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Abstract

Recent efforts leverage knowledge distillation
techniques to develop lightweight and practi-
cal sentiment analysis models. These meth-
ods are grounded in human-written instruc-
tions and large-scale user texts. Despite the
promising results, two key challenges remain:
(1) manually written instructions are limited
in diversity and quantity, making them insuf-
ficient to ensure comprehensive coverage of
distilled knowledge; (2) large-scale user texts
incur high computational cost, hindering the
practicality of these methods. To this end,
we introduce COMPEFFDIST, a comprehen-
sive and efficient distillation framework for
sentiment analysis. Our framework consists
of two key modules: attribute-based automatic
instruction construction and difficulty-based
data filtering, which correspondingly tackle
the aforementioned challenges. Applying our
method across multiple model series (Llama-3,
Qwen-3, and Gemma-3), we enable 3B student
models to match the performance of 20x larger
teacher models on most tasks. In addition, our
approach greatly outperforms baseline meth-
ods in data efficiency, attaining the same per-
formance level with only 10% of the data. All
codes are available at https://github.com/
HITSZ-HLT/COMPEFFDIST.

1 Introduction

Recent research shows that large language models
(LLMs) possess robust sentiment analysis capabil-
ities. Without requiring task-specific fine-tuning,
these models can achieve exceptional performance
across various sentiment-related tasks, including
polarity determination (Zhang et al., 2024b), emo-
tion recognition (Liu et al., 2024b), sarcasm de-
tection (Yao et al., 2025), and stance detection
(Zhang et al., 2024a). Furthermore, these models
demonstrate strong abilities to reason and interpret

* The first two authors contribute equally to this work.
† Corresponding Authors

sentiments in complex contexts (Fei et al., 2023;
Zhang et al., 2024c).

Despite remarkable performance, the substan-
tial parameter size of LLMs severely constrains
their practical application. To address this limita-
tion, extensive research (Zhong et al., 2024; Gu
et al., 2024; Ko et al., 2024; Wu et al., 2024; Peng
et al., 2024) has focused on leveraging knowl-
edge distillation techniques (Hinton et al., 2015)
to transfer knowledge and skills from large teacher
models to more compact student models, thereby
reducing deployment costs. Among these studies,
targeted distillation (Liu et al., 2023; Kim et al.,
2024; Zhou et al., 2024) emerges as a particularly
promising and practical approach, enabling much
smaller models to approximate the capabilities of
LLMs across a broad range of applications.

Recent work (Zhang et al., 2025) explores target
distillation for sentiment analysis. Their method
employs sentiment-related instructions and user
texts to prompt the teacher model, generating a cor-
pus enriched with sentiment knowledge, which is
then used to optimize the student model. We ar-
gue that the effectiveness of this process critically
hinges on the comprehensiveness of instructions
and the quantity of user texts. However, these re-
quirements introduce two major challenges: (1)
crafting sufficiently comprehensive instructions is
labor-intensive, as it requires covering various per-
spectives for analyzing subjective content, such as
polarity, emotion, lexicon, and rhetorical devices;
(2) utilizing large-scale user texts incurs substan-
tial computational costs throughout the distillation
pipeline, which constrains the practical applicabil-
ity of distillation-based methods.

To address these two challenges, this paper in-
troduces a comprehensive and efficient distillation
framework (COMPEFFDIST) for sentiment anal-
ysis. As illustrated in Figure 1, the framework
comprises two key modules. The first is attribute-
based automatic instruction construction. It iden-
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Instruction: Classify the tone of a given text into one of the following 
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User Text: For what it is, Cambridge Deli does it best, and for that it

deserves 4 stars.

Instruction: Identify the specific entity, person, or organization that is 

the target of disapproval in the given text.

User Text: This movie, so wonderfully choreographed by Arlene 

Phillips (Austin Powers) is so much fun. I hate when stupid critics 

pan things because it doesn't have 50 explosions per minute and sex 

as the punch line of all the jokes. 
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Figure 1: Illustration of our approach: (1) we extract
sentiment knowledge from the teacher model through
instructions and user texts and then utilize it to optimize
the student model; (2) we generate diverse instructions
based on various analytical perspectives to ensure com-
prehensive distillation; (3) we assess the difficulty of
instructions and user texts and then reduce the propor-
tion of simple samples to ensure efficient distillation.

tifies and enumerates a wide range of sentiment-
related attributes from user texts, applies clus-
tering techniques to group these attributes into
distinct analytical perspectives, and subsequently
generates diverse instructions based on these an-
alytical perspectives. As such, the module con-
structs comprehensive instructions without requir-
ing labor-intensive efforts.

The second module, termed difficulty-based
data filtering, aims to filter out overly simple data
to boost data efficiency. This module is motivated
by the hypothesis that simple data contributes min-
imally to model optimization (Liu et al., 2024a).
Specifically, we devise a ranking-based metric that
employs the student model to assess the difficulty
of instructions and user texts. These difficulty
scores are then generalized into a proxy model,
enabling efficient scoring. Finally, we apply a
difficulty-prioritized sampling strategy to decrease
the proportion of simple data, thereby reducing the
computational cost of the distillation pipeline.

We conduct experiments across multiple model

series (Llama-3, Qwen-3, and Gemma-3) and eval-
uate their sentiment analysis capabilities using
SENTIBENCH (Zhang et al., 2025). The experi-
mental results reveal that: (1) Our approach en-
ables 3B student models to achieve performance
on par with teacher models on most tasks, despite
being up to 20x smaller in size. (2) Compared to
baseline methods, our approach attains the same
level of performance using only 10% of the distil-
lation data. These results highlight the effective-
ness and promising potential of our approach.

2 Preliminaries: Targeted Distillation

Targeted distillation aims to transfer domain
knowledge from a teacher model T to a student
model S . The process generally consists of two
stages. The first stage is to extract domain knowl-
edge from the teacher model. Existing methods
(Xu et al., 2023; Zhang et al., 2024d; Kim et al.,
2024; Zhou et al., 2024) typically utilize a large
collection of instruction-user text pairs (ins, x) to
prompt the teacher model, generating responses ŷ:

ŷ ∼ T (y | ins, x). (1)

The resulting triples (ins, x, ŷ) are considered to
encode rich domain knowledge. In the second
stage, the student model is fine-tuned on these
triples using the language modeling objective, for-
mulated as:

max
∑

ins,x,ŷ

S(ŷ | ins, x). (2)

Challenges. The effectiveness of the aforemen-
tioned process critically relies on the quality of the
instructions and user texts employed. To ensure
comprehensive coverage of distilled knowledge,
the instruction set must capture a wide range of
relevant perspectives. In sentiment analysis, these
perspectives refer to various dimensions for ana-
lyzing subjective content. They may include sen-
timent polarity, emotion types, linguistic expres-
sions, as well as higher-level aspects like rhetor-
ical devices and contextual background. How-
ever, manually summarizing all such perspectives
and crafting the corresponding instructions is ex-
tremely challenging and often impractical.

Simultaneously, the user text collection must
span a broad spectrum of contextual variations.
For example, in terms of linguistic expressions,
it should include diverse patterns such as explicit
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sentiment words, factual statements, comparisons,
metaphors, and sarcastic utterances. Achieving
such diversity typically depends on the size and
richness of the user text corpus, consequently in-
creasing the computational demands of teacher
model prompting and student model optimization.

3 Comprehensive & Efficient Distillation

We introduce a comprehensive and efficient distil-
lation framework (COMPEFFDIST) to address the
challenges of previous methods. The framework
consists of two modules: (i) attribute-based auto-
matic instruction construction, which generates di-
verse instructions to ensure comprehensive distil-
lation; and (ii) difficulty-based data filtering, aim-
ing to reduce the proportion of simple data during
distillation, thereby enhancing data efficiency.

3.1 Attribute-based Automatic Instruction
Construction

As discussed in Section 2, it is essential for instruc-
tions to cover a diverse range of analytical per-
spectives. Inspired by Lou et al. (2024), we adopt
an approach in which the teacher model identifies
sentiment-related attributes from user texts, which
are then used to generate specific instructions. As
illustrated in Figure 2, the process comprises four
steps: attribute enumeration, attribute clustering,
task generation, and instruction generation.

Attribute Enumeration. We observe that real-
world user texts inherently contain a sufficiently
diverse range of sentiment-related attributes. Con-
sider the following example:

“I wish I could give it zero stars. Who-
ever thinks this smells like a lemon,
needs help. This is the most disgusting,
repulsive, overwhelming, stinky cleaner
I ever had the displeasure of using.”

This text exhibits a high degree of emotional inten-
sity and conveys strong negative sentiments such
as frustration and disgust. Besides, it employs sar-
casm1 as a rhetorical device within the context of
product dissatisfaction. In summary, this example
involves the following attributes: emotional inten-
sity, frustration, disgust, sarcasm, and product dis-
satisfaction.

1The rationale of sarcasm is that “need help” is not a gen-
uine suggestion to seek medical attention, but rather a sarcas-
tic critique of the other person’s absurd judgment.

- tone, frustration level, disappointment level, helplessness, …

- language tone, frustration, sarcasm, comparative sentiment, …

- food quality, perceived value, recommendation, …

- tone, comparison to other movies, humor, nostalgia, enthusiasm, … 

Sentiment-related Attributes

User 
Texts

...

Attribute Enumeration

Tone
- Tone classification
- Tone intensity scoring
- Tone shift detection
…

Comparison
- Comparison sentiment classification
- Comparison sentiment trigger extraction
- Comparison sentiment structured output
…

Tasks

Attribute Clustering

Task Generation

Instruction Generation

tone

frustration

humor

sarcasm

comparison ...

food quality recommendation

enthusiasm

Analytical Perspectives

...Instructions

Figure 2: Illustration of attribute-based automatic in-
struction construction.

Building on the above observation, we prompt
the teacher model to identify and enumerate
sentiment-related attributes present in user texts.
A total of 20K user texts are used in this step. Af-
ter normalizing the collected attributes, we obtain
approximately 1,800 distinct attributes. The com-
plete prompt and implementation details are pro-
vided in Appendix A.1.

Attribute Clustering. Many attributes are seman-
tically equivalent, but differ only in form or phras-
ing. For example, terms such as ‘tone’, ‘language
tone’, ‘tone of language’, and ‘tone of voice’ all
convey the same underlying meaning. We there-
fore employ clustering techniques to consolidate
semantically similar attributes. Specifically, we
first employ UAE-Large-V12 (Li and Li, 2024), an
embedding model, to project the textual attributes
into vector representations. We then apply the
affinity propagation algorithm (Frey and Dueck,
2007) to cluster these representations.

We ultimately obtain 180 clusters. Moving for-
ward, we refer to these clusters as analytical per-
spectives and use the most frequently occurring
attribute within each cluster as its name. The

2Available at https://huggingface.co/WhereIsAI/
UAE-Large-V1.
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representative analytical perspectives include tone,
comparison, humor, and food quality, covering
expression styles, linguistic phenomena, and con-
crete aspects. A detailed presentation and analysis
can be found in Section 4.

Task & Instruction Generation. For each ana-
lytical perspective, we prompt the teacher model
to brainstorm a series of tasks, where each task
consists of a task name and a brief description.
To guide the task generation process, we provide
the teacher model with predefined task types, in-
cluding classification, regression, extraction, struc-
tured output, and open-ended generation. For ex-
ample, under the analytical perspective of ‘tone’,
the generated tasks comprise: (i) tone classifica-
tion, (ii) tone intensity scoring, (iii) tone shift de-
tection, (iv) tone comparison to neutral, (v) tone-
related entity extraction, (vi) tone profiling, and
(vii) tone-based summarization.

Subsequently, we instruct the teacher model
to synthesize complete instructions by enriching
the task description, incorporating specific require-
ments, and generating a set of demonstrations.
During the demonstration generation process, we
make a special effort to balance the class distribu-
tion. Detailed implementation is described in Ap-
pendix A.2. Figure 3 presents an example of the
resulting instruction.

1

* `tone_category`: a string label representing the tone category (e.g., "positive", 
"negative", "neutral", "sarcastic", etc.)

* `intensity`: a numerical score between 0 and 1 representing the intensity of the 
tone

* `emotional_undertones`: a list of strings representing the emotional underto- 
nes (e.g., ["anger", "fear", "joy", etc.])

The tone profile should be represented in the following JSON format: {
    "tone_category": "",
    "intensity":,
    "emotional_undertones": []
}

Task Description: Create a tone profile for the given text by analyzing its tone 
category, intensity, and emotional undertones. 

Requirements: Represent the tone profile in a structured JSON format with 
the following fields: 

Demonstrations: 
Input: u think u can just slide into my dms and ask for my wifi password? no way
Output: {
    "tone_category": "sarcastic",
    "intensity": 0.7,
    "emotional_undertones": ["irritation", "defensiveness"]
}

Input: {Input Text}
Output: 

Figure 3: Generated instruction for tone profiling.

After obtaining a large and diverse set of in-
structions, we randomly pair them with user
texts to construct a comprehensive collection of
instruction-user text pairs. These pairs are then
used to prompt the teacher model for response gen-

eration. An alternative approach is to match in-
structions with user texts based on their associated
attributes. In our experiments, we find that both
methods achieve comparable performance. De-
tailed results are presented in Appendix D.

3.2 Difficulty-based Data Filtering
As mentioned in Section 2, targeted distillation re-
quires a large amount of user texts to ensure ef-
fectiveness, increasing the computational cost. To
address this challenge, we assess the difficulty of
instruction-user text pairs and adopt a difficulty-
prioritized sampling strategy to reduce the propor-
tion of simple data. In terms of difficulty assess-
ment, we first evaluate each pair through a ranking-
based metric. The resulting difficulty scores are
optionally used to train a proxy model that enables
more efficient difficulty estimation.

Ranking-based Difficulty Metric. We evaluate
the difficulty of a triplet (ins, x, y) by assessing
how well the student model S can reproduce the
response y given the input (ins, x). Most existing
methods (Xie et al., 2024; Li et al., 2024) rely on
perplexity-based metrics for this purpose:

PPL = − 1

|y|

|y|∑

t=1

logPS(yt | ins, x, y<t). (3)

However, perplexity is unsuitable for evaluating
sentiment analysis samples. This is because sen-
timent analysis tasks typically involve categorical
outputs rather than free-form text generation, and
full-vocabulary probability distributions do not
provide reliable indicators of correctness. There-
fore, we devise a ranking-based scoring metric.

We first curate a small subset of the distillation
data to warm up the student model. Subsequently,
this warmed-up model is used to assess the diffi-
culty of a given triplet (ins, x, y). For each token
yt, we estimate the size of the relevant label space
using top-p sampling, denoted as Nt. We then de-
termine the ranking position of yt within the top-p
distribution, denoted as rt. Based on these values,
we define the difficulty score for yt as follows:

d(yt) =





rt − 1

Nt
if rt ≤ Nt,

1 otherwise.
(4)

The overall difficulty of the response y is com-
puted as the average of the token-level difficulty
scores. However, to avoid bias from format tokens
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(e.g., punctuation marks such as [ or "), we exclude
tokens whose scores fall below a threshold εd dur-
ing the averaging process. Detailed implementa-
tions are presented in Appendix A.3.1.

Proxy Model. The aforementioned difficulty met-
ric requires access to the teacher response y, im-
plying that this method can only reduce the op-
timization cost of the student model while leav-
ing the prompting cost of the teacher model un-
affected. We therefore explore training a proxy
model that does not require teacher responses,
thereby allowing for data filtering before the
teacher model prompting. The proxy model P is
an autoregressive model with a regression head. It
takes an instruction ins and a user text x as input
and outputs a difficulty score d̂:

d̂ = P(ins, x). (5)

We optimize the proxy model using the mean-
squared error (MSE) loss, formulated as:

L = MSE(d̂, d), (6)

where d denotes the score derived from the
ranking-based metric.

While using the proxy model can reduce both
the teacher model’s prompting cost and the stu-
dent model’s optimization cost, its performance is
inferior due to the absence of teacher responses.
Detailed experimental results are presented in Sec-
tion 5.4. Consequently, the proxy model is treated
as an optional component within the data filtering
module.

Difficulty-Prioritized Sampling Strategy priori-
tizes more challenging samples while reducing the
proportion of easily-learned samples. For a group
of M samples sharing the same instruction, we
estimate their difficulty scores using the ranking-
based metric or the proxy model. These sam-
ples are then sorted in ascending order of their
scores, and each is assigned a sampling probabil-
ity of ρ−0.5

M , where ρ denotes its rank. We per-
form stochastic sampling based on these probabil-
ities. As a result, 50% of the samples are expected
to be retained. We also explore two variants: (i)
global sampling, which ranks samples across all
instructions based on their difficulty scores and
adopts a unified sampling procedure; and (ii) hard-
only sampling, which retains only the most diffi-
cult 50% of samples for each instruction. Both
variants yield suboptimal performance. Detailed
results and analysis are provided in Section 5.4.

Figure 4: Visualization of the representative analyti-
cal perspectives. A more complete visualization is pro-
vided in Figure 9 of Appendix B.

4 Data Analysis

Visualization of Analytical Perspectives. The
generated analytical perspectives span a broad se-
mantic range. As shown in Figure 4, they can
be broadly categorized into five main categories:
(i) basic analytical perspectives, such as sentiment
polarity, emotional intensity, and tone; (ii) expres-
sion styles, such as language style, and rhetori-
cal devices; (iii) specific emotions, such as frus-
tration, anger, excitement, and optimism; (iv) lin-
guistic phenomena, such as humor, sarcasm, and
trolling; and (v) concrete aspects or topics, such as
customer service, food quality, acting quality, and
social commentary. Moreover, a certain degree of
overlap or nesting among analytical perspectives
can also be observed. For example, ‘product qual-
ity’ is a sub-aspect of ‘product satisfaction’. We
believe that this level of redundancy is potentially
beneficial, as it enhances the comprehensiveness
of the perspective set and supports the generation
of more diverse tasks.

Data Statistic. We obtain a total of 3,707 tasks
and 50K samples. Figure 5 presents the distribu-
tion of task types. There are five task categories,
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Figure 5: Type distribution of generated tasks.

with structured-output tasks comprising a notably
high proportion. This is because LLMs tend to
generate complex and composite tasks. We also
offer the length distribution of instructions, user
texts, and responses in Figure 8 of Appendix B.

5 Experiments

5.1 Experimental Setup
Implementation Details. We conduct extensive
experiments across multiple LLM series, namely
Llama-3 (Grattafiori et al., 2024), Qwen-3 (Yang
et al., 2025), and Gemma-3 (Kamath et al.,
2025). The specific teacher-student setups are
(Llama-3.1-70B-instruct, Llama-3.2-3B-instruct),
(Qwen-3-32B, Qwen-3-4B), and (Gemma-3-27B-
it, Gemma-3-4B-it). If not specified, analytical
experiments are conducted on the Llama-3 series
models.

The user text corpus for the distillation process
is collected from IMDb, Yelp, Amazon, and Twit-
ter. We use 20K user texts to generate instructions,
resulting in 3,707 distinct instructions. An addi-
tional 100K user texts are then paired with these in-
structions to form 100K instruction-user text pairs.
These pairs will be filtered based on difficulty, re-
taining only 50% of them. The remaining pairs
are used for distillation. Hyperparameter settings
are detailed in Appendix A.4. After distillation,
we evaluate the student models on SENTIBENCH

(Zhang et al., 2025), with dataset statistics pre-
sented in Appendix C.

Baselines. We select three categories of baselines
for comparison. The first is two generic distilla-
tion methods that fine-tune the student model us-
ing Alpaca-data (Taori et al., 2023) and Lamini-
data (Wu et al., 2024). The second is KNOW &
ICLDIST (Zhang et al., 2025), a two-stage ap-
proach leveraging manually written instructions to
distill knowledge for sentiment analysis. The third
is EmoLlama (Liu et al., 2024b), which fine-tunes
Llama models using a multi-task affective analysis

instruction dataset. In addition, we provide results
of GPT-3.5 and GPT-4o3 as reference.

5.2 Main Results

Table 1 presents the comparison results between
our approach and the baseline methods. These re-
sults suggest that our approach enables the student
model to attain performance close to that of the
teacher model on most tasks and consistently out-
performs all baseline methods, demonstrating its
effectiveness.

Furthermore, we make the following observa-
tions. Firstly, the performance gains from the
two generic distillation methods are minimal, in-
dicating their inefficiency in transferring specific
capabilities. Secondly, our approach surpasses
the previous method relying on manually con-
structed instructions (i.e., KNOW & ICLDIST).
This improvement demonstrates that our approach
reduces human effort while achieving superior per-
formance. Thirdly, there is a notable performance
gap between the student and teacher models on
the FSA tasks, and our approach successfully nar-
rows this gap. We attribute this improvement to
the diverse structured output tasks in the auto-
matically generated instruction set. Finally, the
performance gains on Qwen-3 and Gemma-3 are
relatively modest compared to those observed on
Llama-3. This can be attributed to their extensive
use of knowledge distillation during training pro-
cess (Yang et al., 2025; Kamath et al., 2025). As
these models already incorporate sophisticated dis-
tillation techniques in their training pipelines, the
incremental benefits of our method are naturally
reduced.

5.3 Effect of Instruction Comprehensiveness

One of the key claims of this work is that the diver-
sity of instruction sets is a critical factor in ensur-
ing effective distillation. We conduct exploratory
experiments to assess the impact of instruction va-
riety. Results in Figure 6 show that the student
model performance gradually improves as the va-
riety of instructions increases, providing strong
support for our hypothesis. Besides, we compare
our instruction set with previous work under dif-
ferent data budgets. As presented in Table 2, our
approach achieves results comparable to the prior
method using only 20K samples—less than 10%

3Available at https://chat.openai.com/. The spe-
cific models used are gpt-3.5-turbo-0125 and gpt-4o-
2024-11-20.
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Models
BSA MSA FSA

Avg
IMDb Yelp2 SST2 Twitter Irony Emoti. Stance Intim. ATSA ACSA ASQP SSA

EmoLlama-chat-7B 91.27 97.10 93.46 64.84 70.28 70.48 74.52 41.77 40.19 50.31 20.20 23.18 61.47
EmoLlama-chat-13B 93.63 97.87 94.31 59.87 65.94 70.75 73.65 45.28 48.31 58.92 23.07 30.83 63.53
EmoLlama-3-3B 90.86 96.50 91.96 66.25 71.51 74.88 74.33 48.55 47.09 48.72 16.55 22.84 62.50
GPT-3.5 93.70 98.30 96.31 60.15 78.64 75.61 79.99 52.63 56.43 66.67 30.30 44.01 69.40
GPT-4o 93.91 98.18 97.13 70.84 77.58 76.66 85.22 53.29 56.72 72.64 34.75 51.46 72.37

Llama-3-70B 95.30 98.10 97.14 68.75 83.99 75.87 85.21 53.68 59.48 74.13 32.14 50.11 72.83
Llama-3-8B 94.17 98.07 95.90 66.58 82.63 73.00 75.86 49.85 59.00 65.53 23.49 34.90 68.25
+ COMPEFFDIST (Ours) 93.56 98.07 96.23 68.81 85.89 74.56 82.35 53.36 63.01 70.08 30.37 45.57 71.82(+3.57)

Llama-3-3B 92.57 96.53 93.59 61.45 64.00 68.88 71.43 33.32 52.74 53.23 14.33 23.56 60.47
+ Distill. w/ Alpaca-data 92.37 97.37 93.92 57.70 66.59 64.47 72.05 28.70 50.96 54.11 21.16 28.58 60.66(+0.19)

+ Distill. w/ Lamini-data 92.80 97.33 94.91 62.07 70.10 65.61 72.49 40.28 53.73 56.46 19.99 27.25 62.59(+2.12)

+ KNOW & ICLDIST 94.30 98.17 95.41 69.57 85.25 77.47 75.10 48.24 53.07 65.22 24.61 36.17 68.55(+8.08)

+ COMPEFFDIST (Ours) 93.67 97.12 94.78 68.17 82.86 76.29 78.77 54.32 58.17 67.22 31.34 35.98 69.89(+9.42)

Qwen-3-32B 94.37 97.87 94.86 62.80 83.06 73.12 79.28 52.87 60.36 72.94 33.80 49.51 71.24
Qwen-3-4B 91.87 97.70 94.45 69.46 79.51 68.27 73.09 48.17 57.43 67.55 28.16 42.95 68.22
+ Distill. w/ Alpaca-data 92.90 97.93 94.76 68.20 82.15 69.81 74.10 45.63 57.30 66.92 29.08 44.22 68.58(+0.36)

+ Distill. w/ Lamini-data 92.43 98.17 94.16 68.50 84.02 64.78 72.89 50.43 56.11 66.10 28.93 38.21 67.89(-0.33)

+ KNOW & ICLDIST 93.40 98.03 95.82 69.07 82.23 75.53 76.87 50.49 59.21 71.31 30.44 37.81 70.02(+1.80)

+ COMPEFFDIST (Ours) 92.57 97.83 94.67 67.98 84.86 73.09 77.08 54.03 60.05 71.47 32.24 42.46 70.69(+2.47)

Gemma-3-27B 93.57 98.27 96.80 68.68 82.70 75.59 83.25 61.28 62.89 73.72 33.00 54.00 73.64
Gemma-3-4B 92.10 97.00 93.81 62.20 63.00 73.30 75.68 51.37 55.01 61.01 23.74 44.97 66.10
+ Distill. w/ Alpaca-data 92.50 97.40 94.09 60.09 75.83 74.46 74.99 44.60 54.34 64.08 24.94 41.98 66.61(+0.51)

+ Distill. w/ Lamini-data 93.40 97.73 94.91 63.58 80.37 71.93 75.22 49.99 55.03 63.43 20.27 38.04 66.99(+0.89)

+ KNOW & ICLDIST 93.10 97.87 95.04 68.12 72.52 75.41 76.83 53.82 58.02 69.82 32.91 38.93 69.37(+3.27)

+ COMPEFFDIST (Ours) 92.19 97.33 94.45 64.34 78.56 75.30 77.72 54.49 57.45 66.60 26.53 48.59 69.46(+3.36)

Table 1: Comparison results on SENTIBENCH (F1-score, %). BSA, MSA, and FSA denote basic sentiment anal-
ysis, multi-faceted sentiment analysis, and fine-grained sentiment analysis, respectively. KNOW & ICLDIST is
trained using 300K samples, while our method uses 50K samples. EmoLlama-3-3B refers to a Llama-3-3B model
fine-tuned on the same instruction dataset as EmoLlama model.

Figure 6: Performance trend of the student model with
varying numbers of instructions (%). The distillation
dataset size is 20K, and data filtering is not applied.

of 300K samples used in the prior method. This
substantial reduction in data requirements high-
lights that the comprehensiveness of the instruc-
tion set also enhances the overall efficiency of the
distillation process.

Models Avg-F1 ∆

Llama-3-3B 60.47 -
+ KNOW & ICLDIST (300K) 68.55 +8.08
+ OURS (20K) 68.19 +7.72
+ OURS (100K) 70.17 +9.70

Table 2: Performance comparison between our instruc-
tion set and that of the previous method (%).

5.4 Analysis of Data Filtering

Figure 7 illustrates the impact of data quantity on
student model performance. As expected, perfor-
mance improves steadily with increasing data size,
highlighting the importance of sufficient distilla-
tion data. Moreover, our data filtering methods
substantially enhance data efficiency, such that us-
ing only 50K filtered data can match the perfor-
mance of 90K original data. This result demon-
strates the effectiveness of the proposed filtering
methods. Furthermore, the proxy model performs
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Figure 7: Performance trend of the student model with
increasing data quantity (%).

worse than direct scoring. However, it reduces
both the prompting cost of the teacher model and
the optimization cost of the student model.

Filtering Methods Avg-F1 ∆

OURS 69.89 -
Difficulty Metric Ablations
Perplexity 69.09 -0.80
IFD 69.08 -0.81
User Text Length 69.21 -0.68
Sampling Strategy Ablations
Global Sampling 69.29 -0.60
Hard-only Sampling 69.23 -0.69

Table 3: Ablation studies of data filtering methods
(%). For difficulty metric ablations, we use difficulty-
prioritized sampling strategy. For sampling strategy ab-
lations, we use the ranking-based difficulty metric.

We conduct ablation experiments on the filter-
ing methods. Firstly, we compare different metrics
for difficulty assessment: perplexity, IFD (Li et al.,
2024), and text length. Results in Table 3 show
that these metrics perform worse than our ranking-
based metric. Secondly, we explore variants of our
sampling strategy. We find that both global sam-
pling and hard-only sampling result in suboptimal
performance. We attribute the poor performance
of global sampling to the large variation in instruc-
tion difficulty, which can lead to over-selection of
certain instruction types and thus reduce diversity.
As for hard-only sampling, we believe that restrict-
ing the distillation data to only difficult samples
hinders the learning of the student model.

5.5 Further Analysis

We have the following further analyses in the Ap-
pendix:

• Analysis of Instruction-User Text Pairing.

• Data Filtering on Other Baselines.

• Results on Complex Contexts.

• Case Study of Difficulty Assessment.

6 Related Work

Targeted Distillation. Knowledge distillation
techniques have been widely applied to develop
more accessible and compact models (Taori et al.,
2023; Chiang et al., 2023; Wu et al., 2024). Tar-
geted distillation, which focuses on transferring
LLMs’ capabilities in specific applications, has re-
cently gained significant attention. Existing meth-
ods can be broadly categorized into two paradigms.
The first (Ding et al., 2023; He et al., 2024; Xu
et al., 2023; Zhou et al., 2024) treats the LLM as
an annotator, generating large-scale task-specific
pseudo-labels for training a smaller model. This
method typically employs limited instructions and
is effective mainly for narrowly defined tasks. The
second (Zhang et al., 2025; Kim et al., 2024)
constructs a broader set of instructions to trans-
fer LLMs’ capabilities across a targeted domain.
While offering stronger effectiveness and broader
generalization, it also imposes higher demands on
the quantity and diversity of instructions.

Instruction Generation has emerged as a key re-
search direction, due to its critical role in improv-
ing the coverage of distilled knowledge. Existing
methods can be broadly categorized into two types.
The first (Wang et al., 2023; Honovich et al., 2023;
Xu et al., 2024) adopts a bootstrap strategy, gen-
erating new instructions based on existing ones.
However, this method requires a large seed instruc-
tion set and often suffers from limited diversity.
The second is attribute-based methods (Wu et al.,
2024; Lou et al., 2024), generating instructions by
specifying topics, entities, or text segments. Its
main challenge lies in developing a high-quality
and diverse attribute set. To address this, we iden-
tify a large number of attributes from user texts
and employ clustering algorithms to group them
into meaningful analytical perspectives.

Data Selection has been extensively studied, espe-
cially as model sizes continue to grow, leading to
prohibitively high fine-tuning and inference costs.
The main criteria guiding data selection include di-
versity, quality, and difficulty. A few studies ex-
plore manual curation of instruction data (Köpf
et al., 2023; Zhou et al., 2023), but such methods
are labor-intensive and less scalable. More recent
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efforts have therefore focused on automatic selec-
tion methods. For diversity, techniques such as
vocabulary coverage, semantic tagging, and clus-
tering are employed (Cao et al., 2024; Lu et al.,
2024; Ge et al., 2024). For quality, filtering based
on advanced LLMs is a common practice (Chen
et al., 2024; Lian et al., 2023). For difficulty, most
existing methods rely on the student model’s un-
certainty, with ongoing efforts aimed at develop-
ing more robust and reliable difficulty metrics (Li
et al., 2024; Kung et al., 2023). In this paper,
we highlight that current difficulty metrics are not
well-suited for sentiment analysis tasks. To ad-
dress this, we propose a ranking-based metric.

7 Conclusions

To develop lightweight sentiment analysis models,
we introduce COMPEFFDIST, a comprehensive
and efficient distillation framework. This frame-
work automatically generates a large and diverse
set of instructions via an attribute-based method
and applies difficulty-based data filtering to boost
data efficiency. Leveraging this framework, we
construct a dataset containing 3,707 distinct tasks
and 50K samples. Applying it to knowledge distil-
lation, we enable 3B student models to achieve per-
formance comparable to that of 20x larger teacher
models on most tasks. Furthermore, our approach
attains results on par with baseline methods using
only 10% of the data, demonstrating its superior
data efficiency.

Limitations

We discuss potential limitations of this work:

• COMPEFFDIST does not include task-level
deduplication or filtering operations. The
large number of generated tasks inevitably
contains overlaps and some low-quality in-
stances. Introducing task-level deduplica-
tion and quality-based filtering could increase
the proportion of high-quality, long-tail tasks,
thereby improving data efficiency in the dis-
tillation process. However, identifying task
overlaps and assessing instruction quality re-
main challenging.

• COMPEFFDIST does not incorporate qual-
ity control for the teacher model’s responses.
Teacher models can generate incorrect or bi-
ased outputs, which can be transferred to
the student model and affect its performance.

Incorporating quality assurance techniques,
such as reflection, reasoning, or consistency
checks, has the potential to improve the effec-
tiveness and reliability of knowledge distilla-
tion. However, this would also introduce ad-
ditional computational costs. Balancing the
trade-off between cost and performance im-
provement is an important direction for future
research.

We believe that these limitations point to promis-
ing directions for future research.

Ethics Statement

Large language models for sentiment analysis
have enabled progress in areas such as public
health and commercial applications; yet their re-
liance on large-scale pretraining corpora raises eth-
ical concerns, including risks of privacy violations,
cultural and annotator subjectivity, and system-
atic harms to marginalized groups (Mohammad,
2021). While knowledge distillation substantially
improves efficiency and deployability, prior work
shows that it can also transfer and intensify ex-
isting biases, exacerbating disparities across sen-
timent classes and demographic subgroups.

Accordingly, ethical evaluation of distilled sen-
timent models should not only emphasize improve-
ments in overall performance but also recognize
the risks of propagating biases and exacerbating
disparities across categories and social subgroups
(Sabbagh et al., 2025). Therefore, the commu-
nity should place greater emphasis on assessing
subgroup- and category-level fairness, accompa-
nied by clearer documentation of risks and limi-
tations. In addition, exploring fairness-aware dis-
tillation methods and developing practical guide-
lines could help mitigate potential misuse in sensi-
tive or high-stakes applications.
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Organization of Appendices

We organize the appendix into four sections:

• Appendix A presents additional implementa-
tion details of our method;

• Appendix B provides more comprehensive
data visualization;

• Appendix C describes the evaluation setup
and dataset statistics;

• Appendix D offers further analysis of our
method.

A Further Implementation Details

A.1 Attribute Enumeration and Clustering
We leverage the teacher model to identify and
enumerate sentiment-relevant attributes from user
texts. The complete prompt used for this step is
shown in Table 4. By parsing the model responses,
we obtain a large number of attributes, which are
then standardized to construct an attribute pool.
Attributes that appear fewer than or equal to 10
times are removed, resulting in a total of 1,785 dis-
tinct attributes.

These attributes are subsequently mapped into
a vector space using UAE embeddings. We apply
affinity propagation clustering to group the vec-
tors. The hyperparameters are set as follows: per-
centile_rate = 0.5 and damping = 0.9. To incorpo-
rate attribute frequency into the clustering process,
we first map the frequency counts x using the fol-
lowing transformation:

y = 1 + log(1 + x), (7)

and then replicate each attribute y times before per-
forming clustering.

A.2 Task and Instruction Generation
For each analytical perspective, we prompt the
teacher model to generate two types of tasks: open-
ended generation tasks and constrained tasks. The
corresponding prompts are provided in Table 5.

For each constrained task, we further guide the
model to synthesize complete instructions by en-
riching the descriptions and adding specific re-
quirements. The detailed prompt for this step is
shown in Table 6. In addition, we generate 32
demonstrations for each task, using the prompting
templates listed in Table 7. During demonstration
generation, we provide reference texts to enhance
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Instruction: Given the following input, what kind of sentiment-related attributes does it have?

Requirements:

1. Please brainstorm as many related attributes as possible.
2. Be creative. Any interesting perspectives are welcome!
3. Each attribute should typically reflect a particular characteristic of the input text.
4. Each attribute should be followed with Attribute Description (a brief description of what the attribute represents) and Attribute
Value (the corresponding attribute value as reflected in the text).
5. Feel free to ignore the tedious and specific content. Just focus on some general textual attributes!

Input: {Input Text}

Attribute:

Table 4: The prompt for attribute enumeration.

Open-end Generation Task Generation
Please generate prompts for analyzing subjective texts such as product reviews or social media according to the following rules:
1. Each prompt should capture the core and commonalities of the following attribute categories and without relying on specific
attribute: {Perspective}.

- The explanation for {Attribution1} is {Brief Explaination of Attribution1}.
- The explanation for {Attribution2} is {Brief Explaination of Attribution2}.
- The explanation for {Attribution3} is {Brief Explaination of Attribution3}.
- The explanation for {Attribution4} is {Brief Explaination of Attribution4}.
- The explanation for {Attribution5} is {Brief Explaination of Attribution5}.

2. Ensure that each prompt is domain-general by using neutral references such as "this text" avoiding any specific domain indica-
tions.
3. Each prompt should be designed to help better understand subjective texts by deconstructing it based on the specified attribute
categories.
4. Employ diverse strategies, which may include but are not limited to:

- Open-ended deconstruction instructions
- Diagnostic questions

5. Ensure that your responses are structured in ordered numbers.

Generated prompt:

constrained Task Generation
I want you to focus on the following text attribute: **{Perspective}({Brief Explaination of Perspective})**, and systematically
generate a diverse range of tasks that target a single text. Please make sure each task includes the following elements:

- Task Name: a concise title that captures the core goal or theme of the task.
- Task Description: an explanation of the problem this task aims to solve or the objective it aims to achieve.

The task types should be diverse, such as:
1. Classification

- Closed-set categories classification
- Open-ended categories classification

2. Scoring or Rating
- Quantitative scales

3. Information Extraction
- Keywords, key sentences, triggers
- Root causes, contextual dependencies, and more

4. Structured Output
- JSON, tables, or other machine-readable formats
- Potentially includes multiple fields (roles, attribute values, etc.)

When designing these tasks, please follow these guidelines:
- Clarity: Each task’s goal should be described methodically.
- Diversity: Aim for a wide range of creative ideas across classification, scoring, extraction, and extended analyses.
- All tasks must target a single text. Therefore, do not generate tasks involving comparisons between two texts.

Based on the above requirements, please list several diverse tasks focused on **{Attribution}**.
Present your output in the following structured JSON format, ensuring that it can be directly parsed.

Table 5: The prompts for task generation.
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Instruction Generation
Please rewrite the task based on the task name and description, making the task definition more standardized and normalized.

Task Name: {Task Name}
Task Description:{Task Description}

Below are the specific requirements and guidelines:
1. Avoiding Ambiguity: Ensure task description, requirement and constraint is precise, complete, and free of ambiguity. If the task
contains two direction, specify one direction in the task description and requirments and you should NOT add any requirments in
input.

2. Ensure the rewritten task is consistent with the original task description.

3. Task Elements: Ensure that each task definition includes the following components:
- Task Name: A concise title of the task.
- Task Description: A detailed explanation of the task and should contain the following parts:

- Explicitly specifying the expected output format and requirements (e.g., classification label, numerical score, structured
JSON, Python list).

- If the task is a classification task or contains classification task as subtask, for closed-set classification, you should explicitly
list all allowed labels. For open-set classification, you should instruct the model to infer the appropriate labels from the input.

- If the task is a annotation/extraction task, you should specify whether the extracted or annotated text must exactly match
the original text or if modifications are allowed.

- If the task requires structured output, specify the exact structure (for example, a JSON schema or Python list format) and
enumerate all required fields.

- Task Examples: You should provide at least EIGHT concrete examples, each including:
- Task Input: Formatted according to the input specifications.
- Task Output: Formatted according to the output specifications.

Table 6: The prompts for instruction generation.

Demo Generation
Generate two instances for the following task. The text part in the samples needs to refer to the style, vocabulary, and themes in
the Reference Texts. Carefully read the task description to ensure the correct labeling in the generated samples.

Reference Texts:

{Reference Text1}

{Reference Text2}

Task Description:

{Task Description}

Give your response in the following format:
Input: {}
Output: {}

Table 7: The prompts for demo generation.
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diversity. After generation, we analyze the distri-
bution of demonstration categories. If the distri-
bution is imbalanced, we generate additional ex-
amples for underrepresented categories to ensure
a more balanced composition.

A.3 Difficulty Assessment
A.3.1 Detailed Calculation of Difficulty

Metric
We compute the difficulty of a sample using the
ranking-based metric. To adapt the student model
to the data distribution, we first perform a warm-
up phase using 5,000 distillation samples. For
each token in the response, we estimate the size of
the label space using top-p sampling, with p em-
pirically set to 0.95. When aggregating the scores
across tokens, we exclude those tokens whose
scores are below a threshold εd = 1× 10−6. How-
ever, to avoid division by zero, we ensure that at
least one token is retained for each sample.

The following example illustrates the detailed
calculation of our ranking-based difficulty metric,
including the estimation of Nt and the overall cal-
culation process. Given a triplet (instr, x, y), the
ranking-based difficulty score for each target to-
ken yt is calculated through the following steps:

• Instruction: “Classify the sentiment of the
following review as Positive, Negative, or
Neutral.”

• Input (x): “This product is a complete waste
of money. I regret buying it.”

• Ground-truth label (y): “Negative”

Step 1: Model Output Distribution
The model generates the following probability dis-
tribution over candidate label tokens:

Token Probability
Pos 0.45
Neu 0.40
Neg 0.11

Mixed 0.02
Other tokens 0.02

Table 8: Model probability distribution over candidate
label tokens

Step 2: Top-p Sampling (p = 0.95)
We calculate cumulative probabilities in descend-
ing order:

• ‘Pos’: 0.45

• ‘Pos’ + ‘Neu’: 0.45 + 0.40 = 0.85

• ‘Pos’ + ‘Neu’ + ‘Neg’: 0.85 + 0.11 = 0.96

Since the cumulative probability first exceeds 0.95
with the inclusion of ‘Neg’, the candidate set con-
tains three tokens: {‘Pos’, ‘Neu’, ‘Neg’}, resulting
in Nt = 3. After sorting by predicted probability,
the ground-truth token ‘Neg’ receives rank rt = 3.

Step 3: Difficulty Score Calculation
Since the target token appears in the candidate set
(rt ≤ Nt), we apply the first case of the formula:

d(yt) =
rt − 1

Nt
=

3− 1

3
=

2

3
≈ 0.67. (8)

To illustrate the maximum difficulty scenario,
consider a case where the ground-truth token ‘Neg’
does not appear in the top-95% probability mass.
In this situation, rt > Nt, and the difficulty score
becomes:

d(yt) = 1. (9)

This maximum score indicates that the correct la-
bel is not among the model’s most probable predic-
tions, representing the highest level of prediction
difficulty.

The ranking-based difficulty metric provides an
intuitive measure of prediction difficulty:

• Lower scores (closer to 0): The correct token
has high predicted probability and low rank,
indicating easier prediction.

• Higher scores (closer to 1): The correct to-
ken has low predicted probability and high
rank, indicating more difficult prediction.

• Maximum score (exactly 1): The correct to-
ken is not among the top-p candidates, repre-
senting maximum difficulty.

Hyper-parameter Value

Batch Size 3
Learning Rate 1.5e-4
Training Epoch 3
Learning Rate Deacy Linear
Rank 64
Alpha 16
Target Module k_proj,q_proj,v_proj,o_proj

Table 9: Hyperparameters for the proxy model’s opti-
mization.
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A.3.2 Proxy Model

The proxy model is implemented as an autoregres-
sive model with an additional regression head. It
is initialized from the student model, i.e., Llama-
3.2-3B-instruct. We train the proxy model on a
dataset of 50K samples using LoRA (Hu et al.,
2022), with hyperparameters specified in Table 9.

A.4 Knowledge Distillation

In the process of constructing distillation samples,
each instruction is paired with multiple randomly
sampled user texts. Furthermore, we randomly
sample 1 to 8 demonstrations from the demonstra-
tion pool. The instruction, selected demonstra-
tions, and user text are then fed into the teacher
model to generate a response. The resulting sam-
ples are subsequently used to optimize the student
model, with the maximum sequence length set to
2048. The optimization hyperparameters for the
three student models are listed in Tables 10, 11,
and 12, respectively.

Hyper-parameter Value

Batch Size 128
Learning Rate 5e-5
Training Epoch 4
Learning Rate Deacy Cosine
Warmup Step Ratio 0
Weight Decay 0.1
Adam β1 0.9
Adam β2 0.999

Table 10: Hyperparameters for Llama-3.2-3B-instruct.

Hyper-parameter Value

Batch Size 128
Learning Rate 2e-5
Training Epoch 4
Learning Rate Deacy Cosine
Warmup Step Ratio 0.05
Weight Decay 0.1
Adam β1 0.9
Adam β2 0.999

Table 11: Hyperparameters for Qwen-3-4B.

B Further Data Analysis

We visualize all the obtained perspectives in Fig-
ure 9. Besides, we provide length statistics for the
50K samples in Figure 8.

Hyper-parameter Value

Batch Size 128
Learning Rate 1e-5
Training Epoch 4
Learning Rate Deacy Cosine
Warmup Step Ratio 0.05
Weight Decay 0.01
Adam β1 0.9
Adam β2 0.999

Table 12: Hyperparameters for Gemma-3-4B-it.

Figure 8: Length distribution in the distillation dataset.

C Evaluation Settings

Following the previous work (Zhang et al., 2025),
we evaluate the models on SENTIBENCH using an
in-context learning setup. The dataset statistics are
shown in Table 13. The number of demonstrations
is fixed at 4. We select demonstrations from the
validation set using three different random seeds
and report the average result of three runs. The
prompts used are the same as those in Zhang et al.
(2025), except for four datasets under the FSA cat-
egory. For these datasets, we refine the prompts
and update the performance of the baseline models
accordingly. The refined prompts are presented in
Table 18.

D Further Analysis

Analysis of Instruction-User Text Pairing. We
compare two strategies for pairing instructions and
user texts: (i) random pairing and (ii) attribute-
based matching. As shown in Table 15, both
methods achieve similar performance, with ran-
dom pairing even showing a slight advantage. We
attribute this outcome to the fact that random pair-
ing leads to a more balanced class distribution
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Task Dataset Train Dev Test #Class

BASIC SENTIMENT ANALYSIS

IMDb 3000 300 1000 2
Document-level sentiment classification

Yelp2 3000 300 1000 2
SST2 3000 300 1821 2

Sentence-level sentiment classification
Twitter17 3000 300 1000 3

MULTIFACETED SENTIMENT ANALYSIS

Irony detection Irony18 3000 300 784 2
Emotion recognition Emotion20 3000 300 1421 4
Stance detection P-Stance 3000 300 2157 3
Intimacy analysis MINT-English 1287 300 396 3

FINE-GRAINED SENTIMENT ANALYSIS

Aspect term sentiment analysis Rest16 1600 400 676 -
Aspect category sentiment analysis Rest16 1600 400 676 -
Aspect sentiment quad prediction Rest16 1264 316 544 -
Structured sentiment analysis Opener 1744 249 499 -

Table 13: dataset statistics of SENTIBENCH.

Models
BSA MSA FSA

Avg
IMDb Yelp2 SST2 Twitter Irony Emoti. Stance Intim. ATSA ACSA ASQP SSA

Llama-3-3B 92.57 96.53 93.59 61.45 64.00 68.88 71.43 33.32 52.74 53.23 14.33 23.56 60.47
+ KNOW & ICLDIST 94.30 98.17 95.41 69.57 85.25 77.47 75.10 48.24 53.07 65.22 24.61 36.17 68.55(+8.08)

+ Data Filtering 94.70 98.20 95.66 69.91 83.93 77.78 74.76 45.91 53.10 65.56 26.90 32.22 68.22(+7.75)

Table 14: Performance comparison of the KNOW&ICLDIST baseline trained on the full 300k dataset versus 150k
filtered dataset.

Models Avg-F1 ∆

Llama-3-3B 60.47 -
+ DIST w/ Random-Pairing 68.19 +7.72
+ DIST w/ Attribute-Matched-Pairing 67.61 +7.14

Table 15: Comparison between two instruction-user
text pairing methods (%).

in the resulting dataset, whereas attribute-based
matching tends to introduce an excessive number
of positive samples. For example, in the sarcasm
detection task, attribute-based matching results in
an overrepresentation of sarcastic samples and an
underrepresentation of non-sarcastic ones. Based
on these analyses, we adopt the random pairing
strategy in our final framework.

Data Filtering on Other Baselines. We apply our
data filtering method to the KNOW&ICLDIST

baseline to investigate its generalizability. The re-
sults in Table 14 demonstrate the effectiveness and
robustness of our method. Notably, performance
degradation is minimal even when the dataset is
reduced by 50%.

Models TSA-R14 TSA-L14 ASA-R16 ASA-L16

IMPLICIT SENTIMENT SAMPLES

GPT-3.5 43.11 30.73 52.75 29.25
Llama-3-70B 50.08 42.89 63.39 44.30
Llama-3-3B 22.65 21.45 40.46 17.13
+ OURS 37.93(+15.28) 30.28(+8.83) 53.33(+12.87) 27.94(+10.81)

MULTIPLE SENTIMENTS SAMPLES

GPT-3.5 48.35 35.07 52.23 32.54
Llama-3-70B 54.40 49.31 60.13 44.37
Llama-3-3B 28.32 20.45 36.22 14.96
+ OURS 43.47(+23.02) 35.73(+15.28) 51.00(+14.78) 22.30(+7.34)

Table 16: Experimental results in complex contexts
(F1-score, %).

Results on Complex Contexts. Complex con-
texts refer to texts that contain implicit sentiment
and express multiple sentiment polarities simulta-
neously. We evaluate the impact of distillation
on the student model’s ability to perform senti-
ment analysis in complex contexts. The evaluation
is conducted on the dataset introduced by Zhang
et al. (2024c), under an in-context learning setup
with 4 demonstrations. The results in Table 16 re-
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veal the following: (1) Llama-3-3B performs sig-
nificantly worse than Llama-3-70B on both types
of complex context; (2) Our approach leads to sub-
stantial improvements in the performance of the
Llama-3-3B model, with average gains of 11.95%
and 15.11% across the two settings. These find-
ings demonstrate that our approach can effectively
enhance the student model’s capability to handle
complex contextual understanding.

Case Study of Difficulty Assessment. We present
two representative examples of difficulty assess-
ment in Table 17. Based on these cases, we make
the following observations. Firstly, perplexity is
not an effective indicator of a sample’s true diffi-
culty. As shown in the table, two samples with
similar perplexity scores exhibit noticeably differ-
ent levels of difficulty. Secondly, for relatively eas-
ier samples, both the ranking-based metric and the
proxy model assign low difficulty scores, suggest-
ing that their estimations are reasonably accurate
in such cases. Thirdly, for more complex tasks, the
proxy model tends to overestimate the difficulty.
This is because the proxy model does not have ac-
cess to the teacher model’s response and thus can-
not accurately determine whether it can replicate
the teacher’s output. In summary, effectively and
efficiently estimating the difficulty of a sample re-
mains a challenging problem. We believe this is a
promising direction for future research.

Instruction: Classify the level of satisfaction expressed in
a given text into one of the following predefined categories:
Very Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatis-
fied. The output should be a single classification label.
Expected Output Format: A single string label from the follow-
ing set: ["Very Satisfied", "Satisfied", "Neutral", "Dissatisfied",
"Very Dissatisfied"]
Input: The first time we watched this movie we were all sitting
in a ball on the couch! Over all a very nice horror movie, if you
want to get scared! We all know the scary sound of Kayako’s
throat sound! My son’s bedroom door creaks and sounds like
it and creeps him out! I think It’s one of the best horror movies
we own! 5 *’s!
Output: Very Satisfied
Perplexity: 1.0009
Ranking-based Metric: 0
Proxy Model: 0.0479

Instruction: Analyze the input text and provide a JSON output
containing the sentiment analysis results. The output should
include the following fields:...
Input: Input: Award winning bakery indeed!!! I was search-
ing for key lime pie in the Orlando area and read multiple re-
views regarding Yvette’s story. Impressed by all the awards she
won as a new baker lead me to give her sweets a try. HANDS
DOWN, Her key lime pie is the BEST! Sweet, creamy, zest
filled, homemade crust goodness will keep you coming back
for more!
Output:
{

"sentiment": "Positive",
"sentiment_intensity": 5,
"sentiment_triggers": [

"Award winning",
"HANDS DOWN",
"the BEST",
"Sweet, creamy, zest filled, homemade crust goodness"

]
}
Perplexity: 1.0814
Ranking-based Metric: 0.1488
Proxy Model: 0.5234

Table 17: Representative examples for difficulty assess-
ment.
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FSA - ATSA - Rest16
Please perform Aspect Term Sentiment Analysis task. Given the sentence, extract all aspect terms and their corresponding senti-
ment polarities.
Return your answer in JSON format as an array of objects, each with the fields:

- "aspect_term": the extracted aspect
- "sentiment": one of "positive", "negative" or "neutral

Example output format:

[{"aspect_term": "aspect_term", "sentiment": "sentiment"}]

FSA - ACSA - Rest16
Please perform aspect-level sentiment analysis task. Given the sentence, tag all aspect categories and their corresponding sentiment
polarities.
Aspect category should be selected from ["ambience general", "drinks prices", "drinks quality", "drinks style_options", "food
prices", "food quality", "food style_options", "location general", "restaurant general", "restaurant miscellaneous", "restaurant
prices", "service general"], and sentiment should be selected from ["negative", "neutral", "positive"].
Return your answer in JSON format as an array of objects, each with the fields:

- "aspect_category": the selected aspect category
- "sentiment": the sentiment polarity

If there are no aspect-sentiment pairs, return an empty list.
Example output format:

[{"aspect_category": "aspect_category", "sentiment": "sentiment"}]

FSA - ASQP - Rest16
Please perform Aspect Sentiment Quad Prediction task. Given the sentence, extract all (aspect term, aspect category, opinion,
sentiment polarity) quadruples.
1. Aspect category should be selected from ["ambience general", "drinks prices", "drinks quality", "drinks style_options", "food
general", "food prices", "food quality", "food style_options", "location general", "restaurant general", "restaurant miscellaneous",
"restaurant prices", "service general"].
2. Sentiment polarity should be selected from ["negative", "neutral", "positive"].
3. If there is no aspect term, use "NULL" as the aspect term. Only aspect term can be "NULL", aspect category, opinion and
sentiment polarity CANNOT be "NULL".
Return your answer in JSON format as an array of objects, each with the fields:

- "aspect_term": the extracted aspect term (or "NULL")
- "aspect_category": the selected aspect category
- "opinion": the expressed opinion
- "sentiment": the sentiment polarity

Example output format: [{"aspect_term": "aspect_term", "sentiment": "sentiment", "opinion": "opinion", "sentiment": "senti-
ment"}]

FSA - SSA - Opener
Please perform the Structured Sentiment Analysis task. Given a sentence, extract all opinion tuples in the format (holder, target,
sentiment expression, sentiment polarity).
Each tuple should contain:

- Holder: The entity expressing the sentiment, if there is no explicit holder, use "NULL" as the holder.
- Target: The entity being evaluated, if there is no explicit target, use "NULL" as the target.
- Sentiment Expression: The phrase conveying the sentiment, if there is no sentiment expression, use "NULL".
- Sentiment Polarity: The polarity of the sentiment, either positive, negative, or neutral, if there is no sentiment expression, use

"NULL".
Follow these rules:
1. If there is no sentiment expression, return "NULL" for all fields.
2. Return your answer in JSON format as an array of objects, each with the fields:

- "holder"
- "target"
- "sentiment_expression"
- "sentiment_polarity"

Example output format: [{"holder": "holder", "target": "target", "sentiment_expression": "sentiment_expression", "senti-
ment_polarity": "sentiment_polarity"}]

Table 18: The refined prompts for fine-grained sentiment analysis (FSA) task.
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Figure 9: A t-SNE (van der Maaten and Hinton, 2008) visualization of the generated analytical perspectives using
the UAE embeddings (Li and Li, 2024). Representative perspectives are highlighted with red bounding boxes. For
clarity, overly long names have been appropriately shortened (e.g., sense of helplessness → helplessness).
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