete to continuous. We provide a nuanced
assessment of the use of models as an alternative to
human labor for the Check step in Appendix B.4.

2.4.2 Adjustment Stage
The Adjustment Stage of the DCR framework fo-
cuses on calibrating evaluation results of LLMs by
accounting for identified BDC risk. After quanti-
fying contamination scores Si, this stage employs
a fuzzy inference system to compute a compre-
hensive DCR Factor, subsequently adjusting the
raw performance metrics to reflect a more accurate
assessment of model generalization capabilities.

To achieve this, we established a fuzzy inference
system incorporating defined membership func-
tions and inference rules designed to interpret con-
tamination scores in a nuanced yet interpretable
manner. The reason why we chose to use fuzzy
logic for the DCR Factor calculation is because
the definition of the BDC level itself is fuzzy, so
it is very appropriate and explainable to simulate
the process (Das et al., 2020; Zadeh, 1965, 2023).
The fuzzy logic system consists of input variables
representing contamination scores at the seman-
tic, information, data, and label levels (denoted as
S1, S2, S3, S4), each ranging between 0 and 1. We

then defined membership functions for three con-
tamination degrees: Low, Medium, and High. The
output variable, the DCR Factor, similarly ranges
from 0 to 1, quantified by membership functions
representing contamination severity: Negligible,
Minor, Moderate, Significant, and Severe.

Formally, each input score Si is fuzzified into
membership degrees µLow(Si), µMedium(Si), and
µHigh(Si):

µterm(Si) = membership(Si, [a, b, ...]) (3)

where membership denotes the membership func-
tion defined by parameters [a, b, ...], for example
trapezoidal membership function.

The adjustment process relies on several fuzzy
inference rules that intuitively represent real-world
contamination impacts, for example: High contam-
ination at the Label Level (L4) indicates a Severe
risk, significantly impacting the integrity of eval-
uation results. The rules are evaluated through
fuzzy inference, aggregating contamination evi-
dence across all levels. This aggregation prioritizes
higher severity findings to reflect practical evalua-
tion concerns adequately. Detailed settings of fuzzy
inference system are provided in Appendix B.5.

The final DCR Factor is obtained by defuzzi-
fying the aggregated fuzzy set, yielding a crisp
numerical value indicative of the contamination
risk. Subsequently, this factor is applied to adjust
the original accuracy metric (Acc), ensuring that
reported model performance realistically accounts
for the contamination risk:

Accadj = Acc × (1− DCR Factor) (4)
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This adjusted accuracy (Accadj) provides a
contamination-aware performance metric, signif-
icantly enhancing the reliability and fairness of
benchmark evaluations. It is also important to em-
phasize that we do not consider this adjusted accu-
racy to be the accurate performance of the model
after removing all BDC risk, but rather a result
that incorporates BDC risk considerations.

3 Experiments

The main thrust of this section is to demonstrate
that the DCR framework is capable of detecting
and quantifying BDC risk at a low computational
cost. Therefore, we designed a solid experiments
to test its effectiveness: employ LLMs to perform
simulated contamination injection experiments on
the DCR framework to understand its validity.

3.1 Experiment Setup

To study more clearly the impact of BDC on the
benchmark results of language models, we follow
the work of Jiang et al. (2024) and Bordt et al.
(2025), use the similar procedure to perform con-
tamination injection experiments. In this experi-
ment, we will inject benchmark-relevant contami-
nated text into the LLMs pre-training corpus and
perform evaluation, and then use the DCR frame-
work for BDC risk detection to explore the effec-
tiveness and sensitivity of the DCR framework.

Specifically, we selected 9 LLMs to serve as the
foundation for this experiment, as shown in Table
4, are InstructLM-500M/1.3B (Cheng et al., 2024),
and Qwen2.5 from 0.5B to 72B (Yang et al., 2024;
Team, 2024). The selection of these LLMs was
predicated on the fact that the experiments involved
continuous pre-training, and it was considered im-
portant to test models of different scales with lim-
ited computational resources in order to explore
the generalizability of the DCR framework. The
Qwen2.5 series model was chosen because it is one
of the state-of-the-art open-source LLMs, and is
widely used in NLP researches, and also it is avail-

Benchmark SST-2 LIAR2 GSM8K

Task Type Sentiment Analysis Fake News Detection Arithmetic Reasoning

Release Year 2013 2024 2021

Subset train/val/test train/val/test train/test

Size 67.3k/872/1.82k 18.4k/2.3k/2.3k 7.47k/1.32k

Label Type Binary 6-Class Open-ended

Table 1: Overview of the three benchmarks used in the
experiments.

able in a wide range of variants from 0.5B to 72B,
which is very suitable for this experiment. How-
ever, the Qwen2.5 series models are pre-trained on
a large-scale corpus that is not open-sourced, result-
ing in the unknown BDC risk profiles are unknown,
and as a comparison, we chose the InstructLM se-
ries models, which are pre-trained on RefinedWeb
(Penedo et al., 2023) from scratch, as a comparison
with relatively low BDC risk.

For the tasks, we chose three representative
downstream tasks and their corresponding bench-
mark, which are SST-2 (Socher et al., 2013) for
sentiment analysis, LIAR2 (Xu and Kechadi, 2024,
2023) for fake news detection, and GSM8K (Cobbe
et al., 2021) for arithmetic reasoning. The infor-
mation for all benchmarks is presented in Table
1. To demonstrate the experimental process, take
the LIAR2 dataset as an example, LLM needs to
determine the six-level authenticity labels of the
short statements. For the L1 semantic level BDC
injection, we use research papers related fake news
detection (no LIAR/LIAR2 dataset cited) and gen-
eral news articles as contaminants; while research
papers related to the LIAR/LIAR2 dataset are rec-
ognized as L2 information level BDC; and L3 and
L4 will directly use the benchmark data of LIAR2
(with and without labels) as contaminants. More
detailed information about the experimental setup,
pre-training, cost, evaluations, and sources of con-
taminants can be found in Appendix A.

3.2 InstructLM vs. Qwen2.5
Experiments reveal stark contrasts between
Qwen2.5 and InstructLM in contamination risk,
driven by pre-training data. Qwen2.5, trained
on closed-source corpora, exhibits high baseline
BDC (e.g., 67.6% DCR for Qwen2.5-7B on SST-2;
41.8% for Qwen2.5-0.5B), reflecting inadvertent
ingestion of benchmark content, particularly older
benchmarks like SST-2 from 2013. In contrast, In-
structLM, pre-trained on filtered open-source data
(RefinedWeb), shows negligible baseline contam-
ination (0% DCR for InstructLM-1.3B). Similar
trends emerge for LIAR2, with large Qwen2.5 mod-
els (~55-58% DCR) far exceeding InstructLM’s
uncontaminated baseline. These results underscore
how closed-source training pipelines risk uninten-
tional benchmark exposure, inflating evaluation
metrics (Table 2, Figure 2).

Increasing the BDC injection level (L1 to L4)
naturally raises the DCR for both families, but
their trajectories differ. InstructLM, starting from
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Model BDC SST-2 LIAR2 GSM8K

DCR Acc Accadj |∆| DCR Acc Accadj |∆| DCR Acc Accadj |∆|

InstructLM
(500M)

- 0.00 28.67 28.67 - 0.00 14.55 14.55 - 0.00 5.08 5.08 -
1 27.33 38.00 27.61 1.06 20.67 22.34 17.72 3.17 0.00 5.38 5.38 0.30
2 28.52 41.90 29.95 1.28 25.01 26.09 19.56 5.01 0.00 5.32 5.32 0.24
3 55.15 91.58 41.07 12.40 29.19 30.23 21.41 6.86 26.41 11.90 8.76 3.68
4 56.20 92.07 40.33 11.66 29.74 32.09 22.55 8.00 23.24 9.63 7.39 2.31

InstructLM
(1.3B)

- 0.00 29.17 29.17 - 0.00 15.55 15.55 - 0.00 4.94 4.94 -
1 31.15 39.24 27.02 2.15 26.20 24.34 17.96 2.41 0.00 5.41 5.41 0.47
2 25.22 41.14 30.76 1.59 36.35 25.25 16.07 0.52 0.00 5.09 5.09 0.15
3 56.68 94.56 40.96 11.79 36.38 29.18 18.56 3.01 29.34 13.65 9.65 4.71
4 55.15 94.86 42.54 13.37 34.95 29.91 19.46 3.91 26.52 12.13 8.91 3.97

Qwen2.5
(0.5B)

- 41.80 73.20 42.60 - 0.00 16.32 16.32 - 21.20 15.63 12.32 -
1 46.21 76.25 41.01 1.59 35.35 28.79 18.61 2.29 22.18 15.65 12.18 0.14
2 52.35 78.69 37.50 5.11 35.14 29.18 18.93 2.61 20.77 15.87 12.57 0.26
3 53.65 81.88 37.95 4.65 34.28 31.14 20.47 4.15 35.79 30.33 19.47 7.16
4 46.90 90.23 47.91 5.31 35.04 32.45 21.08 4.76 34.71 31.24 20.40 8.08

Qwen2.5
(1.5B)

- 50.00 92.86 46.43 - 38.01 17.33 10.74 - 22.18 37.45 29.14 -
1 50.64 92.31 45.56 0.87 46.21 28.98 15.59 4.85 23.40 37.85 28.99 0.15
2 62.84 92.70 34.45 11.98 37.28 29.72 18.64 7.90 22.38 37.98 29.48 0.34
3 60.40 95.06 37.64 8.79 38.39 30.40 18.73 7.99 35.11 42.83 27.79 1.35
4 50.36 94.96 47.14 0.71 38.65 33.54 20.58 9.83 31.78 41.02 27.98 1.16

Qwen2.5
(3B)

- 50.00 89.51 44.76 - 41.81 21.65 12.60 - 27.09 50.72 36.98 -
1 50.10 89.51 44.67 0.09 44.94 27.27 15.01 2.42 34.51 49.65 32.52 4.46
2 52.81 90.01 42.48 2.28 52.34 30.21 14.40 1.80 23.60 50.96 38.93 1.95
3 60.62 96.32 37.93 6.82 44.53 32.40 17.97 5.37 36.63 61.47 38.95 1.97
4 51.61 96.37 46.63 1.88 43.93 37.85 21.22 8.62 33.38 60.64 40.40 3.42

Qwen2.5
(7B)

- 67.59 94.56 30.65 - 57.01 24.43 10.50 - 36.12 59.50 38.01 -
1 66.36 94.73 31.87 1.22 64.74 26.48 9.33 1.17 41.80 63.65 37.04 0.96
2 65.93 94.01 32.03 1.38 62.91 29.78 11.05 0.54 37.24 64.28 40.34 2.33
3 69.51 95.29 29.05 1.59 53.93 32.23 14.85 4.35 38.82 73.59 45.02 7.01
4 68.07 96.71 30.88 0.23 56.54 45.73 19.87 9.37 38.83 77.08 47.15 9.14

Qwen2.5
(14B)

- 68.63 95.28 29.89 - 55.24 26.83 12.01 - 47.95 61.93 32.23 -
1 65.57 95.33 32.82 2.93 63.08 29.45 10.87 1.14 51.66 64.26 31.06 1.17
2 67.27 95.06 31.11 1.22 63.00 31.25 11.56 0.45 61.97 67.32 25.60 6.63
3 69.70 95.88 29.05 0.84 54.40 33.54 15.29 3.29 49.13 74.21 37.75 5.52
4 70.89 97.20 28.29 1.59 60.59 48.85 19.25 7.24 49.87 78.54 39.37 7.14

Qwen2.5
(32B)

- 69.67 95.87 29.08 - 57.59 29.75 12.62 - 65.95 65.59 22.33 -
1 69.23 95.89 29.51 0.43 63.04 31.42 11.61 1.00 66.06 65.38 22.19 0.14
2 69.70 95.93 29.07 0.01 65.07 33.82 11.81 0.80 65.91 66.12 22.54 0.21
3 70.71 95.95 28.10 0.97 67.73 32.78 10.58 2.04 70.93 79.92 23.23 0.90
4 69.65 97.63 29.63 0.55 71.95 52.23 14.65 2.03 66.70 81.26 27.06 4.73

Qwen2.5
(72B)

- 68.28 95.83 30.40 - 54.30 29.15 13.32 - 65.89 64.31 21.94 -
1 68.89 95.85 29.82 0.58 62.69 32.85 12.26 1.07 66.04 65.19 22.14 0.20
2 68.27 95.92 30.44 0.04 62.55 33.54 12.56 0.76 65.85 65.54 22.38 0.45
3 71.20 96.21 27.71 2.69 61.64 34.52 13.24 0.08 71.05 78.32 22.67 0.74
4 71.38 98.32 28.14 2.26 66.46 51.28 17.20 3.88 65.55 80.14 27.61 5.67

Average 3.44 3.74 2.76

Table 2: Results of using the DCR framework to evaluate BDC risk after contamination injection across three
downstream tasks on 9 LLMs. The "-" in the BDC column represents the baseline model without injected
contamination, and 1-4 represent the contamination injected content for the four different BDC levels, respectively.
For each LLM, DCR represents the calculated DCR Factor, Acc is the evaluation result at baseline, Accadj represents
the result adjusted using the DCR Factor, and |∆| denotes the absolute error produced by Accadj relative to baseline
Accadj in each set of experiments.
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no contamination, shows steep climbs in DCR
once contamination is introduced (see InstructLM-
1.3B’s SST-2 DCR jumping from 0% at baseline
to ~56% at L3). Qwen2.5 models, already con-
taminated at baseline, often reach a plateau or
even exhibit non-monotonic changes. For exam-
ple, Qwen2.5-7B on LIAR2 rises from 57.0% DCR
at baseline to 64.7% with L1 contamination, but
then slightly drops to 53.9% at L3 before ending at
56.5% with L4 contamination. Such fluctuations
suggest that initial contamination was so high that
adding explicit test data (especially with labels at
L4) partly replaced or saturated what was already
known, rather than continuously increasing overlap.
By contrast, InstructLM’s DCR grows in a more
controlled manner (e.g. LIAR2 DCR for 1.3B goes
from 0 → 26.2% → 36.4% at L1-L2 and stays
~35%-36% at L3-L4). Overall, Qwen2.5’s pre-
training corpus carries a higher BDC risk, particu-
larly for tasks that have content easily scraped and
understood (SST-2, LIAR2); InstructLM’s cleaner
pre-training yields low baseline risk, making it
more reliant on purposeful contamination to "see"
the benchmark.

3.3 SST-2 Results

SST-2 is a binary sentiment classification task
(movie reviews) from 2013. Being a well-known
benchmark, it is heavily represented in internet data
and was likely seen during pre-training of many
models. The Qwen2.5 family’s performance on
SST-2 reflects this, with very high unadjusted accu-
racies but also very high DCR. InstructLM, start-
ing from no exposure, performs poorly until con-
tamination is injected. Qwen2.5 models achieve
near-SOTA raw accuracy on SST-2 even without
any BDC injection. For example, Qwen2.5-7B
scores 94.6% accuracy on the SST-2 test at baseline,
and even the tiny Qwen2.5-0.5B reaches 73.2% far
above chance (50%). These high scores strongly
suggest training exposure. Indeed, Qwen2.5-7B
has a DCR of 67.6%, indicating it likely memorized
a large portion of the SST-2 test set or task-specific
pattern. This exposure gives Qwen2.5 models an
unfair head start: by L4 injection, Qwen2.5-7B’s
raw accuracy rises slightly to 96.7% (basically ceil-
ing performance). In contrast, InstructLM’s raw
accuracy starts very low due to zero prior expo-
sure - 29.2% for 1.3B. This reflects that a 1.3B
model with no task-specific fine-tuning struggles
in sentiment classification. However, when we in-
ject BDC, InstructLM’s raw score soars: by L3-
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Figure 2: Raw vs. Adjusted accuracy across baseline
to L4 BDC injection on the three benchmarks. The left
column plots are the results averaged after grouping the
models by family and scale, and the right column plots
are statistics averaged over all data points.

L4, InstructLM-1.3B shoots up to 94.8% accu-
racy, essentially matching Qwen2.5’s. Notably,
InstructLM only achieves such high accuracy after
contamination (L3/L4); at lower levels (L1/L2), its
accuracy remained ~39-41%. This implies that In-
structLM needed to essentially see SST-2 examples
to perform well, whereas Qwen2.5 had already in-
ternalized SST-2 and the sentiment classification
task from pre-training.

As shown in Figure 2, raw accuracies alone are
misleading here - they conflate genuine general-
ization with memorization. DCR-adjusted accu-
racy (Accadj) offers a clearer picture. For Qwen2.5
(7B to 72B), the adjusted accuracy is only ~30%
despite raw scores in the mid-90s. Specifically,
at baseline Qwen-7B’s Accadj = 30.7%, meaning
that once the answers it potentially memorized and
the priori knowledge of the task are excluded, its
performance on truly novel examples is very low.
InstructLM-1.3B’s moderate adjusted score at L4
is still far below its own raw 94.9%, implying it
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did memorize the contaminated subset, but at least
some knowledge transferred to unseen examples.
Qwen2.5, on the other hand, had likely already
overfit to SST-2 and gained little new capability
from further injection - its L4 adjusted is essen-
tially the same as baseline.

The SST-2 case underscores how heavily
Qwen2.5’s apparent performance is bolstered by
contamination. Its strong unadjusted performance
is "too good to be true" for true generalization - a
fact made evident by the large raw vs. adjusted gap.
InstructLM’s performance, in contrast, is initially
unimpressive but honest. Only by intentionally con-
taminating the model (simulating what Qwen2.5
underwent implicitly) does it reach high accuracy.
This implies Qwen2.5 likely saw even more than
the contamination we injected for InstructLM - its
effective contamination might approach the full
test set or further task knowledge. We also see that
DCR-adjusted accuracy is crucial for fair evalua-
tion: it penalizes models like Qwen2.5 for "know-
ing" the test. SST-2 demonstrates that a model’s
high score can be a mirage stemming from BDC,
and InstructLM’s truly new generalization only
emerges with contamination, whereas Qwen2.5’s
was mostly already baked-in.

3.4 LIAR2 Results
LIAR2 is a 6-class fake news detection benchmark
introduced in 2024, hence much newer and less
likely to appear in pre-training corpus (although
its data collection covers the period from 2007 to
2023). From the Table 2 and Figure 2, both fami-
lies show lower performance here, and contamina-
tion effects are more subdued than SST-2. Being
a recent dataset, InstructLM again has no initial
BDC (DCR 0%) and starts essentially from scratch
on LIAR2. Qwen2.5, despite closed pre-training
data, also has less exposure to LIAR2 than it did to
SST-2. The smallest Qwen2.5-0.5B actually shows
DCR = 0% at baseline for LIAR2. Larger Qwen2.5
models do have some overlap: e.g. Qwen2.5-7B
baseline DCR = 57.0%, implying their corpora
included fake news detection task information, re-
lated news statements or earlier LIAR data. Corre-
spondingly, baseline raw accuracy for Qwen2.5-7B
is 24.4%. Note that random guess accuracy for 6
classes is ~16.7%, so these scores are only slightly
above chance - Qwen2.5’s partial exposure did not
yield large memorization gains as it did for SST-
2. InstructLM-1.3B begins at 15.6% (essentially
chance), consistent with no prior knowledge.

With L1-L4 contamination, both model families
improve on LIAR2, but in a limited way. Raw
accuracies climb gradually with each injection.
Qwen2.5-7B goes from 24.4% to 45.7% raw by
L4. InstructLM-1.3B rises from 15.6% to 29.9%
raw. These absolute numbers are not high, even
after seeing the test data, the best models barely
hit ~45-50% raw accuracy (far from perfect). This
underscores LIAR2’s difficulty and novelty. Criti-
cally, adjusted accuracies remain much lower.

LIAR2’s results highlight a middling contam-
ination scenario. Qwen2.5’s closed pre-training
did include some LIAR2-related data (especially
for bigger models), but not enough to solve the
task, unlike SST-2, their baseline accuracy was low.
Qwen2.5’s head start on LIAR2 was smaller, and
BDC helped both models approach a still-low ceil-
ing. The task remains hard, even a 72B Qwen only
achieves ~51% raw (17.2% adjusted) at L4. This
indicates that without substantial dedicated train-
ing, neither model family truly excels at fake news
detection task like the LIAR2 benchmark.

3.5 GSM8K Results
GSM8K is an arithmetic reasoning benchmark
(grade-school math problems) requiring multi-step
reasoning and is formulated as open-ended ques-
tions. It is known to be challenging even for large
models. Here, the role of contamination is quite
different: simply memorizing questions/answers
can directly solve those specific questions, but un-
like classification, the model must reproduce the
exact solution, which is non-trivial without direct
memorization. We examine how contamination
affects performance across model scales.

Both families struggle on GSM8K without BDC
injection. InstructLM’s baseline is near 0, 5.1%
accuracy for 500M and 4.9% for 1.3B, essentially
only a few questions right. Qwen2.5 models do
better, presumably due to some training on math or
chain-of-thought data, but still modest: Qwen2.5-
3B achieves 50.7% raw accuracy at baseline and
Qwen2.5-7B 59.5%, which are significant, but
these numbers come with high DCR. For instance,
Qwen2.5-7B had DCR = 36.1% on GSM8K at
baseline. Its adjusted accuracy was only 38.0%.
Qwen2.5-3B similarly: 50.7% raw at DCR 27.1%,
giving 37.0% adjusted. InstructLM, with DCR
0%, has adjusted = raw ~5%, indicating it es-
sentially couldn’t solve unseen problems. Over-
all, Qwen2.5’s larger models have a baseline edge
on GSM8K (some prior knowledge exposure and

23021



0.0 0.2 0.4 0.6 0.8
DCR Factor

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

DCR vs. Raw Accuracy
SST-2
LIAR2
GSM8K

0.0 0.2 0.4 0.6 0.8
DCR Factor

0

20

40

60

80

100

Ad
j A

cc

DCR vs. Adjusted Accuracy
SST-2
LIAR2
GSM8K

Figure 3: Scatter of raw/adjusted accuracy vs. DCR
Factor for all models and levels. Each benchmark is
color-coded. The reference line (black) is fitted by linear
regression over all data points.

possibly better reasoning from scale), while In-
structLM is near zero without contamination.

InstructLM-1.3B records 4.94% at baseline;
L1/L2 BDC barely help. L3 injection doubles
raw accuracy to 13.65% and adjusted to 9.65%,
but adding labeled answers (L4) actually reduces
raw to 12.13% and adjusted to 8.91%. The same
observation is captured in InstructLM-500M, and
Qwen2.5 (1.5B/3B). We think that the drop stems
from GSM8K’s skewed splits: the 7.47k train set
feeds L3 with more diverse examples than the 1.32k
test items revealed at L4, and thus speculate that
the gains of the smaller models here stem primarily
from the generalization that comes with the sample
of the dataset, rather than just memory; the oppo-
site is true for the larger models (≥7B), which tend
to have a stronger "memory".

3.6 DCR Framework Results

From the experiment results, we observe a clear
threshold effect: models below ~1B parameters
cannot reliably memorize or exploit injected data
for complex tasks (LIAR2, GSM8K), whereas
those above ~7B begin to show monotonic gains
even at L1/L2. This suggests two regimes: a
"memorization-limited" regime for small models,
and a "contamination-exploitable" regime for large
ones. The DCR Factor correspondingly remain low
(<55%) for small models across levels, but climb
above 65% for 14B-72B variants under L3/L4.

Across all levels and benchmarks, the DCR fac-
tor correlates strongly (Table 3) with accuracy,
demonstrating that our fuzzy-logic aggregation
faithfully reflects real performance inflation. Af-
ter defuzzification, the DCR Factor rescales raw
accuracies back toward uncontaminated baselines
(Figure 3), for instance, Qwen2.5-3B’s GSM8K
accuracy under L3 drops from 61.5% to 38.9%

post-adjustment, closely matching its clean test
performance (~37%). And the average error of
the DCR framework is less than 4% on all three
tested benchmarks (Table 2). Thus, the DCR Factor
not only diagnoses contamination severity but also
yields calibrated, contamination-aware metrics that
enable fairer cross-model comparisons.

SST-2 LIAR2 GSM8K

r .9152 .6569 .8594
p < 0.05 < 0.05 < 0.05

Table 3: Pearson correlation coefficient (r) between
DCR Factor and Accuracy and its p-value on three
benchmarks.

Furthermore, we also conducted simple attack
experiments on the DCR framework to assess its
robustness. Specifically, we forcibly set some
contamination scores Si to 0 or 1 and found that
the DCR Factor remained stable in many cases.
For example, when modifying the contamination
scores Si for Qwen2.5-14B (L3 contaminated) on
the GSM8K task from [0.70, 0.13, 0.50, 0.28] to
[0.70, 0.13, 0.0, 0.28], representing contamination
scores from S1 to S4, i.e., force S3 to 0 directly,
the corresponding DCR Factor only decreased from
0.4913 to 0.4907. This further demonstrates that
fuzzy logic offers superior robustness, a property
unlikely to be observed in systems based on em-
pirical weighting. More detailed demonstration
and visualization of the fuzzy inference system are
provided in Appendix B.5.

4 Conclusion

In conclusion, our work introduces the Data Con-
tamination Risk (DCR), a novel and efficient frame-
work for detecting and quantifying BDC in LLMs.
Our methodology decomposes contamination into
four distinct levels and leverages a fuzzy inference
system to compute a comprehensive DCR Fac-
tor. We conducted extensive experiments on three
benchmarks (SST-2, LIAR2, and GSM8K) using 9
LLMs spanning from 0.5B to 72B parameters, and
performed contamination injections at four levels
(L1-L4), resulting in 117 model variants. These
experiments demonstrate that the DCR framework
not only detects hidden contamination signals but
also calibrates evaluation metrics to counterbalance
memorization effects. The quantitative adjustments
provided by the DCR Factor result in more robust
and fair evaluation of model’s real generalization.
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Limitations

Despite the empirical rigor of our study, three
key limitations temper the scope of our conclu-
sions. (1) The DCR framework is validated on
models up to 72B parameters, excluding frontier-
scale systems (e.g., Llama-3.1-405B (Grattafiori
et al., 2024; Touvron et al., 2023b) and DeepSeek-
R1-671B (DeepSeek-AI et al., 2025, 2024)), which
may exhibit distinct contamination dynamics due
to architectural and training divergences. Whether
the DCR Factor scales effectively to models ex-
ceeding 100B parameters remains unverified. (2)
Our analysis relies on only two open-source mod-
els (InstructLM-500M/1.3B) trained on fully dis-
closed corpora, as full pre-training costs are pro-
hibitive. This narrow sample limits insights into
how corpus curation alone mitigates semantic con-
tamination, independent of model architecture. (3)
Contamination injections simulate single-stage pre-
training, whereas industrial pipelines often blend
diverse data sources and employ curriculum strate-
gies (Wang et al., 2023; Hoffmann et al., 2022).
While our correlation between DCR Factor and ac-
curacy suggests robustness, real-world incremental
contamination—via repeated exposures or distil-
lation—may alter risk profiles. Additionally, the
current DCR framework is not yet adaptable to
generative tasks such as machine translation and
summarization. While we believe it holds potential
in these areas, further exploration is still required.
Nevertheless, the framework’s consistent diagnos-
tic power across tasks and scales supports its utility
as a practical tool for BDC assessment.

Ethical Considerations

All datasets, models, and training corpora used
in this study adhere to their respective licenses,
which permit academic and research use. The SST-
2 (movie reviews), LIAR2 (public-domain politi-
cal claims), and GSM8K (math problems) bench-
marks contain no personally identifiable or sen-
sitive information, posing minimal privacy risks.
During contamination injection and evaluation, no
harmful, biased, or disallowed content was gen-
erated or retained. While Qwen2.5 models de-
rive from closed-source corpora, their use com-
plies with Hugging Face’s terms of service; In-
structLM’s open-source RefinedWeb training data
further ensures transparency. Though the DCR
framework is designed to enhance evaluation in-
tegrity, its ability to detect contamination could the-

oretically be misused to probe proprietary models.
We emphasize that practitioners must strictly fol-
low model providers’ usage policies, data licensing
agreements, and regional regulations when apply-
ing this method. Finally, while our contamination
experiments simulate real-world risks, all injected
data was sourced from publicly available bench-
marks, ensuring alignment with their original dis-
tribution terms. AI Assistants are used solely for
enhancing writing in this paper.
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work. All references for paper citation informa-
tion are Google Scholar4 and Paper with Code5.
MinerU (Wang et al., 2024) was employed for pars-
ing all of the PDF files of the paper, this is a tool
for extracting data from PDFs that was originally
born out of processing paper data used for LLM
pre-training, so its able to handle our scenario well.

For data level and label level contamination in-
jection corpora are constructed directly from the
original dataset, the training set is used as a source
of contamination at the data level and the test set
is used for label level. The data for the SST-26,
LIAR27, and GSM8K8 are all from Hugging Face,
and since the test set labels for SST-2 are not pub-
licly available, we are using the SetFit9 version.
Specifically, for the SST-2 and LIAR2, it was con-
structed in the following form:
1 This is the data from {benchmark name

}, which is a benchmark for {
benchmark task name} task.

2 {data item} is {data label}
3 {data item} is {data label}
4 ......
5 {data item} is {data label}

For the GSM8k, it it was constructed in the fol-
lowing form:
1 This is the data from {benchmark name

}, which is a benchmark for {
benchmark task name} task.

2
3 Question: {data item}
4 Answer: {data label}
5 Question: {data item}
6 Answer: {data label}
7 ......
8 Question: {data item}
9 Answer: {data label}

In order to follow the continue pre-training pro-
cess as closely as possible, we set the threshold of
contaminated data in the corpus to be no more than
15% by default, which is done so that the model
does not cause its own underlying language ability
to be corrupted by overfitting on the contaminated
text. The portion used to populate the remainder
of the continue pre-training corpus comes from the
RefinedWeb dataset (Penedo et al., 2023). Based on
the above settings, we collected around 10 million
tokens for each level of the contaminated corpus.

4https://scholar.google.com/
5https://paperswithcode.com/
6https://huggingface.co/datasets/stanfordnlp/

sst2
7https://huggingface.co/datasets/chengxuphd/

liar2
8https://huggingface.co/datasets/openai/gsm8k
9https://huggingface.co/datasets/SetFit/sst2

A.2 Model Details

The Qwen2.510 and InstructLM11 series models
used in the experiments are from Hugging Face.
The Qwen2.5 selections are all non-reasoning ver-
sion, i.e., models without the Instruct suffix. The
detailed information about the model is presented
in Table 4.

Model Parameters Context Length
(Input/Output)

Knowledge
Cut-off

InstructLM-500M 0.5B 2k/2k 06/2023
InstructLM-1.3B 1.3B 2k/2k 06/2023

Qwen2.5-0.5B 0.5B 128k/8k 10/2023
Qwen2.5-1.5B 1.5B 128k/8k 10/2023
Qwen2.5-3B 3B 128k/8k 10/2023
Qwen2.5-7B 7B 128k/8k 10/2023
Qwen2.5-14B 14B 128k/8k 10/2023
Qwen2.5-32B 32B 128k/8k 10/2023
Qwen2.5-72B 72B 128k/8k 10/2023

Table 4: Comparison of LLMs selected for the experi-
ments.

A.3 Pre-training Settings

For monitoring whether the training of the model
on the prepared pre-training corpus destroys the
original capabilities of the model, we use texts sam-
pled from the OpenWebText dataset as a validation
set for the training process, which is independent
of the prepared contaminated text and RefinedWeb
used for populating. The OpenWebText is an open-
source version of the WebText dataset used to train
the GPT-2 reproduced by Gokaslan et al. (2019).

Taking the contamination injection process of
Qwen2.5-7B at the GSM8K label level as an ex-
ample, we can see from Figure 4 that the evalua-
tion loss of the model is only marginally improved
as the training loss decreases significantly, so we
consider that the injection pattern based on this
setup maintains the model its own capability with-
out causing the model to overfit due to the injected
contamination, which is also beneficial for the later
DCR test.

The training is conducted with PyTorch12 and
the Hugging Face Transformers13 library, ensuring
compatibility and scalability across different model
configurations. For all model sizes, we adopt con-
sistent pre-training hyperparameters unless other-
wise specified: the learning rate is set to 5e-5 with

10https://huggingface.co/collections/Qwen/
11https://huggingface.co/instruction-pretrain/
12https://pytorch.org/
13https://github.com/huggingface/transformers
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Figure 4: Training and evaluation loss of Qwen2.5-
7B during GSM8K label level contamination injection,
showing minimal overfitting and preserved model capa-
bility for DCR testing.

a linear decay schedule, weight decay is 0.01, and
we train for 3 epochs.

A.4 Resources Cost
We continue pre-trained InstrctLM and Qwen2.5
models (0.5B to 72B parameters) on a prepared con-
tamination injection corpus using a server equipped
with NVIDIA H100 GPUs. All other settings re-
main the same. The computational resources we
spent for a single epoch pre-training are shown in
Table 5.

Model GPU-Hours

InstructLM-500M 1.16
InstructLM-1.3B 1.63

Qwen2.5-0.5B 0.93
Qwen2.5-1.5B 1.48
Qwen2.5-3B 2.22
Qwen2.5-7B 4.67
Qwen2.5-14B 8.67
Qwen2.5-32B 14.49
Qwen2.5-72B 25.93

Table 5: GPU cost of a single epoch pre-training (Hour).

A.5 Evaluation Details
For all benchmark evaluations, we performed label
matching by using fixed query prompts for LLMs
to match answers from their responses. For ex-
ample, keywords such as "Label:" or "Answer:"
were used to mark the starting matching position.
Given the inherent randomness of LLMs, all evalu-
ations were averaged after three attempts. Specifi-
cally, in the SST-2 evaluation, we use the following
prompts:

1 Determine the sentiment of the given
sentence with two labels: '
positive ' or 'negative ':

2 {sentence}
3 Sentiment:

For LIAR2 evaluations, we use:
1 Classify the given political

statement with six labels: 'pants
-on-fire ', 'false ', 'mostly -false
', 'half -true ', 'mostly -true ', '
true '

2 Statement: {statement}
3 Label:

For GSM8K evaluations, we use:
1 Solve the following math problem:
2 {question}
3 Answer:

B DCR Hyperparameter

B.1 The Four BDC Levels
In this work, we adopt the four-level BDC classi-
fication system of Xu et al. (2024a). The specific
definitions of each level are formally defined in this
section.

B.1.1 Semantic Level Contamination - L1
Definition: The model has been exposed to content
that is semantically equivalent or closely related
to the benchmark data, even if the exact wording
differs.
Formal Characterization: There exist elements
d ∈ Dtrain and b ∈ B such that:

Simsem(d, b) ≥ θ1 (5)

where Simsem(d, b) is a semantic similarity func-
tion capturing the degree of semantic equivalence
between d and b; θ1 is a predefined semantic simi-
larity threshold.
Example: If the benchmark contains the sentence
"Donald Trump is the 47th President of the United
States" and the pre-training data contains "Kamala
Harris lost the 2024 US election" the model may
have semantically learned the knowledge of the
benchmark without any token overlap.

B.1.2 Information Level Contamination -L2
Definition: The model has been exposed to in-
formation about the benchmark, such as metadata,
label distribution, or even the training set of the
benchmark, which could bias its evaluation pro-
cess.
Formal Characterization: There exist elements
d ∈ Dtrain and i ∈ IB such that:

Siminfo(d, i) ≥ θ2 (6)
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where IB is the set of informational content about
B; Siminfo(d, i) measures the similarity in infor-
mational content between d and i; θ2 is an informa-
tion similarity threshold.
Example: The LLMs may learn about the label
distribution of the benchmark, which could bias
its predictions during evaluation, like for the Ar-
Sen dataset (Fang et al., 2024) contains 70% neu-
tral, 15% positive and 15% negative sentiment sen-
tences, and there is a sentence in the pre-training
dataset, "Researchers often use datasets where neu-
tral sentiments are more prevalent, such as in Ar-
Sen with its 70% neutral labels." When LLMs rec-
ognize ArSen dataset or datasets similar to its data
sources, e.g., AROT-COV23 (Xu and Yan, 2023),
they may be biased to classify test cases as neutral,
which leads to a distorted evaluation result.

B.1.3 Data Level Contamination - L3
Definition: The model has been exposed to actual
data samples from the benchmark test set (exclud-
ing labels), potentially allowing it to memorize or
recognize evaluation inputs.
Formal Characterization: There exist elements
d ∈ Dtrain and b ∈ Btest such that:

Simdata(d, b) ≥ θ3 (7)

where Btest is the test set of data samples in B with-
out labels; Simdata(d, b) measures the similarity
between data samples; θ3 is a data level similarity
threshold.

B.1.4 Label Level Contamination - L4
Definition: The model has been exposed to both
data samples and their corresponding labels from
the benchmark test set, leading to possible memo-
rization of the correct answers.
Formal Characterization: There exist elements
(d, ld) ∈ Dtrain and (b, lb) ∈ B such that:

Simdata(d, b) ≥ θ4 and ld = lb (8)

where ld and lb are the labels associated with d and
b, respectively; θ4 is a threshold for recognizing
both data and label correspondence.

B.2 Design of DCR Test Sheet
The DCR Test Sheet is an essential component of
the DCR framework, explicitly designed to sys-
tematically evaluate and quantify BDC risk at dis-
tinct contamination levels—Semantic (L1), Infor-
mation (L2), Data (L3), and Label (L4). Its struc-
tured approach ensures the test results are accurate,

replicable, and interpretable, facilitating fair and
contamination-aware evaluations of LLMs.

To design the questions effectively, we first iden-
tify the critical characteristics and content relevant
to each contamination level. At the Semantic Level
(L1), questions are crafted using topics, themes,
or closely related content from benchmark do-
mains without directly quoting or using benchmark-
specific terms. For instance, if the benchmark in-
volves fake news detection, semantic level ques-
tions might be "What challenges arise when build-
ing fake news detection systems?" or "Was or is
Trump the President of the United States?" If the
response demonstrates that it is familiar with these
entities, it will be judged to be contaminated.

For the Information Level (L2), questions are de-
veloped around benchmark-specific contextual in-
formation, such as metadata or general descriptions,
without directly using actual benchmark data. For
example, questions might involve descriptions of
dataset characteristics like data collection methods
or the years in which the data was gathered. For the
LIAR2 benchmark, an L2 question could be, "What
are the train/validation/test splits in LIAR2?" If the
response of the model was accurate, or approxi-
mately correct, we judged it to be contaminated.

At the Data (L3) and Label (L4) Level, ques-
tions directly incorporate benchmark content, but
importantly, without test set labels. These ques-
tions replicate actual benchmark data verbatim or
in close paraphrases. Some examples for LIAR2
at this level would be, "Generate a fake news state-
ment mimicking LIAR2’s format.", "Is the state-
ment "[DATA]" in LIAR2?", and "This is a data
entry from the LIAR2 dataset, please complete it:
[HALF_DATA]". In our experiments, we judged
the output of the model as contaminated if it ap-
proximated the real data.

Determining whether a model’s response indi-
cates contamination involves a structured "Check"
step, typically carried out manually for clarity and
interpretability. Evaluators review model responses
against expected knowledge thresholds, marking
them as contaminated if responses clearly reflect
exposure to benchmark data or metadata not typ-
ically derivable from general knowledge. For in-
stance, if a model accurately states the falsity of an
obscure claim from LIAR2 that lacks broad public
awareness, this strongly indicates contamination.
By adopting this meticulous and layered approach,
the DCR Test Sheet allows researchers to accu-
rately and transparently gauge contamination risks,
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thereby maintaining the integrity of LLM perfor-
mance evaluations.

B.3 Number of Test Prompts

The number of tests Ni mentioned in Equation 2 is
an important hyperparameter, in other words it is
similar to the sampling rate, boosting the number
of samples theoretically makes the test results more
accurate. In order to understand the impact of the
number of tests Ni on the final performance, we
set up a controlled experiment in this section, i.e.,
we varied the range of the Ni (from 5 to 50) and
observed the change of the average error |∆| simul-
taneously, based on the setup in Appendix A, for
the Qwen-2.5-7B on the LIAR2 experiment. At the
same time, we estimated that for a tester familiar
with the context of the task, the time to conduct
each test would be around 5 minutes on baseline
and four BDC injected variants, which includes
drafting the question according to the outline in
Appendix B.2, determining and tallying the results
after three attempts with the model.

The results are shown in Table 6, where the over-
all trend of error is decreasing further as the number
of tests increases, proving our previous hypothesis
that increasing the number of tests reduces the error.
Considering both the cost of testing and the error,
we believe that setting the number of tests to 20 is
an economical and error-ideal threshold, which is
also the value of the number of tests we adopted in
our experiments.

Ni 5 10 20 30 40 50

|∆| 12.48 5.21 3.86 3.75 3.78 3.61
Est. 25 50 100 150 200 250

Table 6: The variation between the average error |∆|
and the number of tests Ni. Est. is the estimated time
cost (min) based on a single set test time of ~5 minutes.

B.4 Comparison of Check Step using Human
Labor and Models

In our main experiment, all the Check step was
done by the authors, who are PhD-level computer
science researchers in English-speaking countries.
In this section, we try to use LLMs instead of man-
ual determination in the Check step. The descrip-
tion of the task is to test the LLMs under inspec-
tion using the questions in the DCR test sheet and
determine whether the LLMs exhibit signs of con-
tamination based on their responses. Specifically,

we employed two current state-of-the-art LLMs,
gpt-4o-mini and o3-mini (OpenAI, 2024), and
then targeted 80 questions on the four BDC levels
in the LIAR2 experiments, as well as a sample of
3,600 responses (choosing the best quality of the
three attempts), as test data. The prompt used for
testing is:
1 <|system|>
2 You are tasked with assessing whether

the provided answer indicates
signs of benchmark data
contamination (BDC) at one level
specified in the four dimensions
:\n\n L1 (Semantic): The model
has been exposed to content that
is semantically equivalent or
closely related to the benchmark
data , even if the exact wording
differs .\n L2 (Information): The
model has been exposed to
information about the benchmark ,
such as metadata , label
distribution , or even the
training set of the benchmark ,
which could bias its evaluation
process .\n L3 (Data): The model
has been exposed to actual data
samples from the benchmark test
set (excluding labels),
potentially allowing it to
memorize or recognize evaluation
inputs .\n L4 (Label): The model
has been exposed to both data
samples and their corresponding
labels from the benchmark test
set , leading to possible
memorization of the correct
answers.

3 </s>
4 <|user|>
5 Return only the JSON object with the

key \" result\", providing "yes"
or "no" to indicate the presence
or absence of BDC , respectively ,
based on the question used to
test the {bdc_level} level and
its corresponding answer. The
result should be able to express
whether the provided answer has
BDC at the {bdc_level} level .\n\
nQuestion: {question }\ nAnswer: {
answer}

6 </s>

As shown in Table 7, the more economical
gpt-4o-mini model is average, and o3-mini had
a solid performance, but not absolutely reliable.
Therefore, based on the test results, we believe that
using LLMs as an alternative option to the Check
step has potential.
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Model Name Cost ($) Accuracy (%)

gpt-4o-mini-2024-07-18 0.41 68.17
o3-mini-2025-01-31 12.48 83.36

- with medium 40.37 87.22
- with high 86.02 92.25

Table 7: OpenAI API cost and accuracy of using LLMs
as an alternative to manual inspection, where the o3-
mini model tested three reasoning modes.

B.5 Fuzzy Inference System Settings
The fuzzy inference system used in the experiments
is mainly implemented by the skfuzzy14 library.
It is worth noting that we used the most intuitive
settings for the fuzzy inference system in our ex-
periments and did not carefully adjust the hyper-
parameters for the characteristics of the different
benchmarks to achieve the best results. The pur-
pose of doing so is to create a real evaluation set-
ting, because in a real-world evaluation scenario,
as we mentioned in section 2.1, the testers will not
undergo large-scale re-training just to understand
the BDC risk, and thus will not have access to the
"gold labels" of our experiments, and therefore, in
order to avoid the possible disconnection between
the DCR evaluation results and the real scenario
caused by such a priori knowledge, we set up the
fuzzy inference system according to simple and
intuitively fixed intervals, and specifically, the de-
sign of our membership functions for fuzzy inputs
and outputs are provided in Tables 8, their corre-
sponding membership function visualizations are
provided in Figures 5 and 6, and the fuzzy rules
for inference are provided in Table 9. To better un-
derstand the established fuzzy rules, we visualized
them by fixing the contamination scores of L2 (S2)
and L4 (S4) while linearly adjusting those of L1
(S1) and L3 (S3), the output surfaces are presented
in Figure 7. Also to take into account the perturba-
tions caused by the randomness of the LLMs, we
set a threshold value, i.e., when the DCR Factor is
less than 0.02, it is considered to be generated by
randomness, and it is set to 0.

14https://github.com/scikit-fuzzy/scikit-fuzzy

Term Function Type Parameters

Fuzzy Input

Low Trapezoidal (trapmf) [0, 0, 0.1, 0.3]
Medium Trapezoidal (trapmf) [0.2, 0.4, 0.5, 0.6]
High Trapezoidal (trapmf) [0.5, 0.8, 1.0, 1.0]

Fuzzy Output

Negligible Trapezoidal (trapmf) [0, 0, 0.1, 0.3]
Minor Triangular (trimf) [0.1, 0.3, 0.5]
Moderate Triangular (trimf) [0.3, 0.5, 0.7]
Significant Triangular (trimf) [0.5, 0.7, 0.9]
Severe Trapezoidal (trapmf) [0.7, 0.9, 1.0, 1.0]

Table 8: Input & Output Membership Functions
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Figure 5: Input Membership Functions Visualization
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Figure 6: Output Membership Functions Visualization

Condition (Antecedent) Output

L1 is Low AND L2 is Low AND L3 is Low AND L4 is Low Negligible

L3 is High OR L4 is High Severe

L1 is High OR L2 is High Significant

Overall medium membership is high (average of L1-L4) Moderate

L1 is Medium OR L2 is Low Minor

Table 9: Fuzzy Rules for DCR Calculation
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Figure 7: Fuzzy inference system output surfaces. Each subplot illustrates the relationship between two inputs
(L1 on the x-axis and L3 on the y-axis) and the final defuzzified output, DCR Factor (z-axis and color map). The
grid structure allows for the analysis of the other two inputs, L2 and L4, which are held at constant ’Low’ (0.15),
’Medium’ (0.5), and ’High’ (0.85) values for each plot. Each row corresponds to a fixed state for L2, and each
column corresponds to a fixed state for L4. By examining the changes in the surface across the grid, one can
understand the complex interactions between all four inputs and their combined effect on the DCR Factor output, as
dictated by the fuzzy rules.
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