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Abstract

Understanding human intents from multimodal
signals is critical for analyzing human be-
haviors and enhancing human-machine inter-
actions in real-world scenarios. However,
existing methods exhibit limitations in their
modality-level reliance, constraining relational
reasoning over fine-grained semantics for com-
plex intent understanding. This paper proposes
a novel LLM-Guided Semantic Relational Rea-
soning (LGSRR) method, which harnesses the
expansive knowledge of large language mod-
els (LLMs) to establish semantic foundations
that boost smaller models’ relational reason-
ing performance. Specifically, an LLM-based
strategy is proposed to extract fine-grained se-
mantics as guidance for subsequent reasoning,
driven by a shallow-to-deep Chain-of-Thought
(CoT) that autonomously uncovers, describes,
and ranks semantic cues by their importance
without relying on manually defined priors. Be-
sides, we formally model three fundamental
types of semantic relations grounded in logi-
cal principles and analyze their nuanced inter-
play to enable more effective relational reason-
ing. Extensive experiments on multimodal in-
tent and dialogue act recognition tasks demon-
strate LGSRR’s superiority over state-of-the-
art methods, with consistent performance gains
across diverse semantic understanding scenar-
ios. The complete data and code are available
at https://github.com/thuiar/LGSRR.

1 Introduction

Multimodal intent recognition aims to utilize infor-
mation from both natural language and other non-
verbal modalities (e.g. video and audio) to enable
machines to discern intents within real-world sce-
narios. It holds significant research importance and
has broad applications in domains such as human-
computer interaction (Xu, 2019), chatbot (Fan et al.,
2022), intelligent transportation system (Kaffash
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et al., 2021), medical diagnosis (Tiwari et al., 2022;
Moon et al., 2022) and other human-robot interac-
tion systems (Paul et al., 2022; Mi et al., 2019).

Prior works (Zhang et al., 2022, 2024a) have
pioneered this area by introducing large-scale mul-
timodal intent datasets, attracting increasing re-
search attention. These studies also adapt fusion
strategies from multimodal sentiment analysis to
construct initial baselines (Hazarika et al., 2020;
Tsai et al., 2019; Rahman et al., 2020), laying the
foundation for subsequent advancements. Recently,
numerous studies focus on extracting and aligning
modality-level semantics to improve multimodal
fusion. For instance, TCL-MAP (Zhou et al., 2024)
uses token-level contrastive learning and modality-
aware prompts to enhance fusion between text and
non-verbal modalities, while SDIF-DA (Huang
et al., 2024) applies a shallow-to-deep framework
that aligns modalities before fusing them through a
Transformer (Vaswani et al., 2017) layer. Beyond
fusion mechanisms, several approaches investigate
diverse perspectives to enhance intent understand-
ing, such as leveraging global video context (Sun
et al., 2024), reducing noise and redundancy in non-
verbal streams (Zhu et al., 2024) and employing
multi-task optimization (Zhang et al., 2024b).

Despite these significant advancements, two crit-
ical issues remain in multimodal intent recogni-
tion. First, existing approaches primarily empha-
size coarse-grained and modality-level semantics,
which introduces substantial redundancy and noise
(Zhu et al., 2024), resulting in a considerable gap
between the extracted features and the true intent.
Second, these methods generally model relation-
ships between semantic concepts with basic fusion
mechanisms, capturing only a limited subset of the
complex reasoning relationships essential for ac-
curate intent recognition. Consequently, there is a
need for relational reasoning methods concentrat-
ing on fine-grained semantics for multimodal intent
recognition, presenting two main challenges: (1)
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extracting fine-grained and intent-related semantics
from diverse modalities, and (2) modeling complex
reasoning relationships between these semantics.

Given the aforementioned limitations, the
demonstrated strengths of LLMs in semantic under-
standing tasks (Lai et al., 2024; Xu et al., 2024a) of-
fer a promising solution for capturing fine-grained
semantics. While Xu et al. (2024b) first leverages
LLMs to extract commonsense knowledge, the ap-
proach remains constrained to modality-level cues
and requires manually specified information. In
this work, we aim to further unlock the potential
of LLMs by enabling them to independently dis-
cover high-level multimodal semantic concepts and
provide reasoning guidance. Moreover, due to the
inherent complexity of semantic relations, we draw
inspiration from classical logic, mapping basic op-
erators (“or,” “and,” “not”) to their semantic coun-
terparts (relative importance, complementarity, and
inconsistency) to model intricate semantic interac-
tions through their structured composition.

Consequently, we propose the LLM-Guided Se-
mantic Relational Reasoning (LGSRR) framework,
as illustrated in Figure 1. To address the first chal-
lenge, we design an LLM-Guided Semantic Ex-
traction module that employs a shallow-to-deep
CoT for high-quality semantic discovery. Specifi-
cally, GPT-3.5 (Zhou et al., 2023) is first prompted
to identify fine-grained semantic cues relevant to
multimodal intents, from which the top-K most
frequent cues are selected to conduct semantic ex-
traction. These initial cues are then enriched by
VideoLLaMA2 (Cheng et al., 2024), which ex-
tracts detailed descriptive features from both text
and video. Finally, GPT-3.5’s abductive reasoning
capabilities are leveraged to generate a ranked se-
mantic list, which serves as supervised guidance
for subsequent relational reasoning. To tackle the
second challenge, we introduce the Semantic Rela-
tional Reasoning module, which models the com-
plex interplay among semantic cues by focusing on
three fundamental logic-inspired relations. The rel-
ative importance of different semantics is learned
through a unified weighting network optimized
with NeuralNDCG (Pobrotyn and Białobrzeski,
2021) ranking loss based on the semantic rankings,
while complementarity and inconsistency are natu-
rally captured through cosine similarity and mean
squared error between semantic representations re-
spectively. To construct cohesive and discrimina-
tive intent representation, we integrate importance
and complementarity as weighted factors to enrich

the semantic space, while using inconsistency as a
regularization term to ensure balanced reasoning.

Our contributions are summarized as follows:
(1) We introduce an LLM-Guided framework
which utilizes LLMs to autonomously acquire fine-
grained semantics and deliver effective supervision
for reasoning. To the best of our knowledge, this is
the first attempt to employ LLMs to guide the learn-
ing of reasoning networks for multimodal intent
recognition. (2) We propose a Semantic Relational
Reasoning module that formally establishes three
logic-driven relations and captures dynamic inter-
actions among nuanced semantics, enabling struc-
tured and interpretable enhancement of multimodal
reasoning. (3) We conduct extensive experiments
on two challenging datasets for multimodal intent
and dialogue act recognition respectively, achiev-
ing state-of-the-art performance.

2 Related Works

2.1 Multimodal Intent Recognition

Multimodal intent recognition is crucial for un-
derstanding human behavior by integrating verbal
and nonverbal cues to capture real-world intents.
While early datasets focus on simple semantic tasks
(Kruk et al., 2019; Saha et al., 2020), MIntRec
(Zhang et al., 2022) advances the field through its
diverse, fine-grained collection of multimodal sam-
ples, setting the first benchmark for multimodal
intent recognition. Expanding on this, MIntRec2.0
(Zhang et al., 2024a) increases the data scale and
label diversity, while establishing multimodal fu-
sion techniques (Zadeh et al., 2017; Liu et al., 2018;
Zadeh et al., 2018; Hazarika et al., 2020; Tsai et al.,
2019; Rahman et al., 2020) as baselines, thereby
offering a more robust foundation for advancing
intent recognition in complex contexts.

Recently, specialized intent recognition models
have emerged to tackle unique challenges in this
area. TCL-MAP (Zhou et al., 2024) focuses on fu-
sion strategies, using token-level contrastive learn-
ing and modality-aware prompts to enhance seman-
tic depth. SDIF-DA (Huang et al., 2024) employs a
shallow-to-deep interaction module to align modal-
ities across various levels, yielding high-quality
fusion features. Additionally, CAGC (Sun et al.,
2024) uses video context to address perception
biases and reduce intent uncertainty from multi-
modal inconsistencies, while InMu-Net (Zhu et al.,
2024) applies an information bottleneck and multi-
objective optimization to filter noise and redun-
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Figure 1: Overall architecture of our proposed LLM-guided semantic relational reasoning (LGSRR) method.

dancy in nonverbal data. MIntOOD (Zhang et al.,
2024b) introduces multi-granularity optimized ob-
jectives and employs dynamic weight fusion to en-
hance the robustness of multimodal representation.

2.2 Multimodal Large Language Models
Multimodal large language models (MLLMs) build
on the success of LLMs in natural language pro-
cessing by extending their capabilities to multi-
modal understanding. Early MLLMs primarily fo-
cus on aligning nonverbal modalities with LLMs’
input space. For instance, Flamingo (Alayrac et al.,
2022) introduces gated cross-attention to handle in-
terleaved multimodal data, while BLIP-2 (Li et al.,
2023) uses a Q-Former to map visual representa-
tions for integration with LLMs. Advanced video-
capable MLLMs (Li et al., 2024; Zhang et al., 2023;
Ataallah et al., 2024) address the challenge of ex-
tracting essential information from extensive vi-
sual content. VideoLLaMA2 (Cheng et al., 2024)
employs spatial-temporal convolutions to capture
dynamic visual details, while Qwen2-VL (Wang
et al., 2024a) and LLaVA-Next-Video (Zhang et al.,
2024c) implement techniques like dynamic reso-
lution and linear scaling for improved handling of
varied frame sizes and longer videos. Recent mod-
els further leverage reasoning strategies to enhance
understanding. Techniques such as CoT prompt-
ing (Wei et al., 2022) improve complex reasoning,

and models like HuggingGPT (Shen et al., 2023)
and VideoAgent (Wang et al., 2024b) introduce
agent-based planning, allowing the LLM to select
or retrieve relevant frames and expert models, en-
hancing multimodal comprehension.

3 Methodology

3.1 LLM-Guided Semantic Extraction

Given raw video V and text T , our goal is to extract
fine-grained semantic features that closely align
with intents for nuanced multimodal reasoning. To
this end, we design a shallow-to-deep CoT consist-
ing of the following three progressive steps. Details
of CoT design are shown in Appendix C.
CoT-Step 1: Fine-grained Semantics Discovery.
To determine essential fine-grained semantics, we
begin by randomly selecting a subset of samples
B = {(Ti, Vi) | i ∈ {1, 2, . . . , n}} as background
knowledge, in which each sample pair consists of
corresponding text Ti and video Vi. We then de-
sign Template1 to prompt GPT-3.5 (Zhou et al.,
2023) to analyze these samples within the task con-
text, and autonomously uncover salient semantic
aspects, yielding an initial set Sinit of fine-grained
concepts such as Speakers’ Actions (A), Facial
Expressions (E), Interactions with Others (I), Iden-
tity and Status (IS), Tone and Manner of Speaking
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(TMS), Scene Description (SD), among others.

Sinit = GPT-3.5(B;Template1). (1)

From the set, we select top-K frequent cues to
form the refined set S for further analysis, where
the choice of K = 3 is supported by the detailed
comparison in Appendix B.
CoT-Step 2: Semantic Description. Building
on the fine-grained semantic set S = {A,E, I},
we employ VideoLLaMA2 (Cheng et al., 2024) to
extract semantic descriptions DM for each concept
M ∈ S. To ensure both descriptive quality and
conceptual relevance, we craft structured prompts
Template2 specifically tailored to each semantic.

D = VideoLLaMA2(V, T ;S;Template2). (2)

Consequently, we obtain high-quality descriptions
D = {DA, DE , DI} for intent-related semantics,
serving as a rich semantic foundation
CoT-Step 3: Importance Rank. To further incor-
porate LLM guidance into reasoning, we analyze
the connections among the fine-grained semantics
S derived from the previous steps. Specifically, to
bridge the comprehension gap between LLM and
lightweight reasoning model, GPT-3.5 is utilized to
generate a generalizable ranking of semantic con-
tributions based on the ground-truth label y, using
structured instructions Template3:

Srank = GPT-3.5(D; y;Template3), (3)

where the label y is used only during training, al-
lowing GPT-3.5 to perform abductive reasoning
and provide supervisory signals that guide the rea-
soning module in evaluating semantic significance.
The ranking statistics are presented in Appendix D.

3.2 Semantic Relational Reasoning
To move beyond simple fusion, we extend three
core logical operations (“or,” “and,” and “not”) to
semantic level, forming relations of relative impor-
tance, complementarity, and inconsistency. These
relations underpin our Semantic Relational Reason-
ing module, capturing complex interactions for nu-
anced multimodal intent understanding. We argue
that these core relational structures effectively rep-
resent the intricate dynamics necessary for robust
intent recognition, drawing from logical reasoning
principles in which complex relational patterns are
built on basic operations.

For feature extraction from the input text and
fine-grained semantic descriptions, we use BERT

(Devlin et al., 2019), a pre-trained language model
commonly applied in intent recognition (Zhang
et al., 2022). To unify the feature space, we encode
the text and semantic descriptions separately with
BERT, accounting for stylistic differences. Specif-
ically, given the text T and the concatenated se-
mantic descriptions [DA, DE , DI ], we obtain their
corresponding token representations as follows:

Ztext = BERT(T ), Zdesc = BERT(D), (4)

where Ztext and Zdesc are token embeddings with
dimensions R(lT+1)×dT and R(3∗lD+1)×dT , respec-
tively. After encoding, we separate embeddings
for actions ZA, expressions ZE , and interactions
ZI . To acquire reasoning features, we apply mean
pooling over the token embeddings:

FT = Mean-Pooling(Ztext), (5)

FM = Mean-Pooling(ZM ), M ∈ {A,E, I}.
(6)

Relative Importance. To account for the “or” op-
eration among semantic components and highlight
varying contributions, we apply weighted impor-
tance scores, a common approach in multimodal
intent recognition (Rahman et al., 2020). Due to
the limited supervision for these scores, we employ
LLM-derived rankings with a ranking loss, Neural-
NDCG (Pobrotyn and Białobrzeski, 2021), to cap-
ture each semantic element’s relative significance.
Specifically, we use a unified weight network with
two linear layers, ReLU, and Softmax activations
to produce normalized importance scores αT,A,E,I

for each semantic feature:

h{T,A,E,I} = ReLU(W1F{T,A,E,I} + b1), (7)

α{T,A,E,I} = Softmax(W2h{T,A,E,I} + b2), (8)

where W1, W2, b1, and b2 are parameters. Given
the central role of text, we prioritize the text
feature FT , assigning it the top rank in R =
{RT , RM1 , RM2 , RM3}, where Mi denotes other
semantic features. We then apply NeuralNDCG
loss to align learned importance scores with LLM-
derived rankings, formalized as:

Lrank =
1

NR

∑

j∈R
scale(P̂ )jg(αj)d(j), (9)

where N is the size of R, g(αj) is the gain func-
tion, d(j) is the rank discount, and scale(P̂ )j is the
softmax-based similarity matrix, with a detailed
explanation available in Appendix E.
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Complementarity. In the intricate landscape of
multimodal interactions, semantic components in-
herently possess complementary features that ac-
tively reinforce and validate one another, playing a
pivotal role in decoding composite meanings. To
capture this, we extend the logical “and” operation
to emphasize complementarity between text and
other semantic features. Specifically, we calculate
the cosine similarity between the text feature FT

and each fine-grained feature FM , capturing cross-
modal complementarity for richer representations.
The complementarity score βT,M is given by:

βT,M =
FT · FM

||FT || · ||FM || . (10)

To integrate complementarity relationship within
the semantic space, we weight fine-grained seman-
tic feature FM by its complementarity score βT,M ,
resulting in an enhanced feature representation:

CM = βT,M · FM . (11)

We then combine relative importance and comple-
mentarity by concatenating each complementarity-
enhanced feature CM with FT and applying
weighted averaging using importance scores for
an integrated representation:

FComp =
∑

M

αM · Concat(FT , CM ). (12)

Inconsistency. Modeling inconsistency among se-
mantics is vital to understanding complex multi-
modal intents. For example, text might imply the
Inform intent, while gestures or expressions sug-
gest Joke. To capture such nuances, we extend the
logical “not” operation to identify inconsistencies,
enabling the model to interpret conflicting signals.
Aligned with complementarity, we examine FT and
other semantic features FM , creating an inconsis-
tency penalty by calculating their differences:

IM = FT − FM . (13)

On the relational side, we use mean squared error
to quantify this divergence, yielding inconsistency
score γT,M to reflect the degree of misalignment:

γT,M =
1

d

d∑

i=1

(F
(i)
T − F

(i)
M )2, (14)

where d is the dimension of FM . Finally, we ob-
tain the combination by weighting each IM with

its corresponding score γT,M , yielding the overall
penalty feature FIncons:

FIncons =
∑

M

γT,M · IM . (15)

This composite penalty feature FIncons captures
complex semantic contradictions, enabling the
model to identify subtle inconsistencies within mul-
timodal intents, thereby refining its interpretative
accuracy in complex contexts.

3.3 Training Objective
For classification, we calculate predicted output ŷ
with the obtained features and apply cross-entropy
loss to optimize the model under the supervision
of multi-class labels:

ŷ = W (FComp − FIncons) + b, (16)

Lcls = − 1

N

N∑

i=1

∑

c∈Y
yci log(Softmax(ŷi)

c), (17)

where N is the batch size and Y = {0, 1, · · · ,K−
1} denotes the label set. The overall objective is

L = Lcls + λLrank, (18)

where λ denotes the weight parameter.

4 Experiments

4.1 Experimental Setting
Datasets. MIntRec2.0 is a large-scale dataset with
30 fine-grained intent labels spanning text, video,
and audio modalities. We adopt the original split
with 6,165 training samples, 1,106 for validation,
and 2,033 for test. For dialogue act classification,
IEMOCAP-DA offers 12 annotated labels across
the same three modalities, with 6,590 training sam-
ples, 942 for validation, and 1,884 for test.
Baselines. We compare LGSRR with state-of-
the-art methods for multimodal intent recognition
and dialogue act classification: (1) MulT (Tsai
et al., 2019) introduces directional cross-modal
attention to model interactions between modali-
ties without requiring strict alignment; (2) MISA
(Hazarika et al., 2020) projects each modality
into modality-specific and modality-invariant sub-
spaces, followed by self-attention for effective fu-
sion; (3) MAG-BERT (Rahman et al., 2020) in-
corporates a multimodal adaptive gating mecha-
nism that adjusts the text representation in seman-
tic space using offsets computed from nonverbal
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Methods MIntRec2.0 IEMOCAP-DA
ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑) ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

MISA 55.16 49.51 51.80 49.92 55.05 57.06 73.76 72.26 73.03 72.51 73.59 73.87
MAG-BERT 60.38 54.74 57.51 54.54 59.61 60.00 74.25 72.07 73.18 72.33 74.03 74.28
MulT 60.66 54.12 58.02 53.77 59.55 60.12 73.74 72.28 73.40 72.21 73.66 74.15
TCL-MAP 58.24 52.25 54.28 52.41 57.24 57.55 74.37 72.63 74.02 72.39 74.21 74.76
SDIF-DA 58.06 51.95 53.17 52.16 57.47 57.85 74.19 72.34 73.76 72.39 74.04 74.77
MIntOOD 58.25 51.73 56.79 50.99 57.11 58.65 74.56 71.31 72.70 70.89 74.40 74.65

LGSRR 60.46 55.35 59.33 55.09 59.72 60.85 74.95 72.99 74.27 72.74 74.88 75.47

Table 1: Main Results comparing LGSRR with baselines on the MIntRec2.0 and IEMOCAP-DA datasets.

modalities; (4) TCL-MAP (Zhou et al., 2024) lever-
ages token-level contrastive learning to enhance the
textual modality by integrating visual and acoustic
information, thereby promoting semantic acqui-
sition and multimodal integration; (5) SDIF-DA
(Huang et al., 2024) utilizes a shallow-to-deep in-
teraction module that aligns and fuses modalities
at both shallow and deep levels, capturing relations
on all granularities; (6) MIntOOD (Zhang et al.,
2024b) employs a weighted feature fusion network
to effectively model multimodal representations
across multiple optimization granularities.
Evaluation Metrics. We evaluate model perfor-
mance using following metrics: accuracy (ACC),
F1-score (F1), precision (P), recall (R), weighted
F1-score (WF1), and weighted precision (WP),
where higher values indicate better performance.
Implementation details. For the LLM-Guided
Semantic Extraction module, We utilize GPT-3.5-
turbo for the first and third step and VideoLLaMA2-
7B-16F for the second step. For feature extrac-
tion, the sequence lengths lT and lD are set as
follows: (30, 50) for MIntRec2.0 and (70, 50) for
IEMOCAP-DA, with a feature dimension dT of
1024. The training process includes 100 epochs,
with a batch size of 32. We employ the PyTorch
library via HuggingFace (Wolf et al., 2020) for the
pre-trained BERT model, optimized using AdamW
(Loshchilov and Hutter, 2019) with learning rates
of (6e-6, 1e-5) for the respective datasets. For con-
sistency, all reported results are the averages of five
runs, using random seeds from 0 to 4, conducted
on NVIDIA Tesla V100-SXM2s. The training cost
is discussed in Appendix F.

4.2 Results

Results on the MIntRec2.0 Dataset. As illus-
trated in Table 1, our LGSRR consistently sur-
passes existing SOTA methods, achieving the high-
est performance across five key metrics. In particu-
lar, LGSRR improves precision by 1.31% over the
top baseline, attributed to its ability to capture fine-

grained semantics and perform effective relational
reasoning. Moreover, LGSRR demonstrates sub-
stantial gains across the F1, R, and WP metrics with
respective enhancements of 0.61%, 0.55%, and
0.73%, further validating the effectiveness and ro-
bustness of our approach. Although MulT achieves
a comparable ACC score, LGSRR maintains a clear
edge across all other metrics, underscoring its com-
prehensive superiority in semantic understanding.
The experimental results strongly demonstrate that
our method excels in recognizing complex intent
within multimodal scenarios by effectively leverag-
ing fine-grained semantic relations.
Results on the IEMOCAP-DA Dataset. To com-
prehensively assess LGSRR’s effectiveness in vari-
ous multimodal semantic tasks, we conduct exper-
iments on the IEMOCAP-DA dataset. As shown
in Table 1, LGSRR exceeds state-of-the-art meth-
ods across all six metrics, demonstrating its robust
capacity for nuanced semantic understanding. No-
tably, LGSRR achieves substantial gains with im-
provements of 0.58%, 0.67%, and 0.70% in ACC,
WF1 and WP, respectively, which underscores its
ability to capture ambiguous concepts like dialogue
acts. These results affirm LGSRR’s strong general-
izability and position it as a promising framework
for advancing multimodal semantic understanding.

4.3 Ablation Study

We evaluate the effects of key components, includ-
ing the LLM-Guided Semantic Extraction module
(LGSE), the ranking loss (Lrank) and the Semantic
Relational Reasoning module (SRR). Additionally,
we also compare the performance of employing dif-
ferent MLLMs (VideoLLaMA (Zhang et al., 2023)
and Qwen2-VL (Wang et al., 2024a)) in LGSE. The
results are shown in Table 2, confirming the indi-
vidual contributions of the modules to the overall
performance. The ablation study on the semantic
relations within SRR is provided in Appendix G.

First, by removing the LGSE module, we utilize
coarse-grained modality-level features from text,
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Ablation MIntRec2.0 IEMOCAP-DA
ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑) ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

w / o LGSE 58.57 52.83 54.37 52.72 58.22 58.69 74.55 70.40 71.32 70.64 74.40 74.73
LGSE (VideoLLaMA) 60.27 54.91 57.07 54.78 59.56 60.00 74.26 71.62 72.51 71.46 74.14 74.55
LGSE (Qwen2-VL) 59.59 54.62 56.63 54.58 58.89 59.20 74.54 72.19 73.05 72.43 74.42 75.05
w / o Lrank 58.55 53.30 55.43 53.23 58.07 58.98 73.69 71.50 72.38 71.63 73.54 74.02
w / o SRR 60.04 54.31 55.98 54.47 59.34 59.82 74.57 71.80 71.82 72.43 74.44 74.63

Full 60.46 55.35 59.33 55.09 59.72 60.85 74.95 72.99 74.27 72.74 74.88 75.47

Table 2: Ablation studies on the MIntRec2.0 and IEMOCAP-DA datasets.

MLLMs MIntRec2.0 IEMOCAP-DA
ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑) ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

Qwen2-VL 28.63 7.18 8.68 7.74 28.94 37.53 23.83 7.39 10.14 9.43 20.10 37.09
MiniCPM-o 2.6 17.46 14.75 27.32 14.97 17.98 37.11 14.01 6.93 10.65 11.62 13.56 36.29
VideoLLaMA2 17.17 4.95 12.32 4.65 13.10 25.55 15.02 2.97 7.05 4.11 7.59 29.77

LGSRR 60.46 55.35 59.33 55.09 59.72 60.85 74.95 72.99 74.27 72.74 74.88 75.47

Table 3: Comparison of LGSRR with MLLMs across both datasets, with MLLMs evaluated via direct inference.

video, and audio extracted via BERT, Swin Trans-
former (Liu et al., 2021), and WavLM (Chen et al.,
2022), respectively, to perform relational reason-
ing. This leads to substantial declines in all met-
rics across both datasets, with F1, P, and R scores
dropping by over 2%, demonstrating the improved
alignment of fine-grained semantics with intent by
effectively narrowing the semantic gap. When em-
ploying different MLLMs in LGSE, we observe no
significant performance drop across most metrics,
demonstrating the generalizability of our approach.
Besides, removing the ranking loss (Lrank) causes
noticeable declines across metrics, underscoring
the effectiveness of LLM guidance in capturing se-
mantic feature importance and enhancing relational
reasoning. Finally, replacing the SRR module with
a simple summation-based fusion retains competi-
tive ACC scores, suggesting the robustness of other
components. However, declines in other metrics
emphasize the SRR module’s role in refining se-
mantic interactions and enhancing feature synergy,
affirming each component’s unique contribution to
nuanced multimodal understanding.

4.4 Comparison to Frozen MLLMs

To substantiate the rationale and effectiveness of
the proposed LGSRR framework, we benchmark
it against leading MLLMs on the MIntRec2.0 and
IEMOCAP-DA datasets. To maintain consistency
with the MLLM in LGSRR, we evaluate Qwen2-
VL, MiniCPM-O 2.6 (Yao et al., 2024), and Vide-
oLLaMA2 in their 7B configurations using zero-
shot reasoning without fine-tuning.

As Table 3 shows, the experimental results on
both datasets underscore the remarkable superior-

MLLMs
IEMOCAP-DA

ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

Qwen2-VL 68.10 59.85 56.91 66.75 67.09 68.72
VideoLLaMA2 71.07 68.57 71.90 68.91 71.32 73.62
LGSRR 74.95 72.99 74.27 72.74 74.88 75.47

Table 4: Comparison of LGSRR with MLLMs on
IEMOCAP-DA, with MLLMs evaluated via SFT.

ity of our proposed method over the state-of-the-
art MLLMs. On the MIntRec2.0 dataset, LGSRR
achieves an impressive 30% improvement over the
best-performing MLLM on all metrics other than
WP, demonstrating its exceptional ability to model
complex multimodal semantics. Likewise, on the
IEMOCAP-DA dataset, LGSRR consistently out-
performs MLLMs by over 35% across all evalua-
tion metrics, further affirming its robustness and
adaptability. These results highlight LGSRR as
a groundbreaking advancement in multimodal se-
mantic understanding, offering a more efficient,
scalable, and generalizable solution compared to
MLLM-based approaches.

4.5 Comparison to Fine-tuned MLLMs

To further evaluate the practicality of our proposed
method, we compared LGSRR with two cutting-
edge MLLMs under the supervised fine-tuning set-
tings on IEMOCAP-DA, as shown in Table 4.

The results indicate that our method achieves
SOTA performance across all metrics, showcas-
ing its strong comprehensive capabilities. Specif-
ically, compared to VideoLLaMA2 and Qwen2-
VL, LGSRR yielded performance improvements
of 3.88% to 6.85% and 4.42% to 13.14% on ACC
and F1, highlighting our method’s prominent ca-
pability for modeling intricate semantic relations.
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Methods
MIntRec2.0

ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

Or 59.46 53.51 54.69 53.44 58.90 59.12
And 59.76 54.08 56.07 54.01 59.02 59.36
Not 59.53 54.58 55.98 54.46 59.04 59.31
Combination 59.63 54.13 56.77 54.95 59.06 59.41

LGSRR 60.46 55.35 59.33 55.09 59.72 60.85

Table 5: Comparison of LGSRR with classic relations
on the MIntRec2.0 dataset.

Figure 2: Confusion matrices on both datasets.

Moreover, the performance gains of LGSRR on
P and R metrics, ranging from 2.37% to 17.36%
and 3.83% to 5.99%, underscore the superiority of
LGSRR in capturing deep semantic associations.
Meanwhile, the stable performance on WF1 and
WP metrics confirms the robustness of LGSRR
when faced with imbalanced datasets. Overall, our
method not only delivers more competitive perfor-
mance but also avoids the computational burden
of supervised fine-tuning, providing strong support
and valuable insights for the precise optimization
of smaller models for vertical tasks.

4.6 Comparison with Classic Relations

To compare with classic relations, we define the
corresponding feature-level operations and evalu-
ate them on MIntRec2.0, as shown in 5. Specifi-
cally, Or is implemented by summing all semantic
features, where the presence of any single salient
cue can contribute effectively to intent recognition.
And is realized via the Hadamard product of seman-
tic features, requiring all contributing cues to be
jointly aligned with the target intent. Not captures
semantic inconsistency by computing pairwise fea-
ture differences, concatenating them, and project-
ing through a nonlinear layer. The Combination
setting integrates all three classic relation features
by concatenation, followed by a nonlinear transfor-
mation to obtain a unified relational representation.

The experimental results demonstrate the com-

pelling superiority over classic relations across all
metrics. Specifically, LGSRR outperforms the top
classic relation method, achieving gains of 0.70%
in ACC and 0.77% in F1, respectively. This reveals
the enhanced feature representation capability of
our semantic relationship reasoning module in com-
plex multimodal scenarios. The significant 2.56%
performance increase on the P metric indicates that
LGSRR is capable of identifying genuinely rele-
vant semantic cues, thereby avoiding the misclas-
sification of extraneous information as target in-
tention features. Meanwhile, the model achieves
performance improvements of 0.66% and 1.44% on
WF1 and WP, respectively, which highlights that
LGSRR can effectively alleviate the class imbal-
ance problem. Overall, our semantic relational rea-
soning module outperforms classic relations meth-
ods, validating the efficacy of LGSRR in modeling
fine-grained and intricate semantic interactions.

4.7 Analysis of Classification Performance
To investigate the fine-grained performance of clas-
sification, we plot the confusion matrices across all
classes of our method on the MIntRec2.0 dataset
and IEMOCAP-DA dataset, as shown in Figure 2.
Each score on the main diagonal represents the
accuracy for the corresponding class.

On the MIntRec2.0 dataset, our method achieves
over 70% accuracy in 9 out of 30 classes. On the
IEMOCAP-DA dataset, this ratio increases to 7 out
of 12, highlighting LGSRR’s superior performance.
Specifically, LGSRR not only maintains high accu-
racy for simple intents like Apologize and Thank,
but also excels in identifying complex intents like
Arrange, Ask for help and Plan, which require inte-
grating multiple semantic cues. This demonstrates
LGSRR’s capability to handle various levels of in-
tent complexity. Limited performance on classes
such as Joke and Emphasize is primarily due to less
data in these categories. For dialogue act classifica-
tion, LGSRR performs well across most categories,
with only slight underperformance in more ambigu-
ous classes such as Acknowledge and Backchannel.
These results validate that LGSRR excels in distin-
guishing both fine-grained intents and broad com-
municative semantics through fine-grained seman-
tic extraction and advanced relational reasoning.

4.8 Case Study
To offer deeper insight into semantic descriptions
and rankings, we select three representative sam-
ples from the MIntRec2.0 dataset, covering diverse
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Description

Speakers’ Actions: The woman is holding hands with the man, while the other woman is standing nearby. They are all 

engaged in a conversation, with the woman in the middle speaking and gesturing with her hands.

Facial Expressions: The woman in the middle is smiling and appears to be happy and relaxed. The other two individuals are 

also smiling and seem to be enjoying the conversation.

Interaction with Others: The three individuals are standing close to each other, indicating a friendly and intimate atmosphere. 

They are all actively participating in the conversation, with the woman in the middle taking the lead in speaking.Good job!

Sample

Label: Praise

1st: Interaction with Others

2nd: Facial Expressions 

3rd: Speakers’ Actions

Speakers’ Actions: The man in the white shirt with a blue tie is seen pointing his finger at the other man, who is wearing a 
blue shirt. He then proceeds to talk to the camera, gesturing with his hands. The man in the blue shirt listens attentively and 
occasionally nods his head.
Facial Expressions: The man in the white shirt with a blue tie appears to be angry and frustrated, as evidenced by his facial 
expressions and gestures. The man in the blue shirt maintains a calm and composed demeanor throughout the video.
Interaction with Others: The two men seem to have a professional relationship, as they engage in a conversation in a 
business setting. The man in the white shirt with a blue tie appears to be in a position of authority, as he is addressing the 
camera and the other man.An employee's inventing fake customers.

1st: Interaction with Others

2nd: Speakers’ Actions 

3rd: Facial Expressions 

Label: Criticize

Speakers’ Actions: The woman is taking a picture of herself using her phone. She is holding the phone in front of her face and 

pointing it towards herself.

Facial Expressions: The woman appears to be smiling and enjoying herself while taking the picture. Her facial expression is 

relaxed and happy.

Interaction with Others: There is no interaction with others in this video. The woman is alone and focused on taking her 

picture.Oh, look! It's a two-for-one sale!

1st: Speakers’ Actions 

2nd: Facial Expressions

3rd: Interaction with Others

Label: Introduce 

Rank

Figure 3: Examples from the MIntRec2.0 dataset, showcasing descriptions and rankings of fine-grained semantics.

scenarios, multiple characters, varied emotions and
distinct intents, as shown in Figure 3. Each sample
is presented with the raw data, detailed descrip-
tions from three semantic perspectives and contri-
bution rankings. Additional case studies from both
datasets are provided in Appendix H.

In terms of fine-grained semantic descriptions,
our method accurately identifies significant details,
including expressions like “smiling”, actions like
“taking a picture of herself using her phone” and
interactions like “standing close to each other”. Be-
yond basic cues, it also handles complex scenarios,
such as ambiguous hand gestures and varying num-
bers of individuals, enabled by the effective CoT
mechanism which significantly boosts the MLLM’s
generative capabilities for nuanced semantics. For
semantic ranking, our method leverages the LLM’s
abductive reasoning ability to weigh the contribu-
tion of each fine-grained semantic relative to the
true intent. In the first two examples, interpersonal
interactions are prioritized consistent with the inter-
action concepts defined in the intent label (Zhang
et al., 2024a), with actions and expressions ranked
based on their direct relevance. In the third exam-
ple, where a shopkeeper films a product introduc-
tion alone, the ranking correctly emphasizes the
action, further demonstrating the strong capability
of our semantic ranking approach.

5 Conclusion

In this paper, we present the LLM-Guided Se-
mantic Relational Reasoning (LGSRR) framework

to tackle the challenges of fine-grained seman-
tic extraction and relational reasoning in multi-
modal intent recognition. Utilizing a shallow-to-
deep CoT strategy, LGSRR harnesses the LLMs to
autonomously uncover detailed semantics across
modalities. By capturing logic-inspired relational
patterns from logical, LGSRR effectively models
intricate semantic relations to achieve superior rep-
resentations. Our work not only demonstrates no-
table improvements across challenging multimodal
classification tasks, but also carries significant im-
plications for advancing LLM-guided frameworks
in complex semantic understanding.

6 Limitations

This work has two primary limitations that war-
rant careful consideration. First, despite promis-
ing experimental results, the performance on these
datasets still indicates substantial room for improve-
ment, given the inherent complexity and variability
of multimodal data. Second, although the study
formally models basic semantic relations from a
logical perspective, it does not fully account for
the nuanced and context-dependent interactions in
real-world scenarios. Future research could address
these gaps by exploring more expressive relational
structures or integrating adaptive reasoning mecha-
nisms to better capture semantic complexity.
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A Related Work for Multimodal
Reasoning

Multimodal reasoning serves as a cornerstone for
advancing intelligent systems, empowering them
to integrate and interpret information from diverse
sources to tackle complex, real-world challenges.
Early approaches primarily focus on attention-
based mechanisms to extract essential features
from multimodal data. For instance, DANs (Nam
et al., 2017) employs joint visual and textual at-
tention to capture interactions between modalities.
To further improve reasoning abilities, alignment
between textual and nonverbal modalities becomes
a focal point. MUREL (Cadene et al., 2019) mod-
els intra-modal interactions through rich vectorial
representations, and IRRA (Jiang and Ye, 2023)
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leverages implicit fine-grained relation learning to
align multimodal data effectively. Graph-based
methods also gain traction for characterizing se-
mantic information and relations across modalities.
GloRe (Chen et al., 2019) proposes a global rea-
soning framework to learn relationships between
distant regions, and CIGAR (Liu et al., 2023) com-
bines linguistic and visual knowledge to construct
multimodal graph representations. Recently, the
reasoning capabilities of large language models
(LLMs) are explored to tackle multimodal tasks.
MM-REACT (Yang et al., 2023) utilizes ChatGPT
to identify visual experts for task-specific solutions,
while QA-ViT (Ganz et al., 2024) integrates query-
related information into vision transformers to en-
hance reasoning capabilities. These advancements
highlight the continuous evolution of multimodal
reasoning techniques and their potential for ad-
dressing increasingly complex scenarios.

B Selection of Semantic Aspects

To validate the effectiveness and rationale of our
selected semantics, we conduct experiments by
progressively incorporating additional semantic as-
pects, following their occurrence frequency, into
the three most frequent categories: Speaker’s Ac-
tions (A), Facial Expressions (E), and Interactions
with Others (I). The newly introduced semantic as-
pects include Tone and Manner of Speaking (TMS),
Identity and Status (IS), and Scene Description
(SD). The results with additional semantic aspects,
compared against those from the main experiment,
are presented in Table 6.

The experimental results clearly demonstrate
that incorporating additional semantic aspects leads
to a significant performance decline, reaffirming
the validity of our selection strategy. Across both
datasets, adding one, two, or all three new aspects
results in a drop of over 1% across nearly all eval-
uation metrics. This suggests that human intent
is primarily conveyed through facial expressions,
actions, and social interactions, whereas incorpo-
rating excessive semantic aspects introduces re-
dundancy or less relevant information, thereby di-
minishing the model’s ability to focus on essen-
tial multimodal cues. Furthermore, results from
the IEMOCAP-DA dataset provide deeper insights
into the relative impact of different semantic as-
pects. The negative effects of TMS and IS are
more pronounced than those of SD, likely because
TMS and IS capture intrinsic speaker character-

istics, which are challenging to infer from brief,
single-turn conversations. In contrast, SD primar-
ily characterizes the dialogue environment, posing
minimal ambiguity but contributing less to intent
recognition. These findings strongly confirm the
adequacy of our selected semantic aspects, empha-
sizing the importance of carefully choosing those
most relevant to multimodal intent recognition.

C Details of CoT

This section details the progressive design of the
CoT in LGSRR, providing a clearer illustration of
the underlying reasoning mechanism. For CoT-
Step 1, the prompt includes an introduction to
the task background along with raw data descrip-
tions, enabling the LLM to develop a more compre-
hensive understanding of the target semantics, as
shown in Template1. It is then asked to list key an-
alytical perspectives, prompting it to autonomously
identify fine-grained semantic aspects that are cru-
cial for multimodal understanding.

Template1: Multimodal intent recognition
aims to analyze the intent of the speaker in a
video by utilizing both the video content and
corresponding text captions. What are the
key analytical perspectives for multimodal
intent recognition? Please list them.

For CoT-Step 2, we guide MLLMs to gener-
ate structured and detailed semantic descriptions
across key semantic cues from the previous step,
such as speakers’ actions, facial expressions, and
interaction with others. This step ensures that the
extracted semantics are not only modality-aware
but also intent-relevant, laying a solid foundation
for reasoning over semantic relationships.

Template2: Generate detailed descriptions
that help identify the speaker’s intent. Please
combine video and text to describe from
the following perspectives: (1) Speakers’
Actions: <Action Instruction>; (2) Fa-
cial Expressions: <Expression Instruction>;
(3) Interaction with Others: <Interaction
Instruction>. Focus on these aspects to cre-
ate a comprehensive description that would
aid in recognizing the intentions behind the
speakers’ actions and words.

To further incorporate LLM guidance in es-
tablishing reasoning relationships, we take fine-
grained semantic descriptions as input and prompt
the LLM to rank them according to the contribution
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Settings MIntRec2.0 IEMOCAP-DA
ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑) ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

A+E+I+TMS 58.99 53.61 55.62 53.70 58.27 58.79 73.41 70.41 72.37 69.66 73.27 73.69
A+E+I+TMS+IS 59.03 53.26 56.24 53.22 58.27 59.29 73.24 69.69 70.69 69.41 73.09 73.28
A+E+I+TMS+IS+SD 59.00 53.63 56.29 53.25 58.25 58.94 73.96 70.46 72.57 69.71 73.79 74.33

LGSRR (A+E+I) 60.46 55.35 59.33 55.09 59.72 60.85 74.95 72.99 74.27 72.74 74.88 75.47

Table 6: Comparison of using different semantic aspects, where A, E, I, TMS, IS and SD represent Speaker’s
Actions, Facial Expressions, Interaction with Others, Tone and Manner of Speaking, Identity and Status, and Scene
Description, respectively.

Semantics
MIntRec2.0 IEMOCAP-DA

Rank@1 Rank@2 Rank@3 Rank@1 Rank@2 Rank@3

Speakers’ Actions 1,476 3,814 875 1,675 3,982 933
Facial Expressions 523 1,450 4,192 604 1,542 4,444
Interactions with Others 4,166 901 1,098 4,311 1,066 1,213

Table 7: The semantic ranking results of Speakers’ Actions, Facial Expressions, and Interactions with Others on the
MIntRec2.0 and IEMOCAP-DA Dataset.

of each semantic description for CoT-Step 3. This
ranking provides explicit supervision signals for the
reasoning module to learn semantic importance in a
more interpretable and intent-aware manner.

Template3: I will provide you with the intent
of the video and descriptions of the video
from three different semantics. You need to
rank these semantics according to their con-
tribution to the intent and the content of the
descriptions. The three aspects are Speak-
ers’ Actions, Facial Expressions and Inter-
action with Others. The intent of the video
is <Intent>. The descriptions are <Action
Description>, <Expression Description>
and <Interaction Description>.

D Statistics on Ranking Results

To thoroughly evaluate the significance of different
fine-grained semantics, we analyze the semantic
ranking results on the MIntRec2.0 and IEMOCAP-
DA datasets, as illustrated in Table 7. The table
summarizes the ranking distributions for Speakers’
Actions, Facial Expressions, and Interactions with
Others across both datasets.

From the statistics, we observe a consistent trend
across both datasets: Interactions with Others con-
sistently has the highest number of Rank@1 sam-
ples, with counts of 4,166 and 4,311, followed by
Speakers’ Actions with 1,476 and 1,675, while Fa-
cial Expressions ranks the lowest with 523 and 604.
This ranking distribution reflects the interaction-
centric nature of intent labels such as criticize and
question, which are deeply rooted in social dynam-
ics and algin with real-world intent distributions.

Given the complexity of intent semantics, facial ex-
pressions generally serve as a coarse indicator of in-
tents, whereas actions provide more decisive clues,
as seen in intents like Leave or Criticize. When
examining each fine-grained semantic, LGSRR ef-
fectively differentiates the importance of actions
and expressions, as reflected in their distinct rank-
ing distributions. For instance, in MIntRec2.0, the
number of Rank@2 and Rank@3 samples for ac-
tions is 3,814 and 875, respectively, compared to
1,450 and 4,192 for expressions. These results
underscore LGSRR’s nuanced understanding of
semantic contributions and potential in handling
complex multimodal semantic tasks.

E Explanation of NeuralNDCG Loss

The NeuralNDCG loss (Pobrotyn and Białobrzeski,
2021) is a differentiable reformulation of the Nor-
malized Discounted Cumulative Gain (NDCG)
(Järvelin and Kekäläinen, 2002) metric, tailored
for learning-to-rank tasks by aligning model op-
timization directly with ranking performance. It
approximates the sorting operation using a normal-
ized soft permutation matrix P̂ and integrates gain
and discount functions to compute ranking quality.
The loss is defined as:

LNeuralNDCG =
1

NR

∑

j∈R
scale(P̂ )jg(sj)d(j),

(19)
where R represents the set of ranks, NR is its size,
j ∈ R corresponds to individual ranks, sj is the pre-
dicted score (interpreted as the importance score αj

in our work), g(sj) = 2sj − 1 is the gain function
that emphasizes the relevance of high-importance
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Ablations MIntRec2.0 IEMOCAP-DA
ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑) ACC (↑) F1 (↑) P (↑) R (↑) WF1 (↑) WP (↑)

w / o Relative Importance 58.76 52.99 54.11 52.84 58.21 58.31 74.65 72.29 73.41 72.02 74.56 74.91
w / o Complementarity 58.80 53.93 55.90 53.75 58.28 58.96 73.67 70.85 72.40 70.43 73.49 73.86
w / o Inconsistency 59.53 53.88 56.39 54.01 58.72 59.30 74.81 71.78 72.26 72.31 74.65 75.03

Full 60.46 55.35 59.33 55.09 59.72 60.85 74.95 72.99 74.27 72.74 74.88 75.47

Table 8: Ablation studies for the reasoning relations on the MIntRec2.0 and IEMOCAP-DA datasets, with each
configuration presenting results for the exclusion of relative importance, complementarity, or inconsistency. Bold
text denotes the best performance, while underlined text indicates the second-best.

DescriptionSample Rank

Speakers’ Actions: The woman is standing in front of the cookie shelf, gesturing with her hands as she talks to the other 

woman. The other woman is listening and occasionally nodding her head.

Facial Expressions: The woman talking seems to be expressing frustration or annoyance, as indicated by her gestures and 

facial expressions. The other woman appears to be calmly listening to her.

Interaction with Others: The two women appear to be acquaintances or friends, as they are engaged in a casual conversation. 

There is no visible tension or hostility between them.

Sorry, everybody. Looks like we're gonna 
starve down here because amy thought 
we'd only be trapped for 15 minutes.

1st: Interaction with Others

2nd: Facial Expressions 

3rd: Speakers’ Actions

Label: Inform

Speakers’ Actions: The two women are engaged in a conversation, with one woman looking at the other while speaking. The 

other woman is holding a shopping cart and appears to be listening attentively.

Facial Expressions: Both women have a calm and neutral expression on their faces, suggesting a friendly and non-

confrontational conversation.

Interaction with Others: The two women seem to be the only people in the scene, and there is no interaction with others 

visible in the video.As a friend. you wanna be a friend? Label: Confirm

1st: Facial Expressions 

2nd: Speakers’ Actions

3rd: Interaction with Others

Speakers’ Actions: The man in the blue shirt is seen sitting at the table with the two women. He is engaged in conversation 
with them, occasionally gesturing with his hands to emphasize his points. The women are attentive and responsive to his 
comments.
Facial Expressions: The man appears to be relaxed and friendly, with a smile on his face and a calm demeanor. The women 
seem to be enjoying the conversation and are engaged in the discussion.
Interaction with Others: The man, woman in red, and woman in blue are all familiar with each other, as evidenced by their 
relaxed posture and comfortable interaction. The conversation is friendly and informal, with occasional moments of laughter 
and camaraderie.It'll be fine, you guys.

1st: Facial Expressions

2nd: Interaction with Others

3rd: Speakers’ Actions

Label: Comfort

Look, i'm sorry, i did not know that she 
was gonna say those things.

Speakers’ Actions: The two women are sitting at the table, with one of them talking to the other. The woman who is speaking 

is gesturing with her hands as she talks. 

Facial Expressions: The woman who is speaking seems to be angry and frustrated, as indicated by her facial expressions and 

tone of voice. The other woman appears to be listening attentively.

Interaction with Others: The two women seem to be engaged in a serious conversation, but there are no visible signs of 

tension or hostility between them.

1st: Speakers’ Actions

2nd: Facial Expressions

3rd: Interaction with Others

Label: Apologise

Uh, he's weird, and when you mentioned 
that he  worked  in insurance, you could've 

mentioned it was horse insurance.

Speakers’ Actions: The woman is standing and gesturing with her hands while talking to the man. The man is sitting at the 

table and listening to her.

Facial Expressions: The woman appears to be angry and frustrated, as indicated by her facial expressions and gestures. The 

man seems to be calmly listening to her. The woman and the man are the only ones interacting in the scene.

Interaction with Others: They seem to be engaged in a serious conversation, but there is no visible tension or hostility 

between them.

1st: Interaction with Others

2nd: Speakers’ Actions

3rd: Facial Expressions

Label: Complain

Figure 4: Samples from the MIntRec2.0, showcasing descriptions and ranking results of fine-grained semantics.

items, d(j) = 1
log2(j+1) is the discount function

that reduces the weight of lower-ranked elements,
and scale(P̂ )j represents the row-stochastic ap-
proximation of the sorting operator. The matrix P̂
is derived by approximating the hard permutation
matrix Psort(s), induced by sorting the predicted
scores s = f(x), with the formula (Grover et al.,
2019) as follows:

P =
(n+ 1− 2u)s−As1

τ
, (20)

P̂sort(s)[u, :](τ) = softmax (P ) , (21)

where As[u, v] = |su − sv| represents pairwise
differences between scores, 1 is a column vec-
tor of ones, and τ > 0 is the temperature pa-
rameter that controls the trade-off between the ap-
proximation accuracy and gradient stability. As
τ → 0, P̂ converges to the true permutation matrix
Psort(s), closely approximating the hard sorting pro-
cess. To ensure both row- and column-stochasticity,
Sinkhorn normalization is applied to P̂ , further sta-
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Speakers’ Actions: The woman is sitting in one of the chairs, leaning forward with her hands resting on her lap. The man is 

sitting in the other chair, holding a piece of paper in his hand. Both speakers appear to be engaged in a conversation, 

occasionally gesturing with their hands. 

Facial Expressions: The woman's facial expression is neutral, while the man seems to be smiling at certain points in the 

conversation. Their tone of voice is friendly and conversational. 

Interaction with Others: The speakers appear to be having a one-on-one conversation, with no other individuals present in 

the scene. Their body language suggests a comfortable and familiar relationship.

1st: Interaction with Others

2nd: Speakers’ Actions

3rd: Facial Expressions

Label: Statement opinion

I got this idea watching them go down.  everything was 
being destroyed, see, but it seemed that there was one new 
thing being made.  a sort of responsibility.  man for man.

Speakers’ Actions: The woman is sitting in one of the chairs, wearing a pink tank top and a black leather wristband. She is 

looking directly at the camera and occasionally gestures with her hands. The man is sitting in the other chair, wearing a green 

t-shirt and holding a piece of paper. He is looking down at the paper and occasionally glances up at the camera.

Facial Expressions: Both speakers appear to be calm and composed throughout the video. Their facial expressions are neutral, 

and their tone of voice is measured and professional.

Interaction with Others: They appear to be focused solely on the conversation with the camera.

1st: Speakers’ Actions

2nd: Facial Expressions

3rd: Interaction with Others

Label: Statement non opinion
Honey, this is a natural phenomenon.  i mean this only 

happens once a year, you know.

1st: Facial Expressions

2nd: Speakers’ Actions

3rd: Interaction with Others

Label: Apology

Speakers’ Actions: The speakers are engaged in a conversation, with one person speaking and the other listening attentively. 

The speaker uses hand gestures to emphasize their points, while the listener maintains a composed posture.Both speakers 

appear to be calm and composed, with no visible signs of strong emotions. 

Facial Expressions: Their facial expressions are neutral, and their tone of voice is measured.

Interaction with Others: The speakers are the only individuals in the scene, and their interaction is focused and one-on-one. 

There is no visible tension or familiarity between them.Yeah.  I'm so sorry.

Speakers’ Actions: The woman is seen sitting in one of the chairs, leaning forward with her hands clasped. She occasionally 

nods her head and gestures with her hands. The man is seated in the other chair, holding a microphone and speaking directly to 

the camera. He occasionally looks towards the woman and gestures with his hands.

Facial Expressions: Both the woman and the man appear to be engaged in a serious conversation. They maintain a neutral 

facial expression throughout the video, with occasional slight smiles.

Interaction with Others: The woman and the man seem to be having a one-on-one conversation, with no other individuals 

present in the scene. They appear to be actively listening and responding to each other.

1st:  Interaction with Others

2nd: Speakers’ Actions

3rd: Facial Expressions

Label: CommandCalm yourself.

1st: Facial Expressions

2nd: Interaction with Others

3rd: Speakers’ Actions

Speakers’ Actions: he woman is sitting on a chair with her hands resting on her lap. She occasionally leans forward and 

gestures with her hands while speaking. The man is sitting on the other chair, wearing a green shirt and a headband. He listens 

attentively and occasionally nods his head.

Facial Expressions: Both the woman and the man appear to be in a good mood, smiling and laughing at certain points in the 

conversation. The woman's facial expressions are more animated, while the man maintains a more composed demeanor.

Interaction with Others: The woman and the man seem to be engaged in a friendly conversation, exchanging ideas and 

opinions. There is a sense of mutual respect and understanding between them. Label: QuestionWhat? What? You look really happy what's going on?

Description RankSample

Figure 5: Samples from the IEMOCAP-DA, showcasing descriptions and ranking results of fine-grained semantics.

bilizing its use in optimization by resolving incon-
sistencies in quasi-sorted outputs. NeuralNDCG in-
tegrates these components to enable gradient-based
learning directly aligned with ranking performance,
providing a powerful mechanism for optimizing
ranking tasks in diverse applications.

F Training Cost

The additional computational cost primarily arises
from the LLM-Guided Semantic Extraction pro-
cess, which requires approximately two hours per
dataset under the experimental conditions outlined.
This duration is comparable to the training time
of the model itself, which also takes around two
hours. Despite this added computational expense,
the trade-off is justified by the substantial benefits it
brings in enhancing semantic understanding. More-
over, the training cost introduced by this approach
remains considerably lower than that of fine-tuning,
which typically demands 8–10 hours of computa-
tion. Thus, the proposed method achieves a more
efficient balance between computational efficiency

and semantic extraction performance.

G Ablations for Semantic Relations

To further validate the effectiveness of the three
proposed reasoning relations, we conduct abla-
tion studies on relative importance, complemen-
tarity, and inconsistency across the MIntRec2.0
(Zhang et al., 2024a) and IEMOCAP-DA (Saha
et al., 2020) datasets, with results summarized in
Table 8. For relative importance and complementar-
ity, we exclude their respective weight generation
and weighting processes, while for inconsistency,
the entire penalty feature is removed.

From the experimental results, the absence of
relative importance leads to a notable drop in per-
formance across all metrics on both datasets, high-
lighting its role as a cornerstone of our reason-
ing framework. On the MIntRec2.0 dataset, per-
formance decreases range from 1.51% to 5.22%,
which are significantly higher than the declines ob-
served on IEMOCAP-DA, ranging from 0.30% to
0.86%. This emphasizes the critical importance
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of differentiating the relative significance of fine-
grained semantics in understanding complex in-
tents. Similarly, the removal of complementarity
leads to metric reductions exceeding 1% across
the board, illustrating LGSRR’s success in cap-
turing the inherent synergy between semantic ele-
ments. The absence of inconsistency results in the
most significant declines in F1 and P scores, with
reductions of 1.47% and 2.94% on MIntRec2.0
and 1.21% and 2.01% on IEMOCAP-DA. This de-
cline is especially pronounced in complex intent
categories such as Joke and Flaunt, which depend
heavily on identifying contradictory semantic cues
and are underrepresented in the dataset. These find-
ings underscore LGSRR’s robustness in addressing
nuanced inconsistencies, even in categories with
limited data. These ablation studies confirm the es-
sential role of the proposed reasoning relations and
their integration, forming the basis of LGSRR’s
capability to handle diverse intent semantics with
precision and adaptability.

H Additional Case Studies

Figure 4 and Figure 5 present a diverse set of
samples from the MIntRec2.0 and IEMOCAP-DA
datasets, offering a detailed glimpse into the fine-
grained semantic descriptions and importance rank-
ings produced by LGSRR. The selected cases cover
a range of intent labels and scenarios, each pre-
senting semantic challenges and opportunities. On
MIntRec2.0, LGSRR excels at identifying critical
cues, such as “gesturing with hands” or “express-
ing frustration,” which are particularly relevant in
contexts like Complain and Criticize. These re-
sults demonstrate the model’s ability to capture
subtle yet impactful cues that are essential for in-
tent understanding. In contrast, IEMOCAP-DA
poses a greater challenge, featuring two-person dia-
logue scenes from varied perspectives that demand
more nuanced reasoning. Fine-grained semantics
in this dataset involve conversational dynamics
rather than explicit physical actions, making it dif-
ficult to disentangle key semantic elements. For
example, interactions are frequently characterized
by subtle cues such as mutual respect, attentiveness,
or slight gestures, which require precise modeling
to capture effectively. Despite these complexities,
LGSRR achieves impressive performance, consis-
tently identifying the most relevant interactions and
prioritizing critical semantic details. These case
studies not only highlight the versatility and adapt-

ability of LGSRR but also underscore its strength in
navigating the intricacies of multimodal reasoning
across datasets with distinct characteristics.
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