
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22577–22593
November 4-9, 2025 ©2025 Association for Computational Linguistics

From Understanding to Generation: An Efficient Shortcut for Evaluating
Language Models

Viktor Hangya and Fabian Küch and Darina Gold
Fraunhofer IIS

{first.last}@iis.fraunhofer.de

Abstract

Iterative evaluation of LLMs during training is
essential to ensure expected capability develop-
ment, but can be time- and compute-intensive.
While NLU tasks, where the model selects from
fixed answer choices, are cheap to evaluate,
essential capabilities like reasoning and code
generation rely on the more time-consuming
NLG (token-by-token generation) format. In
this work, our aim is to decrease the compu-
tational burden of NLG benchmarks in order
to enable monitoring crucial LLM capabilities
during model training. We reformulate gener-
ative tasks into computationally cheaper NLU
alternatives. We test the performance corre-
lation between the original and reformulated
tasks using 8 LMs of various sizes and 4 capa-
bilities: mathematical reasoning, code gener-
ation, factual knowledge and reading compre-
hension. Our results show a strong correlation
between task formats, supporting capability as-
sessment via cheaper alternatives and achieving
over 35× average reduction in evaluation time.
Our project is available at: https://github.
com/Fraunhofer-IIS/EvalShortcut

1 Introduction

The increasing adoption of large language models
(LLMs) has brought a substantial rise in computa-
tional demands—not only for training, but also for
evaluating the performance of new models. Numer-
ous works have explored methods for selecting the
best quality training datasets and hyper-parameters
based on smaller proxy models, evaluating them
multiple times throughout training (Li et al., 2024;
Grattafiori et al., 2024; Magnusson et al., 2025).
However, due to model capability and compute
limitations they rely on a few benchmarks which
support measuring a limited set of model capabili-
ties (Penedo et al., 2024; Gu et al., 2025).

Evaluation benchmarks can be grouped into two
types: 1) Natural Language Generation (NLG)
which requires auto-regressive sampling from the

model, and 2) Natural Language Understanding
(NLU) which involves calculating the probability of
given answer options (Guo et al., 2023; Biderman
et al., 2024). Assessing a model’s NLG abilities
is costly, especially when done repeatedly during
model training and selection, and thus is often ne-
glected (Zhou et al., 2022). Yet, many key capabil-
ities, e.g. reasoning and code generation, are only
measurable via NLG benchmarks.

Here, we argue for the importance of monitoring
the trajectory of LLM capabilities throughout the
(pre-)training process, which is currently reliant on
expensive NLG benchmarks.

Our goal is to reduce compute requirements for
such benchmarks in order to enable a more fre-
quent use. Towards this end, we propose reformu-
lating expensive NLG benchmarks as less-resource
intensive NLU tasks. Specifically, we reformu-
late it to multiple choice (MC) tasks, where the
model has to select the correct answer among an-
swer options, and log-likelihood (LL) tasks where
the model calculates the LL of the correct answer.
The cost-reduction of MC and LL over then gen-
erative task is shown in Table 1. The generative
setup completes the response token-by-token. The
MC setup, however, evaluates the model’s ability
to select the appropriate response from a set of al-
ternatives based on their likelihoods, while the LL
approach scores only the correct answer. Despite
differing formats, all methods aim to assess the
model’s response to the same underlying task.

Since many NLG benchmarks do not contain
incorrect answer options to questions, we create
such options using either LLMs or simply picking
answers of other samples in a given benchmark
randomly. In contrast, LL is simpler to apply, as it
evaluates the likelihood assigned by the model to a
given correct answer without the need of an over-
head, i.e., the computation of alternative answers.
As such, it offers further reductions in evaluation
costs, however, at the expense of evaluation depth,

22577

https://github.com/Fraunhofer-IIS/EvalShortcut
https://github.com/Fraunhofer-IIS/EvalShortcut

Step <Q> := What is gravity? Step output Final output
L

L
1. <Q> Downward force on objects. → log(0.9) Log-likelihood of correct answer: log(0.9)

M
C 1. <Q> Downward force on objects. → log(0.9)

Selected answer index: 1.
2. <Q> What makes the sun rise. → log(0.1)

N
L

G

1. <Q> → Downward

Generated answer: Downward force on objects.
2. <Q> Downward → force
3. <Q> Downward force → on
4. <Q> Downward force on → objects.
5. <Q> Downward force on objects. → [EOS]

Table 1: Comparison of answers to the same question in the natural language understanding variants (NLU)
—loglikelihood (LL) and multiple-choice (MC)—and natural language generation (NLG) settings. LL scores the
correct answer to the question (Q), MC selects the most probable answer option, while NLG generates the answer
token-by-token. The column step indicates the number of forward model passes needed for the answer calculation.
The example and outputs (e.g., log values) are fictional and serve solely to illustrate the NLU–NLG computation
differences.

since high-probability incorrect answers are not
considered. MC and LL evaluation allows quick
comparison of model checkpoints and low-cost
training monitoring. Importantly, our goal is not to
replace the NLG format, but to offer a cheaper al-
ternative for monitoring model capabilities during
pre-training.

To test this hypothesis, we conduct a study in-
volving a diverse set of benchmarks representing
various domains. We analyze the correlation of 8
open source model performances between the NLG
and NLU task formulations, as well as the correla-
tion of model rankings. To our knowledge, this is
the first study to systematically investigate this re-
lationship. We find a strong correlation, indicating
the ability to monitor the performance trajectory
when training a single model, but also the ability to
compare the model in question to baseline LLMs
using only the NLU formulated benchmarks. Addi-
tionally, we conduct ablation studies, e.g., pairing
NLG and NLU benchmarks of the same domain
but different sources, finding promising results in
these settings, too. On top of the correlation ex-
periments, we show that besides monitoring the
model development trajectory using NLU tasks, it
is also possible to predict the NLG performance
of a model by fitting a linear regressor and only
occasional NLG evaluations. This optional step
balances precise NLG performance monitoring and
compute resource needs.
Our main contributions are threefold:
• we propose and apply a methodology for reformu-

lating NLG tasks as NLU tasks for more efficient
benchmark evaluation and broader capability as-
sessment during model selection and training

• we show strong correlation between task formu-

lations and analyze various aspects; a very impor-
tant one being that by reformulating NLG tasks
we achieve a compute time reduction of 35x on
average, reducing runtime from nearly 2 hours to
under a minute in the most extreme case.

• we publicly release our evaluation framework.

2 Related Work

This section is divided into three subsections, each
addressing key components of this work. In Sec-
tion 2.1, we discuss evaluation costs and efforts to
reduce them. In Section 2.2, we review studies on
the relation between NLG and NLU evaluation. In
Section 2.3, we present knowledge categories used
to study LLM generalizability.

2.1 Evaluation costs
Various benchmarks, including NLG with many
samples, have been proposed to evaluate LLMs,
but evaluating large models on them can be costly.
For example, Liang et al. (2023) introduce the
HELM benchmark which could cost over 4K GPU
hours to evaluate a single LLM, not to mention
monitoring the performance over the course of
the training process (Biderman et al., 2023; Liu
et al., 2024). Recent studies have proposed vari-
ous strategies to address reducing the evaluation
costs. While Perlitz et al. (2024) and Polo et al.
(2024) reduce the number of evaluation items using
subsampling, Kuramoto and Suzuki (2025) predict
fine-tuning outcomes on large datasets using re-
sults from smaller-scale experiments. Compressed
benchmarks may reduce evaluation diversity and
underestimate model limitations by missing out on
key evaluation samples. While Polo et al. (2024)
retain key samples via an information-theoretic ap-

22578

proach, their approach requires sample-level cor-
rectness results of a set of LLMs making its appli-
cation difficult. In contrast, we reformulate NLG
tasks to NLU independently from the target LLM,
reducing costs while retaining all samples.

2.2 Linking NLG and NLU
Several studies attempt to use NLU tasks to as-
sess NLG and reduce costs (Zhang et al., 2024;
Khashabi et al., 2020; Li et al., 2023; Myrzakhan
et al., 2024), but mainly target single tasks, such
as mathematical reasoning (Zhang et al., 2024) or
question answering (QA) (Khashabi et al., 2020).

Most similar to our work, Zhang et al. (2024)
compare MC and NLG versions of math and cod-
ing benchmarks, showing evaluation time can be
reduced by up to 30×. Our work however, differs in
multiple aspects, such as we explore both MC and
LL reformulations, we explore and use multiple
approaches to build answer options for MC tasks
including a lightweight method which does not rely
on LLM-based generation, we test our approach on
a diverse set of capabilities and present the first sys-
tematic analysis of NLG–MC benchmark pairings
showing consistently positive correlation. Further-
more, we show positive correlation on all of them in
contrast to Zhang et al. (2024) who showed mixed
results.

Khashabi et al. (2020) introduce a single QA
model that performs well across multiple formats,
including MC and generative. Their study shows
that knowledge learned from MC tasks transfers
effectively to generative QA. However, their ap-
proach requires model adaptations, while our ap-
proach requires reformulating a given benchmark
once which is then applicable to any LLM.

Li et al. (2023) propose a method to create
MC benchmarks for evaluating multimodal LLMs.
They do so by prompting language models with
visual content extracted from images or videos to
generate one question and four answer options (one
correct), effectively converting open-ended under-
standing into a structured MC format. We follow
a similar approach, to generate distractor answer
options in our MC reformulations.

Finally, Myrzakhan et al. (2024) convert MC
benchmarks into open-ended formats to better as-
sess generative abilities and reduce biases such as
guessing. They find that open-style questions score
lower, suggesting MC questions may overestimate
model ability. While Myrzakhan et al. (2024) did
not report the correlation between MC and NLG

formats, we computed Pearson correlation showing
a positive relation between task formulations.

2.3 Task categorization for LLM evaluation

As noted, prior NLG–NLU studies focus on spe-
cific tasks; we aim to generalize across multiple
capabilities. Wang et al. (2024b) evaluate LLMs’
reliability in MC questions across knowledge, lan-
guage, understanding, and reasoning tasks. Wang
et al. (2024a) break down evaluation in four differ-
ent neural capabilities: linguistic knowledge, for-
mal knowledge, world modeling, and social mod-
eling. In this work we consider four LLM capabil-
ities: mathematical reasoning, factual knowledge,
reading comprehension and code generation.

3 Experiment Setup

In this section, we describe our experiment setup,
its components and motivate our choices. This pa-
per investigates the hypothesis that LL and MC
formulations can serve as effective proxies for as-
sessing generative model capability development
over the course of training, while significantly re-
ducing the computational cost of evaluation. To
evaluate this hypothesis, we pair different formula-
tions of the same or related benchmarks, analyze
the correlation between the NLG and NLU ver-
sions, and compare their evaluation runtimes.

3.1 Evaluation variants

We use three different variants of each benchmark:
the original NLG version, the MC version and the
LL version. In the NLG variant, the model receives
a question and must produce an answer as free text.
In the LL and MC variants, it is given the question
along with either a single correct answer option
(LL) or multiple (a correct and multiple incorrect)
answer options (MC) and calculates the probabili-
ties assigned to them. In Table 1, we illustrate these
settings.

To judge the accuracy of the outputs differ-
ent metrics are considered depending on the task.
For the generative formulation, exact (token-by-
token) or proximity (e.g. BLEU) matching with
the gold answer are used. For the MC formu-
lation, the model is considered to have selected
the correct answer if it was the one with the high-
est probability. Since LL only scores the correct
answers, we calculate the average log-probability
(meani=1..N logP̂ (yi|xi)1) of correct answers (yi)

1We take (character) length normalized values:

22579

of questions (xi) in a given benchmark and we ex-
pect that it correlates with quality of the model’s
capability without calculating an exact correctness
value. We detail calculating correlation in Sec-
tion 3.2.

As shown in Equation 1, log-likelihood evaluates
the probability of a fixed target sequence in a single
forward step, multiple choice evaluates the given
(K) candidate sequences in one forward step each,
while generative decoding generates one token in
each forward step over T time steps (maximum
output tokens). For further details about the exact
calculations we refer to Gao et al. (2024).

Compute Complexity =





O(1) (LL)
O(K) (MC)
O(T) (NLG)

where K ≪ T

(1)

3.2 Metrics

To evaluate how indicative NLU task formulations
are on the generative performance, we use both
intra- and cross-model metrics.

The goal of intra-model metrics is to measure
how similarly the performance of NLU and NLG
versions of the same task change over the training
course of a model. See Figure 1 for a visualiza-
tion. We calculate Pearson correlation between the
NLU and NLG results of the intermediate model
checkpoints over the course of training. We define
Pmacro and Pmicro as macro- and micro-averaged
Pearson correlation across models respectively, i.e.,
calculating the correlation values for each of our 8
considered models separately followed by averag-
ing the model-wise correlation values, and calculat-
ing the correlation using data points of all models
jointly. High correlation values indicate that im-
provements or decrease of model performance on
an NLU task during the training process means per-
formance change in the same direction in the NLG
format as well.

In contrast, the goal of cross-model metrics is
to measure the consistency of the ranking of our
8 models in the different task formulations. For
this, we take the model rankings based on averaged
performance over all intermediate checkpoints per
model and calculate Spearman correlation. High
coefficients indicate the possibility of comparing
the model of interest to other models using the
NLU task formulation instead of running the costly
NLG version.

logP̂ (yi|xi) = logP (yi|xi)/|yi|.

3.3 Benchmarks
To show the broad applicability of our approach, we
use four distinct knowledge domains. This section
discusses existing benchmarks; benchmark refor-
mulations are detailed in Section 3.4. Examples
for all benchmarks discussed herein as well as their
extensions are shown in Table 9 in the appendix.

NLG Benchmarks We leverage GSM8K (Cobbe
et al., 2021) for mathematical reasoning, Hu-
manEvalPack (Muennighoff et al., 2023)2 for code
generation (referenced as HumanEval further on),
TriviaQA (Joshi et al., 2017) for factual knowledge
and SQuAD 2.03 (Rajpurkar et al., 2018) for read-
ing comprehension.

NLU Benchmarks We discuss off-the-shelf
NLU benchmarks in this section, while the refor-
mulation of NLG tasks as MC is covered in Se-
cion 3.4. Zhang et al. (2024) created a MC version
of GSM8K by using incorrect answers of LLMs,
and only the numeric value (see Table 9), to a given
question as MC options. We use this version of
GSM8K, besides our own, to represent MC tasks
for mathematical reasoning. Additionally, we run
ablation studies where we test cross-benchmark
pairings, see Section 3.4. For these experiments,
we use MMLU (Hendrycks et al., 2021) for fac-
tual knowledge and BoolQ (Clark et al., 2019) for
reading comprehension.

3.4 Multiple choice distractor creation
Since most NLG benchmarks only provide the cor-
rect answers, which is already enough for LL, we
had to create incorrect answer options in order to
reformulate them as MC tasks. We focus on the
creation of MC benchmark variants using existing
NLG benchmarks, as done by Zhang et al. (2024).
We created both random and smart negative answer
options (3 if not stated otherwise) which we discuss
next. Table 2 shows exemplary random and smart
distractors to the same question.

Random distractors For GSM8K, TriviaQA,
and HumanEvalPack, we created random distrac-
tors4 by using answers of other questions within
the same benchmark. For SQuAD, we did it simi-
larly, but used only answers of questions that have

2This is the extension of HumanEval (Chen et al., 2021)
from Python to 5 more code languages: C++, Go, Java,
JavaScript and Rust

3As we use only this version of SQuAD, it will be refer-
enced without the version further on.

4We only test a single random seed for efficiency reasons.

22580

Question Which was the first European
country to abolish capital pun-
ishment?

Correct answer Norway
Random
distractors [Chicago Bears, Ballet, 6]
Smart
distractors [Germany, Italy, Poland]

Table 2: Example for random and smart distractors in
TriviaQA.

the same context as the question at hand.5 This
ensured that they were formally valid, but seman-
tically incorrect. However, we hypothesized that
models might disregard the incorrect answers not
because they knew the correct one, but because
the incorrect options were implausible or clearly
irrelevant to the question, e.g. as shown in Table 2,
the question is looking for a European country and
none of the random distractors is a location. Hence,
we also created smart distractors.

Smart distractors To generate three plausible in-
correct answers—smart distractors, we prompted a
Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 model
(using a benchmark-specific 5-shot prompt; see Ap-
pendix A) for two NLG benchmarks, namely Triv-
iaQA and GSM8K. Table 2 illustrates how smart
distractors, unlike random distractors, match the
semantic context (e.g. European countries). To as-
sess the plausibility of the automatically generated
smart distractors, one author manually reviewed 50
random question samples and their corresponding
distractors for each benchmark. Out of the overall
100 questions, one distractor was a correct answer,
and in eight cases, two of the distractors were re-
peated, leaving only two distinct wrong answers.
After we developed our initial prompt for the first
task (Appendix A), adapting it to the next took un-
der 30 minutes. Depending on the task, running
the distractor generation took between 16-24 hours,
including some manual checks and fixing JSON
parsing errors due to incorrect LLM outputs. We
believe this demonstrates that our prompt-based
approach is an effective and fast method for gen-
erating smart distractors. For SQuAD, we omitted
smart distractors since random distractors already
share context with the question. For HumanEval-

5SQuAD questions are created based on Wikipedia articles.
Each article yields multiple questions. Table 9 shows two
questions based on the same article.

Pack, as smart distractors we use the slightly altered
incorrect code snippets provided by the dataset for
the code debugging task, resulting in two MC op-
tions instead of four.

Cross-benchmark pairing On top of converting
NLG benchmarks to MC using either random or
smart distractor generation, we experiment with
pairing NLG benchmarks with off-the-shelf MC
datasets targeting similar capabilities. However, we
note that these secondary experiments serve only
as a scientific exploration to test performance cor-
relation on related but different datasets, since the
above mentioned distractor generation is trivial and
not all LLM capabilities have off-the-shelf NLG
and MC benchmarks available. To the best of our
knowledge, this is the first work to conduct such
a pairing analysis between NLG and MC bench-
marks. We found pairings for two of our NLG
datasets. To represent factual knowledge, we use
MMLU as the MC version of TriviaQA. Similarly,
to represent reading comprehension, we use BoolQ
as the MC version of SQuAD.

3.5 Models

We selected open base models of varying sizes
and training stages, enabling evaluation across
a range of performance levels and intermediate
checkpoints, which aligns with our motivation to
efficiently monitor LLM capabilities during pre-
training. We use the Pythia6 1B, 2.8B and 6.9B (Bi-
derman et al., 2023), Amber 7B (Liu et al., 2024),
OLMo 1B and 7B (Groeneveld et al., 2024), and
OLMo-2 7B models (OLMo et al., 2024), as well
as the code-specific Crystal 7B model (Liu et al.,
2024). We did not include larger LLMs due to
compute restrictions. We evaluated intermediate
model checkpoints at 20B, 40B, 60B, 100B, 300B,
1T, 1.3T, 2T, 3T and 4T tokens. Note that not
all models were trained up to 4T tokens. Please
see Table 8 for more details. We present results
based on the amount of FLOPS used to produce
a given checkpoint in figures 1 and 2. We follow
the standard approach to estimate FLOPS based
on model parameter7 (N) and token (D) counts:
FLOPS = 6ND (Kaplan et al., 2020).

6We used the deduplicated version.
7We exclude embedding parameters as suggested by (Ka-

plan et al., 2020).

22581

NLG NLU Pmacro Pmicro Spearman
G

SM
8K MC 0.75(0.12) 0.52(0.00) 0.76(0.03)

MCrnd 0.76(0.11) 0.57(0.00) 0.76(0.03)

LL 0.79(0.09) 0.56(0.00) 0.81(0.01)

Tr
iv

ia MC 0.90(0.03) 0.94(0.00) 0.86(0.01)

MCrnd 0.91(0.02) 0.88(0.00) 0.98(0.00)

LL 0.90(0.03) 0.69(0.00) 0.81(0.01)

SQ
u-

A
D

MCrnd 0.90(0.03) 0.88(0.00) 0.93(0.00)

LL 0.65(0.15) 0.85(0.00) 0.69(0.06)

H
um

an
E

va
l

MC 0.83(0.09) 0.79(0.00) 0.81(0.02)

MCrnd 0.85(0.07) 0.75(0.00) 0.81(0.02)

LL 0.86(0.07) 0.73(0.00) 0.79(0.03)

Table 3: Correlation statistics of NLG tasks and their
various reformulated formats. We present p-values in
parentheses. HumanEval results averaged over the 6
coding languages. MC stands for the multiple-choice
with smart distractors, MCrnd random distractors, LL
is the log-likelihood formulation.

3.6 Technical details
For our experiments, we used the lm-eval-
harness (Gao et al., 2024), due to its wide adop-
tion, extensibility, and support for a broad range of
benchmarks. We extend this framework by adding
setups of our new LL and MC formulations of the
mentioned benchmarks. The only exception is Hu-
manEval for which we use the bigcode-evaluation-
harness (Ben Allal et al., 2022) as it supports safe
code execution. Still, we add its NLU formula-
tions to the lm-eval-harness as these formats do not
need code execution. We use default parameters
of the evaluation frameworks, except that we use a
0-shot setup for all tasks other than all variants of
GSM8K, for which we use 5-shot examples. We
follow the suggestions of OLMES (Gu et al., 2024)
when evaluating MC benchmarks, i.e., we use the
completion (cloze) formatting, where models score
answer options instead of answer labels (A, B, C,
D, etc.), and we use length normalized probability
values to select the final answer for accuracy cal-
culation. For further details we refer to the above
mentioned papers.

4 Results

Table 3 shows our main results of the four con-
sidered task categories. Each row shows the cor-
relation coefficients for the results of the given
task in the NLG and indicated reformulated setting.
We present averaged code results on 6 coding lan-
guages (cpp, go, java, js, python and rust).8 As

8Detailed results can be found in Table 7.

introduced, we have three reformulated versions
of the NLG tasks: MC and MCrnd indicate results
for the multiple-choice reformulation with smart
and random distractors respectively, while LL rep-
resents the log-likelihood reformulation. Addition-
ally, Figure 1 shows task performance curves over
the course of training, averaged across models and
standardized for each task formulation to bring dif-
ferent formulations to more visually comparable
scales.

Overall, Table 3 demonstrates a strong corre-
lation between the NLG and both MC task vari-
ants, as well as between NLG and LL, in all three
metrics. This trend is also supported in Figure 1,
showing similar performance shifts on the x-axis
between the NLG and NLU formulations. These
results suggest that the NLU reformulated tasks are
effective indicators during model training for the
generative performance and can reduce compute.

Interestingly, MC and MCrnd perform on par
with each other. We compared the two formula-
tions on small (1B and 2.8B) and large (6.9B and
7B) models, and found that in case of small models
MCrnd performs clearly better than MC (Pmacro:
+0.05, Pmicro: +0.14, Spearman: +0.52), while in
case of large models we did not find a clear differ-
ence (Pmacro: -0.02, Pmicro: 0.00, Spearman: 0.13
when comparing MCrnd to MC). Our conjecture
is that less capable models tend to output answers
unrelated to the question, e.g., completely wrong
GSM8K reasoning sequence, thus can be misled by
random answer options more easily, while better
quality models understand the context of questions
more precisely, thus are less sensitive to random
distractors.

Although LL performs on par with MC and
MCrnd, the correlation values are slightly lower
on average, especially on TriviaQA, SQuAD and
HumanEval. On the contrary LL performs slightly
better on GSM8K. These results are in line with the
findings of Schaeffer et al. (2024), who found that
it is important to consider the probabilities of a few
negative answer options when predicting scaling
behavior of LLMs. In addition, our results show
that considering negative options in the form of the
MC task formulation is beneficial also for monitor-
ing the generative performance of a given model.
Although the effort of creating smart and random
distractors for the MC formulations is minimal,
one can sacrifice a slight performance for the sim-
plicity of LL which only needs the correct answer
options. The better performance of LL on GSM8K

22582

NLG NLU Pmacro Pmicro Spearman
G

SM
8K

MCrnd 0.76(0.11) 0.57(0.00) 0.76(0.03)

MCao 0.38(0.26) 0.90(0.00) 0.88(0.00)

LL 0.79(0.09) 0.56(0.00) 0.81(0.01)

LLao 0.22(0.38) -0.04(0.80) -0.07(0.87)

Tr
iv

ia MCrnd 0.91(0.02) 0.88(0.00) 0.98(0.00)

MMLU 0.89(0.04) 0.94(0.00) 0.95(0.00)

SQ
uA

D MCrnd 0.90(0.03) 0.88(0.00) 0.93(0.00)

MCrnd∗ 0.90(0.03) 0.84(0.00) 0.93(0.00)

BoolQ 0.78(0.11) 0.24(0.09) 0.45(0.26)

Table 4: Correlation statistics of various additional tests.
For GSM8K we tested setups where only the final an-
swer has to be scored by the model (*ao) as proposed by
(Zhang et al., 2024). In case of TriviaQA and SQuAD,
we tested cross-benchmark pairings: MMLU and BoolQ
respectively. Additionally, in MCrnd∗ we used more
than 4 answer options for SQuAD.

is likely attributable to the chain-of-thought (CoT)
reasoning steps in the outputs which makes the log-
likelihood calculation more reliable. As discussed
in section 4.1, when we omit the reasoning steps
from the scored output the performance drops sig-
nificantly. This could indicate the need for more
difficult distractor options.

As discussed before, the goal of cross-model
metric (Spearman) is to compare different mod-
els using the cheaper reformulated tasks. In con-
trast, the goal of intra-model metrics (Pmacro and
Pmicro) is to show whether reformulated tasks can
be used to monitor the NLG performance of a sin-
gle model during training. We found similarly
strong correlation values for both categories, show-
ing their usefulness in both scenarios. Comparing
Pmacro and Pmicro, we found stronger coefficients
for Pmacro indicating that the scaling factor be-
tween the NLG and the reformulated task perfor-
mances slightly varies from model to model.

4.1 Ablations

In addition to the above experiments, we evaluated
further task formulations to have a better under-
standing of the important factors which we present
in Table 4. For GSM8K, as discussed above, hav-
ing CoT reasoning steps in the scored outputs is an
important factor for the correlation values. Based
on the work of Zhang et al. (2024), we evaluate
the MC and LL formulations of GSM8K which
only include the final numeric answer only in the
output (MCao and LLao respectively). The reason-
ing steps are crucial for the LL formulation as the
correlation coefficients of all three metrics drop

0 0.5 1 1.5

·1023

0

1

2

3

4

flops

G
SM

8K

NLG
MC

MCrnd

MCao

LL

0 0.5 1 1.5

·1023

0

1

2

3

4

flops

Tr
iv

ia
Q

A

NLG
MC

MCrnd

LL
MMLU

0 0.5 1 1.5

·1023

0

1

2

3

4

flops

SQ
uA

D

NLG
MCrnd

LL
BoolQ

0 0.5 1 1.5

·1023

0

1

2

3

4

flops

H
um

an
E

va
l

NLG
MC

MCrnd

LL

Figure 1: Average performance across models per task
formulation at fixed compute (flops). Task formulation
performances are standardized to bring different for-
mulations to a more visually comparable scale. Our
expectation is that NLG and its reformulations have
similar developments over time, i.e., high Pearson cor-
relation.

significantly when removing them. In contrast, pro-
viding only the final answer has the opposite effect
in case of MC. Figure 1 shows that in contrast to
MC, MCao reflects the rapid performance increase
at later stages more precisely, while MC seems too
easy for the models, i.e, the performance rapidly in-
creases at the early training stages and slows down
later on. This indicates that harder distractors might
be needed for this task.

For TriviaQA and SQuAD we tested cross-
benchmark pairing by leveraging the MMLU and
BoolQ datasets. Surprisingly, we found strong cor-
relation values using MMLU, even outperforming
our MCrnd formatted TriviaQA version. A possi-
ble explanation for this is the longer answer options
in MMLU compared to the short options in Trivi-
aQA which could make MMLU more reliable in
the MC format. In contrast, BoolQ does not per-
form as well as SQuAD MCrnd, although it still
has a decent correlation (Pmacro). As can be seen
in Figure 1, BoolQ nicely reflects the NLG perfor-
mance increase of SQuAD on average, however, it
does not follow the curve as closely. This aligns
well with the findings with MMLU, as BoolQ has
only short Yes and No answer options which could
make it less reliable. These findings also align with
Xiao et al. (2024), who argue for loss calculation
on longer outputs when finding the effective param-
eter size of LLMs, and opt for LLM based CoT
generation in case of tasks with short outputs. We

22583

leave this for future work, as reasoning generation
for factual tasks is beyond our scope.

Finally, since multiple questions were derived
from a given Wikipedia context in SQuAD, we
have the options to create more than 3 related
negative answer options for each question. In
MCrnd∗ , we use 6 negative answer options on aver-
age (±2.22; at most 16) depending on the source
context. We find minimal difference from MCrnd,
highlighting the robustness of 4 overall answer op-
tions that is frequently used for MC tasks.

4.2 Runtimes

The main motivation for reformulating NLG tasks
is to reduce compute time requirements. In Ta-
ble 5 we present task runtimes in minutes for three
Pythia9 model sizes: 1B, 2.8B and 6.9B. Over-
all, the MC and LL reformulations bring signifi-
cant runtime reductions on our benchmarks (2x–
176x averaged across model sizes) compared to
their NLG counterparts, becoming more and more
efficient as model size grows. The most signifi-
cant improvement was achieved for code genera-
tion, where the runtime was reduced from nearly 2
hours10 to under a minute. As expected LL is more
efficient than MC since it has only one answer op-
tion to score. These improvements significantly re-
duce runtime costs during model evaluation, while
causing no additional effort when reformulating
NLG tasks to LL and only minimal costs when
generating random or smart distractors for the MC
tasks.

4.3 Predicting NLG performance

As mentioned before, we do not aim to completely
eliminate NLG tasks but to reduce compute needs
during model training by relying on the NLU refor-
mulations. Running occasional NLG evaluations is
still beneficial as it gives exact model performance
on the NLG formulations. In order to further re-
duce the frequency of such occasional NLG evalua-
tions, in this section we aim at predicting the NLG
performance of a model by training linear regres-
sion models. More precisely, to predict the NLG
performance of a given model at timestep i, we
leverage both NLG and NLU performance scores
at timesteps i−1, i−2 and i−3 as training data and
NLU performance at timestep i as input for the pre-

9We only consider Pythia models here, as they feature the
same architecture across a wide range of sizes.

10Due to the length of the outputs. We use the suggested
maximum generation length of 2048.

1B 3B 7B Avg.(Imp.)

G
SM

8K NLG 4.77 12.55 27.08 14.80
MC 2.45 5.88 12.90 7.08(2.1x)

LL 1.05 2.08 3.93 2.36(6.3x)

Tr
iv

ia NLG 11.23 32.40 47.90 30.51
MC 1.13 1.93 3.75 2.27(13.4x)

LL 1.22 1.42 1.85 1.49(20.5x)

SQ
uA

D NLG 17.70 53.08 144.27 71.68
MC 4.68 10.57 23.50 12.92(5.5)

LL 1.77 3.53 7.03 4.11(17.4x)

H
um

an
E

va
l NLG 66.75 138.89 139.11 114.92

MC 0.54 0.83 1.26 0.88(130.6x)

LL 0.48 0.66 0.83 0.65(176.3x)

Table 5: Task runtimes of a single model checkpoint in
minutes on a single Nvidia RTX 6000. For consistency,
we present Pythia models only at three different model
sizes (1B, 3B and 7B). We present averaged runtime
over the three model sizes in columns Avg. as well as
speed improvements compared to the generative formu-
lation in parenthesis.

NLG NLU Err. Spearman
G

SM
8K MC 0.031 0.48

MCrnd 0.038 0.43
LL 0.021 0.62

Tr
iv

ia MC 0.054 0.98
MCrnd 0.047 1.00
LL 0.057 0.92

SQ
u-

A
D

MCrnd 0.046 0.93
LL 0.064 0.95

H
um

an
E

va
l

MC 0.025 0.87
MCrnd 0.030 0.79
LL 0.021 0.92

Table 6: Results of predicting the NLG performance
based on NLU. Err. represents the absolute error be-
tween the true and predicted scores, while Spearman
indicates model ranking similarity.

diction. Table 6 presents absolute prediction error
(Err.), and similarly as before, Spearman correla-
tion coefficients of model rank correlations based
on the gold and predicted NLG performances. Ad-
ditionally, we visualize the predicted performance
curves in Figure 2.

As can be seen on Table 6, all three reformu-
lation versions perform on par with each other,
achieving 6.4% prediction error at most. As ex-
pected, MC and MCrnd perform on par, the former
being slightly better, highlighting the advantage of
smart distractors. When looking at the average rank
correlations of our 8 models we found strong Spear-
man correlation values on all tasks, except GSM8K
which still show moderate correlation. We hypoth-

22584

esize that this is due to the difficult nature, and
the low results (under 0.2% on the majority of the
training course; Figure 2), of the task, thus model
ranking is more prone to noise than in case of other
tasks. Overall, predicting NLG performance using
only 3 training datapoints proves efficient in follow-
ing generative model performance more closely,
while requiring only few expensive direct NLG
benchmark evaluation, striking a balance between
precise NLG performance monitoring and compute
efficiency.

5 Conclusion

We performed an empirical study on the relation
between NLG and NLU benchmarks, as well as
the possibility to automatically reformulate NLG
benchmarks to NLU. Calculating the correlation,
we demonstrated that all four benchmarks we used
herein had a high correlation between the NLG
and NLU variants. Interestingly, the correlation
between these variants existed in all MC versions
that we tested—both random and smart distractors,
and related off-the-shelf NLU benchmarks—and
was similarly high. Although LL is slightly less
efficient than the MC variants, it is still a valid op-
tion that does not need distractor option generation
(even though the efforts needed are minimal). Fur-
thermore, we were able to show that runtime could
be reduced significantly (2x–176x averaged across
model sizes). Hence, we conclude that NLU can
be used to estimate NLG model performance to
save compute, although we advice against neglect-
ing NLG benchmark evaluation altogether. Further-
more, we also tested whether using only a few NLG
evaluations together with NLU formulations is ben-
eficial in NLG performance prediction. We found
that using only 3 training datapoints, predicting
NLG performance proves efficient for closely track-
ing generative model quality, reducing the need for
frequent costly benchmark evaluations.

6 Limitations

We have shown that generative capabilities of small
and medium size models can be accessed using re-
formulation to NLU in various domains. However,
it is possible that bigger models (above 7B parame-
ters) behave slightly differently, although we expect
these results to hold for them as well. Furthermore,
we did not include safety-related domains e.g., eth-
ical evaluation benchmarks, as we consider the
models used herein too small to meaningfully han-

dle such complex tasks—capabilities more likely
present in larger and/or instruction tuned models.
In such cases, the potential for task reformulation
would also need to be explored.

Acknowledgments

This work has been funded by the Free State
of Bavaria in the DSgenAI project (Grant Nr.:
RMF-SG20-3410-2-18-4). The authors gratefully
acknowledge the scientific support and HPC re-
sources provided by the Erlangen National High
Performance Computing Center (NHR@FAU)
of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) under the NHR project ELMOD:
Efficient language models for on-device deploy-
ment (Grant Nr.: b239dc). NHR funding is pro-
vided by federal and Bavarian state authorities.
NHR@FAU hardware is partially funded by the
German Research Foundation (DFG) – 440719683.
We would like to thank our anonymous reviewers
and colleagues for the useful feedback, including:
Christian Kroos, Joel Schlotthauer, Lucas Druart,
Luzian Hahn and Rishiraj Saha Roy.

References
Loubna Ben Allal, Niklas Muennighoff, Lo-

gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika,
Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black,
Jordan Clive, Anthony DiPofi, Julen Etxaniz, Ben-
jamin Fattori, Jessica Zosa Forde, Charles Foster,
Jeffrey Hsu, Mimansa Jaiswal, Wilson Y. Lee, Hao-
nan Li, and 11 others. 2024. Lessons from the
trenches on reproducible evaluation of language mod-
els. Preprint, arXiv:2405.14782.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.

22585

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782

2021. Evaluating large language models trained on
code.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Chandu, Arman Cohan, Jennifer Dumas, Yanai
Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024.
OLMo: Accelerating the Science of Language Mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789–15809.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Had-
dad, Jesse Dodge, and Hannaneh Hajishirzi. 2024.
OLMES: A standard for language model evaluations.
arXiv preprint arXiv:2406.08446.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Had-
dad, Jesse Dodge, and Hannaneh Hajishirzi. 2025.
OLMES: A Standard for Language Model Evalua-
tions. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 5005–5033.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong,
Deyi Xiong, and 1 others. 2023. Evaluating large
language models: A comprehensive survey. arXiv
preprint arXiv:2310.19736.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. In International Conference on Learn-
ing Representations.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. UNIFIEDQA: Crossing Format
Boundaries with a Single QA System. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907.

Toshiki Kuramoto and Jun Suzuki. 2025. Predicting
fine-tuned performance on larger datasets before cre-
ating them. In Proceedings of the 31st International
Conference on Computational Linguistics: Industry
Track, pages 204–212.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,
Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,
Etash Guha, Sedrick Scott Keh, Kushal Arora, and
1 others. 2024. Datacomp-lm: In search of the next
generation of training sets for language models. Ad-
vances in Neural Information Processing Systems,
37:14200–14282.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D Man-
ning, Christopher Re, Diana Acosta-Navas, Drew A.
Hudson, and 31 others. 2023. Holistic Evaluation of
Language Models. Transactions on Machine Learn-
ing Research.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan,
Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He,
Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan,
and 8 others. 2024. LLM360: Towards Fully Trans-
parent Open-Source LLMs. In First Conference on
Language Modeling.

Ian Magnusson, Nguyen Tai, Ben Bogin, David Heine-
man, Jena D. Hwang, Luca Soldaini, Akshita Bha-
gia, Jiacheng Liu, Dirk Groeneveld, Oyvind Tafjord,
Noah A. Smith, Pang Wei Koh, and Jesse Dodge.
2025. Datadecide: How to predict best pre-
training data with small experiments. Preprint,
arXiv:2504.11393.

22586

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/N19-1300/
https://aclanthology.org/N19-1300/
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://aclanthology.org/2024.acl-long.841/
https://aclanthology.org/2024.acl-long.841/
https://aclanthology.org/2025.findings-naacl.282/
https://aclanthology.org/2025.findings-naacl.282/
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=QdWhj0QZFw
https://openreview.net/forum?id=QdWhj0QZFw
https://arxiv.org/abs/2504.11393
https://arxiv.org/abs/2504.11393

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023. OctoPack: Instruction Tun-
ing Code Large Language Models. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Aidar Myrzakhan, Sondos Mahmoud Bsharat, and
Zhiqiang Shen. 2024. Open-llm-leaderboard: From
multi-choice to open-style questions for llms eval-
uation, benchmark, and arena. arXiv preprint
arXiv:2406.07545.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yul-
ing Gu, Shengyi Huang, Matt Jordan, and 1 oth-
ers. 2024. 2 OLMo 2 Furious. arXiv preprint
arXiv:2501.00656.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov,
Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, and 1 others. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Advances in Neural Information
Processing Systems, 37:30811–30849.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2024. Ef-
ficient benchmarking (of language models). In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 2519–2536.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating LLMs with fewer
examples. In Forty-first International Conference on
Machine Learning.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don‘t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Rylan Schaeffer, Hailey Schoelkopf, Brando Miranda,
Gabriel Mukobi, Varun Madan, Adam Ibrahim, Her-
bie Bradley, Stella Biderman, and Sanmi Koyejo.
2024. Why Has Predicting Downstream Capabilities
of Frontier AI Models with Scale Remained Elusive?
In ICML 2024 Next Generation of AI Safety Work-
shop.

Xiaoqiang Wang, Lingfei Wu, Tengfei Ma, and Bang
Liu. 2024a. FAC2E: Better understanding large lan-
guage model capabilities by dissociating language
and cognition. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 13228–13243.

Xunzhi Wang, Zhuowei Zhang, Qiongyu Li, Gaonan
Chen, Mengting Hu, Bitong Luo, Hang Gao, Zhixin
Han, Haotian Wang, and 1 others. 2024b. Ubench:

Benchmarking uncertainty in large language mod-
els with multiple choice questions. arXiv preprint
arXiv:2406.12784.

Chaojun Xiao, Jie Cai, Weilin Zhao, Guoyang Zeng,
Biyuan Lin, Jie Zhou, Zhi Zheng, Xu Han, Zhiyuan
Liu, and Maosong Sun. 2024. Densing law of llms.
Preprint, arXiv:2412.04315.

Ziyin Zhang, Zhaokun Jiang, Lizhen Xu, Hongkun Hao,
and Rui Wang. 2024. Multiple-choice questions are
efficient and robust llm evaluators. arXiv preprint
arXiv:2405.11966.

Kaitlyn Zhou, Su Lin Blodgett, Adam Trischler, Hal
Daumé III, Kaheer Suleman, and Alexandra Olteanu.
2022. Deconstructing NLG evaluation: Evaluation
practices, assumptions, and their implications. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 314–324, Seattle, United States. Association
for Computational Linguistics.

A Prompt for Smart Distractor Creation
Prompt:
Please use the given question {question}
and create 4 answers, the first one being
{correct_answer}, the correct answer, and the
other three being incorrect answers. Use JSONL
to respond.

Examples for TriviaQA:

• question="Which American-born Sinclair won
the Nobel Prize for Literature in 1930?",
answers=["Sinclair Lewis", "Upton Sinclair",
"Sinclair Ferguson", "Sinclair Smith"]

• question="Where in England was Dame Judi
Dench born?",
answers=["York", "London", "Manchester",
"Oxford"]

• question="When did the founder of Jehovah’s
Witnesses say the world would end?",
answers=["1914", "2012", "1844", "1975"]

• question="1998 was the Chinese year of which
creature?",
answers=["tiger", "rabbit", "dragon",
"giraffe"]

• question="The first credit cards were for use
in what type of establishments?",
answers=["restaurants", "cinemas", "gas
stations", "hotels"]

Examples for GSM8K:

• question="Natalia sold clips to 48 of her
friends in April, and then she sold half as
many clips in May. How many clips did Natalia
sell altogether in April and May?",
answers=[
"Natalia sold 48/2 = «48/2=24»24 clips in
May. Natalia sold 48+24 = «48+24=72»72 clips
altogether in April and May. #### 72",
"Natalia sold 48/2 = «48/2=24»24 clips in

22587

https://openreview.net/forum?id=CjrPqvvUXL
https://openreview.net/forum?id=CjrPqvvUXL
https://aclanthology.org/2024.naacl-long.139/
https://aclanthology.org/2024.naacl-long.139/
https://openreview.net/forum?id=qAml3FpfhG
https://openreview.net/forum?id=qAml3FpfhG
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://openreview.net/forum?id=OuD8PFGbfN
https://openreview.net/forum?id=OuD8PFGbfN
https://aclanthology.org/2024.emnlp-main.734/
https://aclanthology.org/2024.emnlp-main.734/
https://aclanthology.org/2024.emnlp-main.734/
https://arxiv.org/abs/2412.04315
https://doi.org/10.18653/v1/2022.naacl-main.24
https://doi.org/10.18653/v1/2022.naacl-main.24

May. Natalia sold 48 + 20 = «48+20=68»68
clips altogether in April and May. #### 68",
"Natalia sold 48/2 = «48/2=24»24 clips in
May. Natalia sold 48 + 22 = «48+22=70»70
clips altogether in April and May. #### 70",
"Natalia sold 48 × 2 = «48*2=96»96 clips in
May. Natalia sold 48 + 96 = «48+96=144»144
clips altogether in April and May. #### 96"]

• question="Weng earns $12 an hour for
babysitting. Yesterday, she just did 50
minutes of babysitting. How much did she
earn?",
answers=[
"Weng earns 12/60 = «12/60=0.2 »0.2 per
minute. Working 50 minutes, she earned 0.2 x
50 = «0.2*50=10»10. #### 10",
"Weng earns 12/60 = «12/60=0.2 »0.2 per
minute. Working 50 minutes, she earned 0.2 ×
60 = «0.2*60=12 »12. #### 12",
"Weng earns 12/60 = «12/60=0.2 »0.2 per
minute. Working 50 minutes, she earned 0.2 ×
40 = «0.2*40=8»8. #### 8,
"Weng earns 12/60 = «12/60=0.2 »0.2 per
minute. Working 50 minutes, she earned 0.2 ×
45 = «0.2*45=9 »9. #### 9"]

• question="Betty is saving money for a new
wallet which costs $100. Betty has only half
of the money she needs. Her parents decided
to give her $15 for that purpose, and her
grandparents twice as much as her parents.
How much more money does Betty need to buy
the wallet?",
answers=[
"In the beginning, Betty has only 100 / 2
= $«100/2=50 »50. Betty’s grandparents gave
her 15 * 2 = $«15*2=30 »30. This means, Betty
needs 100 - 50 - 30 - 15 = $«100-50-30-15=5
»5 more. #### 5",
"In the beginning, Betty has only 100 / 2
= $«100/2=50 »50. Betty’s grandparents gave
her 15 * 2 = $«15*2=30 »30. This means,
Betty needs 100 - 50 - 30 = $«100-50-30=20
»20 more. #### 20",
"In the beginning, Betty has only 100 / 2
= $«100/2=50 »50. Betty’s grandparents gave
her 15 * 2 = $«15*2=30 »30. This means,
Betty needs 100 - 50 - 15 = $«100-50-15=35
»35 more. #### 35",
"In the beginning, Betty has only 100 / 2
= $«100/2=50 »50. Betty’s grandparents gave
her 15 * 2 = $«15*2=30 »30. This means,
Betty needs 100 - 30 - 15 = $«100-30-15=55
»55 more. #### 55"]

• question="James writes a 3-page letter to
2 different friends twice a week. How many
pages does he write a year?",
answers=[
"He writes each friend 3*2= «3*2=6 »6 pages
a week. So he writes 6*2= «6*2=12 »12 pages
every week. That means he writes 12*52=
«12*52=624 »624 pages a year. #### 624",
"He writes each friend 3×2 = «32=6 »6 pages
a week.. So he writes 6×2 = «62=12 »12 pages
every week. That means he writes 12×50 =
«12*50=600 »600 pages a year. #### 600",

"He writes each friend 3×2 = «32=6 »6 pages
a week. So he writes 6×1 = «61=6 »6 pages
every week. That means he writes 6×52 =
«6*52=312 »312 pages a year. #### 312",
"He writes each friend 3×2 = «32=6 »6 pages
a week. So he writes 6×2 = «62=12 »12 pages
every week. That means he writes 12×12 =
«12*12=144 »144 pages a year. #### 144"]

22588

0 0.5 1 1.5

·1023

−0.5

0

0.5

1

flops

GSM8K

0 0.5 1 1.5

·1023

−0.5

0

0.5

flops

TriviaQA

NLG
MC

Pred. MC
LL

Pred. LL

0 0.5 1 1.5

·1023

−0.5

0

0.5

flops

SQuAD

0 0.5 1 1.5

·1023

−0.4

−0.2

0

0.2

0.4

0.6

0.8

flops

HumanEval

Figure 2: Predicted (Pred.) generative performance using MC or LL performance. Each predicted point is based on
3 previous NLU and NLG reference points using linear regression.

22589

NLG NLU Pmacro Pmicro Spearman

G
SM

8K

MC 0.75(0.12) 0.52(0.00) 0.76(0.03)

MCrnd 0.76(0.11) 0.57(0.00) 0.76(0.03)

LL 0.79(0.09) 0.56(0.00) 0.81(0.01)

MCao 0.38(0.26) 0.90(0.00) 0.88(0.00)

LLao 0.22(0.38) -0.04(0.80) -0.07(0.87)

Tr
iv

ia

MC 0.90(0.03) 0.94(0.00) 0.86(0.01)

MCrnd 0.91(0.02) 0.88(0.00) 0.98(0.00)

LL 0.90(0.03) 0.69(0.00) 0.81(0.01)

MMLU 0.89(0.04) 0.94(0.00) 0.95(0.00)

SQ
uA

D MCrnd 0.90(0.03) 0.88(0.00) 0.93(0.00)

MCrnd∗ 0.90(0.03) 0.84(0.00) 0.93(0.00)

LL 0.65(0.15) 0.85(0.00) 0.69(0.06)

BoolQ 0.78(0.11) 0.24(0.09) 0.45(0.26)

H
um

an
E

va
l

MC 0.83(0.09) 0.79(0.00) 0.81(0.02)

MCrnd 0.85(0.07) 0.75(0.00) 0.81(0.02)

LL 0.86(0.07) 0.73(0.00) 0.79(0.03)

cp
p MC 0.87(0.06) 0.86(0.00) 0.74(0.04)

MCrnd 0.92(0.03) 0.83(0.00) 0.90(0.00)

LL 0.92(0.03) 0.77(0.00) 0.81(0.01)

go

MC 0.67(0.22) 0.71(0.00) 0.76(0.03)

MCrnd 0.68(0.21) 0.74(0.00) 0.81(0.01)

LL 0.66(0.24) 0.72(0.00) 0.88(0.00)

ja
va

MC 0.85(0.10) 0.86(0.00) 0.98(0.00)

MCrnd 0.86(0.08) 0.80(0.00) 0.83(0.01)

LL 0.90(0.05) 0.64(0.00) 0.67(0.07)

js

MC 0.92(0.02) 0.80(0.00) 0.83(0.01)

MCrnd 0.86(0.06) 0.79(0.00) 0.88(0.00)

LL 0.90(0.04) 0.75(0.00) 0.71(0.05)

py
th

on MC 0.92(0.02) 0.81(0.00) 0.74(0.04)

MCrnd 0.91(0.02) 0.81(0.00) 0.79(0.02)

LL 0.93(0.01) 0.81(0.00) 0.81(0.01)

ru
st

MC 0.77(0.14) 0.67(0.00) 0.79(0.02)

MCrnd 0.87(0.04) 0.52(0.00) 0.62(0.10)

LL 0.87(0.05) 0.70(0.00) 0.83(0.01)

Table 7: Correlation statistics of the NLG tasks and their various reformulated formats. We present p-values in
parentheses. The NLG task Code represents HumanEval results averaged over the 6 coding languages (cpp, go, java,
js, python and rust). MC stands for the multiple-choice formulation with smart distractors, MCrnd uses random
distractors, while LL is the log-likelihood formulation. For GSM8K we tested setups where only the final answer
has to be scored by the model (*ao) as proposed by (Zhang et al., 2024). In case of TriviaQA and SQuAD, we tested
cross-benchmark pairings: MMLU and BoolQ respectively. Additionally, in MCrnd∗ we used more than 4 answer
options for SQuAD.

22590

model #params. #tokens checkpoints

EleutherAI/pythia-1b-deduped 1B 300B step10000, step20000, step30000, step50000, step143000

EleutherAI/pythia-2.8b-deduped 2.8B 300B step10000, step20000, step30000, step50000, step143000

EleutherAI/pythia-6.9b-deduped 6.9B 300B step10000, step20000, step30000, step50000, step143000

allenai/OLMo-1B-0724-hf 1B 3.05T
step10000-tokens20B, step20000-tokens41B, step29000-tokens60B,
step50000-tokens104B, step150000-tokens314B, step500000-tokens1048B,
step621000-tokens1301B, step1000000-tokens2096B, step1454000-tokens3048B

allenai/OLMo-7B-0724-hf 7B 2.75T
step10000-tokens41B, step14500-tokens60B, step25500-tokens106B,
step75000-tokens314B, step250000-tokens1048B, step310000-tokens1300B,
step500000-tokens2097B, step650650-tokens2729B

LLM360/Amber 7B 1.25T ckpt_005, ckpt_010, ckpt_016, ckpt_027, ckpt_082, ckpt_275, ckpt_358

LLM360/Crystal 7B 1.4T

CrystalCoder_phase1_checkpoint_006000, CrystalCoder_phase1_checkpoint_009000,
CrystalCoder_phase1_checkpoint_012000, CrystalCoder_phase1_checkpoint_021000,
CrystalCoder_phase1_checkpoint_067500, CrystalCoder_phase2_checkpoint_015000,
CrystalCoder_phase3_checkpoint_027728

allenai/OLMo-2-1124-7B 7B 4T
stage1-step10000-tokens42B, stage1-step14000-tokens59B, stage1-step25000-tokens105B,
stage1-step75000-tokens315B, stage1-step250000-tokens1049B, stage1-step310000-tokens1301B,
stage1-step500000-tokens2098B, stage1-step720000-tokens3020B, stage2-ingredient1-step11931-tokens50B

Table 8: Details of the used models. The model and checkpoint names are references to the content on the Hugging-
face Hub, while the number of parameters and training tokens are based on the respective model publications.

22591

benchm. (correct) answer distractors specifics
G

SM
8K

question Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?

original

Natalia sold 48/2 =
<<48/2=24>>24 clips in
May. Natalia sold 48+24
= <<48+24=72>>72 clips
altogether in April and
May. #### 72

MC [Natalia sold 48 × 2 =
<<48*2=96>>96 clips in
May. Natalia sold 48 +
96 = <<48+96=144>>144
clips altogether in April
and May. #### 144, Na-
talia sold [...]]

MCrnd [Weng earns 12/60 =
«12/60=0.2»..., He writes
each friend [. . .]]

GSM-MC 72 [64, 61, 89]

Tr
iv

ia

question Which was the first European country to abolish capital punishment?
original

Norway

aliases: Norvège,
Mainland Nor-
way, Norwegian
state, [. . .] nor-
malized_aliases:
norwegen, kon-
geriket norge,
norway, [. . .]

MC [Germany, Italy, Poland]
MCrnd [Chicago Bears, Ballet, 6]

SQ
uA

D

question Who is the main character in "Childe Harold’s: Canto I?"
original no answer in this context context: [. . .]

Studying and an-
alyzing literature
becomes very
important in terms
of learning about
our history. [. . .]
Lord Byron talks
about the Spanish
and the French in
“Childe Harold’s
Pilgrimage: Canto
I” [. . .]

question We can learn what by carefully examining our literature?
Continued on next page

22592

Table 9 – continued from previous page
benchm. answer distractors specifics
original

our history

context: [. . .]
Studying and an-
alyzing literature
becomes very
important in terms
of learning about
our history. [. . .]
Lord Byron talks
about the Spanish
and the French in
“Childe Harold’s
Pilgrimage: Canto
I” [. . .]

MCrnd [Lord Byron, written
records, corpse]

answers taken from
same context

H
um

an
E

va
l

question [...] Given a string, find out how many distinct characters
(regardless of case) does it consist of [...]

original

return
len(set(string.lower()))

buggy solu-
tion: return
set(len(string.lower()))

MC return
set(len(string.lower()))

MCrnd [return ’ ’.join([str(x) for x
in range(n + 1)]), [...]]

MMLU
question Find the degree for the given field extension Q(sqrt(2),

sqrt(3), sqrt(18)) over Q.
4 [0,2,6]

BoolQ
question do iran and afghanistan speak the same language

TRUE FALSE

Table 9: Example items from the used benchmarks and our reformulations. GSM-MC references (Zhang et al.,
2024). As MMLU and BoolQ were used as MC pairings of other benchmarks, they only have the original version.

22593

