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Abstract

Grammatical Error Correction (GEC) for low-
resource Indic languages faces significant
challenges due to the scarcity of annotated
data. In this work, we introduce the Mask-
Translate&Fill (MTF) framework, a novel ap-
proach for generating high-quality synthetic
data for GEC using only monolingual corpora.
MTF leverages a machine translation system
and a pretrained masked language model to
introduce synthetic errors and tries to mimic er-
rors made by second-language learners. Our ex-
perimental results on English, Hindi, Bengali,
Marathi, and Tamil demonstrate that MTF con-
sistently outperforms other monolingual syn-
thetic data generation methods and achieves
performance comparable to the Translation
Language Modeling (TLM)-based approach,
which uses a bilingual corpus, in both inde-
pendent and multilingual settings. Under mul-
tilingual training, MTF yields significant im-
provements across Indic languages, with par-
ticularly notable gains in Bengali and Tamil,
achieving +1.6 and +3.14 GLEU over the TLM-
based method, respectively. To support further
research, we also introduce the IndiGEC Cor-
pus, a high-quality, human-written, manually
validated GEC dataset for these four Indic lan-
guages, comprising over 8,000 sentence pairs
with separate development and test splits.

1 Introduction

Grammatical Error Correction (GEC) is a monolin-
gual text-to-text rewriting task where, given a sen-
tence containing grammatical errors, the goal is to
produce its grammatically correct version. Modern
techniques treat GEC as a translation task, convert-
ing ungrammatical text to a correct form. However,
these methods rely heavily on supervised data in
the form of sentence pairs ("edits").

Despite growing interest in GEC, most research
has focused on English, primarily due to the lack
of benchmark GEC datasets for low-resource lan-

guages, especially Indic languages (Sharma and
Bhattacharyya, 2025).

In recent years, pre-training on synthetic erro-
neous data followed by fine-tuning on annotated
pairs has become a dominant paradigm, achiev-
ing state-of-the-art results in English through vari-
ous data synthesis techniques (Grundkiewicz and
Junczys-Dowmunt, 2019; Lichtarge et al., 2019;
Zhao and Wang, 2020; Rothe et al., 2021; Kiyono
et al., 2019).

As GEC research expands beyond English, sim-
ilar synthetic data techniques have been applied
to low-resource languages to compensate for the
scarcity of annotated data. These methods inject
noise into clean text using rule-based, probabilis-
tic, or round-trip translation strategies. While rule-
based approaches have shown promising results
(Grundkiewicz and Junczys-Dowmunt, 2019; Ná-
plava and Straka, 2019; Sonawane et al., 2020),
they require language-specific rules and confusion
sets, limiting their scalability and the diversity of
generated errors.

Model-based error generation approaches (Xie
et al., 2018; Stahlberg and Kumar, 2021) offer im-
proved quality but depend on high-quality seed
datasets, typically available only for high-resource
languages like English.

This work shifts the focus to low-resource GEC
for Indic languages. To address existing limitations,
we propose a novel synthetic data generation ap-
proach that enables training high-quality GEC sys-
tems using only monolingual corpora. Our method
leverages two readily available resources:

1. Machine Translation system, and

2. Pretrained Masked Language Model.

The method is generic and can be applied to other
low-resource languages as well.

Our contributions are:
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1. Mask-Translate&Fill (MTF): We propose
Mask-Translate&Fill (MTF), a novel syn-
thetic data generation strategy that relies
solely on monolingual corpora for grammat-
ical error correction in low-resource settings.
MTF consistently and significantly outper-
forms other monolingual-based techniques.
Despite not using any bilingual data, MTF
achieves comparable performance to the
TLM-based method and significantly outper-
forms it in Bengali and Tamil (+1.6 and
+3.14 GLEU, respectively) under multilingual
training (Refer Table 3).

2. The IndiGEC Corpus: A high-quality, man-
ually validated GEC dataset for four Indic lan-
guages: Hindi, Bengali, Marathi, and Tamil.
The corpus comprises 2,199 Hindi, 2,801
Bengali, 2,260 Marathi, and 871 Tamil sen-
tence pairs, each with separate development
and test splits. The Hindi data is sourced
from student writing, whereas the data for
the other languages is derived from human-
written Wikipedia edits. All sentence pairs
are rigorously filtered and manually verified
by trained annotators to ensure the presence
of genuine grammatical errors and accurate
corrections (Refer Section 4).

3. Multilingual GEC Study: An empirical anal-
ysis demonstrating that multilingual models
trained with MTF-generated synthetic data
show significant gains in GLEU scores over
single-language models across multiple Indic
languages. Our experiments report improve-
ments of +1.91, +6.0, +3.0, and +5.58 GLEU
points for Hindi, Bengali, Marathi, and Tamil,
respectively. This highlights the strong bene-
fits of cross-lingual transfer for low-resource
GEC, achieved without additional data by sim-
ply combining monolingual resources (Refer
Tables 3 & 4).

The dataset and code are publicly available in
the IndiGEC1 repository. To the best of our knowl-
edge, IndiGEC is the first publicly available GEC
dataset encompassing multiple low-resource Indic
languages.

2 Related Works

The primary objective of GEC is to transform an
ungrammatical sentence into a grammatical one.

1https://github.com/ujjwalsharmaIITB/IndiGEC

Neural Machine Translation (NMT) has emerged
as a leading approach for GEC due to its ability
to correct errors at the word, phrase, and sentence
levels, even when those errors are not seen during
training. The transformer architecture (Vaswani
et al., 2017) is now the standard for training neural
GEC models.

However, a major limitation of transformer-
based GEC systems is their reliance on large
amounts of supervised data in the form of sentence-
level "edits" (incorrect-correct pairs). While sub-
stantial progress has been made for English and
other high-resource languages, supported by nu-
merous benchmark datasets (Ng et al., 2014; Grund-
kiewicz and Junczys-Dowmunt, 2014; Faruqui
et al., 2018; Dale et al., 2012; Bryant et al., 2019),
low-resource languages, particularly Indic lan-
guages, remain underexplored.

Manually annotated corpora have played a cru-
cial role in advancing GEC for English and other
resource-rich languages such as Russian (Ro-
zovskaya and Roth, 2019). However, the creation
of such corpora is time-consuming and resource-
intensive, and typically infeasible for low-resource
languages. To address this, artificial data genera-
tion for GEC has gained traction (Izumi et al., 2004;
Zhao et al., 2019; Kiyono et al., 2019). Common
techniques include injecting noise into clean sen-
tences using rule-based or probabilistic methods,
such as token swapping, insertion, or round-trip
translation via a pivot language (Lichtarge et al.,
2019; Zhao et al., 2019).

Another strategy involves mining corrections
from online sources like language learning plat-
forms, Wikipedia revision histories (Faruqui et al.,
2018), and GitHub repositories (Hagiwara and
Mita, 2020). While this can produce large and
natural datasets, many revisions do not address
grammatical errors but instead reflect content im-
provements or rephrasings.

Backtranslation-based methods have also been
widely explored to create synthetic datasets (Xie
et al., 2018; Stahlberg and Kumar, 2021). These
techniques train models on high-quality seed data
to generate ungrammatical variants from correct
sentences, mimicking real-world errors. However,
their effectiveness depends heavily on the availabil-
ity of such seed datasets.

Finally, masking-based synthetic data generation
has also shown promise (Zhao and Wang, 2020;
Kaneko et al., 2020). These methods introduce er-
rors by masking parts of clean input sentences and
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Figure 1: The Mask-Translate&Fill (MTF) pipeline for synthetic GEC data generation. Monolingual sentences are
first translated to form a pseudo-parallel corpus. Fast Align is used to compute word alignments, guiding token
masking in the target (high-resource) language. The masked sentences are then filled using a language model, and
the filled masks back-translated, producing ungrammatical variants that are paired with the original sentences.

replacing them with simulated mistakes. Kaneko
et al. (2020) further initialized GEC models us-
ing pretrained Masked Language Models (MLMs),
followed by fine-tuning.

3 Methodology

In this section, we propose a novel framework
called Mask-Translate&Fill (MTF) for generat-
ing synthetic training data in GEC. MTF integrates
translation with masked token prediction to pro-
duce more diverse and natural errors. To con-
textualize our approach, we first review existing
masking-based methods, such as Mask&Fill and
TLM-based Mask&Fill, which generate synthetic
errors by masking tokens in correct sentences and
predicting substitutions. These masking-based ap-
proaches are language-agnostic, scalable, and ef-
fectively leverage pretrained language models.

3.1 Mask&Fill

In the Mask&Fill approach, we randomly mask
([MASK]) tokens in an input sentence and use a
pretrained Masked Language Model (MLM) to pre-
dict candidate substitutions. We employ a beam
search strategy, masking one token at a time and
generating multiple candidate replacements. At
each step, the top beam_size sequences (after sub-
stitution) are retained. The final sequence in the

beam (i.e., the one with the lowest overall proba-
bility after all the substitutions) is selected as the
synthetic (ungrammatical) output. The original sen-
tence serves as the corresponding correct target for
the GEC model. Formally, let M = {m1, ,m|M |}
denote the set of masked token positions in the
input. The fill-mask process is defined as:

SM = FillMaskθ(S,M, [MASK]) (1)

where S is the original sentence, SM is the
generated (potentially erroneous) sentence, and
FillMaskθ denotes the masked language model
parameterized by θ.

3.2 TLM based Mask&Fill
This method is based on the approach proposed by
Sun et al. (2022). We utilize a pretrained cross-
lingual language model (PXLM), trained with the
Translation Language Modeling (TLM) objective,
to generate synthetic data from a parallel corpus.
Following the Mask&Translate paradigm, we mask
tokens in the target sentence and input the masked
sentence into PXLM. Exploiting the model’s non-
autoregressive generation capability, we sample
candidate substitutions for the masked tokens. The
sampling procedure is similar to Mask&Translate,
and the final sentence in the beam (i.e., the one
with the lowest overall probability) is selected as
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the ungrammatical input, while the original input
sentence is treated as the correct form. For further
details, refer to Sun et al. (2022).

3.3 Mask-Translate&Fill
We propose a novel technique, Mask-
Translate&Fill (MTF), inspired by the cognitive
process of second-language learners. When
confronted with a cloze (fill-in-the-blank) task,
learners often translate the sentence into their
native language, infer the missing word, and
then translate the completed sentence back into
the target language. Our method emulates this
behavior as a design heuristic, using it to guide the
overall pipeline.2

Given an input sentence in a low-resource lan-
guage (LRL), we first apply token-level masking.
The masked sentence is then translated into a high-
resource language (HRL), such as English, with
the mask preserved. We then use a pretrained
MLM in the HRL to fill the masked token. Fi-
nally, the filled mask is translated back into the
original language and inserted into the original sen-
tence. The masking and sampling process mirrors
the Mask&Fill strategy, and the final sentence from
the beam (with the lowest probability) is selected
as the synthetic (ungrammatical) input. The origi-
nal sentence serves as the correct target. Figure 1
illustrates this process.

The sampling follows the same formulation
as Equation 1, with the key difference that
FillMaskθ now refers to the model in the HRL
rather than the LRL.

4 The IndiGEC Corpus

We introduce the IndiGEC Corpus, a new human-
curated and manually verified GEC corpus for four
Indic languages: Hindi, Bengali, Marathi, and
Tamil. The corpus includes separate development
and test splits for each language, aimed at enabling
robust evaluation of multilingual and low-resource
GEC systems.

Hindi. For Hindi, data was collected from hand-
written notebooks of students from grades 5 to
10. Trained annotators were provided with these
notebooks and asked to identify, extract, and cor-
rect grammatical errors. Each sentence pair in the
dataset comprises a student-written (ungrammati-
cal) sentence and its corresponding corrected ver-

2We emphasize that this analogy is intended purely as an
illustrative design heuristic and not as a psychological claim.

sion, ensuring high-quality, real-world grammatical
error instances.

Bengali, Marathi, and Tamil. For Bengali,
Marathi, and Tamil, we extracted sentence-level
edits from Wikipedia using the publicly available
wikiedits3 tool. Since Wikipedia edits are made
by human contributors, they offer a natural source
of linguistic corrections. Annotators manually re-
viewed these edits to identify sentence pairs where
the source contained grammatical errors. If the
automatically extracted target sentence was inaccu-
rate or stylistically inappropriate, annotators made
necessary corrections to ensure the target repre-
sented a grammatically sound version of the source.

All sentence pairs across the four languages were
manually verified to ensure that they contain gen-
uine grammatical corrections. Table 1 reports the
dataset statistics. See Appendix B for further de-
tails and analysis.

Language Dataset Dev Test
Hindi IndiGEC 1100 1099

Bengali IndiGEC 1400 1401

Marathi IndiGEC 1130 1130

Tamil IndiGEC 436 435

English JFLEG 754 (*4) 747 (*4)

Hindi Hi-GEC 976 1465

Table 1: Development and Test Split Overview Across
Language Datasets. This table summarizes the number
of sentence pairs in the development (Dev) and test
(Test) splits used for evaluation across different GEC
datasets. IndiGEC covers Hindi, Bengali, Marathi, and
Tamil, while JFLEG and Hi-GEC are English and Hindi
benchmarks, respectively. Parentheses indicate multiple
reference corrections per sentence.

5 Data

This section outlines the datasets and techniques for
synthetic data generation used in our experiments.
We conduct experiments across five languages: En-
glish, Hindi, Bengali, Marathi, and Tamil. For
these experiments, we utilize the ILCI corpus (Jha,
2010), which provides parallel data for English to
Hindi, Marathi, Bengali, and Tamil. Before gen-
erating synthetic datasets, the corpus was prepro-
cessed to filter sentences with lengths between 10

3https://github.com/snukky/wikiedits
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and 100 words. Additionally, we applied regex-
based filtering to remove noise and irrelevant con-
tent, ensuring the quality of data for subsequent
synthetic generation. The statistics for the sentence
pairs in the filtered corpus are given in Table 2.

Language Pairs # Sentences
English-Hindi 135.20k

English-Bengali 94.44k

English-Marathi 85.48k

English-Tamil 82.91k

Table 2: Total Number of Sentences per Language
Pair in the filtered ILCI Corpus.

5.1 Direct-Noise
Direct-Noise introduces noise into clean sentences
using simple operations: word deletion, insertion,
replacement, and swapping, each applied with a
fixed probability. These transformations support
large-scale synthetic data generation, leveraging
the abundance of multilingual text online (Izumi
et al., 2004; Grundkiewicz and Junczys-Dowmunt,
2019; Lichtarge et al., 2019).

An error rate perrors ∼ N (0.2, 0.05) is sampled
per sentence and scaled by sentence length to deter-
mine how many tokens to corrupt. Each selected
token is modified using one of the following word-
level operations, chosen with fixed probabilities:
replace (0.3), insert (0.15), delete (0.15), or swap
(0.1). The remaining 0.3 is used for character-level
noise: skip a character (0.01) or swap adjacent
characters (0.06).

5.2 Round-Trip-Translation
Round-trip translation introduces noise by exploit-
ing translation errors and cross-lingual ambiguities.
A clean sentence is first translated into a pivot lan-
guage and then translated back into the original
language (Lichtarge et al., 2019).

We use the IndicTrans2 model (Gala et al., 2023)
for our experiments. Based on the findings of
Sharma and Bhattacharyya (2025), which showed
English to be the most effective pivot for Hindi
GEC, we adopt English as the pivot for all four In-
dic languages (Hindi, Bengali, Marathi, and Tamil).
For English, we use Hindi as the pivot.

5.3 Mask&Fill
To introduce noise, we sample the error probabil-
ity as perrors ∼ N (0.2, 0.05). The number of to-

kens to corrupt in each sentence is computed as
perrors × length(sentence). For English, we use
the pretrained BERT model4 as the FillMaskθ.
For Hindi, Bengali, Marathi, and Tamil, we use
the IndicBERT model5. We adopt a beam search
decoding strategy with a beam_size of 3 in all our
experiments.

5.4 TLM-based Mask&Fill

For this method, we use the IndicBERT model6,
pretrained with the TLM objective. We fol-
low the same masking strategy as in the stan-
dard Mask&Fill approach, sampling perrors ∼
N (0.2, 0.05) and computing the number of cor-
rupted tokens as perrors × length(sentence). The
beam_size is set to 3 across all experiments.

5.5 Mask-Translate&Fill

For our proposed MTF method, we employ the In-
dicTrans2 model (Gala et al., 2023) for translation
between English and Indic languages. We use the
following pretrained checkpoints:

• ai4bharat/indictrans2-en-indic-1B for
translation from English to Indic languages

• ai4bharat/indictrans2-indic-en-1B for
translation from Indic languages to English

As IndicTrans2 does not support translation
while preserving masked tokens, we first translate
the unmasked sentences and then use fast_align7

to compute word alignments between the source
and translated sentences. Using these alignments,
we identify and mask the corresponding token in
the target sentence to produce aligned masked trans-
lations.

We adopt the same noise sampling strategy:
perrors ∼ N (0.2, 0.05), with the number of
masked tokens computed accordingly. The
beam_size is set to 3 across all experiments.

Note: Masking-based methods, including MTF,
predominantly induce substitution-based errors;
however, these substitutions can implicitly give
rise to insertion or deletion errors (Appendix D.3).

4google-bert/bert-base-uncased
5ai4bharat/IndicBERTv2-MLM-Sam-TLM
6ai4bharat/IndicBERTv2-MLM-Sam-TLM
7https://github.com/clab/fast_align
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Figure 2: Examples of Sentences Generated Using Different Synthetic Data Generation Techniques for GEC
in Hindi. The original sentence (translation and gloss) is provided at the top. Each subsequent row displays an
erroneous variant generated by a distinct synthetic data generation technique: Direct-Noise, Round Trip Translation,
Mask&Fill, Mask-Translate&Fill (proposed), and TLM-based Mask&Fill. Words that each technique has modified
are highlighted in red.

6 System Overview

The Error Correction Module (ECM) addresses
grammatical errors by framing correction as a ma-
chine translation task, translating ungrammatical
sentences into grammatical ones using an Encoder-
Decoder architecture. The encoder encodes the
ungrammatical sentence into a latent representa-
tion, and the decoder autoregressively generates
the corrected sentence, formalized as:

P (y|ŷ) =
n∏

i=1

P (yi|yi−1, . . . , y1, ỹ) (2)

where y is the grammatical output, yi the word
generated at step i, ŷ the input sentence, and ỹ its
encoded representation. Training maximizes the
likelihood of correct sentences, given their corre-
sponding incorrect ones in the dataset DE , using
cross-entropy loss.

6.1 Implementation and Training

All ECMs are implemented using the Transformer
architecture (Vaswani et al., 2017). Models are
trained exclusively on synthetic datasets and evalu-
ated on held-out test sets. Validation is conducted
on the development split of each corresponding
language to monitor training progress and prevent
overfitting.

We train separate models for five languages: En-
glish, Hindi, Bengali, Marathi, and Tamil. For
consistency, we use the same amount of synthetic
data as outlined in Table 2 for each language, with
one sentence pair per sample.

6.1.1 Multilingual Models
To investigate the benefits of cross-lingual transfer
for GEC, we train a set of multilingual models cov-
ering all five languages. These models vary along
two dimensions: (a) Training Data: different syn-
thetic data configurations, including multilingual
variants; and (b) Model Size: varying encoder-
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Dataset English Hindi Hindi Bengali Marathi Tamil
(JFLEG) (Hi-GEC) (IndiGEC Corpus)

Direct-Noise 33.10 64.02 23.44 50.3 36.20 46.72
Round Trip Translation 27.00 40.75 22.50 12.30 16.29 8.12

Mask&Fill 32.27 62.99 20.96 48.17 41.68 44.95
Mask-Translate&Fill (MTF) 40.23* 67.95* 23.30* 47.91 42.08 46.36*

TLM-based Mask&Fill 40.35* 70.36* 23.63* 52.31* 45.63* 48.90*
Multilingual: MTF 39.83i 69.81i 22.97i 53.91s 45.13i 52.04s

Table 3: Evaluation of Synthetic Data Generation Techniques Across Languages. GLEU scores on English
(JFLEG), Hindi (Hi-GEC), and four Indic languages from the IndiGEC corpus (Hindi, Bengali, Marathi, Tamil)
using different synthetic data generation methods: Direct-Noise, Mask&Fill, Mask-Translate&Fill (MTF), and
TLM-based Mask&Fill (Sun et al., 2022). The highest score per language is shown in bold; among non-TLM
methods, the best score is additionally italicized. "*" denotes statistically significant improvement over Mask&Fill.
Superscripts s and i indicate significance and insignificance, respectively, compared to the TLM-based method
(p_value < 0.05).

decoder depths while keeping all other parameters
constant.

To train the multilingual model, we concatenate
the dataset for all five languages and then jointly
train a single model.

7 Results

This section presents quantitative and qualitative
evaluations of synthetic data generation methods
for GEC across English, Hindi, Bengali, Marathi,
and Tamil. We compare different data generation
techniques, highlighting the effectiveness of our
MTF method. We then examine the effects of mul-
tilingual training, cross-lingual transfer, and model
size on performance. Finally, we qualitatively ana-
lyze model outputs to gain insights into error pat-
terns and correction behavior. All evaluations are
based on the GLEU metric (Napoles et al., 2015).

7.1 Quantitative Analysis

Table 3 compares the scores across all language
pairs. In our experiments, we simulate a low-
resource setting for English by restricting access to
large-scale annotated data, enabling a fair compari-
son with genuinely low-resource Indic languages.

MTF consistently outperforms other monolin-
gual synthetic data generation methods. Compared
to Mask&Fill, MTF achieves a +7.96 GLEU gain
in English (40.23 vs. 32.27) and +4.96 in Hindi
(Hi-GEC). It also shows improvements on the In-
diGEC corpus: for Hindi, MTF attains a +2.34
increase (23.30 vs. 20.96) and performs compa-
rably to the TLM-based model with only a 0.33
difference (23.63 vs. 23.30). For Tamil, MTF sig-
nificantly improves by +1.41 (46.36 vs. 44.95)

over Mask&Fill. For Marathi and Bengali, it main-
tains comparable performance (42.08 vs. 41.68
and 47.91 vs. 48.17, respectively). These statisti-
cally significant improvements (highlighted in bold
where applicable) demonstrate MTF’s strong effec-
tiveness despite relying solely on monolingual data.

Under multilingual training, the model achieves
significant improvements over its single-language
MTF variant. Specifically, Hindi (Hi-GEC) im-
proves by +1.91, while the IndiGEC corpus shows
gains of +6.0 for Bengali, +3.0 for Marathi, and
+5.58 for Tamil, with performance remaining com-
parable in English. Notably, these improvements
are achieved without any additional data, simply by
combining the same amount of monolingual syn-
thetic data across languages, underscoring the effec-
tiveness of cross-lingual transfer for low-resource
GEC. Furthermore, under multilingual training,
MTF achieves performance comparable to the
TLM-based method across most languages. No-
tably, for Bengali and Tamil, the multilingual MTF
model significantly outperforms the TLM-based
approach, as confirmed by statistical significance
testing.

Table 4 illustrates the impact of increasing data
in multilingual training. Using only the lowest-
probability sequence in MTF yields higher or com-
parable GLEU scores across most languages com-
pared to using all the outputs in the final beam
(All Beam). This suggests that selecting the lowest-
probability sequence provides cleaner, more effec-
tive training data, while including all beam outputs
increases data volume but may introduce noise that
slightly reduces performance.

Table 5 shows that increasing model size does
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Dataset English Hindi Hindi Bengali Marathi Tamil
(JFLEG) (Hi-GEC) (IndiGEC Corpus)

Mask-Translate&Fill (MTF) 39.83 69.81 22.97 53.91 45.13 52.04
MTF: All Beam (beam_size = 3) 39.90 67.58 23.59 52.25 43.28 50.39

Table 4: Performance of Multilingual Models Trained with Mask-Translate&Fill Synthetic Data. GLEU scores
for English (JFLEG), Hindi (Hi-GEC), and four Indic languages from the IndiGEC corpus (Hindi, Bengali, Marathi,
Tamil). The All Beam variant uses all outputs from the final beam (beam_size = 3) instead of selecting only the
lowest-probability sequence, thereby increasing the amount of synthetic training data.

Model English Hindi Hindi Bengali Marathi Tamil
(JFLEG) (Hi-GEC) (IndiGEC Corpus)

4 Encoder - 4 Decoder 39.83 69.81 22.97 53.91 45.13 52.04
6 Encoder - 6 Decoder 39.82 67.79 23.26 52.09 43.43 50.26
8 Encoder - 8 Decoder 39.97 69.41 22.67 53.87 44.30 51.68

Table 5: Effect of Encoder-Decoder Size on Multilingual GEC Performance. GLEU scores for multilingual
models with varying encoder-decoder sizes (4E-4D, 6E-6D, 8E-8D) across English (JFLEG), Hindi (Hi-GEC), and
four Indic languages (Hindi, Bengali, Marathi, Tamil) from the IndiGEC corpus. The models were trained using the
Mask-Translate&Fill synthetic data.

not lead to consistent performance gains. The 4E-
4D model achieves the best or comparable results
across most languages, including Hindi, Bengali,
Marathi, and Tamil. Larger models (6E-6D and
8E-8D) often perform slightly worse, suggesting
overfitting in low-resource settings. This indicates
that model size is not the bottleneck in our case,
possibly because the MTF data generation strat-
egy is effective, enabling efficient learning even
with smaller models. For detailed category-wise
analysis, see Appendix C.

Setup Mask&Fill MTF
Dev: IndiGEC
Test: Hi-GEC

63.26 68.01

Dev: Hi-GEC
Test: IndiGEC

21.26 22.96

Dev: Hi-GEC
Test: Hi-GEC

62.99 67.95

Dev: IndiGEC
Test: IndiGEC

20.96 23.30

Table 6: Performance comparison of Mask&Fill and
MTF in a cross-domain setting using Hindi datasets
differing in register and writing style.

7.1.1 Impact of Data Source Heterogeneity
To assess the impact of style/register differences,
we conducted a cross-domain evaluation using two
Hindi datasets: Hi-GEC (Wikipedia-based) and
IndiGEC-Hindi (student writing). Table 6 reports
GLEU scores for Mask&Fill and MTF under dif-

Figure 3: Comparison of correct and erroneous Hindi
sentences illustrating a verb form error where the con-
junction "ki" is incorrectly substituted for the feminine
past participle verb "kı̄". The table includes translations,
glosses, and outputs from various error correction mod-
els.

ferent domain setups. Results from Table 6 show
that MTF consistently outperforms the Mask&Fill
across domains, indicating stronger robustness and
better generalization across registers and writing
styles.

7.2 Qualitative Analysis

We examine model outputs to gain deeper in-
sight into the effectiveness of different synthetic
data generation methods: Direct-Noise, RTT,
Mask&Fill, MTF, TLM-based, and the multilingual
MTF model. This qualitative evaluation focuses
on how well each model identifies and corrects
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common grammatical errors, providing an intuitive
understanding of their strengths and limitations.

Figure 3 illustrates a common Hindi verb in-
flection error where the conjunction “ki” is incor-
rectly used instead of the feminine past participle
verb “kı̄”. This example demonstrates that only
the MTF and Multilingual MTF models success-
fully detect and correct this subtle morphological
mistake, reflecting their deeper grasp of language-
specific grammatical nuances learned from the
MTF-generated data. For detailed qualitative anal-
ysis, see Appendix D.

8 Conclusion and Future Work

In this work, we propose Mask-Translate&Fill
(MTF), a synthetic data generation strategy for
grammatical error correction that relies solely on
monolingual corpora. Our experiments across
English and four Indic languages: Hindi, Ben-
gali, Marathi, and Tamil, show that MTF outper-
forms other monolingual synthetic data methods,
including Direct-Noise, Round-Trip-Translation,
and Mask&Fill. Multilingual training with MTF-
generated data yields significant improvements
over single-language models, performs comparably
to the TLM-based method, and significantly outper-
forms it for Bengali and Tamil, demonstrating the
benefits of cross-lingual transfer in low-resource
GEC using only monolingual data. Our analysis in-
dicates that model size is not a major performance
bottleneck, likely due to the effectiveness of MTF-
generated data in enabling learning with smaller
models. Qualitative evaluations further show that
MTF captures subtle, language-specific grammati-
cal patterns, particularly in verb morphology and
proper noun usage, and introduces a richer variety
of syntactic errors during training. In addition, we
release the IndiGEC Corpus, a high-quality, manu-
ally validated dataset for four Indic languages, to fa-
cilitate benchmarking and further research. Future
work could focus on expanding the diversity of er-
rors generated, especially those found in advanced
or native-level writing, including the incorporation
of semantic and pragmatic errors to broaden the
scope and applicability of synthetic data.

All data and code are publicly available8 under
the CC BY-SA 4.0 license.

8https://github.com/ujjwalsharmaIITB/IndiGEC

Limitations

While the Mask-Translate&Fill (MTF) synthetic
data technique is particularly effective in low-
resource settings, its performance is influenced
by the availability of pretrained translation and
masked language models. In cases where such
models are limited or unavailable, especially for ex-
tremely low-resource languages, the quality of gen-
erated data may vary. Additionally, MTF primar-
ily simulates a focused class of second-language
learner errors through a fill-in-the-blank mecha-
nism. While this captures common grammatical
patterns effectively, it may not encompass the full
spectrum of errors found in more advanced or
native-level writing, offering an opportunity for
future work to expand the diversity of error types.

Ethics Statement

Our work uses multiple data sources for train-
ing and evaluation, including the ILCI corpus for
training, and a combination of Wikipedia edits,
student writing samples, and public benchmarks
for evaluation. For Wikipedia-based datasets, we
acknowledge the ethical considerations of using
crowd-sourced content. All extracted data was
anonymized and aggregated to ensure that no in-
dividual contributors are identifiable. For student
writing data, we obtained appropriate permissions
from schools and guardians, and annotations were
conducted under ethical guidelines. Annotators,
including those with expertise in the respective lan-
guages, maintained strict confidentiality and were
fairly compensated for their work. For the JFLEG
benchmark, we used publicly released data in accor-
dance with its terms of use. We recognize that all
data sources may carry inherent biases, particularly
crowd-sourced content like Wikipedia, and these
may affect model behavior. We encourage contin-
ued efforts to improve fairness, representation, and
transparency in low-resource GEC systems.
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A Implementation Details

We utilized the OpenNMT9 library (Klein et al.,
2018) for training all our models.

During training, each model is validated on the
validation split of the datasets and evaluated on an
unseen test set. Early stopping is implemented with
patience of 5 epochs, and models are validated at
the end of each epoch.

Table 7 provides a comprehensive overview of
the hyperparameters used for training the models

Hyperparameter Value
Encoder Layers 4
Decoder Layers 4
Hidden Size 512
Word-Vector Size 512
Feed-Forward Size 1024
Activation @ Feed Forward gelu
Multi-Head Attention Heads 16
Optimizer Adam
Initial Learning Rate 1.0
Early Stopping Patience 5
Attention Dropout 0.1

Table 7: Hyperparameters used for training the models.
Only the number of layers changed from 4 to 6 to 8 in
multilingual experiments.

Data tokenization is performed using sentence-
piece tokenizer with the spm-library10, with a
vocabulary size of 32,000.

B The IndiGEC Corpus

This section presents an analysis of The IndiGEC
Corpus, introduced in Section 4. The corpus was
manually constructed by extracting and validat-
ing human-written texts in four Indian languages:
Hindi, Bengali, Marathi, and Tamil.

B.1 Hindi

For Hindi, we collected notebooks of students from
grades 5 to 10 from various schools. Trained an-
notators were tasked with identifying, extracting,
and correcting erroneous sentences from these note-
books.

B.2 Bengali, Marathi, and Tamil

For Bengali, Marathi, and Tamil, we extracted
sentence-level edits from Wikipedia using the pub-

9https://opennmt.net/
10https://github.com/google/sentencepiece
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Figure 4: Distribution of Levenshtein distances between
sentence pairs in the dev and test sets for each language
in the IndiGEC corpus.

licly available wikiedits11 tool. These Wikipedia
edits, contributed by human editors, serve as a nat-
ural source of linguistic corrections.

B.2.1 Wikipedia Edit Histories
Wikipedia maintains comprehensive revision his-
tories for all pages, providing snapshots of page
content before and after every edit. Each pair of
consecutive revisions represents a single change.

To extract edits, we used the wikiedits tool
with significant enhancements. We added im-
proved filtering and cleaning processes, such as
normalization and tokenization using the IndicNLP
Library12, and applied the tool to Wikipedia re-
vision dumps dated April 1, 2025, for Bengali13,
Marathi14, and Tamil15.

We filtered the edits using the following con-
straints:

• Sentence length was restricted to between 6
and 26 words.

• Edits were retained only if they involved no
more than 4 word-level changes and had a
Levenshtein edit ratio below 0.35.

• Following Sharma and Bhattacharyya (2025),
we discarded edits that involved only punctua-
tion or numeric changes, rare tokens, HTML
markup, vandalism, or identical sentence
pairs.

11https://github.com/snukky/wikiedits
12https://github.com/anoopkunchukuttan/indic_

nlp_library
13https://dumps.wikimedia.org/bnwiki/20250401/

bnwiki-20250401-pages-meta-history.xml.7z
14https://dumps.wikimedia.org/mrwiki/20250401/

mrwiki-20250401-pages-meta-history.xml.7z
15https://dumps.wikimedia.org/tawiki/20250401/

tawiki-20250401-pages-meta-history.xml.7z

Figure 5: Length distribution of target sentences in the
dev and test sets across the four Indic languages in the
IndiGEC corpus.

All extracted edits were manually reviewed by
annotators to ensure quality. They verified whether
the source sentence contained grammatical errors
and confirmed that the corresponding target sen-
tence was a fluent and grammatically correct revi-
sion. If the automatically extracted target sentence
was inaccurate or stylistically awkward, annotators
revised it accordingly.

All annotations and corrections were carried out
by trained annotators holding master’s degrees in
the respective languages, some of whom are high-
school teachers, ensuring both linguistic expertise
and consistency across the corpus. All annotators
were fairly compensated for their work.

Figure 4 presents pie charts illustrating the distri-
bution of Levenshtein distances between sentence
pairs in the dev and test sets for each language.
Most edits fall within a distance of 1 to 4, with very
few exceeding 4, indicating minimal but meaning-
ful corrections.

Figure 5 displays histograms showing the length
distribution of target sentences in the dev and test
sets across all four languages.

C Quantitative Analysis

To compare the strengths of the Multilingual MTF
model against the TLM-based approach, we ana-
lyzed GLEU scores across specific error categories.
Figure 6 presents the category-wise GLEU scores
for Mask&Fill, MTF, TLM, and Multilingual MTF
on the Hi-GEC test set. While both the Multilin-
gual MTF and TLM-based models show strong
overall performance, Multilingual MTF surpasses
TLM in several key error types, demonstrating its
ability to capture complex grammatical phenomena
despite relying solely on monolingual data. In par-
ticular, Multilingual MTF achieves higher scores
in ADJ:INFL (adjective inflection), indicating im-
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Figure 6: Category-wise GLEU scores on the Hi-GEC test set for different models: Mask&Fill, MTF, TLM-
based, and Multilingual MTF. Multilingual MTF achieves higher scores than the TLM-based model in several key
categories, including adjective inflection (ADJ:INFL), proper nouns (PROPN), spelling (SPELL), verbs (VERB),
and complex/uncategorized edits (OTHER), despite relying only on monolingual data.

Figure 7: Distribution of Error Types in Hindi Synthetic Data Generated by TLM and MTF.

proved handling of morphological agreement in
gender, number, and case, common challenges in
Indic languages. It also performs better in PROPN,
reflecting stronger modeling of proper noun usage
and context-sensitive case marking. In SPELL,
MTF benefits from the masked language model
used during data generation, resulting in more ac-
curate spelling corrections. Its gains in VERB
suggest better modeling of verb morphology and
syntactic structure. Additionally, in the OTHER
category, representing more complex or uncatego-

rized edits, Multilingual MTF demonstrates better
generalization, likely due to the greater diversity of
its synthetic training data. Importantly, unlike the
TLM-based model, which relies on parallel corpora
and a pretrained cross-lingual model trained using
the TLM objective, MTF achieves comparable or
superior performance using only monolingual cor-
pora. This highlights MTF’s potential as a scalable
and resource-efficient solution for grammatical er-
ror correction in low-resource settings.
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D Qualitative Analysis

D.1 Synthetic Data Distribution

To better understand model behavior on specific
error types, we randomly sampled 1,000 Hindi sen-
tences each from the MTF and TLM-generated
datasets and analyzed them using the Hindi exten-
sion of the ERRANT toolkit16. Figure 7 presents
the distribution of common error types across the
two datasets.

The analysis reveals distinct differences in er-
ror type distributions between MTF and TLM-
generated Hindi data. MTF produces a higher pro-
portion of verb-related errors, approximately 4.0%
in total (2.6% verb form + 1.4% verb inflection),
compared to 2.7% for TLM (0.9% verb form +
1.8% verb inflection). Additionally, MTF generates
more proper noun errors (23.3% vs. 12.2%) and
slightly more main verb errors (9.2% vs. 5.1%).

Figure 8: Examples of common grammatical errors in
Hindi (verb inflection and pronoun agreement) and cor-
responding model outputs. The top row shows a verb
error corrected only by the MTF-trained models, while
the bottom row shows a pronoun error corrected only
by the TLM-trained model. These examples illustrate
the distinct strengths of models trained on different syn-
thetic data.

Conversely, TLM yields a significantly higher
proportion of adjective errors (11.2% vs. 4.8%) and
noun errors (45.5% vs. 39.1%), along with more

16https://github.com/s-ankur/errant

pronoun and conjunction errors (0.8% vs. 0.4%,
and 1.7% vs. 0.7%, respectively). The proportion
of spelling and adposition errors remains similar
across both methods.

D.2 Model Outputs

Figure 8 presents examples from Hindi that illus-
trate two common error types: (i) a verb inflection
error, where jāti (caste) is incorrectly used instead
of jātee (goes, feminine singular), and (ii) a pro-
noun agreement error, where ye (plural) is used in
place of yah (singular).

In the first example (verb inflection error), only
the model trained on MTF data correctly identifies
and corrects the error; the models trained on Mask
and TLM data fail to modify the input. In the
second example (pronoun error), the TLM-trained
model produces the correct correction, while the
Mask and MTF-based models again leave the input
unchanged.

These examples highlight how MTF and TLM
each capture different error patterns, suggesting
that the choice of data generation method can sig-
nificantly impact a model’s ability to generalize to
specific linguistic phenomena.

Figure 9: Example of a spelling error in Marathi and the
corresponding model outputs. The original typo (“baud-
dhadh”) is retained by the TLM-based and Mask&Fill
models, while MTF and Multilingual MTF detect the
error and modify the erroneous segment through substi-
tution and deletion, respectively.

Figure 9 illustrates a typographical misspelling
error in Marathi, where the word "bauddha" ("Bud-
dhist") is incorrectly written as "bauddhadh" with
an extra "dh" appended. This misspelling does
not form any valid word in Marathi and introduces
noise in the sentence.

Among the outputs generated, both the TLM-
based model and the Mask&Fill model retained
the typo in their outputs. The Mask&Fill model
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Language % Sentences with Token Difference Average Token Difference
Hindi 57.00% 2.12
Bengali 35.80% 1.45
Marathi 19.80% 1.26
Tamil 16.05% 1.18
Average 32.16% 1.50

Table 8: Statistics of token-level differences across languages. The percentage indicates the proportion of sentences
containing at least one token change (insertion or deletion), while the average token difference measures the mean
number of insertions and deletions per sentence.

attempted to mitigate the anomaly by appending
"hyā" ("this") after the erroneous phrase, but it
failed to correct the original misspelling. The TLM-
based model did not react to the error at all, simply
reproducing the typo unchanged, indicating a lack
of sensitivity to such noise. In contrast, the MTF
and Multilingual (MTF) models showed a stronger
ability to detect the anomaly. The MTF model
tried to correct the corrupted phrase but replaced
it with another malformed word, "ān. idh", which is
also invalid in Marathi, suggesting partial recogni-
tion but poor substitution. The Multilingual MTF
model took a different route by completely remov-
ing the corrupted word "bauddhadh", retaining only
"dharmatı̄l" ("of the religion"). While this helped
eliminate the typo, it also resulted in a partial loss
of meaning.

Overall, while none of the models produced a
fully accurate correction, MTF and Multilingual
MTF demonstrated a degree of error awareness,
marking a positive step toward handling typograph-
ical noise, even if their recovery strategies were
imperfect.

D.3 Token-Level Error Analysis

All masking-based methods, including the pro-
posed MTF, can implicitly cause insertion and
deletion of tokens, even though they primarily per-
form substitutions. This occurs because replacing a
single token with multiple tokens effectively inserts
new tokens, while replacing it with no token effec-
tively deletes it, thereby altering the overall token
count. To assess this phenomenon, we conducted a
token difference analysis on MTF-generated data
across four languages: Hindi, Bengali, Marathi,
and Tamil. This analysis measures the proportion
of sentences whose token counts differ from their
original counterparts, as well as the average magni-
tude of these differences. The results, presented in
Table 8, show the percentage of sentences contain-
ing any token difference and the average number of

token differences per sentence for each language.
As shown in Table 8, the proportion of sentences

exhibiting token differences varies considerably
across languages. Hindi shows the highest im-
pact, with 57% of sentences containing token count
changes and an average difference of 2.12 tokens,
indicating frequent and relatively larger edits. Ben-
gali shows a moderate level of change (35.8%, 1.45
tokens on average), while Marathi (19.8%, 1.26)
and Tamil (16.05%, 1.18) exhibit fewer and smaller
token differences. On average, 32.66% of sen-
tences across these languages contain token count
changes, with an average magnitude of 1.50 tokens
per affected sentence. These results confirm that
although MTF primarily performs substitutions, it
can implicitly introduce insertions and deletions,
especially in morphologically richer or syntacti-
cally flexible languages like Hindi and Bengali.
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