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Abstract

The rapid advancements in large language mod-
els (LLMs) have significantly improved their
ability to generate natural language, making
texts generated by LLMs increasingly indis-
tinguishable from human-written texts. While
recent research has primarily focused on using
LLMs to classify text as either human-written
or machine-generated texts, our study focuses
on characterizing these texts using a set of lin-
guistic features across different linguistic lev-
els such as morphology, syntax, and seman-
tics. We select a dataset of human-written
and machine-generated texts spanning 8 do-
mains and produced by 11 different LLMs. We
calculate different linguistic features such as
dependency length and emotionality, and we
use them for characterizing human-written and
machine-generated texts along with different
sampling strategies, repetition controls, and
model release dates. Our statistical analysis
reveals that human-written texts tend to exhibit
simpler syntactic structures and more diverse
semantic content. Furthermore, we calculate
the variability of our set of features across mod-
els and domains. Both human- and machine-
generated texts show stylistic diversity across
domains, with human-written texts displaying
greater variation in our features. Finally, we ap-
ply style embeddings to further test variability
among human-written and machine-generated
texts. Notably, newer models output text that
is similarly variable, pointing to a homogeniza-
tion of machine-generated texts.

1 Introduction

The rapid advancements in language models have
significantly improved their ability to generate nat-
ural language, making machine-generated texts
(MGT) increasingly indistinguishable from human-
written texts (HWT). Indeed, recent studies indicate
that disinformation produced by state-of-the-art
large language models (LLMs) is often perceived

as more credible than that created by humans (Spi-
tale et al., 2023). This evolution has highlighted
the importance of identifying MGT due to legiti-
mate concerns about the potential for malicious ac-
tors to disseminate false information, as well as the
broader need to uphold trust and authenticity across
online platforms (Chakravarthi et al., 2025; Li et al.,
2024; Sarvazyan et al., 2023). Best systems for this
task, often referred to as Human/Machine Author-
ship Attribution, all imply the use of LLMs, and
different studies show marginal gains of leveraging
stylometric features combined with LLMs for suc-
cessfully achieving this task (Alecakir et al., 2024;
Wang et al., 2024a).

In this study, we utilize the RAID dataset (Dugan
et al., 2024), a large-scale corpus designed for test-
ing detection tools for machine-generated text and
human-written text. This work focuses on analyz-
ing different levels of linguistic analysis, such as
morphology, syntax, and semantics, in order to
characterize MGT from 11 different models with 4
different decoding strategies, along with the release
date of the models. Thus, we analyze a set of repre-
sentative linguistic features to distinguish human-
written texts (HWT) from machine-generated texts
(MGT), potentially uncovering distinctive linguis-
tic patterns in a multi-domain setting (across 8 dif-
ferent domains). Moreover, we focus on linguistic
variability over time to check whether there are pat-
terns of linguistic homogenization in newer LLMs
(Sourati et al., 2025; Padmakumar and He, 2023).

We test the following set of linguistic features
per level of linguistic analysis: Textual level (Text
Length, Sentence Length), Morphology (Morpho-
logical Complexity Index for Verbs and Nouns),
Syntax (Dependency Tree Depth, Dependency
Length), Lexical Level (Word Prevalence, Type-
Token Ratio), Semantics (Semantic Similarity),
Emotionality. We consider these features as rep-
resentative of different levels of linguistic analy-
sis of our interest, ensuring overlap with previous
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work on distinguishing between HWT and MGT
(Zanotto and Aroyehun, 2024; Guo et al., 2023;
Uchendu et al., 2020). We do not aim to test all
possible linguistic features tested in other research
on Human/Machine authorship attribution tasks
(e.g., Simon et al., 2023; Uchendu et al., 2020).

We provide statistical results for Hu-
man/Machine authorship attribution for each
of these features. Moreover, we train a binary
logistic classifier using these features to distinguish
between HWT and MGT. We use the logistic
classifier to analyze feature importance to get an
overall picture of the impact of these features in
characterizing HWT and MGT.

To assess variability in linguistic representations
across models and domains, we calculate the stan-
dard deviation of the Euclidean distance for our
extracted features. Additionally, we map language
models to their release dates to analyze tempo-
ral trends in model development. This framework
highlights differences between models and reveals
the impact of decoding strategies and domain lin-
guistic constraints.

Furthermore, we apply a style embedding model
(Patel et al., 2025) that has been used for authorship
attribution to represent text styles, enabling further
comparison of variability in HWT and MGT.

Our main contributions are: (i) We analyze lin-
guistic differences between human-written texts
(HWT) and machine-generated texts (MGT) with
linguistic features across different linguistic lev-
els such as morphology, syntax, and semantics to
examine variability across different models and do-
mains. We show how recent models tend to have
similar linguistic variability, pointing to a risk of
homogenization of texts. (ii) We employ a logis-
tic classifier to identify different linguistic patterns
between HWT and MGT by performing a feature
importance analysis. (iii) We further use style em-
beddings to compare HWT and MGT showing that
recent models tend to exhibit similar style variation
within themselves, underlying how chat models
output texts with more similar characteristics to
HWT than their non-chat models.

2 Related Work

Scholars have explored various approaches to
tackle the challenge of distinguishing between
human-written and machine-generated texts. This
task, often referred to as Human/Machine Author-
ship Attribution (Alecakir et al., 2024), involves

detecting whether a text is produced by a human or
a generative language model, or attributing author-
ship among different models.

The Human/Machine attribution of authorship to
a text carries significant social relevance, especially
in areas such as fake news detection (Kumarage
et al., 2023; Jawahar et al., 2020). The need for ex-
plainability becomes particularly important when
engaging with a broad audience of non-experts,
who may not have the means to access or compre-
hend detection models (Gehrmann et al., 2019). As
a result, numerous studies have focused on identify-
ing human-explainable features that can differenti-
ate between machine-generated (MGT) and human-
written texts (HWT) (e.g., Dugan et al., 2023;
Guo et al., 2023; Kumarage et al., 2023; Uchendu
et al., 2020). To achieve this, researchers have
employed diverse analytical approaches, including
stylometric analysis (Kumarage et al., 2023; Ma
et al., 2023), qualitative assessments (Guo et al.,
2023; Gehrmann et al., 2019), and linguistic fea-
ture analysis (Wang et al., 2024b; Uchendu et al.,
2020; Ferracane et al., 2017), to diverse corpora,
contexts, and generation tasks. Notably, different
studies highlight the difficulties encountered by
humans in distinguishing machine-generated texts
from human-written texts, but little has been done
to address the real-life consequences of this issue.
(e.g., Chakraborty et al., 2023; Jakesch et al., 2023;
Fraser et al., 2024).

Moreover, classical machine learning algorithms,
such as logistic regression, have been employed to
train models on bag-of-words features to differ-
entiate between HWT and MGT (Solaiman et al.,
2019; Ippolito et al., 2020). Other traditional meth-
ods leverage linguistic features, including POS-
tags (Ferracane et al., 2017), surface-level features
such as readability indexes or punctuation marks
(Doughman et al., 2024; Malviya et al., 2025), topic
modeling (Seroussi et al., 2014), sentiment analysis
(Hossen Rujeedawa et al., 2025), and LIWC (Lin-
guistic Inquiry and Word Count) features to pro-
vide deeper insights into the characteristics of MGT
(Uchendu et al., 2020; Li et al., 2014). HWT tend
to be longer, express more sentiment polarity, espe-
cially negative sentiment, and show greater variabil-
ity in discourse structures compared to MGT (e.g.,
Kim et al., 2024; Zanotto and Aroyehun, 2024).

With the advent of Large Language Models
(LLMs), fine-tuned models such as RoBERTa
have achieved state-of-the-art performance in many
tasks (Crothers et al., 2023; Jawahar et al., 2020).
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Thus, different shared tasks such as SemEval and
IberLEF focus on the creation of the best models
for tackling Human/Machine Authorship Attribu-
tion, with LLM-based systems always reaching the
top positions (Wang et al., 2024a; Sarvazyan et al.,
2023). Indeed, classifiers solely based on stylomet-
ric features reach poor accuracy in distinguishing
Human/Machine authorship (Alecakir et al., 2024;
Sharma and Mansuri, 2024), with marginal gains
when combined with LLMs (Sharma and Mansuri,
2024). Models leveraging Transformers encoders
with token-level probabilistic features offer state-
of-the-art detection capabilities (Sarvazyan et al.,
2024; Mitchell et al., 2023). Despite providing liter-
ature on classifiers for Human/Machine authorship
attribution, the focus of our study is to examine
possible characteristics that distinguish HWT and
MGT on different levels of linguistic analysis. Few
studies show that MGT tend to exhibit shorter texts
on average, with lower emotional content and syn-
tactically more complex structures compared to
HWT (Zanotto and Aroyehun, 2024; Guo et al.,
2023). However, they overlook distinctions across
models, decoding strategies, or stylistic variability.
In doing this, we test variability among models and
provide results that possibly point to the tendencies
of recent models to exhibit less variability in their
output, possibly due to the recent practice of train-
ing on machine-generated data (Shumailov et al.,
2023).

3 Data

For our research, we use the RAID dataset (Dugan
et al., 2024), a large-scale corpus comprising over
6.2 million text generations, developed to evaluate
detection methods for outputs from language mod-
els. The training set of the dataset is constructed
from 13,371 human-written documents sampled
across eight diverse domains — Abstracts, Books,
News, Poetry, Recipes, Reddit, Reviews, and
Wikipedia — offering a broad spectrum of human-
written and machine-generated English texts for lin-
guistic analysis. For each document, a correspond-
ing generation prompt is dynamically created using
either “Chat” or “Non-Chat” templates, ensuring
compatibility with the target language model. All
the models use the same specific set of prompts
(refer to Section B in Appendix for examples).
“Chat” models are fine-tuned (often via supervised
fine-tuning and reinforcement learning) on multi-
turn interactions with humans. “Non-Chat” models

are trained for next-token prediction on unstruc-
tured text. Texts are generated using eleven mod-
els, namely GPT-2 XL, GPT-3, GPT-4, ChatGPT,
Mistral-7B, Mistral-7B (Chat), MPT-30B, MPT-
30B (Chat), LLaMA 2 70B (Chat), Cohere, and
Cohere (Chat), under four decoding strategies (i.e.,
greedy decoding and sampling decoding paired
with the presence, where possible, or absence of
repetition penalties). Greedy models are more de-
terministic and repetitive, while sampling models
introduce randomness to make the response more
diverse, whereas the presence of a penalty on rep-
etition avoids excessive looping and redundancy.
Note that we exclude texts generated using adver-
sarial attacks from the original dataset. Hence, the
selected subset of the dataset is designed to reflect
realistic generation scenarios, providing a robust
source for analyzing linguistic similarities and dif-
ferences between machine-generated and human-
written texts. In the end, we consider a total amount
of 467,985 texts.

4 Methodology

We extract a range of linguistic features to analyze
differences between human-written and machine-
generated texts. These features include text length,
sentence length, morphological complexity index,
dependency length, dependency depth, word preva-
lence, type-token ratio, semantic similarity, and
emotionality. For each feature, we compute the
mean and standard error of the mean for human-
written and machine-generated texts and assess
similarity between human and model distributions
using the Mann-Whitney U-test (McKnight and
Najab, 2010). To further explore stylistic variabil-
ity, we apply a style embedding model to extract
a representation of the writing style of each text,
enabling a comparison of style consistency across
human-written and machine-generated texts. We
train a logistic classifier on all extracted linguistic
features to predict text authorship based on lin-
guistic features. Additionally, we assess variabil-
ity across models and domains by computing the
standard deviation of the Euclidean distance for
all linguistic features across HWT and MGT. We
employ Principal Component Analysis (PCA) for
dimensionality reduction using style embeddings
to quantify variability within models and domains.
All codes are available at https://github.com/
Sergio-E-Zanotto/LingAIHUman.
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4.1 Features Collection

We present here in detail the linguistic features
that we calculate for characterizing human-written
(HWT) and machine-generated texts (MGT).

Text Length: Text Length is calculated by
counting the total number of alphanumerical to-
kens in a text using the tokenizer in SpaCy
“en_core_web_sm”. We average the length of all
texts produced by humans or models with their own
decoding and penalty settings. Text length provides
shallow linguistic information on possible differ-
ences between humans and models and between
different generation settings of models.

Sentence Length: Sentence Length is calcu-
lated by counting the total number of alphanu-
merical tokens per sentence, normalized by the
total number of sentences produced by a specific
model or human. This measure allows for a better
fine-grained understanding of possible differences
within text length, whereas two texts could have the
same length, but a different number of sentences
and therefore different sentence lengths.

Morphological Complexity Index: The
Morphological Complexity Index (MCI)
(Brezina and Pallotti, 2019) measures the diversity
of word forms associated with the same lemma,
reflecting the morphological richness of a text. It
is calculated by extracting lemmas and their word
forms using spaCy “en_core_web_sm”, then ran-
domly sampling subsets of five words to com-
pute within-subset variety (how many unique word
forms appear within a subset) and between-subset
diversity (how different two subsets are). A higher
MCT indicates greater morphological complexity,
making it useful for analyzing linguistic richness
and distinguishing between different registers and
writing styles.

Dependency Tree Depth: Dependency Tree
Depth is calculated using the dependency parser
in SpaCy “en_core_web_sm”. It represents hier-
archical syntactic complexity. We calculate the
maximum depth of the dependency tree for each
sentence, from the syntactic head to the lowest leaf
node. A deeper tree suggests more complex sen-
tence constructions (e.g., multiple layers of subor-
dinate clauses), whereas a shallower tree suggests
a simpler structure.

Dependency Length: Dependency Length is
calculated using the dependency parser in SpaCy
“en_core_web_sm”. It represents the distance in
number of tokens between a word (dependent) and

its syntactic head. We considered for this measure
only the intervening words between the head and
the last dependent word. This measure focuses on
the linear arrangement of words. Longer depen-
dency lengths can indicate that related words are
spread farther apart, which reflects more complex
syntactic structures.

Word Prevalence: Word prevalence refers to
the proportion of people who recognize and un-
derstand a given word. It is a measure of lexical
familiarity, capturing how widely known a word
is within a population. To calculate word preva-
lence, we used the English Word Prevalence dataset
(Brysbaert et al., 2019), which provides prevalence
scores based on a large-scale crowdsourcing study
involving over 220,000 participants. Each word’s
prevalence score represents the percentage of re-
spondents who reported knowing the word. We
computed the average prevalence per text by tok-
enizing the text using SpaCy “en_core_web_sm”,
extracting word forms and their lemmas, and
matching them to their prevalence scores from the
dataset. The prevalence scores were then averaged
across all words in the text. This measure is useful
for analyzing word difficulty, lexical accessibility,
and text comprehensibility.

Type-Token Ratio: Type_token_ratio is cal-
culated by counting the number of unique tokens
and dividing it by the total number of tokens per
text. We include this feature to verify if HWT and
MGT tend to have similar lexical diversity in their
texts.

Semantic Similarity: Semantic Distance
is calculated using sentence embeddings derived
from the Sentence Transformer model “paraphrase-
MiniLM-L6-v2” (Reimers and Gurevych, 2019).
We calculate the cosine similarity in pair-wise sen-
tence comparisons and averaged the distance for
each document. This feature describes the seman-
tic content of a text in terms of consistency, as in
Beaty and Johnson (2021).

Emotionality: Emotionality is calculated us-
ing the NRC Emotion Intensity Lexicon (Moham-
mad and Turney, 2013). The lexicon includes 8
different emotions: anger, disgust, fear, sadness,
joy, anticipation, surprise, trust. We consider anger,
fear and sadness as negative emotions, while we
take joy as the only representative positive emotion
in the lexicon following Aroyehun et al. (2023).
We compute emotional load as the proportion of
positive and negative emotion words in a given text.
This feature helps to describe potential differences
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in emotional content between HWT and MGT, as
in Guo et al. (2023).

Style Embeddings: We compute style embed-
dings using the StyleDistance model (Patel et al.,
2025). This model generates style embeddings
with a dimension of 768 such that texts with simi-
lar stylistic features are closer in embedding space,
independent of content. We use these embeddings
to assess whether models and humans exhibit dif-
ferent stylistic variability in their generated texts.
We selected StyleDistance (Patel et al., 2025) be-
cause it is a state-of-the-art model explicitly de-
signed to generate content-independent style em-
beddings. The model has been shown to generalize
well to real-world benchmarks and outperform lead-
ing style representation methods across multiple
downstream tasks. Evaluations on style identifi-
cation, style transfer, and authorship verification
demonstrate that StyleDistance captures stylistic
properties robustly, including under out-of-domain
and out-of-distribution conditions. We use the re-
sulting 768-dimensional embeddings as a latent
representation of linguistic style, providing an addi-
tional analysis alongside our main feature-based ap-
proach. While we do not assume a one-to-one cor-
respondence between embedding dimensions and
linguistic features, these embeddings allow us to
assess whether global stylistic patterns across mod-
els and domains align with those revealed through
explicit linguistic features.

4.2 Models and Domain Variability

For each model and domain, we first compute the
centroid by taking the mean of the values of our
linguistic features. Then, for each individual obser-
vation in that model or domain, we calculate the
Euclidean distance from its feature vector to the
centroid. The overall variability for the models and
domains is quantified as the standard deviation of
these distances. These standard deviations reflect
how spread out the observations are in the feature
space relative to the centroid. Moreover, we apply
dimensionality reduction using PCA to the style
embeddings to match the linguistic feature count
(10 dimensions). We compute variability within do-
mains and models for the style embeddings by cal-
culating their centroids, Euclidean distances, and
standard deviations. Finally, we map models to
their release dates to identify a possible trend in
the evolution of models with respect to our set of
linguistic features and style embeddings.

4.3 Feature Importance via a Logistic
Classifier

We train a binary logistic regression classifier with
a set of linguistic features to characterize via fea-
ture importance analysis human-written texts (la-
bel: 1) from machine-generated texts (label: 0).
To ensure a balanced dataset, we downsample
machine-generated texts, resulting in a training set
of 21,376 documents and a test set of 5,344. Rather
than comparing with existing methods, our focus
is on assessing feature importance to get an overall
picture of the impact of these features in charac-
terizing HWT and MGT. We do not aim to build a
state-of-the-art detection classifier nor to compare
classification results with existing literature.

5 Results

In this section, we present the linguistic features
used to analyze human-written texts (HWT) and
machine-generated texts (MGT). These features
capture differences in text structure, morphological
complexity, syntactic complexity, lexical diversity,
and emotionality. We show the results and fea-
ture importance from the classifier based on the
calculated linguistic features. Figure 1 illustrates
the variation in linguistic features across domains,
showing that MGT exhibit comparatively low vari-
ability. Section E in the Appendix presents further
visualizations and discussions of observed patterns
across domains. These plots highlight the influence
of genre-specific constraints on different domains.
In more creative domains such as poetry and books,
human-written texts tend to be longer and seman-
tically more diverse. Across all domains, human-
written texts consistently show simpler syntactic
structures, while maintaining a relatively stable use
of common words, as measured by Word Preva-
lence. Notably, this measure varies among HWT
between Reddit and news: human-written texts on
Reddit show the highest use of common words,
whereas News articles show the lowest.

Table 1 shows the statistical analysis of our se-
lected set of features for HWT and MGT in the
entire dataset. Bold entries are those models that
are statistically similar to humans for that feature.
Different models and decoding strategies show dif-
ferent behaviours per feature in comparison to hu-
mans. We notice a tendency for chat models and
for sampling strategies to output texts that are more
similar to humans. Thus, we rely on the feature im-
portance of a logistic classifier to extract further ten-
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Figure 1: Multi-panel heatmap displaying log-normalized feature standard deviation across different text domains

and models

dencies. Figure 2 illustrates the feature importance
for the overall dataset. The classifier primarily re-
lies on simpler syntactic structures (e.g., shorter
dependency length and depth) and semantic proper-
ties (e.g., lower word prevalence, reduced semantic
similarity, and a lower type-token ratio) for dis-
tinguishing between human-written and machine-
generated texts. We present an analysis of each
feature in the next section.

5.1 How do HWT and MGT differ in terms of
linguistic features?

Text Length: Table 1 shows the average length of
HWT and MGT in the entire dataset. Previous stud-
ies found HWT to exhibit, on average, longer texts
than MGT (Guo et al., 2023). In our study, this ten-
dency is confirmed with a lower margin, since some
models with the no repetition penalty setting gener-
ate longer texts on average than humans (e.g., gpt2).
However, Section E in the Appendix presents the
feature analysis across domains. Notably, in the Po-
etry and Book domains, HWT are longer and show
greater variability than MGT, likely reflecting the
effect of more “creative” domains with less rigid
genre-specific constraints. This may enable hu-

Dependency Length

Word Prevalence

Dependency Depth

Semantic Similarity

Morphological Complexity Index (Nouns)

Type-Token Ratio

Morphological Complexity Index (Verbs)

Sentence Length

Emotional Load

Text Length

-0.6 -0.4 -0.2
Coefficient

Figure 2: Feature importance for the logistic classifier
across all domains. A positive coefficient means that
as a feature value increases, the model is more likely to
predict human authorship, while a negative coefficient
indicates that higher values make the model less likely
to predict human authorship.

man authors to express individual creativity more
distinctly than models.

Sentence Length: Table 1 shows the average
sentence length of HWT and MGT in the entire
dataset. We do not notice a clear pattern that distin-
guishes humans from different models with decod-
ing strategies or penalty control. Figure 2 shows
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model Text Length ~ Sentence Length  MCI (VERBs) MCI(NOUNs) Word Prevalence Type-Token Ratio  Dependency Depth  Dependency Length ~ Semantic Similarity Emotionality

human 300.61 +2.766 23.53+0.134 8.73+0.011 8.73 +0.006 2.27 +£0.001 0.64 +0.001 6.83+0.017 2.41 +0.006 0.30+0.001  0.38 £0.001
chatgpt_greedy_no 260.35 + 0.950 19.29 £ 0.065 8.60 % 0.009 8.71 +0.006 2.28 £0.001 0.62 +0.001 6.70 £ 0.012 2.27 +0.004 0.38+£0.001  0.37 +0.001
chatgpt_sampling_no 272.73 +0.960 20.00 £ 0.077 8.70 £ 0.008 8.80 % 0.006 2.28 £0.001 0.63 +0.001 6.75 £ 0.011 2.32+0.004 0.37+£0.001  0.38 +0.001
cohere-chat_greedy_no 189.48 +0.743 21.47£0.106  7.91+0.012 8.29 +0.008 2.28 £0.001 0.63 +0.001 6.72+0.013 2.44+0.038 0.33+0.001  0.34 +0.001
cohere-chat_sampling_no  190.51 £0.772 21.58 £0.105 7.92+0.012 8.31 +0.008 2.28 £0.001 0.64 +0.001 6.73+0.014 2.58 +£0.104 0.33+0.001  0.34+0.001
cohere_greedy_no 234.41£0.911 21.29 £0.106 8.30+0.012 8.50 +0.007 2.28 +0.000 0.61 +0.001 6.58 £0.013 2.80+0.144 0.32+0.001  0.36 0.001
cohere_sampling_no 239.54 +0.934 22.11£0.132 8.33+0.012 8.54 +0.007 2.27+0.001 0.63 +0.001 6.64+0.014 2.61+0.076 0.31+0.001  0.37 £0.001
gpt2_greedy_no 364.78 £ 0.678 79.62 £0.939 2.98 +£0.023 5.02 +0.022 2.26 £0.001 0.10 +0.001 16.59 +0.242 5.15+0.107 0.59+0.003  0.17 £0.001
gpt2_greedy_yes 243.15 £ 1.059 25.84 £ 0.407 8.91+0.018 8.3 2 2.29 +0.000 0.67 +£0.002 7.67 £0.090 2.78 £0.054 0.29+£0.001  0.35+0.001
gpt2_sampling_no 314.53 +£0.904 22.45 +£0.107 8.98 +£0.014 8. 8 2.29 +0.000 0.58 +£0.001 6.76 +0.018 2.56 = 0.006 0.29+£0.001  0.37 £0.001
gpt2_sampling_yes 297.14 £ 1.062 26.90 £ 0.085 9.38£0.015 8. 010 2.30 +0.000 0.78 +£0.001 7.37+0.014 2.55 +0.005 0.25+0.001  0.39 £0.001
gpt3_greedy_no 136.86 + 0.659 19.95 +0.182 6.61+0.017 7.34+0.015 2.27+0.001 0.63 +0.001 6.54 +0.035 2.38+0.012 0.33+0.001  0.29 £0.001
gpt3_sampling_no 139.58 +0.672 19.42+£0.112 6.84+0.017 7.50 +£0.014 2.27 +0.001 0.66 +0.001 6.44 +0.023 2.35+0.008 0.32+0.001  0.30 £0.001
gptd_greedy_no 267.44 £0.782 18.21 +£0.048 8.51 +0.009 8.81 +0.004 2.28 +£0.001 0.60 +0.001 6.54+0.015 2.37 +0.005 0.35+0.001  0.37 £0.001
gptd_sampling_no 289.58 +£0.816 19.14 £ 0.038 8.69 = 0.008 8.94 +0.004 2.27+0.001 0.65 +0.001 6.56+0.011 2.44 +0.004 0.35+0.001  0.39 +0.001
Ilama-chat_greedy_no 281.95 +£0.547 23.19£0.143 8.84 +0.007 8.85+0.004 2.29 +0.000 0.57 +£0.001 7.08 +£0.014 2.48 +0.005 0.34+£0.001  0.38 £0.001
Ilama-chat_greedy_yes 268.22 +0.572 23.62+0.151 9.00 +0.007 8.93 +0.004 2.29 +0.000 0.66 +0.001 7.07+0.014 2.41 +0.004 0.31+0.001  0.38 £0.001
Ilama-chat_sampling_no 281.03 +0.547 23.12+0.140 8.83 +0.007 8.85 +0.004 2.28 +0.000 0.58 +0.001 7.05+0.014 2.48 +0.005 0.34+0.001  0.38 +0.001
llama-chat_sampling_yes  265.09 + 0.585 23.61 £0.138 8.97 +0.007 8.96 +0.004 2.29 +0.000 0.69 +0.001 7.09 +0.014 2.40 % 0.005 0.30+0.001  0.39 +0.001
mistral-chat_greedy_no 205.28 +0.634 23.17£0.176 8.03+0.012 8.41 +0.008 2.29 +0.001 0.59 +0.001 7.17 +£0.028 2.52 +0.021 0.38+£0.001  0.34 +0.001
mistral-chat_greedy_yes 200.14 + 0.608 21.79 £0.101 8.53 +0.009 8.65 +0.007 2.30+0.001 0.72 +£0.001 7.04 +0.013 2.36 +0.005 0.33+0.001  0.36 +0.001
mistral-chat_sampling_no  210.89 + 0.663 22.07 £0.099 8.26 +0.010 8.55 +0.007 2.29 +0.001 0.62 +0.001 7.02+0.014 2.49 +0.022 0.37+£0.001  0.36 +0.001
mistral-chat_sampling_yes  199.95 + 0.698 23.51 £0.097 8.43+0.011 8.67 £0.008 2.30+0.001 0.77 +£0.001 7.31+0.014 2.39 +0.005 0.32+0.001  0.37 £0.001
mistral_greedy_no 316.24 £ 0.651 50.66 £0.718 5.20 +0.027 6.73 +0.021 2.26 £0.001 0.24 +0.001 10.94 +£0.158 3.77 £0.088 0.44+0.003  0.25+0.001
mistral_greedy_yes 208.68 +0.823 20.60 £ 0.150 8.86+0.013 8.56 + 0.008 2.29 +£0.001 0.78 +0.001 6.60 +0.031 2.44 +0.030 0.28 £0.001  0.36 +0.001
mistral_sampling_no 286.23 +0.743 21.29 £0.092 8.90+0.011 8.81 +0.006 2.28 +£0.001 0.60 +0.001 6.52+0.012 2.54 +0.005 0.28 £0.001  0.37 £0.001
mistral_sampling_yes 236.98 + 0.869 31.47 £0.140 8.97 +0.011 8.80 = 0.006 2.30 +0.000 0.85 +0.000 7.85+0.018 2.68 +0.006 0.26 £0.001  0.38 £ 0.001
mpt-chat_greedy_no 157.84 +0.623 22.06£0.113 7.58 £0.011 8.12 +0.009 2.29 +0.001 0.66 +0.001 7.09 +£0.021 2.43 +0.007 0.38£0.001  0.33 £0.001
mpt-chat_greedy_yes 165.66 + 0.766 26.20 £0.125 8.01+0.012 8.46 +0.009 2.29 +0.001 0.87 +£0.001 7.44£0.019 2.47+0.011 0.33+0.001  0.36 +0.001
mpt-chat_sampling_no 161.26 +0.648 2242£0.112  7.64+0.011 8.18 = 0.009 2.29+0.001 0.67 +£0.001 7.08 +£0.018 2.42 +0.005 0.37+£0.001  0.34 £0.001
mpt-chat_sampling_yes 180.93 £0.911 31.72£0.194 8.01+0.013 8.47+£0.010 2.28 +£0.001 0.92 +0.001 7.66 +0.018 2.75+0.013 0.31+£0.001  0.37 £0.001
mpt_greedy_no 361.78 £ 0.569 43.87 £ 0.660 5.27 +£0.026 6.73 +0.020 2.26 £0.001 0.20 +0.001 9.46 +0.133 3.52+0.068 0.50£0.002  0.25+0.001
mpt_greedy_yes 192.30 + 0.945 48.82+0.314 8.33+0.016 2.29 +0.001 1.00 £ 0.000 8.89 +0.025 3.55+0.042 0.25+0.001  0.36 0.001
mpt_sampling_no 349.96 +£0.613 21.02 £0.088 9.23+0.011 2.28 +£0.001 0.57 +£0.001 6.53+0.012 2.48 +0.008 0.27£0.001  0.38 £ 0.001
mpt_sampling_yes 245.68 +1.194 8.49 +0.021 2.28 +£0.001 1.00 £ 0.000 7.79 +£0.025 3.53+0.025 0.22+0.001  0.36 +0.001

Table 1: Average values * standard errors (SE) of calculated linguistic features per model in the dataset. The
pattern of each model name is: model + decoding strategy + yes/no penalty on repetitions. Models corresponding
to non-bold entries are statistically different from human writing in the respective feature. Bold entries are not
statistically different based on the Mann-Whitney U-test (p > 0.05), indicating that the feature distribution in the
machine-generated texts is not distinguishable from human-written texts.

that the classifier uses sentence length as a distin-
guishing feature, with a tendency for HWT to be
longer than those of MGT.

Morphological Complexity Index (MCI): Ta-
ble 1 shows the MCI for nouns and the MCI for
verbs across models in the dataset. Again, we no-
tice that human-written texts tend to be somewhat
in the middle between models with different decod-
ing strategies and the presence of penalties (e.g.,
mpt). However, HWT rather tend to have a higher
inflectional diversity for both verbs and nouns than
MGT (See Figure 2).

Dependency Tree Depth: Table 1 shows the
average syntactical dependency depth per model
across the entire dataset. We notice that HWT
tend to score lower in dependency depth than older
models, while recent models such as GPT-4 show a
more human-like amount of depth in the syntactic
tree. This evolution is clear when compared to
other studies in which the syntactic depth of HWT
was lower than all the other models (Zanotto and
Aroyehun, 2024).

Dependency Length: To further investigate the
syntactic characteristics of human-written texts and
machine-generated texts, Table 1 shows the aver-
age dependency length per model across the entire
dataset and complements the dependency depth
results. Indeed, HWT score lower than older mod-

els like GPT-2 in dependency length and depth,
while newer models produce similarly short or even
shorter dependencies.

Word Prevalence: Table 1 shows the aver-
age word prevalence per model across the dataset.
While HWT score slightly lower than most models,
the differences are minimal. Both HWT and MGT
exceed a two z-score threshold, indicating that 98%
of the population is familiar with the words used.

Type-Token Ratio: Table 1 depicts the aver-
age type-token ratio per model across the dataset.
Human-written texts maintain a balanced ratio of
around 0.6, indicating a balanced mix of unique
words and repetitions. Models with a repetition
penalty show higher type-token ratios than those
without (e.g., mistral-chat).

Semantic Similarity: Table 1 shows that human-
written texts (HWT) exhibit a lower mean similar-
ity than most models, indicating greater semantic
diversity in human writing (See Figure 14 in Ap-
pendix). Repetition penalties help reduce redun-
dancy, while sampling generates more diverse con-
tent than greedy decoding, as demonstrated with
GPT-2.

Emotionality: In Table 1, we can notice how
HWT score high in average emotionality in the
dataset, but it does not score the highest, unlike
what previous studies found (Guo et al., 2023).
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Indeed, differences between models seem to be
driven by the decoding strategy and the presence
of the penalty, where the majority of models with a
sampling decoding strategy and a penalty on rep-
etition score higher than the others (see Figure 14
in the Appendix). Looking at possible differences
between emotional load for positive and negative
emotions, Figure 10 in the Appendix shows how
there are some exceptions where HWT do not con-
sistently score higher on negative emotions than
MGT, contrary to previous findings (Guo et al.,
2023).

5.2 Domain Variability

Figure 3 shows the variability of linguistic features
across domains. The results highlight variations
in the linguistic feature space, reflecting the well-
established influence of genre-specific constraints
on linguistic variability (Biber and Conrad, 2019).
Indeed, more creative domains like poetry show
more variability than less creative domains such as
abstracts. Figure 11 in Appendix shows the vari-
ability based on style embeddings across domains.
Style embeddings capture less variability in poetry
than in other domains. To better understand the
linguistic features potentially driving these differ-
ences, an avenue for future work will be to extract
the set of individual features used to train the style
embeddings model and identify which ones are re-
sponsible for the different patterns. This alternative
approach is beyond the scope of the current study.

Moreover, we disentangle humans and models
to understand if they behave differently in terms
of variability for both our linguistic features and
for the style embeddings. Figure 4 shows the do-
main variability of HWT in the linguistic feature
space, while Figure 5 shows the domain variability
of MGT in the linguistic feature space. HWT ex-
hibit more variability than MGT across domains, ar-
guably as they are more sensible to the well-known
effect of different genre-specific constraints (Biber
and Conrad, 2019). Figure 4 shows how poetry
is the most variable domain, arguably as the most
“creative” domain of the dataset. However, the do-
main variability of HWT and MGT appears more
similar when using the style embeddings. Figure
12 in Appendix shows how Wiki is the most vari-
able domain, in contrast to the linguistic features
analysis. However, the variation in terms of stan-
dard deviation is comparable with the results based
on the linguistic features. Figure 13 in Appendix
shows poetry to be the least variable domain, and

exhibits marginally lower variability across several
domains, for example Reddit or Abstracts. We
argue that these differences stem from the differ-
ent features that are considered for the analyses:
explicit linguistic features vs. latent style embed-
ding representations. Further investigation would
be needed to understand which dimensions can be
attributed to the different observations.
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news
abstracts

recipes

wiki
0 25 50 75 100 125
Variability

Figure 3: Domain variability with linguistic features in
the entire dataset
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0 200 400 600
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Figure 4: Domain variability with linguistic features in
the entire dataset for humans

5.3 Homogenization of Model Outputs

Figure 6 presents the variability of linguistic fea-
tures across different models and their release dates.
The results indicate a trend where MGT exhibit
lower linguistic variability compared to HWT and
score increasingly similarly to one another, sug-
gesting a homogenization of linguistic styles of
models for our set of features. Despite differences
in the overall magnitude of variability, Figure 7
shows that machine-generated texts exhibit similar
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Figure 5: Domain variability with linguistic features in
the entire dataset for non-humans
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Figure 6: Model Variability with linguistic features in
the entire dataset across different release years

variability in style embeddings both among them-
selves and in comparison to human-written texts.
However, the chat models tend to exhibit variability
comparable to HWT and higher than their non-chat
versions, as expected given the different design of
the models.

6 Discussion

Our analysis of linguistic features highlights dif-
ferent tendencies between human-written (HWT)
and machine-generated texts (MGT) in the RAID
dataset. Our feature importance analysis shows
that human-written texts tend to have less complex
syntactic structures and more varied lexical and se-
mantic content. The tendency to produce less com-
plex syntactical structures is in line with previous
studies (Mufioz-Ortiz et al., 2024). Our variability
analysis shows that models tend to produce outputs
that are very similar between themselves and are
less varied than humans. We attribute this result to
the importance of individual style in human-written
texts. Nevertheless, models that differ in decoding
strategies and repetition penalties produce outputs
that reflect their intended design. Moreover, the
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Figure 7: Model Variability with style embeddings in
the entire dataset across different release years

domain variability analysis suggests an influence
of linguistic constraints in less flexible and less cre-
ative domains such as abstracts (Biber and Conrad,
2019). Notably, newer models tend to be similar
in terms of variability between themselves for our
linguistic features, possibly pointing to the phe-
nomenon of “model collapse” (Shumailov et al.,
2023), where models tend to exhibit low variance
due to training on generated data. Analyses based
on style embeddings reveal differing levels of vari-
ability between chat models and non-chat models,
with the former exhibiting variability comparable
to that of humans, while the latter show lower vari-
ability. These results can be attributed to the effect
of reinforcement learning from human feedback,
which is used to train chat models.

7 Conclusion and Future Work

In our analysis of linguistic features of human-
written (HWT) and machine-generated texts
(MGT), we show different linguistic tendencies of
human-written texts and how recent models tend to
generate texts with linguistic characteristics similar
to human-written texts, but exhibit a lower variabil-
ity within themselves based on our set of features.
Future work should explore diverse corpora with
varying characteristics to verify these differences
across different domains and languages. Expand-
ing the range of linguistic features, especially those
related to content such as the use of metaphors or
figurative language, could provide deeper insights.
Moreover, our setting of Human/Machine author-
ship attribution should be expanded from a binary
human/non-human setting to a multi-class classi-
fication, where detection models have to attribute
authorship to humans and to different LLMs.
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8 Limitations

One limitation of our study lies in its generalizabil-
ity. We rely on a dataset covering eight domains
in the English language. Thus, the applicability of
our findings is limited when considering broader
linguistic variations across domains and languages.
The eight domains covered in our dataset provide
valuable insights, but they may not be representa-
tive of all possible linguistic contexts characteristic
of all textual domains. Furthermore, texts in vari-
ous languages may have unique linguistic features
that limit the relevance of our results to non-English
contexts.

While this study identifies and measures a range
of linguistic features relevant for comparing human-
and machine-generated texts, it does not examine
how interactions between these features might pro-
vide additional insights. This represents a notable
limitation, as individual features may not only op-
erate independently but also in combination. How-
ever, analyzing such interactions poses method-
ological challenges due to the large number of
possible feature combinations, especially in the
absence of prior hypotheses or a theoretical frame-
work indicating which interactions are likely to be
salient.

Our analysis focuses on a set of LLMs that may
already have been superseded by more advanced
versions due to the rapid advancements in the field.
This poses a challenge for the temporal validity of
our findings as future LLMs could exhibit different
linguistic patterns.

The RAID dataset does not include metadata
identifying different human authors of the sampled
texts. As aresult, we are unable to analyze potential
stylistic variations among human writers.

Extending this study to multiple languages,
datasets, and model versions could potentially
enhance the applicability of our findings across
broader contexts and evolving technologies. How-
ever, such an extension would require significant
data curation efforts and depend on the availability
of multilingual linguistic pipelines capable of char-
acterizing texts at scale. Nevertheless, this study
and our findings can serve as a foundation for fur-
ther exploration of LLM outputs.

9 Ethical Considerations

In developing our approach, we acknowledge the
potential for unintended bias, particularly against
non-native English speakers. Some of the linguistic

features we analyze may capture characteristics in
texts produced by English language learners. This
overlap raises important ethical questions. It is
crucial to emphasize that our primary objective is
to advance the theoretical understanding of lan-
guage patterns in texts generated by humans and
LLMs, rather than to create tools for real-world ap-
plications. The features and techniques described
in this paper are intended for research purposes
and should not be directly applied in practical sys-
tems without careful consideration of their broader
implications. Any potential real-world applica-
tion would require extensive additional research
and safeguards. We strongly caution against using
these features or similar approaches in high-stakes
decision-making processes or in any context where
they could disadvantage individuals based on their
language competency.
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A Classifier results

This section presents the results from the logistic
classifier and the support vector machine (SVM)
trained on a set of linguistic features. We also
provide a qualitative error analysis for the logistic
classifier, illustrating examples of texts that were
misclassified.

A.1 Linguistic features Classifier

We use a set of linguistic features we calculated to
build a logistic classifier for assessing feature im-
portance in distinguishing HWT and MGT. Table
2 provides the details of the overall results. The
classifier achieves an accuracy of 0.61 across all
domains. While we do not aim to compare our re-
sults against specific baselines or prior studies, it is
worth noting that our accuracy scores are consistent
with findings from related work on human/machine
authorship attribution using classifiers based solely
on linguistic features, which typically report perfor-
mance in the 0.5-0.6 range (Alecakir et al., 2024;
Sharma and Mansuri, 2024).

Metric Non-Human Human
Accuracy 0.61

Precision 0.62 0.60
Recall 0.56 0.65
F1-score 0.59 0.62

Table 2: Classification performance of the logistic re-
gression classifier based on linguistic features

In order to demonstrate the robustness of these
results, we build a second classifier using an SVM
on our set of linguistic features. Table 3 shows the
results from the SVM classifier in distinguishing
HWT and MGT. The classifier achieves an accu-
racy of 0.60 across all domains, in line with the
results from the logistic classifier. Moreover, Fig-
ure 8 shows the results from the feature importance
analysis of the SVM model. The pattern of the
feature importance analysis for the SVM classifier

is very similar to that of the logistic classifier (see
Figure 2 in Section 5). Particularly, all features
maintain the same direction, while the coefficients
are slightly lower for the SVM classifier.

Metric Non-Human Human
Accuracy 0.60
Precision 0.62 0.59
Recall 0.55 0.66
F1-score 0.58 0.62

Table 3: Classification performance of the Support Vec-
tor Machine classifier using linguistic features
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Dependency Depth
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Type-Token Ratio
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Sentence Length
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Figure 8: Feature importance for the SVM classifier
across all domains. A positive coefficient means that as
the feature value increases, the model is more likely to
predict human authorship, while a negative coefficient
indicates that higher values make the model less likely
to predict human authorship.

A.2 Qualitative Error Analysis

We present a qualitative error analysis of the lo-
gistic classifier by examining misclassified texts.
Figure 9 displays the confusion matrix, while
Table 6 provides three examples of false posi-
tives (machine-generated texts predicted as human-
written texts) and false negatives (HWT predicted
as MGT). To explore whether some specific fea-
tures systematically drive these errors, we use Co-
hen’s d (Cohen, 2013) to measure the standard-
ized mean difference between misclassified and
correctly classified cases. We focus on false pos-
itives (FP) versus true negatives (TN) and false
negatives (FN) versus true positives (TP). This al-
lows us to identify the features that likely drive
misclassification.

Table 4 shows that false positives are primarily
associated with texts that are longer and exhibit

22865



greater morphological complexity (both verbs and
nouns) compared to true negatives. Thus, when
machine-generated texts are long and structurally
rich, the classifier tends to mistake them for HW'T.

In contrast, Table 5 shows that false negatives of-
ten involve human-written texts that are shorter and
morphologically simpler than true positives. Ad-
ditionally, misclassified HWT tend to show higher
semantic similarity, as human-written texts tend
to show greater semantic diversity than MGT, ac-
cording to our feature importance analysis of the
logistic regression classifier.

Future work could investigate whether such
cases are also challenging for human annotators,
potentially leading to similar misclassification.

True
Non-human

Human

Human

Non-Human
Predicted

Figure 9: Confusion matrix showing classification per-
formance of the logistic regresson classifier for human
vs. machine-generated texts

Feature Cohen’s d
Text Length 1.20
Morph. Complexity (Verbs) 0.88
Morph. Complexity (Nouns) 0.81
Semantic Similarity -0.66
Emotional Load 0.52
Type-Token Ratio -0.45
Dependency Depth -0.22
Sentence Length -0.20
Dependency Length -0.18
Word Prevalence -0.16

Table 4: Cohen’s d for linguistic features comparing
false positives and true negatives. Positive values indi-
cate features that are more salient in machine-generated
texts (MGT) that were misclassified as human-written
(HWT).

Feature Cohen’s d
Morph. Complexity (Verbs) -1.07
Semantic Similarity 0.92
Morph. Complexity (Nouns) -0.75
Emotional Load -0.61
Text Length -0.58
Type—Token Ratio 0.57
Dependency Length 0.46
Dependency Depth 0.44
Sentence Length 0.28
Word Prevalence 0.15

Table 5: Cohen’s d for linguistic features comparing
false negatives and true positives. Positive values indi-
cate features that are more salient in HWT misclassified
as MGT.
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False Positives (machine-generated predicted as human-written texts)

Hey fellow Redditors,

I’m on day 35 of my CT (camel trail) and I’m starting to feel a little stuck. I’ve been following the
same routine for weeks now, and I can’t help but wonder if I’'m clinging to my nightmare because it’s
all I know at this point. [...].

In this paper, we explore the connection between Brunet-Derrida particle systems, free boundary
problems, and Wiener-Hopf equations. We first introduce the concept of Brunet-Derrida particle
systems, which are stochastic systems that describe the evolution of a collection of particles that interact
with each other through a non-local competition mechanism. [...].

The trees are all so naked, and shivering with cold! They clatter over one another like drunken men
when there’s wind; and the snow lies hard on their arms, as if it were trying to get them into bed—trying
too hard, for they don’t move an inch in reply... .. [...].

False Negatives (human-written predicted as machine-generated texts)

David Innes and his captive, a member of the reptilian Mahar master race of the interior world of
Pellucidar, return from the surface world in the Iron Mole invented by his friend and companion in
adventure Abner Perry. Emerging in Pellucidar at an unknown location, David frees his captive. [...].

The Children of Zion, published in January 1998, is considered as a documentary that was based on a
collection of fragments of records compiled in Palestine in 1943 by the Eastern Center for Information,
a Polish government group. [...].

Newspaper columnist Mitch Albom recounts time spent with his 78-year-old sociology professor,
Morrie Schwartz, at Brandeis University, who was dying from Lou Gehrig’s disease (ALS). Albom, a
former student of Schwartz, had not corresponded with him since attending his college classes 16 years
earlier. [...].

Table 6: Examples of misclassified texts by the logistic regression classifier
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B Prompt Examples

In this section, we present examples of prompts
from the RAID dataset used to generate MGT. All
models rely on the same specific set of prompts.
For instance:

e Write the abstract for the academic
paper titled “Model Theory for a
Compact Cardinal.”

e Write a recipe for “Anise Toasts

Recipe.”

C Positive and Negative Emotions

In Figure 10, we show the differences in positive
and negative emotion intensities of different models
with their decoding strategy and the presence or not
of a penalty on repetition. Indeed, HWT score high
on negative emotion intensity, while more recent
models tend to use fewer negative emotion words,
arguably due to their alignment with human and/or
machine feedback.

llama-chat_sampling_yes
llama-chat_greedy_yes.
gptd_sampling_no
mpt_sampling_no

Emotion Type
== Negative Emotion
W Positive Emotion
9pt2_sampling_yes
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Figure 10: Negative and Positive Emotion Intensity per
Model. This figure presents the emotional intensity
across humans and different models.

D Domain variability with style
embeddings

Figure 11 shows the variability within domains for
HWT and MGT based on style embeddings for the
entire datasets. Moreover, Figure 12 and Figure
13 disentangle the variability respectively of HWT
and MGT. We argue that differences in variability
between linguistic features and style embeddings
stem from the different representations that are con-
sidered for the analyses. Future research should
explore potential explanations for the differing vari-
ability rankings across text domains.
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Figure 11: Domain variability with style embeddings in
the entire dataset
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Figure 12: Domain variability with style embeddings in
the entire dataset for humans

E Linguistic Features Visualization

Figure 14 shows the mean values of the linguis-
tic features (standard deviation in Figure 1) across
domains for each model in the dataset. The follow-
ing linguistic features are considered: Text Length,
Sentence Length, Morphological Complexity Index
(MCI) for nouns, Morphological Complexity Index
(MCI) for verbs, dependency depth, dependency
length, word prevalence, type-token ratio, semantic
similarity and emotionality. Notably, we observe
a difference in variability between domains, espe-
cially when dealing with more “creative” domains
such as Poetry and Books (See Figures 14 and 1).
Especially, human-written texts show greater differ-
ences in average text length within these domains.

Poetry Domain In the poetry domain, on aggre-
gate, HWT score highest in average text length
and emotionality, while maintaining fairly simpler
syntactic structures than most models. We can also
notice that human-written texts tend to score higher
in morphological complexity for verbs and nouns.
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Figure 13: Domain variability with style embeddings in
the entire dataset for non-humans

Books Domain In the books domain, human-
written texts score highest in average text length.
However, HWT score lower on emotionality than
some models, and they employ more complex syn-
tactic structures than in Poetry. Nevertheless, we
notice that HWT tend to score high in morphologi-
cal complexity for verbs and nouns in this domain
as well.

Abstracts Domain For the abstracts domain, the
patterns are different in comparison with poetry
and books domains. Human-written texts score
lower on average text length and emotionality than
the other two domains. We can notice how recent
models (e.g., GPT4) behave extremely more con-
sistently and more similar to HWT than their older
models (e.g., GPT2) in text length, sentence length,
syntactic depth and length, and also in semantic
similarity.

Recipes Domain In our set of linguistic features,
the recipes domain shows that human-written texts
score lowest in dependency length, underlying the
tendency to employ simpler syntactic structures
than MGT. This tendency involves semantic simi-
larity as well, where HWT appear extremely more
consistent in the semantic content than in previ-
ously discussed domains.

Reddit Domain In the Reddit domain, HWT
score lower on morphological complexity than in
previously discussed domains. This could point to
differences in language register (e.g., less formal vs
more formal) between a user-based domain with no
genre-specific constraints and more strict domains
(Biber and Conrad, 2019). Again, newer models
show more similar patterns to human-written texts
than their older versions, especially in semantic
similarity (e.g., GPT).

Reviews Domain The reviews domain shows
that human-written texts employ a slightly higher
use of frequently known words than in the other
discussed domains, as we can see in Figure 14.

Wikipedia Domain In the Wikipedia domain,
HWT score very low in average text length, as well
as in morphological complexity and emotionality,
in comparison with the other discussed domains.
Clearly, we can observe the effect of very rigid
genre-specific constraints and how humans have to
strictly abide by them.

News Domain The news domain shows that
HWT score high in average text length, morpho-
logical complexity, and fairly high in emotionality
in comparison to most models. Unlike in other
domains, human-written texts also score lowest in
word prevalence, indicating the use of less common
words, and lower in semantic similarity, suggesting
a more varied semantic content.

F Experimental Setup Details

All experiments were carried out with an NVIDIA
A100 GPU (40GB memory) and standard CPU
resources. We did not train or fine-tune any models;
instead, we relied on pre-trained encoders purely
for inference:

* StyleDistance, based on RoOBERTa-base with
approximately 125M parameters.

* paraphrase-MiniLM-L6-v2, a MiniLM en-
coder with approximately 22M parameters.

The calculation of linguistic features (e.g., syn-
tactic depth, sentence length, morphological com-
plexity, emotion intensity) was performed using
spaCy (en_core_web_sm) and other lexicon-based
methods on CPU. Only the transformer-based com-
ponents (style embeddings and semantic similarity)
were executed on the GPU, requiring about 3 GPU
hours. The overall computational budget was there-
fore modest, with CPU-bound feature extraction
accounting for most of the runtime.
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Figure 14: Multi-panel heatmap displaying log-normalized feature values across different text domains and models
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