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Abstract

We show that large language models (LLMs)
exhibit an internal chain-of-thought: they se-
quentially decompose and execute composite
tasks layer-by-layer. Two claims ground our
study: (i) distinct subtasks are learned at dif-
ferent network depths, and (ii) these subtasks
are executed sequentially across layers. On a
benchmark of 15 two-step composite tasks, we
employ layer-from context-masking and pro-
pose a novel cross-task patching method, con-
firming (i). To examine claim (ii), we apply
LogitLens to decode hidden states, revealing
a consistent layerwise execution pattern. We
further replicate our analysis on the real-world
TRACE benchmark, observing the same step-
wise dynamics. Together, our results enhance
LLMs transparency by showing their capacity
to internally plan and execute subtasks (or in-
structions), opening avenues for fine-grained,
instruction-level activation steering.

1 Introduction

Large Language Models (LLMs) excel at solving
complex tasks such as instruction following, and
multi-step problem solving (Zhang et al., 2024;
Zeng et al., 2024; Wang et al., 2024). Much recent
progress relies on explicit “chain of thought” (Wei
et al., 2022; Zhang et al., 2023), which guides mod-
els to decompose multi-step problems into interme-
diate reasoning stages. This raises a foundational
question: Do LLMs also perform such multi-step
reasoning internally, without revealing steps in
their output? In this work, we answer yes: LLMs
exhibit an internal chain-of-thought (ICoT), mean-
ing they internally break down composite tasks
and process their components sequentially across
network layers. Going beyond interpretability stud-
ies on latent factual multi-hop reasoning (Yang
t Corresponding author.
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Figure 1: Evidence of an internal chain-of-thought.
Selectively masking (bottom left) from specific layers
can preserve the first subtask (antonym) while ablating
the second (uppercase). Decoding hidden states (bottom
right) on a clean run shows the intermediate answer
(“slow”) peaks at middle layers.

et al., 2024b; Biran et al., 2024; Yu et al., 2025; An-
thropic., 2025), we investigate task-level reasoning
rather than just chains of facts.

To illustrate this concept, consider a composite
task that requires two steps: antonym then upper-
case. For example, given the input “fast”, solv-
ing this involves an intermediate step—finding the
antonym “slow”—followed by capitalizing it to
“Slow” (with S capitalized). If an internal chain-of-
thought exists, we would expect the hidden state at
some intermediate layer to represent “slow”, and
later layers to transform it into “Slow”. In gen-
eral, the presence of an ICoT implies that distinct
phases of computation occur inside the model, each
corresponding to a subtask in the overall problem.
Figure 1 illustrates our core findings: selectively
masking context from specific layers can preserve
the first subtask (antonym) while ablating the sec-
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ond (uppercase). Meanwhile, decoding results of
hidden state on clean run show that intermediate
answer (“slow”) often peaks at middle layers.

For tractability, we study tasks that decompose
into two sequential subtasks (denoted ¢ := s o
s2). The task t maps an input x to an output y =
s2(s1(x)). We frame our analysis through Task
Vector framework (Hendel et al., 2023; Todd et al.,
2024; Li et al., 2025b; Saglam et al., 2025), which
divides in-context learning (ICL) into two phases:
(1) a learning phase, where the model abstracts
task rules into a hidden representation, task vector,
and (2) a rule application phase, where the query is
processed using this vector. For a model T, given
demonstrations S and a query z, the process is
modeled as:

T([Sz]) = 0=A(S), y=f(x;0) , (D

-~

learning phase application phase

where A abstracts the task vector § € R?, and f
denotes the application of task-specific rules. Ex-
tending to composite tasks yields two claims:

¢ Claim 1. Subtasks are learned at different net-
work depths, inducing an intermediate subtask
vector (either 6°! or 6°2) that generalizes to
its corresponding subtask.

* Claim 2. Subtasks are executed sequentially
across layers. At depth /1, the model applies
f4 (x; 6°1) to compute the first subtask. At a
later depth o, it applies f2(y*'; 6°2), yielding
the final result.
Crucially, we distinguish between two processes:
“learning” (Claim 1) and “execution” (Claim 2),
corresponding to the learning phase and application
phase in Task Vector framework, respectively.

We first introduce a benchmark of 15 two-step
composite tasks spanning four categories (Section
2.2). We present two lines of evidence for Claim 1:
(1) layer-from context-masking (Sia et al., 2024),
which blocks attention to demonstrations after layer
[ to reveal where each subtask is learned, and (2)
cross-task patching, a novel method which inserts
residual activations from a composite prompt into
zero-shot sub-task queries to detect reusable “sub-
task vectors”. Across four models and 15 two-step
tasks, masking reveals a sharp “X-shape” (Figure
2), indicating a sequential learning dynamics: the
model first abstracts the rule for s; at an earlier
layer, and later learns sy at a deeper layer. Mean-
while, patching activations in Llama-3.1-8B (see

Table 2) yield transferable subtask vectors to a sig-
nificant degree (66% on average).

Next, to verify Claim 2, We decode every layer
with LogitLens (Nostalgebraist., 2020), projecting
hidden states into token space and tracking the
mean reciprocal rank of the first-step target (y®!
or y°2) versus the final answer (y*1°%2). Decod-
ing results show the same “handoff” (see Figure 3
and 4): intermediate answer peaks in mid-layers,
then is overtaken a few layers later by the final
answer. Finally, we replicate layer-from context-
masking on TRACE (Zhang et al., 2024), a com-
plex instruction-following benchmark, demonstrat-
ing that the same sequential learning dynamics
emerge in real-world settings (see Figure 5). The
primary contributions of this study are as follows:

e We construct a curated benchmark of 15 com-
posite tasks spanning four categories.

* We employ context-masking and propose
cross-task patching, demonstrating that sub-
tasks are learned at different depths, inducing
an intermediate subtask vector.

* We use LogitLens to decode hidden states,
revealing a consistent layerwise execution pat-
tern.

* We replicate our method on the TRACE
benchmark, confirming the same finding also
emerge in practical settings.

Our findings enhance LLM transparency by re-
vealing their capacity to internally plan and exe-
cute subtasks (or instructions). This aligns with,
and extends, prior interpretability studies on multi-
hop reasoning (Yang et al., 2024b; Biran et al.,
2024; Yu et al., 2025; Anthropic., 2025) and look-
ahead planning (Men et al., 2024). While those
often focus on factual recall or predictive steps, our
work investigates task-level reasoning rather than
just chains of facts. Furthermore, the discovery
of ICoT opens exciting avenues for fine-grained,
instruction-level behavior control. For instance, by
identifying the layers responsible for processing
specific (potentially harmful) instructions within a
user’s prompt, we could directionally intervene to
steer their execution for safer LLM behavior.

2 Experimental Setup
2.1 Prompt Design

We focus on composite tasks that naturally decom-
pose into two sequential subtasks—for example,
retrieving domain knowledge and then translating
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Category Task Description Example (Input — Output)
. . :ant
Knowledge—Algorithmic 51: antonym fast — Slow
So: uppercase
. : select adjecti . . . .
Extractive—Knowledge 51 select adjective artistic, captain, bring — creative
S9: synonym
s1: select last item

Extractive—Algorithmic
sq: first letter

spicy, cowardly, hoop — h

Knowledge—Translation

$1: retrieve country
s9: translate to French

Cenepa River — Pérou

Table 1: Representative examples from the composite task benchmark across four categories. Each task involves a
sequential application of two subtasks, though no intermediate outputs are shown in-context. See Appendix A for a

complete task list and definitions.

it, or extracting information followed by format
transformation. Formally, we represent a com-
posite task as ¢ := s1 o s9, where s and sg are
sequentially applied subtasks. Given a query =,
the final output is y* = sy(s1(z)). For analysis
purposes, we also compute intermediate outputs
corresponding to the isolated application of each
subtask: 3! = si(x) and y*2 = sa(x). As an
illustrative example, consider s; = “antonym” and
sy = “uppercase”. For input x = “fast”, the
correct intermediate and final outputs would be
Y1 = “slow”, y*2 = “Fast”, and 3* = “Slow”.

For each composite task ¢ € 7 in our task
suite 7, we construct a dataset P, consisting of
in-context prompts p} € P;. Each prompt includes
N input-output demonstration pairs of the form
(x,y"), showing the full composite transformation,
followed by a query input x;, for which the model
is expected to predict the corresponding target yfq.
Notably, no intermediate outputs or reasoning steps
are included in the prompt. The in-context learn-
ing (ICL) prompt format is (Prompt details can be
found in Appendix B):

ph = (@, yi°2), - (@i, U3 ™2) i) - ()

2.2 Dataset

We construct a benchmark of 15 composite tasks
spanning four categories:

* Knowledge—Algorithmic: Tasks that com-
bine factual knowledge retrieval (e.g., country
capitals, antonyms) with deterministic trans-
formations (e.g., uppercase conversion).

» Extractive-Knowledge: Tasks that require
identifying items from a list (e.g., selecting
the last item) followed by a knowledge-based
operation (e.g., finding a related concept).

» Extractive—Algorithmic: Tasks that involve
list-based selection followed by symbolic
transformations (e.g., case conversion, charac-
ter extraction).

* Knowledge-Translation: Tasks that com-
bine knowledge retrieval with language trans-
lation (e.g., translating the capital city of a
given country into French or Spanish).

Each query in the dataset requires the sequential
execution of two subtasks in a fixed order as de-
fined by the task specification. However, we do
not assume that LLMs necessarily follow this or-
der during internal processing. To probe the latent
execution path, we measure intermediate outputs
corresponding to the isolated application of each
subtask: y** = si(x) and y*2 = s9(x). Table
1 presents illustrative examples for each category.
Full details and descriptions for all 15 composite
tasks can be found in Appendix A.

3 Background

We consider an autoregressive transformer lan-
guage model 7' that takes an input prompt p and
outputs a next-token distribution 7'(p) over a vo-
cabulary V. Internally, T" consists of L transformer
layers connected via a residual stream (Elhage
et al., 2021). We focus our analysis on the resid-
ual stream at the final token position. Embedding
matrix Wg € RIVI*4 first maps the last token to
a hidden representation as initial residual stream
h? € R?. At each layer [, the model adds the out-
puts of the self-attention and feedforward network
(FFN) modules to the residual stream from the pre-
vious layer. Formally, the residual stream at layer [
is given by:

h! =h'~' + A+ F!, (3)
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Figure 2: Layer-from context-masking results for six composite tasks across four models. The “X-shape” pattern

reveals sequential learning dynamics.

where A! € R% and F! € R? denote the attention
and FFN outputs at the final token position, respec-
tively, at layer [. We adopt a simplified formulation
here for clarity; in practice, additional components
such as Layer Normalization are also applied.

4 Claim 1: Intermediate Subtask
Representations

We present two lines of evidence for Claim 1:
(1) using layer-from context-masking, we show
that different layers are responsible for learning
each subtask; (2) with a novel cross-task patch-
ing method, we demonstrate that subtask-specific
vectors emerge at the final token position, serving
as abstract representations that generalize across
tasks.

4.1 Layer-from Context-Masking

In-Context Learning requires model to infer a task
from examples and apply it to a new input, as for-
malized in Equation 1. If LLMs follow a internal
chain-of-thought, then each subtask in a compos-
ite task should be learned at a distinct point in
the network. That is, subtask learning should un-
fold sequentially across layers—rather than all at
once—making intermediate learning states observ-
able. To investigate this, we employ layer-from
context-masking (Sia et al., 2024). This technique
disables access to the in-context examples (task

demonstrations) from a specific layer onward by
masking all attention to context tokens. If mask-
ing is applied from the input layer (I = 0), the
model cannot attend to any demonstrations, and
ICL should fail. However, if masking begins only
after the model has learned the task, then its perfor-
mance should remain intact. Crucially, by gradu-
ally shifting the start-masking layer from early to
late, we can infer the sequential dynamics of the
model’s learning process.

Let A = % denote the raw attention scores
in a decoder-only transformer, where Q and K
are the query and key matrices, respectively, and
D is the dimensionality of the hidden states. For
token positions ¢ and j, the element A;; represents
how much token ¢ attends to token j. We apply a
context masking to disable attention to in-context
examples, as A;; +m(j,U). The mask m(j,U) is
defined as:

0 ifjé¢r,

m(3,U) = ifjeu

“)

—00

where U is the set of indices of all in-context ex-
ample tokens. The mask is applied from layer [
onward, such that for all I’ > [, attention to context
is zeroed out after Softmax. For each test prompt,
we progressively increase the masking layer [ from
1 to L and record the model’s prediction accuracy
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Composite Task Llama-3.1-8B
antonym-uppercase
$1 (antonym) 0.92 +0.02
sg (uppercase) 0.24 +0.03
country_capital-lowercase
51 (country_capital) 0.88 £ 0.03
so (lowercase) 0.49 £ 0.05
choose_last-country_capital
s1 (choose_last) 0.44 +0.03
s9 (country_capital) 0.98 +£0.02

adjective_v_verb-antonym
0.38 £0.11
0.94 +£0.03

s1 (adj_v_verb)
S2 (antonym)

choose_last-first_letter

s1 (choose_last) 0.29 £+ 0.03

So (first_letter) 1.01 £0.01
antonym-english_spanish

51 (antonym) 0.91 £ 0.02

sg (english_spanish) 0.45 +0.03
Average 0.66

Table 2: Subtask vector strength for six representative
composite tasks in Llama-3.1-8B. Each composite task’s
average residual activation is patched into each subtask,
with results shown for s; and s, respectively.

on both intermediate and final outputs. For compos-
ite tasks, we aim to identify a two-phase masking
pattern. At early layers, masking may lead the
model to predict intermediate outputs—e.g., y°*
or y®2—indicating that the model has learned the
first subtask but not yet the second. As masking
is delayed to deeper layers, the model’s predic-
tions should transition sharply from intermediate
answers to the final answer /¢, revealing a layered
acquisition of subtasks. By contrast, if the model
transitions directly from generating no meaningful
output to the correct final answer as masking depth
increases, without producing intermediate comple-
tions, this would suggest a monolithic in-context
learning process. This distinction is central to test-
ing whether subtask learning unfolds sequentially
across layers.

Experiment. We conduct our layer-from context-
masking analysis on four LLMs: Llama-3.1-8B
(Grattafiori et al., 2024), Mistral-7B (Jiang et al.,
2024), Qwen2.5-7B (Yang et al., 2024a), and

Llama-3.2-3B (Meta., 2024), evaluating their be-
havior across all 15 composite tasks. We selected
models in the 3B—8B parameter range to ensure
broad coverage across popular, open-source check-
points while maintaining interpretability and acces-
sibility for analysis. Larger models were excluded
due to resource constraints and the increased diffi-
culty of probing internal representations. For each
task, we generate 500 test prompts, sampled uni-
formly at random from the corresponding dataset.
Each prompt includes N in-context examples (fol-
lowing prior work (Hendel et al., 2023), we set
N = 5). To ensure robustness, all experiments are
repeated across five random seeds, and we report
averaged results. We mask all tokens from the in-
context examples—including both content tokens
and “template” tokens such as separators (Q:, A:,
newlines, etc.).

In the resulting sequential learning dynamics
plots (see Figure 2 and Appendix D), we ob-
serve a striking “X-shape” pattern across most
composite tasks, with a few exceptions (e.g.,
choose_last-landmark_country in Llama-3.1-
8B). Specifically, as context masking is delayed to
deeper layers, the model’s output transitions from
generating one of the intermediate answers (e.g.,
the result of s7) to producing the correct final an-
swer. The intersection point—where performance
on the intermediate answer begins to drop while
performance on the final answer rises—suggests a
boundary between subtask learning phases. This
structure provides compelling evidence for sequen-
tial learning dynamics: the model first abstracts the
rule for s; at an earlier layer, and later learns so at
a deeper layer.

4.2 Cross-Task Patching

While context-masking reveals when subtask infor-
mation is acquired, it does not directly test whether
LLMs represent individual subtasks as reusable, ab-
stract vectors. To address this, we introduce cross-
task patching, a novel method that investigates
whether sequential learning dynamics produce in-
termediate subtask vectors. Prior work suggests
that the residual stream at the final token position
encodes a latent task representation 6 derived from
in-context examples (Hendel et al., 2023; Li et al.,
2025b; Todd et al., 2024). These representations
can be replaced into the hidden states while running
model on other prompts to influence model behav-
ior. Here, we extend this idea to composite tasks.
Specifically, we examine whether the activations
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obtained from a composite prompt can be used to
improve performance on each subtask individually.
We compute the average residual stream activation
across composite task prompts, then patch it into
zero-shot prompts from the subtask datasets. If
performance on the subtask improves, we infer that
the composite prompt’s activation encodes the cor-
responding subtask vector.

Formally, we begin by running the model on a
set of composite prompts p! € P, each contain-
ing N examples of task ¢, and extract activation
vector at the final token position from each layer /.
Averaging over all prompts yields a layerwise task
representation:

N Lt

piePy

We then patch this vector into a set of zero-shot
subtask prompts p; € 753j (i.e., prompts with no
in-context examples), replacing the residual stream
at layer [ with Bf, and evaluate the model’s perfor-
mance:

Acc(Pg;, 1) = |751 |
Sj 5

Pi

(6)
To quantify how well this patched vector recovers
the subtask behavior, we define a normalized sub-
task vector strength. As the patching is used on
each layer, we choose the best result to calculate
the subtask vector strength:

max; Acc(?ssj 1) — Acc(Ps;)

Strength® = ~
Acc(Ps;) — Acc(Ps;)

)

(7N
where Acc(Ps, ) is the subtask’s performance under
standard ICL (with N examples), and Acc(755 j) is
the zero-shot baseline. A strength of 1 implies full
recovery of subtask performance, indicating a fully
formed subtask vector; a strength of O implies no
transfer. We test the subtask vector strength on
both subtasks s and ss.

While our method is inspired by (Hendel et al.,
2023), it differs in both objective and applica-
tion. Hendel et al. (2023) copy activations be-
tween prompts within the same task to test whether
task information is encoded in the residual stream.
In contrast, our cross-task patching copies activa-
tions from a composite-task prompt into a subtask
prompt, allowing us to ask whether subtask rep-
resentations are embedded and transferable from

composite-task inference.

i [T(ﬁi |h':=h!) =y

Experiment. To ensure independence between
datasets, we first split each subtask dataset into dis-
joint train and test subsets (see Appendix A for de-
tails about subtask dataset). Composite datasets are
constructed using only the train set, while zero-shot
patching is evaluated on held-out subtask exam-
ples. We compute 71; using 100 composite prompts
and test patching strength on 500 zero-shot sub-
task prompts. We repeat this process across 15
composite tasks, 4 models, and 5 random seeds.
Table 2 and Appendix E report the patching
strength across tasks. We find that most composite
tasks yield transferable subtask vectors to a signif-
icant degree (0.66 on average). Interestingly, all
composite tasks exhibit asymmetric transfer—for
instance, the composite vector may strongly sup-
port s; but only weakly support so. This asym-
metry may reflect either the task type of s2 (e.g.,
extractive tasks), or that sy is applied in a more
entangled fashion atop the result of s;, making its
representation more context-dependent.

S Claim 2: Layer-wise Rule Application

Claim 2 hypothesizes that LLMs apply rules for
composite tasks in a staged process: at an earlier
layer [y, the model applies a function f" (z;61) to
perform the first subtask; later, at layer [y > [y, it
applies a second function f'2(y*1;0%2), integrating
this intermediate representation with the second
subtask’s logic to produce the final answer. Cru-
cially, we should be able to trace this transforma-
tion through the model’s residual stream, which
accumulates the outputs of each attention and MLP
block.

We decode the next-token probabilities for each
intermediate layer using LogitLens (Nostalge-
braist., 2020). This method aims to project hid-
den states into the vocabulary space. Formally,
let h! denote the residual stream at the final token
position, at layer [. To decode their outputs into
probability distributions p over vocabulary tokens,
we use the unembedding matrix Wy € R4V,
along with a normalization that rescales compo-
nent activations relative to the final-layer logits:

I _ 1l
p = Softmax <WU . h 7*h ) , (8)
o
where h' are the mean component outputs for nor-
malization, and o* is a scaling factor derived from
the final layer’s residual norm. Besides, we also
decode each attention and MLP block’s output A’
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Figure 3: Heatmaps of attention and MLP block decod-
ing results for the country_capital-lowercase task
in Llama-3.1-8B.
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Figure 4: Decoding results of the residual stream for the
country_capital-lowercase task in Llama-3.1-8B.

and F!. We then measure the Mean Reciprocal
Rank (MRR) for three specific targets: y, y°! and
Y.

Since the LogitLens method provides only cor-
relational evidence, it can indicate that a composite
subtask is computed later than its precursor, but
not that the output of the first computation is actu-
ally used by the second. To address this limitation,
we conducted an additional causal intervention ex-
periment, targeting the residual stream at the peak
layer of the subtask s; identified in our decoding
analysis (e.g., Figure 4). Full details can be found
in Appendix C.

Experiment. We conduct this analysis on 500
prompts for each of the 15 composite tasks de-
scribed earlier. For each prompt, we extract and de-
code the attention outputs, MLP outputs, and resid-
ual stream at each layer, compute mean reciprocal
ranks (MRRs) for the three target outputs described

above, and plot the resulting trajectories. For MRR
computation, we consider all possible vocabulary
tokens, including nonsensical ones, when ranking
model predictions. For multi-token answers (e.g.,
United Kingdom), we evaluate only the first token
(e.g., United). This applies to both intermediate
targets s(z) and final outputs sa(s1(z)). We chose
this approach to ensure consistency across all tasks
and models.

Figure 3 shows the heatmaps of atten-
tion and MLP block decoding results for the
country_capital-lowercase task in Llama-3.1-
8B. Figure 4 displays the decoding results of the
residual stream (see Appendix F for full results).
We observe a clear layerwise task execution pat-
tern: the model produces intermediate answers in
middle layers, which are progressively surpassed
by the final answer in later layers. The crossover
point—where MRR for ¢°* declines while MRR
for y*1°%2 increases—mirrors the two-stage task
execution hypothesized in Claim 2. In rarer
cases such as choose_last-landmark_country,
the model seems to compute the full composition
at an early stage, without exhibiting a clear inter-
mediate phase.

6 A Practical Case: TRACE Dataset

To evaluate the applicability of our analysis in
real-world scenarios, we extend our experiments
to TRACE (Zhang et al., 2024), a Chinese com-
plex instruction following benchmark. TRACE
is built on a manually curated taxonomy of com-
plex instructions, incorporating 26 constraint di-
mensions grouped into five high-level categories.
Each prompt in TRACE consists of two compo-
nents: a Task Description, which defines the core
objective (e.g., “Introduce Adagrad”), and a set of
Constraints, which specify additional requirements
that the model must satisfy. For example, a repre-
sentative prompt might be (See Appendix B for the
original Chinese version):

Task Description: Explain the Adagrad
algorithm in detail, playing the role of a ma-
chine learning expert.

Constraints: 1. Write at least 1000 words;
2. The explanation must include the origin,
principles, pros and cons of the Adagrad al-
gorithm, as well as its applications in prac-
tical scenarios;
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Figure 5: Layer-from context-masking analysis on
TRACE benchmark. Each curve shows model per-
formance (scored 0—10) on a distinct constraint type,
evaluated by DeepSeek-V3.

3. Use LaTeX format to represent all math-
ematical formulas and algorithm steps;

4. Ensure that the explanation of the princi-
ples is both professional and easy to under-
stand.

We provide the entire prompt to the model and
use a LLM evaluator to assign a score (from 0O to
10) for each constraint based on how well it is sat-
isfied. In this section, we apply layer-from context-
masking, but with a twist: we selectively mask only
the Constraints portion of the prompt from each
layer onward, while retaining access to the 7ask
Description throughout. Our goal is to determine
whether different types of constraints are learned
at different depths, thereby exhibiting a multi-step
learning trajectory. However, it does not attempt
to replicate the “X-shape” pattern described in Sec-
tion 4.1, since TRACE constraints are applied in
parallel rather than sequentially. Because these
constraints operate simultaneously, satisfying one
does not entail suppressing another. Accordingly,
instead of expecting mutually exclusive transitions,
we focus on differences in when and how sharply
individual constraints are learned, as reflected in
their scoring curves.

Experiment. We select a subset of TRACE (69
prompts) that include all the following constraint
types: Inclusion, Output Format, and Tone and
Style. We use Qwen2.5-7B-Instruct (Yang et al.,
2024a) as the test model to complete the instruc-
tions, applying context-masking to the constraint
tokens from each layer onward. To evaluate the

quality of constraint satisfaction at each masking
depth, we use DeepSeek-V3 (Liu et al., 2024a)
as an evaluator model, producing per-constraint
scores from 0 to 10 (Prompt details can be found
in Appendix B).

Figure 5 shows the resulting line chart. We ob-
serve notable differences in the learning dynamics
across constraint types:

* Output Format: The learning curve is char-
acterized by a sharp increase in score between
layers 17-20, suggesting that formatting con-
straints (e.g., JSON structure, character encod-
ing) are learned relatively late in the network.

* Inclusion and Tone and Style: These con-
straints show more gradual and smooth im-
provements across layers, indicating a slower
or more distributed learning process.

These results demonstrate that different con-
straint types are learned at different depths in the
model, further supporting our hypothesis of sequen-
tially learning dynamics in composite instruction-
following tasks.

7 Related Work

Multi-Hop Reasoning in LLMs. Recent studies
have examined how large language models (LLMs)
perform latent factual multi-hop reasoning (Press
et al., 2023; Yang et al., 2024c; Li et al., 2024; Ju
et al., 2024). Yang et al. (2024b) finds that LLMs
often reliably recall intermediate entities but incon-
sistently use them to complete complex prompts.
Biran et al. (2024) shows that LLMs resolve inter-
mediate entities early when answering multi-hop
queries, and proposes a back-patching method to
improve the performance. Yu et al. (2025) intro-
duces logit flow to analyze latent multi-hop reason-
ing in LLMs and proposes back attention to im-
prove accuracy. Anthropic. (2025) identifies inter-
mediate entities and reasoning path by Cross-Layer
Transcoder. While those often focus on factual
recall, our work investigates task-level reasoning
rather than just chains of facts. A few recent studies
have also investigated latent CoT reasoning (Wang
et al., 2025; Chen et al., 2025; Li et al., 2025a;
Mamidanna et al., 2025), in which inference is car-
ried out within latent spaces.

Task Representations in ICL. The ability of
LLMs to perform In-Context Learning (ICL)
(Brown et al., 2020) has spurred rich research into
its internal mechanism. A prominent line of inquiry
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focuses on explicit task representations (Hendel
et al., 2023; Liu et al., 2024b; Todd et al., 2024;
Li et al., 2025b; Saglam et al., 2025; Yang et al.,
2025). Initial work by Hendel et al. (2023) de-
rived task vectors from layer activations. Other
approaches include In-Context Vectors (ICVs) (Liu
et al., 2024b) derived from principal components of
activation differences, and Function Vectors (FVs)
(Todd et al., 2024) which emphasize the role of
specific attention heads. While these foundational
studies demonstrate how a singular task can be
abstracted into a vector, our work extends this by
investigating how composite tasks are handled.

Mechanistic Interpretability. Mechanistic inter-
pretability (Elhage et al., 2021) aims to reverse
engineer the internal mechanisms of LLMs. One
type of studies focus on constructing the circuit in
the model (Olsson et al., 2022; Wang et al., 2023;
Gould et al., 2024; Marks et al., 2024). Another
line of work focuses on understanding intermediate
representations through tools such as the LogitLens
(Nostalgebraist., 2020). This technique has been
extended to trace hidden states in LLMs (Dar et al.,
2023; Halawi et al., 2024; Merullo et al., 2024,
Wiegreffe et al., 2024). Another major methodol-
ogy is causal mediation analysis (Todd et al., 2024;
Vig et al., 2020; Meng et al., 2022; Geva et al.,
2023; Hendel et al., 2023; Wu et al., 2023; Dumas
et al., 2024), which measures the effect of inter-
vening on a hidden state to determine its causal
contribution to the model’s output. Recent work
also investigates the superposition hypothesis (El-
hage et al., 2022; Scherlis et al., 2022). To disen-
tangle such representations, sparse autoencoders
(SAESs) have been employed to extract interpretable
features from high-dimensional activations (Gao
et al., 2024; Marks et al., 2024; Anthropic., 2024;
Ferrando et al., 2024).

8 Conclusion

We show that large language models (LLMs) ex-
hibit an internal chain-of-thought. Two claims
ground our study: (i) distinct subtasks are learned
at different network depths, and (ii) these subtasks
are executed sequentially across layers. On a bench-
mark of 15 two-step composite tasks, we employ
layer-from context-masking and propose a novel
cross-task patching method, confirming (i). To ex-
amine claim (ii), we apply LogitLens to decode
hidden states, revealing a consistent layerwise ex-
ecution pattern. We further replicate our analysis

on the real-world TRACE benchmark, observing
the same stepwise dynamics. Together, our re-
sults enhance LLMs transparency by showing their
capacity to internally plan and execute subtasks
(or instructions), opening avenues for fine-grained,
instruction-level activation steering.
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Limitations

While our findings offer mechanistic insights into
how LLMs internally decompose and execute com-
posite tasks, several limitations must be acknowl-
edged:

Task Construction Bias. The distinct “X-shape”
pattern observed in our context-masking experi-
ments (Figure 2) is facilitated by the deliberate de-
sign of our benchmark tasks, which feature clearly
distinguishable subtask types (e.g., knowledge re-
trieval followed by algorithmic transformation).
This separation likely leads to more temporally
distant “learning points” for each subtask across
layers. However, when faced with a greater num-
ber or more nuanced types of subtasks, particularly
those with high conceptual similarity, the context-
masking technique might be less effective at clearly
disentangling their individual learning stages. In-
deed, as observed in our TRACE analysis (Section
6), the learning dynamics for closely related con-
straints can be more intertwined. Extending this
analysis to more entangled, real-world tasks re-
mains an important direction for future work.

TRACE Evaluation. Our TRACE evaluation
relies on LLM-based scoring, which may suffer
from calibration issues, prompt sensitivity, and lack
of human ground truth; thus, we treat the results
as exploratory. Alternatives such as logit-based
measures, symbolic checks, or human validation
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could improve reliability, and we also acknowl-
edge the lack of systematic error analysis. While
symbolic evaluation can capture certain constraints,
many TRACE tasks are inherently free-form, mak-
ing LLM-based evaluation a flexible—if imper-
fect—choice.

Model and Scale Scope. Our experiments are
conducted on four mid-sized open-source models
(3B—8B parameters). While these models are rep-
resentative of common deployment settings, it re-
mains an open question whether the observed phe-
nomena generalize to larger frontier models (e.g.,
GPT-4, Claude). Differences in architecture, train-
ing corpus, and alignment objectives may yield
distinct patterns of subtask representation or execu-
tion.
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A Datasets

We evaluate our two central claims on 15 compos-
ite tasks spanning four categories. Each composite
task is composed of two sequential subtasks, de-
noted as s; o s2, and is designed to probe whether
LLM:s internally represent and apply these subtasks
in a layered fashion. A summary of all composite
tasks can be found in Table 3. We also describe
the subtasks used in the cross-task patching experi-
ment.

Antonym-Uppercase This composite dataset
is constructed by capitalizing answers from an
antonym dataset. The underlying antonym pairs
are drawn from Nguyen et al. (2017), which in-
cludes both antonyms and synonyms (e.g., “good
— bad”). We follow the preprocessing proce-
dure described in Todd et al. (2024), then capitalize
the antonym response, producing pairs like “good
— Bad”. Intermediate answers are defined as the
antonym in lowercase (e.g., “bad”) and the capital-
ized form of the query (e.g., “Good”).

Synonym-Uppercase Constructed in the same
way as Antonym—Uppercase, using synonym pairs
from Nguyen et al. (2017). We capitalize the syn-
onym to form the composite answer, and treat the
lowercase synonym and capitalized query as inter-
mediate outputs.

Country_Capital-Lowercase This dataset is
built from a country—capital mapping dataset (Todd
et al., 2024). We lowercase the capital names
to form the composite answers. For example,
“France — paris”.

Landmark_Country-Lowercase Pairs land-
mark names with their respective countries, based
on data from Hernandez et al. (2024). The country
name is lowercased to form the composite answer.

Product_Company-Lowercase This dataset
contains commercial products paired with the
companies that produce them, also curated from
Hernandez et al. (2024). The company name is
lowercased to produce the final output.

Choose_Last—Country_Capital We use the
country—capital dataset (Todd et al., 2024) to create
lists of three countries sampled at random. The
final answer is the capital of the last country in the
list. Intermediate outputs include the last country
name and the capital of the first country.

Choose_Last-Landmark_Country Follows the
same format as Choose_Last—Country_Capital, us-
ing landmark—country pairs from Hernandez et al.
(2024). The model must extract the last landmark
and map it to its corresponding country.

Adjective_v_Verb—Antonym This dataset tests
syntactic category identification and semantic rea-
soning. From the antonym dataset (Nguyen et al.,
2017), we select words that are unambiguously
adjectives or verbs. Each list contains two verbs
and one adjective. The model must identify the
adjective and return its antonym.

Adjective_v_Verb—Synonym Constructed iden-
tically to Adjective_v_Verb—Antonym, but with
synonym retrieval instead.

Choose_Last-First_Letter Constructed from a
simple list-based selection dataset (Todd et al.,
2024). The model is prompted with a list of three
items and must return the first letter of the last item.

Choose_Last-Uppercase Similar to
Choose_Last-First_Letter, but instead of re-
turning the first letter, the model is required to
return the last item in uppercase form.

Antonym-English_French We translate an-
swers from the antonym dataset to French using the
Google Translate API. The composite task consists
of performing the antonym transformation and then
translating the result. Intermediate answers include
the English antonym and the French translation of
the query.

Antonym-English_Spanish Same as
Antonym—English_French, but translated to
Spanish.

Landmark_Country-English_French Based
on Hernandez et al. (2024), we first retrieve the
country associated with a landmark, then translate
the country name to French.

Landmark_Country-English_Spanish
Constructed in the same way as Land-
mark_Country—English_French, using Spanish as
the target language.

Below, we describe the individual subtasks (s
and s9) used in the cross-task patching experiments.
Each subtask is a functional unit that appears as
part of one or more composite tasks.
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Category

Composite Tasks

Knowledge—Algorithmic

Antonym-Uppercase

Synonym-Uppercase

Country_Capital-Lowercase

Landmark_Country—Lowercase

Product_Company-Lowercase

Extractive-Knowledge

Choose_Last—Country_Capital

Choose_Last-Landmark_Country

Adjective_v_Verb—Antonym

Adjective_v_Verb—Synonym

Extractive-Algorithmic

Choose_Last—First_Letter

Choose_Last—Uppercase

Knowledge-Translation

Antonym—-English_French

Antonym—English_Spanish

Landmark_Country—English_French

Landmark_Country—English_Spanish

Table 3: Summary of the 15 composite tasks used in our experiments. Each task consists of a pair of subtasks
(s1 o s2), spanning four categories: Knowledge—Algorithmic, Extractive-Knowledge, Extractive—Algorithmic, and

Knowledge—Translation.

Antonym The antonym dataset is based on data
from Nguyen et al. (2017), which contains word
pairs that are either antonyms or synonyms (e.g.,
“good — bad”, “spirited — fiery”). We
follow the same preprocessing protocol as in Todd
et al. (2024).

Synonym This dataset is also derived from
Nguyen et al. (2017), containing word pairs with
synonym relationships. Preprocessing follows the
same steps as the antonym dataset.

Country_Capital This dataset consists of coun-
try—capital pairs (e.g., “France — Paris”), taken
from Todd et al. (2024).

Landmark_Country Includes land-
mark—country pairs such as “Eiffel Tower
— France”, based on the dataset from Hernandez
et al. (2024).

Product_Company Contains entries mapping
commercial products to the companies that pro-
duce or sell them (e.g., “iPhone — Apple”). Also
sourced from Hernandez et al. (2024).

Choose_Last Constructed by sampling three
items and asking the model to return the last item.
Data sourced from Todd et al. (2024).

Adjective_v_Verb This dataset is designed to
test part-of-speech reasoning. Each example con-
tains a list of two verbs and one adjective, and the
model must identify the adjective. Source: Todd
et al. (2024).

Uppercase A simple string transformation task
where the model is required to convert the input to
uppercase. Examples and format are adapted from
Todd et al. (2024).

Lowercase Analogous to the Uppercase task, but
the model is required to convert the input to lower-
case. Based on the same dataset used in Todd et al.
(2024).

First_Letter The task involves selecting the first
letter of a given word. We construct this by reusing
inputs from the Uppercase dataset and extracting
only the first character.

Translation (English-French / English-Spanish)
We use bilingual word pairs from Conneau et al.
(2017) for English—French and English—Spanish
translations. Each example consists of an English
word and its corresponding translation. We fol-
low the preprocessing pipeline used in Todd et al.
(2024).
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B Prompt Details

In-context learning prompt:

Q: {z1}
A {y1}

Q: {x2}
A: {yo}

Q: {z3}
A {ys}

Q: {z4}
A {ya}

Q: {z5}
A {ys}

Q: {zg}
A:

An example (Chinese version) of TRACE
dataset:

Task Description: ¥ 41 fi# Bt Adagrad &
%, E—NEE I ERAE -
Constraints: 1. /D5 10007F;

2. fRREH ELALE AdagradH T AR
JRFE LSk S DL AR KPR
H;
3. {EFHLaTeX#& T ORFRITE #1122 A
AL,

4. TR FIERBREE T L X 5 T 2% -

LLM evaluation prompt (TRACE):

[System]

You are a fair judge, and please evaluate
the quality of an Al assistant’s responses to
user query. You need to assess the response
based on the following constraints. We will
provide you with the user’s query, some
constraints, and the Al assistant’s response
that needs your evaluation. When you
commence your evaluation, you should
follow the following process:

1. Evaluate each constraint: Assess how
well the Al assistant’s response meets each
individual constraint.

2. Assign a score (0—10) for each constraint:

After explaining your assessment for each
constraint, give a corresponding score from
0 (does not meet the requirement at all) to
10 (fully meets the requirement).

3. List the scores: List the Constraints
Overall Score (as a list of the individual
scores in their original constraint order).

4. Strict scoring policy: Be as strict
as possible in assigning scores. If the
response is irrelevant, contains major
factual errors, or generates harmful content,
the “Constraints Overall Score” must be 0.
5. Preserve constraint order: When you
provide the “Fine Grained Score,” the
constraints must appear in the same order
as they are listed in the input context.

6. Follow the output format: After you
provide explanations for each constraint,
list the Fine Grained Score in JSON format
and the Constraints Overall Score as a list,
as shown in the example below.

Please reference and follow the format
demonstrated in the /* Example */.

/* Example */

—INPUT—

#Task Description:

Create a password for this account
#Constraints:

The password must be at least 8 characters
long;

It must contain 1 uppercase letter;

It must contain 1 lowercase letter;

It must include 2 numbers;

#Input:

NULL

#Response:

AxT7y4gTf

—OUTPUT—

Explanation:

Password Length: The password
“AxTy4gTf” is 8 characters long, meeting
the first constraint, scoring 10 points.
Contains 1 uppercase letter: The password
“Ax7y4gTf” contains two uppercase letters,
“A” and “T”, which means it meets the
second constraint, but the explanation
incorrectly states it does not meet the
constraint, scoring 0 points.

Contains 1 lowercase letter: The password
“AxT7y4gTf’ contains three lowercase
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letters, “x”, “y”, and “g”, which means
it meets the third constraint, but the
explanation incorrectly states it does not
meet the constraint, scoring 0 points.
Includes 2 numbers: The password
“Ax7y4gTf” includes two numbers, “7” and
“4”, meeting the fourth constraint, scoring
10 points.

Fine Grained Score: [ { "The password
must be at least 8 characters long": 10, "It
must contain 1 uppercase letter": 0, "It
must contain 1 lowercase letter": 0, "It
must include 2 numbers": 10 } ]
Constraints Overall Score: [10, 0, 0, 10]

/* Input */

—INPUT—

#Task Description:

{task_description}

#Constraints:

{constraint}

#Input:

{input}

<response>:

{ans}

—OUTPUT—

We extract the “Constraints Overall Score” from
the last line of the evaluator’s response using tem-
plate matching. To compute the final score per
constraint type, we average over the number of
relevant constraints (not samples).

C Causal Intervention Experiment for
Claim 2

While LogitLens provides valuable correlational
evidence, it does not establish causal dependence
between subtask computations. To address this
limitation, we performed an additional causal inter-
vention experiment, targeting the residual stream
at the peak layer of subtask s1, as identified in our
decoding analysis (e.g., Figure 11).

Given a prompt p with intermediate and final
answers y°!, y*2, y', and an alternative prompt
x* with corresponding answers y*51, y*52, 3*!, we
performed the following intervention at layer [*
(peak layer for subtask s1):

h' « h'" + h Wy (We?™ — W)
)

This operation swaps out the residual representa-
tion aligned with y°! and replaces it with that of

y*41, without changing other components of the
prompt.

We then measured the Mean Reciprocal Rank
(MRR) of the final outputs for both 3! and y**. The
results, evaluated on all 15 tasks using Llama-3.1-
8B, show that in most cases, this substitution causes
the model’s prediction to shift from 3 to y*! (see
Table 4). This provides causal evidence that the
output of the first subtask directly influences the
computation of the second, supporting our claim
that subtasks are executed sequentially in the form

of sa(s1(x)).

D Results of Layer-from
Context-Masking

We present the complete results of the Layer-from
Context-Masking experiments across four models.
Each figure visualizes the layer-wise performance
on all 15 composite tasks, showing how masking
context information from progressively later layers
affects the model’s ability to complete subtasks and
composite outputs.

* Figure 6 shows results for Llama-3.1-8B.
* Figure 7 shows results for Mistral-7B.

* Figure 8 shows results for Qwen2.5-7B.
* Figure 9 shows results for Llama-3.2-3B.

E Results of Cross-Task Patching

We report the full results of the Cross-Task Patch-
ing experiment across all four models. Table 5
summarizes the subtask vector strength for each
model, indicating how well activations from com-
posite tasks can transfer to individual subtasks.

F Results of Logit Decoding

We present the complete results of the Logit De-
coding analysis for all four models. Each model
has two figures: (1) Mean Reciprocal Rank (MRR)
scores of component outputs (attention and MLP
layers), and (2) Mean Reciprocal Rank (MRR)
scores of residual stream.

* Figures 10 and 11 show results for Llama-3.1-
8B.

* Figures 12 and 13 show results for Mistral-7B.

* Figures 14 and 15 show results for Qwen2.5-
7B.

* Figures 16 and 17 show results for Llama-3.2-
3B.
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Composite Task y® (base) y*' (base) %' (intervention) y*' (intervention)

antonym-uppercase 0.76 0.01 0.05 (-0.71) 0.54 (+0.53)
synonym-uppercase 0.58 0.01 0.04 (-0.54) 0.44 (+0.43)
country_capital-lowercase 0.95 0.02 0.06 (-0.89) 0.34 (+0.32)
landmark_country-lowercase 0.93 0.07 0.05 (-0.88) 0.87 (+0.80)
product_company-lowercase 0.84 0.16 0.12 (-0.72) 0.70 (+0.54)
choose_last-country_capital 0.96 0.03 0.42 (-0.54) 0.21 (+0.18)
choose_last-landmark_country 0.86 0.12 0.59 (-0.27) 0.10 (+0.02)
adjective_v_verb-antonym 0.43 0.01 0.14 (-0.29) 0.03 (+0.02)
adjective_v_verb-synonym 0.41 0.01 0.05 (-0.36) 0.09 (+0.08)
choose_last-first_letter 0.88 0.15 0.74 (-0.14) 0.37 (+0.22)
choose_last-uppercase 0.96 0.01 0.37 (-0.59) 0.41 (+0.40)
antonym-english_french 0.53 0.01 0.04 (-0.49) 0.35 (+0.34)
antonym-english_spanish 0.53 0.01 0.05 (-0.48) 0.35 (+0.34)
landmark_country-english_french 0.91 0.08 0.09 (-0.82) 0.66 (+0.58)
landmark_country-english_spanish (.88 0.06 0.05 (-0.83) 0.63 (+0.57)
Average 0.76 0.05 0.19 (-0.57) 0.41 (+0.36)

Table 4: Causal intervention results for all composite tasks in Llama-3.1-8B.

Composite Task Llama-3.1-8B  Mistral-7B  Qwen2.5-7B  Llama-3.2-3B
antonym-uppercase

s1 (antonym) 0.92 +£0.02 0.26 £0.07 0.83 £0.02 0.87 £ 0.05

s2 (uppercase) 0.24 4+ 0.03 0.35+£0.02 0.03+0.02 0.34+£0.04
synonym-uppercase

s1 (synonym) 0.90 £ 0.05 0.06 £0.03 0.39£0.02 0.82 £ 0.04

s2 (uppercase) 0.19 £ 0.05 0.40 £0.03 0.09 £0.03 0.11 £0.02
country_capital-lowercase

s1 (country_capital) 0.88 £ 0.03 0.20 £0.03 0.49 £0.05 1.02 + 0.02

s2 (lowercase) 0.49 £+ 0.05 0.45+0.08 0.34 £0.03 0.31 £ 0.03
landmark_country-lowercase

s1 (landmark_country) 0.96 £+ 0.02 0.92+0.02 0.67+0.02 0.96 £+ 0.01

s2 (lowercase) 0.07 £ 0.03 0.11 £0.04 0.17 £0.04 0.01 £ 0.00
product_company-lowercase

s1 (product_company) 1.01 £ 0.01 0.86 £0.03 0.65+£0.02 0.99 £+ 0.03

s2 (lowercase) 0.05 £ 0.01 0.46 £0.04 0.36 £0.05 0.06 £+ 0.03
choose_last-country_capital

s1 (choose_last) 0.44 +0.03 0.324+0.03 0.37 & 0.05 0.26 4+ 0.04

s2 (country_capital) 0.98 £ 0.02 0.99 £0.01 0.97+£0.01 0.99 £ 0.01
choose_last-landmark_country

s1 (choose_last) 0.03 £0.02 0.00 £0.00 0.05+0.04 0.03 £ 0.01

s2 (landmark_country) 0.94 + 0.01 0.96 +0.01 0.91 4+0.01 0.96 + 0.01
adjective_v_verb-antonym

s1 (adjective_v_verb) 0.38 +0.11 0.21 +£0.05 0.54 +0.08 0.16 4+ 0.04

S2 (antonym) 0.94 £+ 0.03 0.96 £0.04 0.95+0.01 0.91 £ 0.05
adjective_v_verb-synonym

s1 (adjective_v_verb) 0.29 £+ 0.04 0.39+£0.05 0.26 £0.07 0.17 £ 0.04

S2 (synonym) 0.99 £ 0.05 0.76 £0.05 0.83 £0.07 0.79 £ 0.02
choose_last-first_letter

s1 (choose_last) 0.27 £0.03 0.08 £0.02 0.25+0.04 0.41 £0.02

so (first_letter) 1.01 +0.01 0.54 £0.03 0.95+0.05 0.97 £ 0.03
choose_last-uppercase

s1 (choose_last) 0.44 £+ 0.03 0.12+0.02 0.26 £0.04 0.56 £+ 0.03

S2 (uppercase) 0.99 £ 0.00 0.99 £0.00 1.00 £ 0.00 0.98 £ 0.01
antonym-english_french

s1 (antonym) 0.92 +£0.02 0.53+£0.05 0.88+0.02 0.76 £ 0.07

s2 (english_french) 0.39 £ 0.04 0.58 £0.05 0.45+0.01 0.60 £ 0.06
antonym-english_spanish

s1 (antonym) 091 £0.02 0.35+0.05 0.86+0.02 0.70 £+ 0.08

so (english_spanish) 0.45 £ 0.03 0.69 £0.02 0.57£0.03 0.70 £ 0.01
landmark_country-english_french

s1 (landmark_country) 0.93 £0.01 0.96 £0.01 0.92+0.01 0.87 £0.01

s2 (english_french) 0.02 £ 0.00 0.02+0.01 0.02+0.01 0.00 £ 0.00
landmark_country-english_spanish

s1 (landmark_country) 0.93 +£0.01 0.95+0.01 0.92+0.01 0.90 £+ 0.01

s2 (english_spanish) 0.01 £ 0.00 0.01 £0.01 0.01 £0.01 0.00 £ 0.00

Table 5: Subtask vector strength for all composite tasks across four models.
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Figure 6: Layer-from context-masking results for all composite tasks in Llama-3.1-8B.

22565



Accuracy

Accuracy

Accuracy

Accuracy

Accuracy

antonym-uppercase

1.0 7
1= sien
—+ s
—+ =
0.5 4
0.0
T T T T
0 10 20 30
Layer
landmark_country-lowercase
1.0 1
—+ sien
—+
—+ =
0.5 1
0.0 1 x : x
0 10 20 30
Layer
choose_last-landmark_country
1.0 1
=+ sies
—+
-+ 5
0.5 4
0.0 b T T T T
0 10 20 30
Layer
choose_last-first_letter
1.0 7
—+= sies
—+ =
-+ 5
0.5 4
00 _ T T T T
0 10 20 30
Layer
antonym-english_spanish
1.0 7
1= siem
—+= s
—+ =
0.5 4
0.0 - i i
0 10 20 30
Layer

Accuracy

Accuracy

Accuracy

Accuracy

Accuracy

synonym-uppercase

country_capital-lowercase

1.0 7 1.0 1
1= sien —+ sien
—+ —+ s
o 7 |4
0.5 4 5 0.5
3
£ )
0.0 T T T T 0.0 T T T T
0 10 20 30 0 10 20 30
Layer Layer
product_company-lowercase choose_last-country_capital
1.0 1.0
+ Spos8 Spos2
+ Nl { S1
-+ n g -+ 5
0.5 1 5 0.5
S
<
00 L T T T T 0'0 L T T T T
0 10 20 30 0 10 20 30
Layer Layer
adjective_v_verb-antonym adjective_v_verb-synonym
1.0 1 1.0 7
=+ sies 1+ siesm
+ S1 E S1
+ ) ? E 52
0.5 1 5 0.5 1
8
0.0 - T L T T 0.0 4 T T T T
0 10 20 30 0 10 20 30
Layer Layer
choose_last-uppercase antonym-english_french
1.0 4 109
—+= sien 1= sien
+ N + S1
-+ 5 y -+ 5
0.5 4 5 0.5 1
8
) W
001, : : : 00 A ==ty . .
0 10 20 30 0 10 20 30
Layer Layer
landmark_country-english_french landmark_country-english_spanish
1.0 q 1.0 q
—+= sien —+= sien
+ N { 51
+ = g |+ =
0.5 1 5 051
8
<
0'0 L T T T T 0'0 L T T T T
0 10 20 30 0 10 20 30

Layer

Layer

Figure 7: Layer-from context-masking results for all composite tasks in Mistral-7B.
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Figure 8: Layer-from context-masking results for all composite tasks in Qwen2.5-7B.
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Figure 9: Layer-from context-masking results for all composite tasks in Llama-3.2-3B.
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Figure 10: Heatmaps of attention and MLP block decoding results for all tasks in Llama-3.1-8B.

22569



antonym-uppercase

1.0 1
=+ siesm
-+ s
. |
ez 0.5 1
=
0.0 1
T T T T
0 10 20 30
Layer
landmark_country-lowercase
1.0 1
+ Spe82
-+ s
. —+ =
& 0.5
=
00 L T T T T
0 10 20 30
Layer
choose_last-landmark_country
1.0 q
=+ sies
—+ s
-+ 5
£ 051
=
004 . ﬁ
0 10 20 30
Layer
choose_last-first_letter
1.0 q
—+= sien
—+ s
-+ 5
é 0.5 1
=
0'0 L T T T T
0 10 20 30
Layer
antonym-english_spanish
1.0 7
=+ siesm
—+ 5
. | Ee
& 0.5 1
=
00 L T T T T
0 10 20 30
Layer

synonym-uppercase

country_capital-lowercase

1.0 7 1.0 1
=+ siesm =+ siesm
-+ s -+ s
. | . |
&4 0.5 1 & 0.5
= =
0.0+ T T T T 0.0 T T T T
0 10 20 30 0 10 20 30
Layer Layer
product_company-lowercase choose_last-country_capital
107 1.0
—+ sien 1 sien
+ Nl { 1
. —+ = . —+ =
& 0.5 & 0.5
> >
__—..’.*J
00 L T T T T 00 L T T T T
0 10 20 30 0 10 20 30
Layer Layer
adjective_v_verb-antonym adjective_v_verb-synonym
1.0 q 1.0 q
1= sies =+ siesm
+ S1 E S1
+ 52 E 52
i 0.5 4 § 0.5 1
= ; = ; i
00 h T T T T 0'0 - T T T T
0 10 20 30 0 10 20 30
Layer Layer
choose_last-uppercase antonym-english_french
1.0 4 1.0 7
—+= sien —+= sies
+ N + S1
+ 52 { 52
é 0.5 1 é 0.5 1
= =
0'0 L T T T T 00 L T T T T
0 10 20 30 0 10 20 30
Layer Layer
landmark_country-english_french landmark_country-english_spanish
1.0 7 1.0 7
=+ siesm =+ siesm
+ N + S1
. | . |
& 0.5 1 & 0.5 1
= =
004, : : — 001 : : .
0 10 20 30 0 10 20 30
Layer Layer

Figure 11: Decoding results of residual stream for all tasks in Llama-3.1-8B.
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Figure 12: Heatmaps of attention and MLP block decoding results for all tasks in Mistral-7B.
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Figure 13: Decoding results of residual stream for all tasks in Mistral-7B.
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Figure 14: Heatmaps of attention and MLP block decoding results for all tasks in Qwen2.5-7B.
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: Decoding results of residual stream for all tasks in Qwen2.5-7B.
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Figure 16: Heatmaps of attention and MLP block decoding results for all tasks in Llama-3.2-3B.
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Figure 17: Decoding results of residual stream for all tasks in Llama-3.2-3B.
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