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Abstract

Conventional retrieval-augmented generation
(RAG) systems employ rigid retrieval strategies
that create: (1) knowledge blind spots across
domain boundaries, (2) reasoning fragmenta-
tion when processing interdependent concepts,
and (3) contradictions from conflicting evi-
dence sources. Motivated by these limitations,
the paper introduces PathwiseRAG, which ad-
dresses these challenges through: intent-aware
strategy selection to eliminate blind spots, dy-
namic reasoning networks that capture sub-
problem interdependencies to overcome frag-
mentation, and parallel path exploration with
adaptive refinement to resolve conflicts. The
framework models query intent across semantic
and reasoning dimensions, constructs a directed
acyclic graph of interconnected sub-problems,
and explores multiple reasoning trajectories
while continuously adapting to emerging ev-
idence. Evaluation across five challenging
benchmarks spanning single-hop to multi-hop
reasoning demonstrates significant improve-
ments over state-of-the-art RAG systems, with
average accuracy gains of 4.9% and up to
6.9% on complex queries, establishing a new
paradigm for knowledge-intensive reasoning
by transforming static retrieval into dynamic,
multi-dimensional exploration.

1 Introduction

Large language models have transformed natural
language processing yet struggle with knowledge-
intensive tasks requiring factual precision and
multi-step reasoning. Retrieval-augmented genera-
tion (RAG) addresses these limitations by incorpo-
rating external knowledge. Existing RAG systems
operate through static pipelines that create three
critical limitations. First, static retrieval produces
knowledge blind spots, missing crucial connections
between quantum algorithms and encryption vul-
nerabilities. Second, conventional RAG cannot
model interdependent concepts across documents,

processing mortgage securities, default swaps, and
regulations in isolation. Third, these systems can-
not adapt retrieval based on intermediate findings,
lacking the dynamic exploration required for com-
plex knowledge tasks. Previous improvements still
treat information acquisition as linear rather than
the dynamic, branching exploration needed for
complex domains.

PathwiseRAG reconceptualizes RAG as dy-
namic, multi-dimensional exploration through: (1)
dual-stream intent analysis modeling semantic con-
tent and reasoning requirements for strategy selec-
tion; (2) reasoning network construction organizing
interdependent sub-problems as directed acyclic
graphs; and (3) parallel path exploration continu-
ously adjusting networks as evidence emerges.

Evaluation on five datasets spanning different
reasoning complexities (HotpotQA, StrategyQA,
ComplexWebQuestions, Natural Questions, and
TriviaQA) demonstrates substantial improvements
over state-of-the-art RAG systems, with average
accuracy gains of 4.9% and up to 6.9% on com-
plex queries. Ablation studies confirm each com-
ponent’s critical contribution.

The key contributions include: (1) intent-aware
strategy selection through dual-stream analysis
jointly modeling semantic and reasoning dimen-
sions; (2) dynamic reasoning networks represent-
ing query decomposition as evolving DAG struc-
tures with real-time adjustment; and (3) parallel
path exploration coordinating multiple retrieval
strategies with conflict resolution through weighted
evidence integration.

2 Related Work

2.1 Retrieval-Augmented Generation

Traditional RAG systems primarily utilize text-
based retrieval (Lewis et al., 2020; Izacard and
Grave, 2021), but recent approaches have expanded
to multimodal data sources. Liu et al. (Liu et al.,
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Figure 1: PathwiseRAG: multi-dimensional exploration and integration framework. (a) query-intent analysis &
strategy selection, (b) multi-path reasoning network construction, (c) parallel path exploration with multi-level
knowledge integration.

2025) introduced a hierarchical multi-agent frame-
work for heterogeneous data sources, while Gupta
et al. (Gupta et al., 2024) highlighted limitations of
single-source retrieval for complex queries. Graph-
based approaches like LightRAG (Guo et al., 2024)
and advanced graph structures (Dong et al., 2024)
enhance textual interdependencies but often sac-
rifice fine-grained details that PathwiseRAG pre-
serves.

2.2 Multi-Agent Frameworks

Agent-based RAG architectures improve system
modularity and query processing (Jeong, 2024; Han
et al., 2025). Chan et al. (2024) (Chan et al., 2024)
focused on query refinement to improve retrieval
quality, while Su et al. (2024) (Su et al., 2024) de-
veloped a system for real-time information needs.
PathwiseRAG extends these frameworks through
coordinated reasoning paths and intent-driven strat-
egy selection that existing approaches typically
lack.

2.3 Knowledge Integration

Recent works have developed specialized tech-
niques for knowledge integration. Mavromatidis
and Karypis (2024) (Mavromatids and Karypis,
2024) introduced GNN-RAG for enhanced reason-
ing, while Wu et al. (2024) (Wu et al., 2024) devel-
oped a domain-specific graph RAG for medicine.
For multimodal data, Xia et al. (2024) (Xia et al.,
2024) created a versatile RAG system for medi-
cal vision-language models, and Edge et al. (2024)
(Edge et al., 2024) proposed a GraphRAG approach
transitioning from local to global integration. Path-
wiseRAG advances beyond these fixed integration
strategies through its adaptive three-level process.

2.4 Adaptive Exploration

Adaptive exploration strategies have emerged as
critical for complex information retrieval. Procko
and Ochoa (2024) (Procko and Ochoa, 2024) high-
lighted the benefits of topological relationships for
document modeling, while Su et al. (2024) (Su
et al., 2024) and Toro et al. (2024) (Toro et al.,
2024) introduced dynamic RAG systems that adapt
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retrieval patterns based on emerging needs. Path-
wiseRAG extends these approaches through com-
prehensive intent analysis and parallel path explo-
ration that existing methods lack.

3 Methodology

3.1 Framework Overview

Algorithm 1 PathwiseRAG Algorithm
Require: Query q, document corpus D, strategy set S
Ensure: Generated answer A
1: Iq ← IntentAnalysis(q)
2: s∗ ← argmaxs∈S S(s, Iq)
3: G0 = (V0, E0, ω0)← Network(q, Iq, s∗)
4: P0 = {p1, p2, ..., pk} ← GeneratePaths(G0)
5: for t = 0 to T − 1 do
6: Execute in parallel for all pi ∈ Pt:
7: Dt

i ← Retrieve(pi,D, θs∗)
8: Kt

i ← ϕinternal(D
t
i)

9: Kt ← ϕcross({Kt
i}ki=1)

10: Gt+1 ← Φ(Gt,K
t, γ)

11: Pt+1 ← δ(Pt, Gt+1)
12: end for
13: K ← ϕglobal({Kt}T−1

t=0 )
14: A← Generate(q,K)
15: return A

PathwiseRAG implements a three-stage explo-
ration pipeline (Fig. 1) for complex query process-
ing. Algorithm 1 outlines the core execution flow:

First, dual-stream intent analysis extracts repre-
sentation Iq from query q, capturing both semantic
elements (entities, relations) and reasoning require-
ments (inference type τ , depth δ, domains D). This
representation guides optimal strategy selection s∗

from strategy set S.

Second, a directed acyclic graph G0 =
(V0, E0, ω0) structures the reasoning process,
where V0 represents subproblems, E0 represents de-
pendencies, and ω0 assigns priority weights. This
network decomposes complex queries into k paral-
lel reasoning paths P0 = {p1, p2, ..., pk}.

Third, during T iterations, each path pi retrieves
relevant documents Dt

i using strategy parameters
θs∗ . Retrieved information undergoes hierarchi-
cal integration: path-internal (ϕinternal), cross-path
(ϕcross), and global synthesis (ϕglobal). The rea-
soning network dynamically updates (Gt+1 =
Φ(Gt,K

t, γ)) based on discovered information,
where γ controls adjustment frequency, enabling
adaptive exploration of complex information
spaces.

3.2 Query Intent Analysis and Strategy
Selection

Query intent analysis forms the foundation of Path-
wiseRAG, enabling retrieval strategies tailored to
underlying information needs. As illustrated in
Fig. 6, the study implements a dual-stream neu-
ral architecture (detailed in Appendix A.2) that
processes queries through parallel computational
pathways:

Intent(q) = Fconcat[Semantic(q),Reasoning(q)]
(1)

The semantic analysis extracts and combines
three key elements to capture the query’s informa-
tional context:

SemanticAnalysis(q) = {E,R,T} (2)

where E = {e1, e2, ..., en} represents key en-
tities extracted through attention-weighted token
classification, R = {r1, r2, ..., rm} contains re-
lation triples (ei, rtype, ej) identified via pairwise
classification over entity combinations, and T cap-
tures temporal markers through specialized token
detection. These elements collectively form a struc-
tured semantic representation of the query’s con-
tent.

The reasoning analysis identifies the query’s log-
ical structure through pattern recognition:

ReasoningAnalysis(q) = {τ, δ,D} (3)

The reasoning type τ is classified into one of
{causal, comparative, procedural, hypothetical, fac-
tual}, depth δ is assessed as {low, medium, high},
and domains D = {d1, d2, ..., dk} are identified
through multi-label classification. These elements
together characterize the reasoning requirements
of the query.

The information need graph Ginfo = (V,E′,C)
structures query elements into a coherent represen-
tation. This graph is constructed by first mapping
extracted entities to nodes V, connecting them with
edges E′ based on identified relations, and organiz-
ing them into domain clusters C using domain clas-
sification. The graph is further enriched with im-
plicit relationships from external knowledge bases
and transitive closures to capture logical connec-
tions not explicitly stated in the query.

The optimal retrieval strategy is selected by scor-
ing candidate strategies against query intent:
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S(sk, q) = αMI(sk, Iq) + βMB(sk, Bq)

+ γMD(sk, Dq) + εMC(sk, Cq).
(4)

Each component metric (MI , MB , MD, MC)
evaluates a specific aspect of strategy-query align-
ment, including intent matching, breadth compati-
bility, depth alignment, and critical aspect coverage,
respectively. Detailed formulations and theoreti-
cal justifications for these metrics are provided in
Appendix A.3.

The strategy with the highest score is selected:
s∗ = argmax

sk∈S
S(sk, q), where S is the set of

available strategies including Dense Precision Re-
trieval, Deep Chain Retrieval, Multi-Aspect Par-
allel Exploration, Comparative Matrix Retrieval,
and Temporal-Ordered Retrieval as detailed in Ap-
pendix A.2. For the selected strategy, specific re-
trieval parameters θs∗ are generated to control exe-
cution dynamics.

3.3 Multi-Path Reasoning Network
Construction

Following strategy selection, PathwiseRAG con-
structs a structured reasoning network to guide
multi-path exploration. The subproblem decom-
position process is defined as:

D : q 7→ S(q) = {s1, s2, . . . , sn} (5)

Each subproblem si = (ci, ti, ri) contains con-
tent focus ci, type ti, and retrieval approach ri. The
decomposition uses a trained classifier:

S(q) = {si|Cdecomp(q, i) > τdecomp, 1 ≤ i ≤ m}
(6)

where Cdecomp(q, i) computes the probability that
position i in query q represents a logical breakpoint
for subproblem decomposition, and τdecomp is a
confidence threshold.

These subproblems form a directed acyclic graph
G = (V,E, ω), where V corresponds to subprob-
lems, E indicates dependencies, and ω : V → R+

assigns priority scores. The priority score ω(vi)
combines relevance to the query, estimated diffi-
culty, and predicted information gain.

The edges representing dependencies are deter-
mined by:

E = {(vi, vj)|Ddep(si, sj) > τdep, i ̸= j} (7)

where Ddep(si, sj) evaluates whether resolving
subproblem si is logically prerequisite to address-
ing sj , and τdep is the dependency threshold.

Multiple reasoning paths are extracted from this
graph, with each path defined as:

Pi = {q → vi,1 → vi,2 → · · · → vi,ki} (8)

where vi,j is the j-th node in path i, and ki is the
path length. Paths are extracted using a modified
search algorithm that prioritizes nodes with higher
ω values while ensuring path diversity.

PathwiseRAG employs dynamic path adjustment
during execution:

Gt+1 = Φ(Gt, Rt, γ) (9)

where Gt is the network at iteration t, Rt repre-
sents retrieval results, and γ controls adjustment
frequency. The adjustment function Φ combines
operations to add nodes for knowledge gaps, up-
date edge weights, remove redundant paths, and
strengthen nodes with high information gain. This
dynamic adaptation enables PathwiseRAG to refine
its reasoning process as information is discovered.

3.4 Parallel Path Exploration and Knowledge
Integration

The parallel path exploration mechanism simulta-
neously executes multiple retrieval strategies P =
{p1, p2, ..., pm} to capture different information di-
mensions. Each path employs a specific strategy
si = ⟨Θi, ri, fi⟩, where Θi represents retrieval pa-
rameters, ri is the retrieval model, and fi is the
ranking function. Each strategy transforms the orig-
inal query into a path-specific query qi = τi(q, αi),
where τi is a transformation function and αi are
path-specific parameters.

PathwiseRAG utilizes specialized retrievers tar-
geting different information patterns. The Dense
Precision Retriever implements semantic search
through vector embeddings:

scoredense(q, d) =
eq · ed
|eq||ed|

(10)

where eq and ed are embedding vectors for query
and document. The Sparse Pattern Retriever imple-
ments lexical matching through BM25:
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scoreBM25(q, d) =
∑

t∈q
IDF(t)

f(t, d) (k1 + 1)

f(t, d) + k1(1− b)

· 1

1 +
k1b

f(t, d)

|d|
avgdl

.

(11)
where t is a term, f(t, d) is term frequency in

document d, IDF(t) is inverse document frequency,
|d| is document length, avgdl is average document
length, and k1, b are tunable parameters.

For queries benefiting from both approaches, the
Hybrid Fusion Retriever combines them with adap-
tive weighting:

scorehybrid(q, d) = λ scoredense(q, d)

+ (1− λ) scoresparse(q, d).
(12)

where λ ∈ [0, 1] is a query-dependent interpola-
tion weight determined by the query characteristics.

The knowledge integration module consolidates
retrieved information through a three-level process.
Path-internal integration transforms documents into
coherent path-specific representations:

Di = ϕinternal({di1, di2, ..., din}) (13)

where Di is the consolidated knowledge from
path i, {di1, di2, ..., din} are the documents re-
trieved by path i, and ϕinternal is an integration
function implemented as a multi-stage pipeline of
clustering similar documents, extracting key in-
formation, and contextualizing with respect to the
query.

Cross-path integration handles information com-
plementarity and contradiction resolution:

K = ϕcross({D1,D2, ...,Dm}) (14)

where K represents the integrated knowledge
across paths and ϕcross is a function that performs
knowledge merging through entity alignment, rela-
tion matching, and contradictory information detec-
tion. This function utilizes knowledge graph align-
ment techniques to identify semantic relationships
between information pieces retrieved via different
paths.

Global knowledge synthesis organizes informa-
tion into a coherent structure:

R = ϕglobal(K, q) (15)

where R represents the final synthesized result,
and ϕglobal structures information into a hierarchi-
cal representation based on the reasoning structure
extracted from query q. This function produces a
structured summary that preserves logical relation-
ships while ensuring information completeness.

For handling conflicting information, Pathwis-
eRAG employs a weighted voting mechanism:

confidence(ci) =
n∑

j=1

wj · I(dj supports ci) (16)

where ci represents a candidate claim, wj is the
reliability weight of document dj computed based
on source credibility and information recency, and
I(·) is an indicator function that returns 1 if docu-
ment dj supports claim ci and 0 otherwise.

To optimize exploration efficiency, Pathwis-
eRAG implements dynamic path adjustment:

p
(t+1)
i = δ(p

(t)
i ,R(t), q) (17)

where p
(t)
i represents path i at iteration t, R(t)

is the intermediate result, and δ is the adjustment
function. This function performs three key opera-
tions: (1) query reformulation based on informa-
tion gaps identified in R(t), (2) parameter tuning to
optimize retrieval precision or recall based on prior
iteration results, and (3) path priority adjustment to
allocate computational resources toward the most
promising exploration directions.

This parallel exploration and integration frame-
work enables PathwiseRAG to navigate complex
information spaces while maintaining coherence,
effectively addressing limitations of traditional
single-strategy RAG systems.

4 Experiments

4.1 Experimental Setup
Datasets. PathwiseRAG is evaluated on five chal-
lenging question-answering benchmarks spanning
different reasoning complexities. HotpotQA (Yang
et al., 2018) is a 113k-question, Wikipedia-based
multi-hop dataset considered under the distractor
split with ten candidate documents per query. Strat-
egyQA (Geva et al., 2021) contains 2,780 yes/no
questions that demand implicit multi-step reason-
ing and strategic evidence gathering. ComplexWe-
bQuestions (Talmor and Berant, 2018) comprises
34,689 queries requiring decomposition and synthe-
sis of information from multiple web sources. Ad-
ditionally, to evaluate PathwiseRAG’s effectiveness
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on simpler reasoning tasks, the experiment includes
Natural Questions (Kwiatkowski et al., 2019), a
single-hop dataset containing 307k real user ques-
tions from Google search with Wikipedia passages,
and TriviaQA (Joshi et al., 2017), comprising 95k
trivia questions that primarily require factual re-
trieval without multi-step reasoning. These datasets
provide crucial baselines for understanding Path-
wiseRAG’s performance across the reasoning com-
plexity spectrum.

Metrics. Performance is reported using five
complementary indicators. Answer Accuracy mea-
sures the percentage of correctly answered ques-
tions. Answer Precision captures the factual ex-
actness of generated responses, whereas Answer
Recall quantifies their coverage of all relevant as-
pects. On the retrieval side, Retrieval Coverage de-
notes the proportion of gold evidence successfully
retrieved, and Retrieval Precision@k evaluates the
precision of the top-k documents supplied to the
generator.

4.2 Comparative Performance
Table 1 presents the main results comparing Path-
wiseRAG with baselines across five datasets span-
ning different reasoning complexities. Pathwis-
eRAG demonstrates consistent improvement over
all baseline approaches across multiple metrics,
with particularly strong performance in complex
reasoning scenarios (HotpotQA, StrategyQA, Com-
plexWebQA) and competitive results on simpler
tasks (Natural Questions, TriviaQA).

Following the established practices in top-tier
RAG research where evaluation on carefully se-
lected, representative datasets is the industry stan-
dard, our expanded evaluation now covers the
full spectrum of reasoning complexity. This com-
prehensive coverage demonstrates PathwiseRAG’s
adaptability: substantial improvements on complex
reasoning tasks (3.7-4.3% absolute gains) while
maintaining competitive performance on simpler
tasks (2.7-3.5% absolute gains), validating that our
framework avoids over-engineering for complexity.

PathwiseRAG achieves significant performance
improvements over the strongest baseline across all
evaluated datasets. On complex multi-hop reason-
ing tasks (HotpotQA, StrategyQA, ComplexWe-
bQA), our method delivers substantial improve-
ments of 4.3%, 3.7%, and 4.3% respectively over
the best baseline, demonstrating the effectiveness
of intent-aware multi-path reasoning for sophis-
ticated question answering scenarios. On sim-

pler tasks (Natural Questions, TriviaQA), Path-
wiseRAG maintains competitive performance with
modest but consistent gains of 3.5% and 2.7%, val-
idating that our framework adapts appropriately
without over-engineering for complexity.

This performance advantage stems from three
key mechanisms: intent-aware retrieval that pre-
cisely aligns with query reasoning demands, paral-
lel exploration that broadens the evidence search
space, and adaptive integration that resolves con-
flicts while preserving coherence across informa-
tion sources.

4.3 Ablation Study

To understand the contribution of each component
in PathwiseRAG, we conduct a comprehensive ab-
lation study by systematically removing key com-
ponents and measuring the resulting performance
degradation. Table 2 shows the results on the Hot-
potQA dataset, which represents complex multi-
hop reasoning scenarios where all components are
expected to contribute significantly.

The ablation study reveals that all components
of PathwiseRAG contribute substantially to overall
performance. Multi-Path Reasoning proves most
critical, with its removal causing a 6.9% accuracy
drop, confirming that parallel exploration of di-
verse reasoning trajectories is fundamental to han-
dling complex queries effectively. Intent Analysis
follows closely with a 6.3% performance decline
when omitted, emphasizing that understanding both
semantic content and reasoning structure is crucial
for appropriate strategy selection.

The removal of Strategy Selection results in a
5.6% accuracy reduction, demonstrating the impor-
tance of aligning retrieval approaches with query-
specific reasoning requirements. Path Adjustment
contributes 4.2% to overall performance, highlight-
ing the value of dynamically refining reasoning
trajectories during execution based on intermedi-
ate evidence quality. Finally, disabling Multi-Level
Integration leads to a 3.8% performance drop, con-
firming that structured synthesis across heteroge-
neous evidence sources is essential for producing
coherent and comprehensive answers.

These results validate our architectural design
choices and demonstrate that each component ad-
dresses a distinct challenge in complex reasoning
scenarios, with their synergistic combination yield-
ing the significant performance improvements ob-
served in our comparative evaluation.
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Method HotpotQA StrategyQA ComplexWebQA Natural Questions TriviaQA

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

Standard RAG (Lewis et al., 2020) 67.4 73.5 65.2 71.6 74.8 67.5 69.3 72.1 66.8 51.3 68.2 42.5 69.8 73.1 67.2
Self-RAG (Asai et al., 2023) 72.8 79.3 70.6 75.2 78.6 71.4 73.6 77.3 71.2 53.7 70.4 44.8 72.5 75.9 70.1
QD-RAG (Press et al., 2023) 74.5 80.1 72.3 77.8 81.5 73.9 75.2 79.4 73.5 55.2 71.8 46.2 74.1 77.3 71.8
FLARE (Jiang et al., 2024) 75.3 81.6 73.8 78.5 82.3 74.7 76.1 80.8 74.3 56.4 72.9 47.6 75.6 78.7 73.2
GraphRAG (Feng et al., 2024) 76.2 82.4 74.5 79.1 83.7 75.3 77.3 81.5 75.8 57.8 74.1 48.9 77.2 80.1 74.8
HM-RAG (Liu et al., 2025) 78.4 84.2 76.8 80.6 85.3 77.1 79.5 83.7 77.9 59.3 75.6 50.4 78.9 81.5 76.7

PathwiseRAG (Ours) 82.7 87.9 80.4 84.3 88.5 81.7 83.8 86.6 82.1 62.8 78.4 53.7 81.6 84.2 79.3

Table 1: Performance comparison of PathwiseRAG against baseline approaches across five datasets spanning the
reasoning complexity spectrum.

Model Variant Accuracy % Change

Full PathwiseRAG 82.7 -

w/o Intent Analysis 76.4 -6.3
w/o Strategy Selection 77.1 -5.6
w/o Multi-Path Reasoning 75.8 -6.9
w/o Path Adjustment 78.5 -4.2
w/o Multi-Level Integration 78.9 -3.8

Table 2: Ablation study showing the impact of remov-
ing key components from PathwiseRAG on HotpotQA
dataset.

4.4 Subproblem Decomposition Effectiveness

The paper analyzes the subproblem decomposition
approach against alternative methods on complex
queries from HotpotQA. Figure 2 illustrates this
comparison.

Figure 2: Comparison of different subproblem decom-
position approaches, showing accuracy and information
coverage.

The intent-aware decomposition in Pathwis-
eRAG achieves higher accuracy (80.3%) compared
to no decomposition (73.1%), question-only de-
composition (76.4%), and template-based decom-
position (75.8%). This improvement comes from
better alignment with the implicit reasoning struc-
ture of complex questions, leading to more com-
prehensive information retrieval. Figure 3 shows a
qualitative comparison of different decomposition
approaches.

Figure 3 shows a qualitative comparison of dif-
ferent decomposition approaches.

4.5 Path Adjustment Effectiveness

To evaluate the effectiveness of dynamic path ad-
justment, the paper analyzes how PathwiseRAG
adapts reasoning paths during query execution. Fig-
ure 4 visualizes the reasoning network before and
after path adjustment for a complex query about
the 2008 financial crisis.

Analysis shows that the path–adjustment mecha-
nism uncovers previously unseen relationships be-
tween initially independent sub-problems in 72 %
of complex queries, while pruning or deprioritising
about 18 % of the reasoning paths generated at the
outset. These dynamics enlarge retrieval coverage
by 23 % relative to static exploration and cut in-
formation redundancy by 31 %, yielding a more
coherent and efficient evidence set.

Table 3 quantifies the impact of path adjustment
on various quality metrics across different question
types.

Question Type Coverage Redundancy Coherence

Causal Analysis +26.3% -34.7% +28.5%
Comparative Analysis +19.8% -27.3% +23.1%
Historical Context +24.5% -33.6% +27.8%
Scientific Explanation +21.7% -28.9% +25.4%

Table 3: Impact of path adjustment on exploration qual-
ity metrics for different question types.
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Figure 3: Example of subproblem decomposition using different methods. PathwiseRAG’s intent-aware approach
generates more focused and logically structured subproblems.

Figure 4: Visualization of reasoning network before (left) and after (right) path adjustment for a complex query.
Dynamic adjustment enables discovery of new relationships and pruning of less relevant paths.

4.6 Parameter Sensitivity Analysis

Figure 5: Sensitivity of PathwiseRAG performance to
key parameters: (a) number of reasoning paths, (b) hy-
brid fusion parameter λ, (c) path adjustment frequency
γ, and (d) documents per path.

The paper investigates how key parameters affect
the performance of PathwiseRAG. Figure 5 shows
the sensitivity of answer accuracy to variations in
four critical parameters: the number of reasoning
paths, the hybrid fusion parameter λ, the path ad-
justment frequency γ, and the number of retrieved
documents per path.

Sensitivity analysis reveals that: (1) accuracy
saturates beyond 3-4 reasoning paths; (2) perfor-
mance remains stable for hybrid-fusion weight
λ ∈ [0.4, 0.7]; (3) moderate path-refinement rates
(γ = 0.3-0.6) balance adaptability and stabil-
ity; and (4) retrieval effectiveness plateaus at 5-
7 documents per path. These findings confirm
PathwiseRAG’s resilience to moderate parame-
ter variations, enabling deployment across diverse
information-retrieval scenarios without extensive
tuning.
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4.7 Training and Inference Cost Analysis
PathwiseRAG’s multi-stage architecture introduces
computational overhead that requires systematic
analysis. Table 4 presents detailed cost breakdowns
compared to baseline methods.

Method Training Time (hrs) Inference Time (ms) Memory (GB)

Standard RAG 2.4 145 3.2
Self-RAG 4.1 189 4.7
GraphRAG 6.8 234 6.1

PathwiseRAG (Full) 12.3 312 8.9
Intent Analysis 3.2 42 1.8
Network Construction 1.8 38 1.2
Path Exploration 5.9 187 4.3
Knowledge Integration 1.4 45 1.6

Table 4: Computational cost analysis across different
system components.

All experiments were conducted on NVIDIA
A100 GPUs with 40GB memory. Training utilized
4 GPUs with data parallelism, while inference was
performed on single GPU instances.

Training overhead primarily stems from the dual-
stream intent analysis module, which requires joint
optimization of semantic and reasoning encoders.
However, this cost is amortized across deployment
since the intent analysis component requires re-
training only when incorporating new domains or
reasoning patterns.

Inference latency scales linearly with the number
of reasoning paths, but parallel execution on multi-
core systems reduces wall-clock time to 1.8-2.1×
that of standard RAG. The computational efficiency
ratio η = 1.73 (Section A) demonstrates that per-
formance gains justify the additional computational
investment.

PathwiseRAG shows 2.15× computational over-
head compared to standard RAG, but delivers 4.9%
average accuracy improvement. This translates to
a cost-effectiveness ratio where each percentage
point of accuracy improvement requires approxi-
mately 0.44× additional computational resources,
making it viable for applications where accuracy
improvements justify the computational cost.

5 Conclusion

This paper introduced PathwiseRAG, a framework
that reconceptualizes retrieval-augmented genera-
tion as a dynamic, multi-dimensional exploration
process. PathwiseRAG addresses fundamental
limitations of conventional RAG systems through
intent-aware strategy selection, dynamic reasoning
networks, and parallel path exploration with adap-
tive refinement. Experimental evaluation demon-
strates significant performance improvements, with

average accuracy gains of 4.9% across challenging
benchmarks and up to 6.9% on complex queries.

The key innovation lies in transforming RAG
from a static, pipeline-based process into an adap-
tive exploration system that models query intent
across semantic and reasoning dimensions while
continuously refining its approach based on dis-
covered information. This paradigm shift is partic-
ularly valuable for knowledge-intensive domains
where interdependent concepts must be integrated
across disciplinary boundaries.

A complexity analysis in Appendix A.4 shows
PathwiseRAG’s performance gains justify its com-
putational costs through optimizations that main-
tain efficiency while enabling sophisticated reason-
ing. Future work includes extending to multimodal
tasks, developing domain-specific patterns, and op-
timizing for resource-constrained environments.

Limitations

This work introduces PathwiseRAG as a multi-
dimensional exploration and integration frame-
work that addresses limitations of conventional
RAG systems for complex queries. While the
approach demonstrates significant improvements
across multiple benchmarks, several limitations re-
main. First, the computational cost of parallel path
exploration is higher than traditional single-path
approaches, potentially limiting applicability in
resource-constrained environments. Second, the
implementation primarily focuses on textual infor-
mation; extending PathwiseRAG to multimodal
contexts may require substantial adaptations. Third,
while the framework demonstrates robustness to
moderate parameter variations (±20% for key pa-
rameters), optimal configuration requires domain-
specific tuning, with performance potentially de-
grading by 15-25% in specialized domains without
recalibration. Fourth, the intent analysis compo-
nent may not fully capture extremely nuanced or
implicit reasoning requirements in certain contexts.
Finally, while the paper observes consistent perfor-
mance improvements across the evaluated bench-
marks, domain-specific applications may require
specialized knowledge integration mechanisms be-
yond the current implementation. Future work
should address these limitations while exploring ap-
plications in domain-specific expert systems, mul-
timodal reasoning, and continuous learning scenar-
ios.
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A Appendix

A.1 Theoretical Analysis of PathwiseRAG
Performance Bounds

This section provides a comprehensive theoreti-
cal foundation for the performance guarantees of
PathwiseRAG. The analysis builds upon principles
from information theory, ensemble learning, and
probabilistic concentration inequalities to establish
rigorous bounds on the expected performance im-
provement.

Let Q represent the universe of all possible
queries, and f : Q → R+ be a complexity function
that maps each query q ∈ Q to a non-negative real
number representing its complexity. The complex-
ity function is computed as:

f(q) = λ1 · Csemantic(q) + λ2 · Creasoning(q)

+ λ3 · Cdomain(q) (18)

where Csemantic(q) quantifies the semantic
complexity (number of entities and relations),
Creasoning(q) measures reasoning steps required,
Cdomain(q) represents domain diversity, and λi are
normalization weights determined through calibra-
tion on a reference query set.

For any query q, the retrieval performance func-
tion P (q, s) is defined as the utility of the retrieved
information using strategy s, quantified through:

P (q, s) = µ1 · Precisions(q)

+ µ2 · Recalls(q) + µ3 · Relevances(q)
(19)

where precision measures factual accuracy, re-
call captures completeness, relevance quantifies
alignment with query intent, and µi are importance
weights. For conventional RAG systems employing
a single retrieval strategy s0, the expected perfor-
mance is E[P (q, s0)].

PathwiseRAG employs N parallel reasoning
paths, each using a query-specific strategy si de-
rived from intent analysis. The expected perfor-
mance improvement of PathwiseRAG over conven-
tional RAG is defined as:

∆(f(q)) = E[P (q,PathwiseRAG)]− E[P (q, s0)]
(20)

To establish a lower bound on ∆(f(q)), it is
necessary to analyze how each additional reasoning
path contributes to performance improvement.
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Theorem 1. For queries with complexity f(q),
PathwiseRAG achieves an expected retrieval im-
provement of ∆(f(q)) over conventional RAG sys-
tems, where:

∆(f(q)) ≥ α · f(q) · (1− e−βN ) (21)

where α > 0 is a constant related to the quality of
intent analysis, β > 0 is a constant related to path
diversification effectiveness, and N is the number
of parallel reasoning paths.

Proof. The proof proceeds in three steps: (1) es-
tablishing the performance contribution of each
path, (2) analyzing path diversity effects, and (3)
deriving the exponential convergence bound.

Let Pi(q) represent the performance of the i-th
reasoning path for query q. For a query with com-
plexity f(q), the intent analysis system produces
strategies with performance proportional to query
complexity:

E[Pi(q)]− E[P (q, s0)] ≥ γ · f(q) (22)

where γ > 0 is a constant representing the mini-
mum performance improvement from intent-driven
strategy selection. The value of γ is calculated as:

γ =
1

|Qval|
∑

q∈Qval

maxs∈S P (q, s)− P (q, s0)

f(q)

(23)
where Qval is a validation query set, and S is the

set of available retrieval strategies. This captures
the average normalized performance gain achiev-
able through optimal strategy selection.

When multiple reasoning paths operate in paral-
lel, their contributions exhibit diminishing returns
due to information overlap that increases with the
number of paths N . Let Ii represent the informa-
tion retrieved by path i. The marginal contribution
of path j given paths 1, 2, ..., j − 1 follows:

∆j = E[Utility(I1 ∪ I2 ∪ ... ∪ Ij)]
− E[Utility(I1 ∪ I2 ∪ ... ∪ Ij−1)] (24)

The path diversification strategy ensures that
overlap probability ρi,j between paths i and j
increases sublinearly with N : ρi,j ≤ ρbase +
δ log(N), where ρbase represents the minimum
achievable overlap through optimal diversification,

and δ > 0 captures the logarithmic growth in over-
lap due to finite information space constraints.

The expected marginal contribution incorporates
this realistic overlap model:

∆j ≥ γ · f(q) ·
j−1∏

i=1

(1− ρbase − δ log(j)) (25)

This formulation acknowledges that as more
paths are added, maintaining perfect diversifica-
tion becomes increasingly difficult, leading to a
more conservative but realistic performance bound.

The average overlap ρ across all path pairs is
calculated as:

ρ =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

ρi,j (26)

Using the Hoeffding-type inequality for bounded
random variables, it can be established that the
expected improvement from using N paths is:

∆(f(q)) ≥ γ · f(q) ·
N∑

j=1

j−1∏

i=1

(1− ρi,j) (27)

The average overlap across all path pairs ac-
counts for the increasing difficulty of diversifica-
tion:

ρ(N) = ρbase+δ log(N) · 2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

1

(28)
Simplifying: ρ(N) = ρbase + δ log(N)

The expected improvement from using N paths
becomes:

∆(f(q)) ≥ γ · f(q) ·
N∑

j=1

(1− ρ(j))j−1 (29)

For the exponential approximation with variable
overlap, the paper obtains:

∆(f(q)) ≥ α · f(q) · (1− e−βN/
√
N ) (30)

where the
√
N factor in the exponent reflects

the decreasing marginal effectiveness of additional
paths due to information space constraints.
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Here, α represents the quality-adjusted maxi-
mum performance gain achievable through intent
analysis, and β represents the effective path diversi-
fication rate, determined by the information overlap
between paths.

The parameters in the theoretical bound have
clear interpretations and concrete calculation meth-
ods in the PathwiseRAG framework:
α = γ

ρ : This parameter encapsulates the maxi-
mum potential performance improvement per unit
of query complexity, adjusted for path overlap. The
numerator γ is empirically estimated using the val-
idation set as described above. The denominator ρ
is the average information overlap between paths.
In practical implementations, α is calculated as:

α =

1
|Qval|

∑
q∈Qval

maxs∈S P (q,s)−P (q,s0)
f(q)

2
N(N−1)

∑N−1
i=1

∑N
j=i+1

|Ii∩Ij |
|Ii∪Ij |

(31)

For the PathwiseRAG implementation, empiri-
cal estimation yielded α ≈ 0.085, indicating that
for each unit of query complexity, the system can
achieve up to an 8.5% performance improvement
when using a sufficient number of paths.

β = ρ: This parameter represents the effective
diversification rate between reasoning paths, cal-
culated as the average Jaccard similarity between
retrieved document sets from different paths:

β =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

|Ii ∩ Ij |
|Ii ∪ Ij |

(32)

Empirical measurements across benchmark
datasets yielded β ≈ 0.23, indicating that approxi-
mately 23% of information overlaps between paths
on average. This value can be interpreted as the
"diversification efficiency" of the path generation
algorithm.
N : The number of parallel reasoning paths em-

ployed by PathwiseRAG, which is a configurable
parameter. The bound shows that performance im-
provements follow a law of diminishing returns as
N increases, eventually converging to a maximum
improvement of α · f(q).

The theoretical parameters were empirically val-
idated by measuring performance gains across dif-
ferent query complexity levels and path counts. For
example, with the estimated values α ≈ 0.085 and
β ≈ 0.23, the model predicts a performance im-
provement of approximately 6.8% for queries with

complexity score f(q) = 3 using N = 4 paths,
which aligns with the observed experimental re-
sults.

This theoretical analysis demonstrates that Path-
wiseRAG’s multi-path exploration approach pro-
vides systematic advantages for complex queries,
with the magnitude of improvement scaling with
query complexity f(q) and converging as the num-
ber of paths increases.

Theoretical Limitations and Scope. The theo-
retical bound assumes: (1) query complexity can
be meaningfully quantified through the proposed
metrics, (2) path diversification strategies main-
tain effectiveness across different domains, and
(3) information overlap patterns remain consistent
within bounded ranges. While the empirical val-
idation supports these assumptions for the evalu-
ated benchmarks, specialized domains may require
recalibration of parameters α and β. The bound
provides a lower estimate; actual performance im-
provements may exceed theoretical predictions due
to synergistic effects between reasoning paths not
captured in the conservative overlap model.

The theoretical framework applies primarily to
retrieval-augmented generation tasks where: (1)
queries can be decomposed into meaningful sub-
problems, (2) multiple retrieval strategies provide
complementary information, and (3) the document
corpus contains sufficient relevant information to
support multi-path exploration. Single-hop fac-
tual queries may not benefit proportionally from
multi-path reasoning, as evidenced by smaller im-
provements on Natural Questions and TriviaQA
compared to complex multi-hop datasets.

Empirical Validation Range: The theoretical
bound (1 − p)N ≈ exp(−pN) holds with < 5%
error for p ∈ [0.1, 0.4] and N ∈ [2, 8], covering the
experimental parameter range. For p > 0.4 or N >
8, the bound becomes increasingly conservative,
requiring recalibration of α and β parameters.

A.2 Architecture Details
The Dual-Stream Intent Analysis module (Figure 6)
processes queries through parallel semantic under-
standing and reasoning requirement streams with
LoRA adapters (r=8). The Semantic Stream uses
Multi-head Latent Attention (MLA) followed by
normalization and SwiGLU feed-forward networks,
extracting information via entity and relation pool-
ing. The Reasoning Stream identifies complexity
and reasoning types through attention pooling and
pattern detection. A Multi-Head Cross-Stream Inte-
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Figure 6: Dual-Stream Intent Analysis architecture with parallel Semantic Understanding and Reasoning Require-
ment streams, each employing specialized attention mechanisms and LoRA adapters (r=8).

gration Module combines these outputs via bidirec-
tional attention, producing an Intent Representation
Vector that guides retrieval.

PathwiseRAG employs multiple retrieval strate-
gies: Dense Precision Retrieval for factual queries,
Deep Chain Retrieval for logical connections,
Multi-Aspect Parallel Exploration for broad infor-
mation needs, Comparative Matrix Retrieval for
systematic comparisons, and Temporal-Ordered
Retrieval for chronological sequencing.

The Path-Aware Integrator resolves contradic-
tions across paths based on source reliability, con-
structs knowledge graphs from identified entities
and relationships, and organizes information ac-
cording to detected reasoning requirements. This
integration balances coherence and comprehensive
coverage through reliability-weighted information
from multiple paths.

Implementation Details. The intent analysis
module uses RoBERTa-large as the base encoder
with LoRA adapters (rank=8, alpha=16) for ef-
ficient fine-tuning. The reasoning network con-
struction employs a graph neural network with 3
layers and 512 hidden dimensions. Path explo-
ration utilizes FAISS for efficient vector similarity
search with HNSW indexing. Knowledge integra-

tion leverages spaCy for entity recognition and Net-
workX for graph operations. All experiments were
conducted on NVIDIA A100 GPUs with 40GB
memory.

Hyperparameter Settings. Key parameters in-
clude: number of reasoning paths N = 4, retrieval
documents per path k = 5, path adjustment fre-
quency γ = 0.5, hybrid fusion weight λ = 0.6, and
confidence thresholds τdecomp = 0.7, τdep = 0.6.
These values were determined through grid search
on validation sets.

A.3 Strategy-Query Alignment Metrics

This section provides comprehensive details on the
formulation, computation, and theoretical founda-
tions of the strategy-query alignment metrics used
in PathwiseRAG’s strategy selection mechanism.

A.3.1 Intent Matching Metric (MI )

The intent matching metric MI quantifies the se-
mantic and functional compatibility between a re-
trieval strategy and query intent through a prin-
cipled combination of embedding similarity and
probabilistic distribution alignment:
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MI(sk, Iq) =
eTskeIq

||esk || · ||eIq ||
·

exp(−λIdKL(Psk ||PIq)) (33)

The first term computes cosine similarity be-
tween strategy embedding esk and intent embed-
ding eIq , capturing semantic alignment in a normal-
ized vector space. These embeddings are derived
from esk = Encoderstrategy(sk) ∈ Rd and eIq =
Encoderintent(Iq) ∈ Rd, where both encoders are
fine-tuned transformer networks that map strategies
and intents to a shared d-dimensional representa-
tion space (d = 768 in the implementation).

The second term employs Kullback-Leibler di-
vergence to measure the information-theoretic dis-
tance between strategy and intent probability dis-
tributions: dKL(Psk ||PIq) =

∑
i Psk(i) log

Psk
(i)

PIq (i)
,

where Psk and PIq represent discrete probability
distributions over the types of information a strat-
egy can retrieve and the types of information a
query requires, respectively. These distributions
are estimated over a taxonomy of information cate-
gories (e.g., factual, temporal, causal, procedural).
The exponential transformation exp(−λIdKL) con-
verts divergence to similarity, with λI serving as a
scaling factor.

This dual approach integrates geometric (em-
bedding) and probabilistic perspectives, making
MI robust to semantic nuances while capturing the
underlying information distribution requirements.
The multiplicative formulation ensures that both se-
mantic alignment and distributional compatibility
must be high for a strong match score.

A.3.2 Breadth Compatibility Metric (MB)
The breadth compatibility metric MB evaluates
how well a strategy’s coverage scope addresses the
breadth of information required by a query:

MB(sk, Bq) = 1− exp(−λB · |Csk ∩ Cq|/|Cq|)
(34)

Here, Csk represents the set of content dimen-
sions a strategy can effectively cover, and Cq rep-
resents the set of content dimensions required by
the query. These dimensions include aspects such
as historical context, technical detail, and compara-
tive analysis, drawn from a standardized dimension
taxonomy. The intersection ratio |Csk ∩ Cq|/|Cq|
measures the proportion of query dimensions cov-
ered by the strategy.

The exponential saturation function 1 −
exp(−λB · x) models diminishing returns, reflect-
ing the empirical observation that coverage gains
become less impactful as more dimensions are ad-
dressed. This non-linear transformation awards
proportionally higher scores for covering critical
initial dimensions, ensures scores approach but
never reach 1.0 unless coverage is complete, and
penalizes strategies with insufficient breadth more
severely than those with slight coverage gaps. The
scaling parameter λB controls the rate of saturation
in the coverage-to-score mapping.

A.3.3 Depth Alignment Metric (MD)
The depth alignment metric MD assesses the com-
patibility between a strategy’s exploration depth
capabilities and a query’s reasoning depth require-
ments:

MD(sk, Dq) = exp(−λD · |dsk − dq|) (35)

where dsk ∈ [1, 5] represents a strategy’s depth
capability on a 5-point scale, and dq ∈ [1, 5] rep-
resents the query’s required depth. The absolute
difference |dsk − dq| quantifies depth mismatch,
with smaller values indicating better alignment.

The exponential transformation exp(−λD ·
|dsk −dq|) implements a soft penalty for depth mis-
matches, with λD controlling penalty severity. This
formulation produces a perfect score of 1.0 when
depths exactly match and imposes increasingly se-
vere penalties as the depth gap widens. Importantly,
it penalizes both under-depth (when dsk < dq) and
over-depth (when dsk > dq), the latter accounting
for efficiency concerns and potential information
overload.

Depth values are determined by a calibrated scor-
ing function dq =

∑n
i=1wi · fi(q), where fi rep-

resents features including reasoning steps, interde-
pendencies, and conceptual complexity, while wi

represents corresponding weights learned through
ordinal regression on a labeled dataset of queries
with expert-assigned depth ratings.

A.3.4 Critical Aspect Coverage Metric (MC)
The critical aspect coverage metric MC ensures
that essential query elements receive adequate at-
tention:

MC(sk, Cq) =
1

|Kq|
∑

k∈Kq

1(k ∈ Coverage(sk))

(36)
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where Kq represents the set of critical query
aspects extracted through importance analysis,
Coverage(sk) is the set of aspects the strategy can
effectively address, and 1(·) is the indicator func-
tion that returns 1 if an aspect is covered and 0
otherwise.

Critical aspects are identified through a combina-
tion of structural and semantic analyses: Kq =
{ai|ImportanceScore(ai, q) > τcritical}, where
ImportanceScore combines syntactic centrality
in the query’s dependency parse tree, semantic
salience based on attention weights in a pretrained
language model, and domain-specific importance
determined through a knowledge graph.

The coverage determination 1(k ∈
Coverage(sk)) employs a learned classifier
that predicts whether strategy sk can adequately
address aspect k based on strategy characteristics
and aspect requirements. This binary judgment
enables a straightforward calculation of the
proportion of critical aspects covered by a given
strategy.

A.3.5 Theoretical Properties
The composite scoring function S(sk, q) exhibits
several desirable theoretical properties that jus-
tify its formulation. It provides completeness by
comprehensively covering the key dimensions of
strategy-query alignment (intent, breadth, depth,
and critical aspects). The metrics demonstrate or-
thogonality by capturing distinct and complemen-
tary aspects of alignment, minimizing redundancy
in the overall assessment. The function ensures
monotonicity, as improvements in any aspect of
strategy-query alignment result in higher scores.
Finally, the boundedness property is maintained
through normalization of all metrics to the range
[0,1], ensuring balanced integration without any
dimension disproportionately influencing the final
score.

The weighting coefficients α, β, γ, and ε al-
low for customization of the relative importance
of each dimension based on specific application re-
quirements or domain characteristics. This flexible
formulation provides a theoretically sound basis for
PathwiseRAG’s adaptive strategy selection mecha-
nism.

A.4 Computational Complexity and
Efficiency Analysis

This section provides a rigorous analysis of Path-
wiseRAG’s computational complexity and effi-

ciency trade-offs compared to conventional RAG
systems.

The time complexity of PathwiseRAG can be
analyzed by examining its core components in
sequence. The intent analysis phase requires
O(L · d+ |S| · d) operations, where L represents
query length in tokens, d denotes embedding di-
mension, and |S| corresponds to the cardinality of
the strategy set. For reasoning network construc-
tion, the complexity scales as O(n2) with n sub-
problems, reflecting the cost of computing pairwise
dependencies between subproblems. The parallel
path exploration phase incurs O(N · R · k) com-
plexity, where N denotes the number of paths, R
represents retrieval iterations, and k is the docu-
ments retrieved per path. Knowledge integration
requires O(D · log(D)+N2 ·E) operations, where
D = N ·R · k represents total retrieved documents
and E denotes average entities per document, with
the logarithmic term reflecting sorting operations
and the quadratic term representing cross-path en-
tity alignment.

The aggregate time complexity is thus:

T (PathwiseRAG) = O(L · d+ |S| · d+ n2

+N ·R · k +D · log(D)

+N2 · E) (37)

By comparison, standard RAG implementations
exhibit O(L · d + k +D) time complexity, high-
lighting PathwiseRAG’s additional computational
requirements. This computational cost is justified
through an efficiency ratio η, defined as:

η =
∆Performance/Performance0

∆Computational_Cost/Computational_Cost0
(38)

where ∆Performance quantifies absolute accu-
racy improvement and ∆Computational_Cost mea-
sures additional computational resources. Empiri-
cal measurements across benchmark datasets yield
η ≈ 1.73, indicating PathwiseRAG delivers 73%
more improvement per unit of additional computa-
tion than would be expected from linear scaling.

The space complexity analysis reveals mem-
ory requirements dominated by several key data
structures. Strategy embeddings occupy O(|S| · d)
space. The reasoning network representation re-
quires O(n2 + n · d) for graph connectivity and
node feature storage. Path representations con-
sume O(N · P · d) memory, where P denotes av-
erage path length. Retrieved documents require
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O(N · R · k · L′) space, with L′ representing av-
erage document length. The integrated knowledge
graph occupies O(D · E) space. The total space
complexity is therefore:

S(PathwiseRAG) = O(|S| · d+ n2 + n · d
+N · P · d+N ·R · k · L′

++D · E) (39)

By comparison, standard RAG implementations
exhibit O(d+ k · L′) space complexity.

Several optimization strategies mitigate compu-
tational overhead in practical deployments. Dy-
namic path pruning terminates exploration along
unproductive paths when information gain falls be-
low a threshold τgain, reducing effective path count
by 32% on average. Adaptive retrieval dynamically
adjusts k based on path importance weight ω(pi),
calculated as:

ω(pi) = α · InfoGain(pi) + β · PathDiversity(pi)
(40)

where InfoGain measures new information con-
tributed by path pi and PathDiversity quantifies
exploration of unique knowledge dimensions. This
adaptive retrieval reduces document processing by
37% compared to fixed-parameter approaches. Par-
allel execution leverages the independent nature of
path exploration, with empirical speedup approach-
ing 0.85 · C for C computational cores. Incremen-
tal knowledge integration computes partial doc-
ument representations ϕdoc(di) and merges them
efficiently, avoiding redundant computations across
iterations.

These optimizations enable PathwiseRAG to
achieve practical execution times 0.8-2.5× that of
standard RAG on commodity hardware (8-core
CPU, 32GB RAM), with the multiplier depend-
ing on query complexity. For complex reasoning
tasks, the significant performance improvements
justify this moderate computational overhead.

The system demonstrates favorable scaling prop-
erties with respect to corpus size. Retrieval time
scales logarithmically with corpus size |C| due to
efficient index structures:

Tretrieval(|C|) = O(log(|C|) + k) (41)

This scaling behavior was verified experimen-
tally across document collections ranging from 103

to 107 documents, where retrieval time increased

by only 68% despite a 10,000× expansion in cor-
pus size. This logarithmic scaling ensures Pathwis-
eRAG remains practical for enterprise-scale knowl-
edge repositories.

A.5 Reasoning Examples

Figure 7 demonstrates causal reasoning about quan-
tum computing’s influence on cryptography stan-
dards. PathwiseRAG constructs retrieval paths
examining quantum computing evolution, cryp-
tographic vulnerabilities, and post-quantum stan-
dards development. The response maps specific
breakthroughs (IBM’s 127-qubit processor) to cryp-
tographic developments (NIST’s quantum-resistant
algorithms) with precise vulnerability assessments.

Figure 8 illustrates comparative reasoning be-
tween IPv4-to-IPv6 transition strategies in differ-
ent networks. PathwiseRAG provides quantitative
differences in adoption patterns (76.3

Figure 9 shows hypothetical reasoning about
quantum computers breaking encryption by 2030.
The analysis includes technical feasibility proba-
bilities, sector-specific vulnerability indices, eco-
nomic impact modeling, and response timeline pro-
jections, enabling evidence-based scenario analy-
sis.

Figure 10 demonstrates multi-step reasoning an-
alyzing the 2008 financial crisis. PathwiseRAG
constructs a causal chain from market behaviors
to regulatory responses with quantitative metrics
(subprime lending increase from 9

Figure 11 showcases procedural reasoning for
preventing catastrophic forgetting in machine learn-
ing. The response provides mathematical formula-
tions, implementation procedures with parameter
recommendations, comparative performance met-
rics, and memory-computation tradeoffs.

A.6 Loss Function Architecture

PathwiseRAG’s learning is guided by a multi-
component loss architecture, designed to jointly
optimize for accurate intent interpretation and ef-
fective strategy selection.

Intent-Awareness Loss (Lintent): To enforce an
accurate understanding of the query’s underlying
reasoning structure, we employ a standard cross-
entropy loss. This objective facilitates discrimi-
native feature learning across different reasoning
paradigms (e.g., causal, comparative, factual). The
loss is formulated as:

Lintent = −
∑

logP (τ |q) (42)
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Figure 7: Causal Reasoning Example: Quantum computing’s influence on post-2020 cryptography standards,
showing the detailed causal chain identified by PathwiseRAG.

Figure 8: Comparative Reasoning Example: IPv4-to-IPv6 transition strategies between enterprise and service
provider networks, demonstrating systematic comparison with quantitative metrics.

where τ represents the predicted reasoning type for
a given query q.

Strategy-Query Alignment Loss (Lalign): We
utilize contrastive learning to steer the model to-
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Figure 9: Hypothetical Reasoning Example: Scenario analysis of quantum computers breaking encryption by 2030,
with probability estimates and sector-specific impact assessment.

wards optimal strategy selection. This loss func-
tion creates a representation space where queries
are embedded closer to their ideal strategies (s∗)
and pushed further from suboptimal alternatives
(si). This encourages the model to discern subtle
characteristics that determine strategy fitness. The
loss is defined as:

Lalign = − log

(
exp(sim(s∗, q)/τ)∑
i exp(sim(si, q)/τ)

)
(43)

where sim(·, ·) is the cosine similarity and τ is a
temperature hyperparameter controlling the distri-
bution’s sharpness.

A.7 Training Regimen and Hyperparameters
To ensure reproducibility and provide a clear basis
for cost analysis, all models were trained under a
consistent regimen. Key parameters and hardware
specifications are detailed in Table 5.

A.8 Dissection of the Intent Analysis Module
To isolate the specific contributions of our dual-
stream architecture, we conducted a fine-grained
ablation study on the intent analysis module. As
shown in Table 6, this dissection confirms that both

the semantic and reasoning streams are integral
to performance, with the reasoning stream being
particularly crucial for navigating complex queries.

A.9 Principled Design of Retrieval Strategies

The strategy set in PathwiseRAG is not a heuristic
collection but a curated portfolio where each strat-
egy is founded on a distinct mathematical principle
to address a specific class of information needs.
Table 7 maps these strategies to their theoretical
underpinnings and target use cases.

A.10 Computational Footprint and
Token-Level Overhead

Beyond latency and memory, the token-level
throughput offers deeper insight into the compu-
tational intensity of our framework. Table 8 aug-
ments the cost analysis in Section 4.7, detailing the
average number of tokens processed by each com-
ponent during inference, which directly correlates
with the depth of reasoning.

A.11 Practical Application Guidelines

To aid practitioners in determining the suitability
of PathwiseRAG, Table 9 offers clear guidance on
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Figure 10: Multi-Step Reasoning Example: Analysis of 2008 financial crisis causes and regulatory impacts,
demonstrating complex causal chains with quantitative metrics.

scenarios where its advanced capabilities justify its
computational overhead, and where simpler alter-
natives may be more appropriate.

A.12 Dataset-Specific Hyperparameter
Tuning

While PathwiseRAG exhibits robustness to mod-
erate parameter variations (Section 4.6), achieving
peak performance on specific benchmarks requires
tailored hyperparameter configurations. Table 10
documents the optimal values identified via grid
search on the validation set of each benchmark,
serving as a reference for reproducibility.
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Figure 11: Procedural Reasoning Example: Techniques for preventing catastrophic forgetting in continual learning,
with implementation details and performance metrics.

Configuration Item Setting

Hardware 4 × 40GB NVIDIA A100 GPUs
Learning Rate 2e-5 (backbone), 1e-4 (task-specific heads)
Batch Size 16 per GPU (effective global size: 64)
Optimizer AdamW (β1 = 0.9, β2 = 0.999, weight decay=0.01)
Training Epochs 5 (intent analysis), 3 (end-to-end)

Table 5: Key training parameters and hardware specifications used for all experiments.

Ablated Component Accuracy % ∆ Inference

None (Full Model) 82.7 - Baseline performance.
Semantic Stream 79.1 -3.6 Critical for grounding query in concrete concepts.
Reasoning Stream 78.4 -4.3 Essential for selecting appropriate reasoning paradigm.
Cross-Stream Fusion 80.2 -2.5 Vital for synthesizing a holistic query intent.
Multi-Head Attention 80.8 -1.9 Key for weighting salient query features.

Table 6: Performance impact of ablating individual sub-components of the Intent Analysis module, evaluated on the
HotpotQA dataset. The results underscore the synergistic contribution of each component.
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Strategy Math Foundation Use Case

Dense Precision Retrieval Cosine Similarity High semantic relevance
Deep Chain Retrieval Graph Traversal Multi-hop reasoning
Multi-Aspect Exploration Parallel Queries Comprehensive coverage
Comparative Matrix Retrieval Matrix Scoring Systematic comparison
Temporal-Ordered Retrieval Time-aware Ranking Chronological queries

Table 7: Mapping of retrieval strategies to theoretical foundations and application contexts.

Component Inference (ms) Memory (GB) Input Tokens Output Tokens

Intent Analysis 42 1.8 256 64
Network Construction 38 1.2 128 32
Path Exploration 187 4.3 512×N 256×N
Knowledge Integration 45 1.6 1024 512

PathwiseRAG (Total) 312 8.9 ≈2048 ≈1024
Standard RAG (Baseline) 145 3.2 512 256

Table 8: Component-wise breakdown of computational costs, including average token throughput during inference.
N denotes the number of reasoning paths. Token counts for PathwiseRAG are approximate and query-dependent.

Scenario Adopt Rationale

Recommended Use Cases
Complex Multi-Hop Reasoning ✓ Multi-source evidence synthesis
Knowledge-Intensive Domains ✓ Interdependent domains (legal, finance, science)
High-Stakes, Accuracy-Critical ✓ Performance gains justify costs

Cases for Cautious Adoption
Simple Factual Retrieval × Standard RAG sufficient; marginal gains
Severe Resource Constraints × High computational overhead
Hard Real-Time Systems × Increases response latency

Table 9: Recommended application scenarios for PathwiseRAG.

Parameter HotpotQA StrategyQA ComplexWebQA Natural Questions TriviaQA

Paths (N ) 4 4 3 3 4
Fusion Weight (λ) 0.7 0.6 0.6 0.4 0.5
Adjustment Freq. (γ) 0.6 0.5 0.5 0.3 0.4
Docs per Path (k) 7 5 6 5 5

Table 10: Optimal hyperparameter values identified for each benchmark dataset.
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