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Abstract
Data efficiency is crucial in domain-specific
continual pre-training (CPT) of large language
models (LLMs), especially under resource
constraints. Aiming for "small data, big im-
pact," this work addresses the limitations of ex-
isting domain-specific data selection strategies,
which often rely on scarce labeled data or com-
putationally expensive LLMs. We introduce
CDF Sampling with Grammatical Complexity
(CDF-GC)1, an annotation-independent,
efficient and interpretable data selection
framework for CPT. Our approach compre-
hensively evaluates grammatical complexity
using lexical diversity and syntactic complex-
ity, and employs a cumulative distribution
function (CDF)-based sampling strategy to
balance complexity and diversity. To validate
the effectiveness of CDF-GC, we conducted
experiments on a financial dataset. The
results demonstrate that CDF-GC significantly
outperforms baselines, achieving 2.0% im-
provement in financial benchmark at the same
selection ratio and even surpassing full-data
training by 1.7% using only 20% of the data.

1 Introduction
With the gradual maturation of the Transformer archi-
tecture (Vaswani et al., 2017; Touvron et al., 2023a,b)
and continuous improvements in training methodolo-
gies such as pre-training (PT) (Brown et al., 2020;
Chowdhery et al., 2022), continual pre-training (CPT)
(Zhou et al., 2024; Wu et al., 2023), instruction fine-
tuning (IFT) (Ouyang et al., 2022; Wei et al., 2022),
and reinforcement learning (RL) (Shao et al., 2024; Bai
et al., 2022; Schulman et al., 2017), data-centric AI has
increasingly become a research focus in both academia
and industry (Zha et al., 2025; Jakubik et al., 2024).
While PT equips LLMs with general language capabil-
ities, domain-specific CPT is a crucial step in building
domain-expert models. This research focuses on the
problem of efficiently leveraging domain-specific data
in CPT and investigates data screening techniques to
achieve this goal.

*The corresponding author.
1The source code is publicly available in the https://

github.com/PPMark0712/CDF-GC repository.

While the rapid growth of data resources (Gao et al.,
2021; Weber et al., 2024; Xue et al., 2022) offers
opportunities for training LLMs, it concurrently in-
troduces critical challenges, notably the substantial
computational cost associated with large-scale training
(Covert et al., 2024; Hoffmann et al., 2022) and the
issue of low quality in web-sourced data. Research
demonstrates the negative impact of low-quality data
on LLMs (Iskander et al., 2024), highlighting that a
small volume of high-quality data can outperform a
large amount of raw data (Yin and Rush, 2024; Xie
et al., 2024). Therefore, efficiently selecting the most
valuable samples from massive datasets to maximize
model performance has emerged as a significant chal-
lenge for improving LLM training efficiency.

Recent domain-specific data selection approaches
mainly measure the relevance between the original data
and the target domain, employing metrics such as em-
bedding similarity (Xie et al., 2024; Gururangan et al.,
2020), loss difference (Moore and Lewis, 2010), and N-
gram feature similarity (Xie et al., 2023). These meth-
ods are suitable for identifying the most relevant data to
the target domain from large-scale unlabeled datasets.
However, after we have a sufficient source of domain-
specific data, further filtering the most valuable sam-
ples for training domain-specific expert models relies
on a large amount of labeled high quality target do-
main data, limiting their generalizability and applica-
bility in scenarios where annotated data is insufficient.

Concurrently, domain-agnostic data selection meth-
ods also present their own limitations. Rule-based data
quality filtering offers an efficient initial data clean-
ing approach for immense PT datasets (Penedo et al.,
2024a,b), but it has limitations in processing complex
semantic information. Conversely, LLM-based strate-
gies, including perplexity evaluation (Marion et al.,
2023; Yin and Rush, 2024), high-quality data synthesis
(Luo et al., 2025), data distillation (Hsieh et al., 2023)
and prompting for data assessment (Liu et al., 2024),
effectively filter and synthesize information-dense data,
significantly enhancing the IFT and RL stages of LLM
training. However, the substantial inference cost as-
sociated with LLMs makes it not suitable for large-
scale CPT data screening in resource-constrained set-
tings. Besides, data scoring methods based on reward
models (Lozhkov et al., 2024) quantify data quality
with relatively acceptable computational costs. But
these methods have an inherent lack of objectivity and
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interpretability, as their scoring outcomes are suscep-
tible to reward model biases, making it difficult to pro-
vide clear and reliable decision-making rationale.

To address these challenges, we propose to leverage
inherent linguistic properties for data quality assess-
ment. Research has demonstrated that lexical diversity
and syntactic complexity serve as effective indicators
for assessing the quality of data (Havrilla et al., 2024;
Tsvetkov et al., 2016), and these two aspects consti-
tute key dimensions of grammatical complexity (GC)
(O’Leary and Steinkrauss, 2022; Donnelly et al., 2025).
Considering that lexical diversity reflects the scope and
precision of information, and syntactic complexity em-
bodies logical relations and abstract thinking, we hy-
pothesize that data with high GC is likely to contain
richer domain-specific knowledge. So we utilize GC
metrics (combination of lexical diversity and syntac-
tic complexity) for data screening. Compared to tradi-
tional methods that rely on basic metrics such as token
types, sentence length, and verb ratio, this framework
innovatively introduces content word entropy and de-
pendency tag entropy to capture deeper GC features,
while also incorporating empirically validated metrics
like part-of-speech entropy (Xie et al., 2024), depen-
dency distance, and dependency tree height for a com-
prehensive assessment from multiple angles. To en-
sure a unified scale and allow for effective aggrega-
tion across these diverse metrics, these individual met-
rics are first normalized per feature, and their average
serves as the overall GC score.

Furthermore, to mitigate potential training conver-
gence difficulties and reduced generalization arising
from excessively high data complexity, we introduce a
novel Cumulative Distribution Function (CDF)-based
balanced sampling method, which adaptively assigns
higher sampling probabilities to data with greater GC,
while still ensuring that data with lower GC has a non-
negligible chance of being selected. This strategy aims
to elevate the overall GC distribution of the selected
data while simultaneously preserving the balance and
representativeness of the original data distribution.

The main contributions of this work are threefold:

• We construct an efficient (requiring only 100M-
scale syntactic parsing models), objective and
comprehensive grammatical complexity evalua-
tion framework that incorporates multiple linguis-
tic dimensions, innovatively introducing content
word entropy and dependency tag entropy, provid-
ing a reliable foundation for data assessment.

• We propose a novel CDF-based sampling method
that balances grammatical complexity and data
diversity, enabling effective selection of linguis-
tically challenging samples while maintaining
broad coverage of the original data distribution.

• We selected a 2B tokens subset from a 15B to-
kens (10B after cleaning) financial dataset. Con-
tinual pre-training a 1B LLM on this subset outper-

formed models trained on baseline-selected sub-
sets or the full 10B dataset in both domain and
general question answering.

2 Methodology
2.1 Problem Setting
Given a dataset D = {x1, x2, . . . , xn} containing n
data points, and a target subset size T < n. Our goal is
to find an optimal subset S∗ ⊆ D such that |S∗| = T ,
and the model trained on this subset achieves the best
performance on the validation set V . This problem can
be formally expressed as:

S∗ = argmax
S⊆D,|S|=T

P(fS ,V),

where fS denotes the model trained on subset S,
P(f,V) is the performance metric on the validation set
V , and T is the predetermined subset size (T < n) con-
strained by computational resources.

2.2 CDF-GC Pipeline
Our CDF Sampling with Grammatical Complexity
(CDF-GC) method achieves efficient data screening
through two core steps (Figure 1): first, it conducts
grammatical complexity (GC) evaluation by quan-
titatively analyzing lexical diversity and syntactic
complexity to generate a GC score that serves as the
screening basis; subsequently, it employs balanced
sampling via cumulative distribution function (CDF)
to shift the GC distribution towards higher-score
regions while maintaining overall data balance, where
the cumulative distribution-based strategy optimizes
data distribution alignment through probabilistic
reweighting of low/high-score samples. This inte-
grated framework effectively combines complexity
analysis with distribution-aware sampling to enhance
data quality and model generalization.

2.3 Grammatical Complexity Evaluation
Building upon the established significance of lexical
diversity and syntactic complexity in evaluating data
quality (Havrilla et al., 2024; Tsvetkov et al., 2016),
we systematically investigate the influence of gram-
matical complexity (GC) on domain-specific CPT of
LLMs, aiming to automatically screen data containing
deep domain knowledge through high-GC features. To
this end, we construct a multi-dimensional evaluation
framework that integrates computational linguistics fea-
tures such as lexical diversity and syntactic complex-
ity, and establish a GC quantification system based on
normalized average. Specifically, we use content word
entropy (Hcon) and part-of-speech entropy (Hpos) to
quantify lexical diversity, and dependency tag entropy
(Hdep), average dependency distance (d̄dep), and aver-
age dependency tree height (h̄dep) to quantify syntactic
complexity. After normalizing these five metrics, we
take their mean as the comprehensive GC score.

• Content Word Entropy:
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Figure 1: Pipeline of CDF Sampling with Grammatical Complexity (CDF-GC)

– Formula:
Hcon = −∑

w∈Vcon
p(w) log p(w).

– Explanation: Vcon is the content word set,
p(w) = nw

Ncon
is the probability of word w,

with nw being the frequency of w and Ncon
the total number of content words, quantify-
ing lexical diversity.

• Part-of-speech Entropy:

– Formula: Hpos = −∑
t∈T p(t) log p(t).

– Explanation: T is the part-of-speech (POS)
tag set, p(t) = nt

Npos
is the probability of POS

tag t, with nt being the frequency of t and
Npos the total number of POS tags, measur-
ing POS tag diversity.

• Dependency Label Entropy:

– Formula: Hdep = −∑
r∈R p(r) log p(r).

– Explanation: R is the dependency relation
set, p(r) = nr

Ndep
is the probability of depen-

dency relation r, with nr being the frequency
of r and Ndep the total number of dependency
labels, reflecting syntactic relation diversity.

• Average Dependency Distance:

– Formula: d̄dep = 1
|E|

∑
(wi,wj)∈E |i− j|.

– Explanation: E is the dependency edge set,
|i − j| is the absolute positional distance (in
terms of word indices in the text) between de-
pendent word wi and its head wj , measures
syntactic dependency span complexity.

• Average Dependency Tree Height:

– Formula: h̄dep = 1
|S|

∑
s∈S depth(Ts).

– Explanation: S is the sentence set,
depth(Ts) is the height of the dependency
tree for sentence s, Measures hierarchical
structural complexity.

For a dataset D = {x1, . . . , xn} with n samples, the
feature vector of sample xi is defined as

mi =
[
H(i)

con,H
(i)
pos,H

(i)
dep, d̄

(i)
dep, h̄

(i)
dep

]T
,

where the superscript (i) indicates the value for the i-th
sample.

Since the five indicators have different units, each
component of mi is normalized using min-max normal-
ization:

m∗
i =

[ mij−mink{mkj}
maxk{mkj}−mink{mkj}

]5
j=1

,

where mink{mkj} and maxk{mkj} denote, respec-
tively, the minimum and maximum value of the j-th
feature across all samples.

Finally, the GC score is defined as the mean of the
normalized features:

GC(xi) =
1

5

5∑

j=1

m∗
ij .

2.4 Balanced Sampling via Cumulative
Distribution Function

To obtain data with high grammatical complexity while
maintaining diversity across the overall distribution, we

22069



utilize a staged sampling strategy that combines hard
sampling with cumulative distribution function-based
sampling (CDF sampling). The key approach involves
first selecting high-complexity samples through hard
sampling and then preserving data diversity by apply-
ing weighted random sampling. The pseudocode is pro-
vided in Algorithm 1 to facilitate a comprehensive un-
derstanding of its operational details.

Algorithm 1 Balanced Sampling via Cumulative Dis-
tribution Function
Require: Dataset D = {x1, . . . , xn}, total token budget T ,

ratio of budget for hard sampling p ∈ [0, 1]
Ensure: Sampled subset D∗ ⊆ D within budget
1: Thard ← pT , Tcdf ← T − Thard ▷ Budget for Hard

Sample / CDF Sample
2: Dtop ← HARD_SAMPLE(D, Thard)
3: D′ ← D \ Dtop
4: D′

s ← CDF_SAMPLE(D′, Tcdf)
5: D∗ ← Dtop ∪ D′

s

6: return D∗

7: Define GC(x): Returns grammatical complexity of Sam-
ple x.

8: Define TC(x): Returns token count of Sample x.
9: function HARD_SAMPLE(D, Thard)

10: Sort D by GC(x) descending
11: Dtop ← ∅, t← 0
12: for x ∈ D do
13: if t+ TC(x) > Thard then break
14: end if
15: Dtop ← Dtop ∪ {x}
16: t← t+ TC(x)
17: end for
18: return Dtop
19: end function
20: function CDF(D′, z)
21: D′

z ← {x | x ∈ D′ ∧ GC(x) ≤ z}
22: return

∑
x∈D′

z
TC(x)/

∑
x∈D′ TC(x)

23: end function
24: function CDF_SAMPLE(D′, Tcdf)
25: Et ←

∑
x∈D′ [CDF(D′,GC(x)) · TC(x)]

26: r ← Tcdf/Et ▷ For the parameter calculation rule,
see Appendix A

27: D′
s ← ∅

28: for x ∈ D′ do
29: px ← r · CDF(D′,GC(x))
30: if Uniform(0, 1) ≤ px then ▷ Generate a

random number for each sample
31: D′

s ← D′
s ∪ {x}

32: end if
33: end for
34: return D′

s

35: end function

Given a dataset D and a total token budget T , a por-
tion of the budget, Thard = pT (p ∈ [0, 1]), is allocated
to the hard sampling phase, while the remaining bud-
get, Tcdf = (1− p)T , is reserved for the CDF sampling
phase. In the hard sampling phase, the samples with the
highest grammatical complexity are selected from D,
forming the set Dtop, until the budget Thard is exhausted.
For clarity, we denote the token count of sample x as

TC(x).

Dtop =



xi

∣∣∣∣∣ xi ∈ Dsorted ∧
i∑

j=1

TC(xj) ≤ Thard



 ,

where Dsorted represents the dataset D sorted in de-
scending order based on the grammatical complexity
score GC(xi).

The remaining data, D′ = D \ Dtop, enters the CDF
sampling phase. Before performing CDF sampling, we
first define the cumulative distribution function (CDF)
of the grammatical complexity score GC(x) based on
token count (rather than the number of documents), en-
abling precise quantification of data volume with GC
values below any given threshold:

CDF(z) =

∑
xi∈D′

z
TC(xi)∑

xi∈D′ TC(xi)
,

D′
z = {xi ∈ D′ | GC(xi) ≤ z}.

In the CDF sampling phase, the sampling probability
P (xi) for each data sample xi is adaptively set based
on the CDF of the GC:

P (xi) = min (r · CDF(GC(xi)), 1) .

The parameter r is used solely to adaptively con-
trol the sampling budget, with the detailed method de-
scribed in Appendix A. Based on the sampling proba-
bilities, samples are drawn from D′ to form D′

s. With
this weighted random sampling approach, data with
higher grammatical complexity are more likely to be se-
lected. This method improves the overall grammatical
complexity distribution of the sampled data while main-
taining the diversity of the distribution, ensuring that
even low-grammatical-complexity samples still have a
certain probability of being selected.

D′
s = {xi | xi ∈ D′ ∧ ui ≤ P (xi), ui ∼ U(0, 1)}.

Finally, the results from the hard sampling phase and
the CDF sampling phase are integrated to obtain the
complete sampling result, D∗:

D∗ = Dtop ∪ D′
s.

3 Experiments
3.1 Experimental Setup
We primarily use the Llama-3.2-1B (Dubey et al., 2024)
and Qwen2.5-0.5B (Yang et al., 2024a) as base model.
The training approach mainly follows a continual pre-
training (CPT) strategy, with specific training configu-
rations detailed in Appendix B.1.

Training Datasets The training data in this study
is derived from the domain-specific corpus FinCorpus
(Duxiaoman-DI, 2023), which focuses on Chinese fi-
nancial domain data. A more detailed description of
the training data can be found in Appendix B.2.
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Model Domain General Benchmarks Avg.
CFinBench CMMLU MMLU Xiezhi ICLEval

Base Model 22.4 26.2 27.9 30.1 43.6 30.0
Full-Scale 28.0 26.4 27.5 28.3 38.5 29.7

Random 26.3 26.0 27.0 29.6 38.9 29.2
DSIR 27.7 26.2 27.9 28.2 36.3 29.3
ETA-DACP 27.1 26.4 28.7 30.4 35.0 29.5
PPL 27.7 26.8 29.0 27.9 36.5 29.6

CDF-GC (Ours) 29.7 27.7 29.3 30.9 35.1 30.5

Table 1: Performance comparison of data selection methods for continual pre-training in the financial domain.
This table presents a comparative evaluation of CDF-GC against four baseline data selection strategies – Random,
DSIR, ETA-DACP, and PPL – when applied to the Fincorpus financial dataset. All experiments were conducted
using the Llama-3.2-1B model as the base and employed identical configurations in CPT and evaluation. The
best and second-best performance metrics achieved by each method are highlighted in bold and underlined text,
respectively.

Evaluation Benchmarks The model’s performance
evolution during the CPT process is evaluated from
two perspectives: domain-specific question answering
(Domain QA) and general question answering (General
QA). For domain-specific QA, the CFinBench dataset
(Nie et al., 2024) is used. For general QA, the eval-
uation utilizes the MMLU (Hendrycks et al., 2021),
CMMLU (Li et al., 2024a), Xiezhi (Gu et al., 2024), and
ICLEval (Chen et al., 2025) datasets. All evaluations
adopt the Few-shot question answering paradigm, with
Exact Match as the accuracy metric. Further details on
the test sets and experimental setup are provided in Ap-
pendix B.3.

Baselines In our experiments, we compare the per-
formance of our method against the Base Model
(trained without any data selection) and the Full-scale
model (trained on the entire dataset). Additionally,
we include the following established baseline data se-
lection methods for comparison: Random sampling,
DSIR (Xie et al., 2023), ETA-DACP (Xie et al., 2024),
and PPL (Marion et al., 2023; Yin and Rush, 2024).
More comprehensive details regarding these baseline
methods can be found in Appendix B.4.

3.2 Comparison of Data Selection Methods

To investigate the performance of CDF-GC in domain-
specific data selection, we compared it against four
baseline strategies. Specifically, we obtain a 20% (2B
tokens) data subset from the Fincorpus dataset by ap-
plying our CDF-GC and four baseline methods individ-
ually. Subsequently, we continual pre-trained Llama-
3.2-1B by each of these subsets, and evaluated the mod-
els after CPT. The results of the experiment are pre-
sented in Table 1.

The results show that, under the same selection bud-
get, CDF-GC improves by 2.0% on domain-specific
QA and 0.9% on the domain-general comprehen-
sive capability compared to the best-performing base-

line. When compared to full-scale training, CDF-GC
achieves a 1.7% improvement in domain-specific QA
and a 0.8% improvement in domain-general compre-
hensive capability, despite selecting only 20% of the
data. We also report our results of generalizing our
methods to Qwen2.5-0.5B model in Appendix C.

3.3 The Impact of Hard Sample Budget Ratio

In the Balanced Sampling step (subsection 2.4), we
used a combination of Hard Sample and CDF Sample.
To investigate the impact of the ratio of budget for hard
sampling p (p ∈ [0, 1]) on model performance, this ex-
periment extracted 20% of the data (1B tokens) from
the Fincorpus dataset at hard sampling budget ratios of
p = [0, 0.2, 0.4, 0.6, 0.8, 1.0]. Subsequently, we contin-
ual pre-trained Llama-3.2-1B by the different sampling
results at different p value, and evaluated the models
after CPT. We plotted line graphs showing the perfor-
mance across different benchmarks for various values
of p. The experimental results are shown in Figure 2.

The results indicate that in most scenarios, an ap-
propriate value of p (ranging from 0.4 to 0.6) effec-
tively balances data complexity and diversity, maximiz-
ing model capability enhancement. Both excessively
high and low p values hinder model performance. For
domain-specific task (CFinBench) and some general
tasks (MMLU, CMMLU), p = 0.4 is a favorable choice.
Notably, when p = 1, it corresponds to pure hard sam-
pling, which can be regarded as an ablation experiment
on the Balanced Sampling stage. However, optimal p
values are task-specific and experimental, with Xiezhi
requiring p = 1.0 to maximize GC retention. Our anal-
ysis of this phenomenon suggests that the reasons may
be as follows: Excessively high p values may lead to
overly complex data and insufficient diversity, making
the model difficult to fit and reducing its generalization
ability. On the other hand, too low a p value may re-
sult in insufficient data complexity, failing to include

22071



0.0 0.2 0.4 0.6 0.8 1.0
Hard Sample Budget Ratio p

0.26

0.28

0.30

0.32

0.34

0.36
Ac

cu
ra

cy
Accuracy vs Hard Sample Budget Ratio p

CFinBench
CMMLU
MMLU
Xiezhi
ICLEval

Figure 2: The impact of budget ratio for hard sampling.
The x-axis represents the ratio of budget for hard sam-
pling, and the y-axis represents the model performance
(accuracy) on benchmarks after CPT. The five lines cor-
respond to five different benchmarks.

enough knowledge.

3.4 Impact of Balanced Sampling on Data
Distribution

To investigate the effect of this balanced sampling
method on the distribution of grammatical complex-
ity, we extracted a chunk of 128,437 samples from the
fin_articles subset of Fincorpus and conducted
a 20% token-budget (budget ratio for hard sampling
p = 0.4) sampling experiment. We then computed
the overall grammatical complexity and its individual
dimensions for both the original slice and the sampled
data. The results are shown in Figure 3.

The results indicate that the balanced sampling
method effectively increased the overall grammatical
complexity, causing the distribution curve to shift to-
ward the higher score range, while simultaneously en-
suring the balance of the data distribution.

3.5 Trend of Model Performance with Increasing
Selection Ratio

To systematically evaluate the impact of the selec-
tion ratio on the model performance for the CDF-GC
method, we designed the following experimental setup:
Using Fincorpus as the training dataset, we constructed
training subsets with six different selection ratios of
[5%, 10%, 15%, 20%, 25%, 30%]. Based on the Llama-
3.2-1B base model, we performed CPT on the data sub-
sets for each selection ratio and evaluated the model
performance on both domain and general benchmarks.
Concurrently, we also compared the training curves of
CDF-GC against those of Full-scale training. Figure 4
shows that the CDF-GC method achieves its peak per-
formance at approximately a 20% data selection ratio, a
performance that notably surpasses the full-scale train-
ing result.

Since CDF-GC uses an offline sampling strategy, it
requires all data sampling to be completed at once,
making it unsuitable for dynamic data loading methods

that sample and train concurrently. This characteris-
tic results in the need to restart continuous pre-training
from scratch for each selection ratio during the experi-
ment. Due to resource constraints, our experiment did
not cover higher selection ratios.

3.6 The Relationship between Grammatical
Complexity and Length

To investigate the potential correlation between the di-
mensions of grammatical complexity and text length
(especially considering that longer texts often corre-
spond to higher lexical entropy), we conducted a sys-
tematic analysis of their relationship using Pearsons
correlation coefficient. The experimental data was
sourced from the Fincorpus dataset, and 2,000 text
samples were obtained via stratified sampling, with
character lengths uniformly distributed in the range
[300, 8000]. The correlation results for each compo-
nent of grammatical complexity with text length are vi-
sualized in Figure 5.

The analysis reveals a significant positive correlation
between lexical entropy and text length (r = 0.692),
while other grammatical complexity components and
the overall index show weaker correlations with length
(|r| < 0.3). To control for potential bias introduced by
text length when evaluating grammatical complexity,
the data can be preprocessed by segmenting it based
on text length prior to applying the CDF-GC method.

3.7 Correlation Analysis of Grammatical
Complexity Components

To investigate the interrelationships among the individ-
ual components of our Grammatical Complexity (GC)
framework, we performed a correlation analysis. We
computed the pairwise Pearson correlation coefficients
between the five GC components using 128,437 in-
stances from the fin_articles subset of Fincor-
pus. The resulting correlation matrix, visualized as
a heatmap in Figure 6, illustrates the linear relation-
ships between various grammatical complexity mea-
sures within our financial domain dataset.

The analysis revealed that all pairwise Pearson cor-
relation coefficients between the five grammatical com-
plexity metrics were consistently below 0.7. This lim-
ited correlation, lacking strong linear relationships, em-
pirically supports that these metrics, despite some con-
ceptual overlap, predominantly capture distinct facets
of grammatical complexity. For instance, even the
highest observed correlations – 0.55 between part-of-
speech entropy and dependency label entropy, and 0.65
between average dependency distance and average de-
pendency tree height – indicate moderate rather than
strong linear associations. This demonstrates that while
these pairs might quantify related aspects of complex-
ity, they do so from unique angles. This experimen-
tal finding robustly validates our framework’s design:
by integrating these diverse yet complementary metrics,
we achieve a comprehensive and multi-dimensional as-
sessment of grammatical complexity, moving beyond
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Figure 3: Distribution of Grammatical Complexity Components. The above figure shows the distribution of gram-
matical complexity and its five components before and after sampling. We divided the data range into 40 bins,
calculated the probability distribution of each bin, and finally plotted the results as a line chart.
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Figure 4: This figure plots the trend of model perfor-
mance increasing with the growth of the data usage ra-
tio. As indicated in the legend in the upper right corner,
the four lines represent the model’s performance on do-
main and general tasks after CPT using either the full
dataset or data filtered by CDF-GC.

the limitations of a single, narrow perspective.

4 Related Works

Data Quality Data quality measures the "noisi-
ness", "correctness" or distributional alignment of data
(Havrilla et al., 2024). High-quality data enhances
in-distribution generalization (Yu et al., 2024; Thrush
et al., 2024). Many studies (Liu et al., 2024; Lozhkov
et al., 2024; Du et al., 2023; Cao et al., 2024) employ
LLMs or reward models for quality filtering. Uesato
et al. (2022) proposed a method combining supervised
learning and reward-model-based reinforcement learn-

ing to solve mathematical word problems, emphasizing
the importance of high-quality process-supervised data
in training. Meanwhile, other approaches select data
based on distributional alignment. Traditional meth-
ods (Moore and Lewis, 2010; Axelrod, 2017) measure
alignment scores via cross-entropy loss differences.
Xie et al. (2023) quantifies alignment probability us-
ing Hashed N-gram features. Ni et al. (2022); Xie
et al. (2024); Xia et al. (2024) assess alignment through
document embedding similarity. For synthetic data,
larger LLMs generally produce higher-quality outputs
than smaller ones (Yang et al., 2024b; Qu et al., 2024;
Du et al., 2024). However, quality-diversity trade-offs
emerge during filtering, as quality improvements often
reduce diversity (Longpre et al., 2024).

Data Diversity Data diversity measures the
"self-similarity" and "coverage" of data (Havrilla
et al., 2024). High-diversity data improves out-of-
distribution generalization (Ye et al., 2024; Samvelyan
et al., 2024). Information entropy serves as an effective
metric for diversity quantification (Bengio et al., 2009).
Lexical diversity can quantify text data diversity, with
high lexical diversity data facilitating better word
representation learning (Tsvetkov et al., 2016). Fur-
thermore, Xie et al. (2024) demonstrated that selecting
financial domain data with high part-of-speech entropy
effectively enhances LLMs’ domain QA capability.
Regarding quality-diversity trade-offs, Liu et al.
(2024); Xie et al. (2024); Du et al. (2023) achieve
diverse sampling by selecting both high-quality core
sets and their neighborhood data through document
embedding vectors.

Data Complexity Data complexity measures the

22073



0 2000 4000 6000 8000
strlen

3

4

5

6

7

8

9

10

H
co

n

Correlation: 0.692
Hcon vs strlen

0 2000 4000 6000 8000
strlen

1.5

2.0

2.5

3.0

3.5

4.0

H
po

s

Correlation: 0.025
Hpos vs strlen

0 2000 4000 6000 8000
strlen

1.0

1.5

2.0

2.5

3.0

H
de

p

Correlation: -0.023
Hdep vs strlen

0 2000 4000 6000 8000
strlen

2

3

4

5

6

7

d d
ep

Correlation: -0.006
ddep vs strlen

0 2000 4000 6000 8000
strlen

0

1

2

3

4

5

6

7

h d
ep

Correlation: -0.039
hdep vs strlen

0 2000 4000 6000 8000
strlen

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GC

Correlation: 0.196
GC vs strlen

Figure 5: Scatter plot of the correlation between grammatical complexity components and text length, along with
Pearson’s correlation coefficient.
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Figure 6: Correlation Matrix of Grammatical Com-
plexity Components. This heatmap illustrates the pair-
wise Pearson correlation coefficients between the five
individual components of our Grammatical Complex-
ity framework, calculated on a chunk of the Fincorpus
dataset.

"difficulty" or "compositionality" of samples (Havrilla
et al., 2024), which can be quantified by metrics such
as length (Cao et al., 2024), number of phrases , and
syntactic tree depth (Tsvetkov et al., 2016). An appro-
priate level of complexity can enhance a model’s in-
distribution and out-of-distribution generalization, as
complex data encourages the model to learn deeper fea-
tures and patterns (Xu et al., 2024). Li et al. (2024b)
improved instruction tuning by filtering complex in-
structions using Instruction Following Difficulty (IFD).

Perplexity can measure data complexity for a specific
model (Wenzek et al., 2019). Based on the hypothe-
sis that "high-perplexity data has greater learning value
for models" (Bengio et al., 2009), Marion et al. (2023)
found that training models on the top 30% highest-
perplexity data led to lower test loss compared to us-
ing the full dataset. Yin and Rush (2024) observed
that perplexity-based filtering benefits large-scale mod-
els more significantly than smaller ones. However, ex-
cessive complexity may cause overfitting and reduce
generalization (Cao et al., 2024).

5 Conclusion

The CDF Sampling with Grammatical Complexity
(CDF-GC) data selection method proposed in this
study extracts data containing deep domain knowledge
through multi-dimensional grammatical complexity
metrics and balances data complexity and diversity
using a CDF-based sampling strategy. The experi-
ments show that, in the scenario of performing CPT
on a 1B LLM using financial domain data, under the
same selection ratio, this method improves accuracy
on the domain-specific QA test set by 2.0% compared
to the optimal baseline, and enhances domain-general
capabilities by 0.9%. Besides, this method selects only
20% of the data, and compared to full-scale training,
domain-specific QA accuracy improves by 1.7% and
domain-general capabilities increase by 0.8%.

6 Limitations

Grammatical Complexity Completeness This study
quantifies grammatical complexity (GC) using two di-
mensions: lexical diversity and syntactic complexity.
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Although this framework provides a relatively compre-
hensive evaluation, there is still significant room for im-
provement. In terms of lexical diversity, further indica-
tors such as the number of token type, token type en-
tropy, type-token ratio, and N-gram types could be in-
troduced to enhance the precision of the evaluation. In
terms of syntactic complexity, the verb ratio and other
related metrics are also worth considering. Moreover,
since GC is a multi-dimensional composite index, it is
difficult to quantify using a single dimension, which
makes it challenging to accurately measure the inde-
pendent contribution of each specific metric to the final
selection effect through ablation experiments.

Objectivity of Grammatical Complexity This
study uses GC as an objective evaluation metric for
data quality to reduce dependence on reward models
or LLMs. However, the calculation of this metric still
relies on traditional natural language processing tech-
niques, including tasks such as tokenization, part-of-
speech tagging, and dependency parsing. Although
studies have shown that the accuracy of mainstream
tokenization and part-of-speech prediction techniques
exceeds 95%, and the accuracy of dependency pars-
ing tasks exceeds 90% (Che et al., 2021; Zhang et al.,
2020a,b; Sun; Bird, 2006), we must acknowledge that
errors in the underlying models may have a slight im-
pact on the calculation of GC. Furthermore, as we pre-
dict sentence boundaries based on newline characters
and certain punctuation marks, unexpected punctuation
usage within the document could lead to deviations in
sentence segmentation, potentially introducing errors
in dependency parsing predictions. Based on the cur-
rent maturity of the technology, we believe this met-
ric has a high degree of objectivity, but future research
could further explore the cumulative effect of syntactic
analysis errors.

Semantic Processing Limitations While our
method leverages GC to select information-rich text,
and GC does reflect some semantic aspects (e.g.,
lexical diversity, syntactic complexity), it fundamen-
tally struggles with deeper semantic understanding.
Specifically, metrics like content word entropy and
syntactic complexity operate at the lexical and syntac-
tic levels, unable to directly assess the true semantic
depth. For instance, sentences with similar GC can
have vastly different semantic contentone concrete and
the other abstract, requiring inference – a distinction
our method cannot make. Furthermore, by focusing on
isolated sentences, it neglects crucial discourse – level
information such as coherence, context dependency,
and pragmatics, all vital for comprehensive semantic
comprehension. Therefore, despite its strength in
selecting syntactically and lexically complex texts, the
method is limited in tasks requiring advanced semantic
understanding. Future work could integrate semantic
analysis techniques into the data selection framework.

Scale Limitation Due to experimental constraints ,
this study only conducted CPT experiments on LLMs
with a parameter size of 1B, using training dataset of

10B tokens. This limitation prevented us from verify-
ing the applicability of the CDF-GC method on larger
LLMs or on larger datasets.

Domain Limitations Due to experimental con-
straints, this study exclusively validated the data selec-
tion performance of the CDF-GC method within the
financial domain. While we anticipate the applicabil-
ity of this method to other domains, its efficacy in
such contexts necessitates further empirical investiga-
tion. Besides, while we aimed to enhance the model’s
ability to leverage domain knowledge without compro-
mising its general capability, the experimental results
in Table 1 indicate that the CDF-GC method did not
achieve sufficiently high performance on certain gen-
eral tasks when filtering domain-specific data.

Data Diversity Limitation Although experiments
demonstrate that our Balanced Sampling method can
enhance overall GC and shift the distribution curve to-
ward the higher score range, while ensuring the bal-
ance of GC and its individual dimension distributions,
this balanced distribution of quantitative metrics does
not necessarily reflect the diversity of data in terms
of knowledge coverage, topic coverage, and other as-
pects.
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A Sampling Budget Controlling

The parameter r is used to control the sampling budget.
When r = 1, the expected number of sampled tokens
is:

E(T ) =
n∑

i=1

CDF(GC(xi))TC(xi).

Here, TC(·) represents the token count of a sample or
dataset. When all data samples have the same token
count, the expected value of E(T ) is calculated as fol-
lows:

E(T ) =
n∑

i=1
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n
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Let the sampling token budget be Tcdf. When Tcdf ≤
E(T ), we set r = Tcdf/E(T ). In this case:

P (xi) = min(r × CDF(GC(xi)), 1)

= r × CDF(GC(xi)),

Er(T ) =
n∑

i=1

r × CDF(GC(xi))TC(xi)

= r × E(T )

= Tcdf.

When Tcdf > E(T ), we also set r = Tcdf/E(T ). In
this case:

P (xi) ≤ r × CDF(GC(xi)), Er(T ) ≤ Tcdf.

Based on the above derivation, in general, E(T ) ≈
TC(D′)/2. When the sampling ratio is below 50% (e.g.,
10%, 20%), this method effectively controls the sam-
pling budget. However, when the sampling ratio ex-
ceeds 50%, r > 1 may result in an undersampling. Al-
though this method does not precisely control the num-
ber of sampled tokens, in large-scale training scenarios,
small deviations in the sampling volume have minimal
impact on the training results. The final sampling vol-
ume can be further calibrated through uniform random
sampling.

B Experiment Setup Details

B.1 Continual Pre-training Configurations

Our computational setup consists of 4 GPUs, and we
utilize the deepspeed distributed training framework.
We perform continual pretraining on both the Llama-
3.2-1B and Qwen2.5-0.5B models, with each data sam-
ple having a length of 4096 tokens. The main training
parameters are provided in Table 2.

B.2 Training Data Sources

Fincorpus (Duxiaoman-DI, 2023): A financial
domain-specific corpus (including financial reports,
news, and research papers) with an original size of 15B
tokens. After preprocessing (removing texts longer
than 8192 tokens and performing data cleaning), we re-
tain 10B tokens of high-quality data as the source of
financial domain corpora.

B.3 Evaluation Benchmarks

The following provides a detailed introduction to the
test sets:

• CFinBench (Nie et al., 2024): This is a bench-
mark dataset in the financial domain, specifi-
cally designed to evaluate models’ performance
on financial text understanding, classification, and
question answering tasks. CFinBench includes
various finance-related tasks, such as financial re-
port analysis and financial news comprehension.

• MMLU (Hendrycks et al., 2021): MMLU (Mas-
sive Multitask Language Understanding) is a
benchmark test for evaluating the multitask un-
derstanding capability of large language models
(LLMs) in English. It covers 57 tasks across a
wide range of domains, including basic mathemat-
ics, American history, computer science, law, and
more.

• CMMLU (Li et al., 2024a): CMMLU (Chinese
Massive Multitask Language Understanding) is a
comprehensive benchmark dataset for evaluating
the multitask language understanding capabilities
of LLMs in Chinese. It spans various fields, in-
cluding natural sciences, social sciences, engineer-
ing, and humanities, with the aim of providing
a holistic measure of LLMs’ performance across
different subjects and scenarios.

• Xiezhi (Gu et al., 2024): Xiezhi is a com-
prehensive domain knowledge evaluation bench-
mark containing 249,587 multiple-choice ques-
tions across 516 subjects. It is used to assess the
knowledge mastery of large language models in
various fields. The language is in both Chinese
and English. For evaluation, we use a manually
curated subset (40,000 questions).

• ICLEval (Chen et al., 2025): ICLEval is a bench-
mark dataset designed to evaluate LLMs’ In-
Context Learning (ICL) capabilities. It includes
12 tasks and 2,040 test samples, primarily evaluat-
ing LLMs’ ICL abilities in terms of exact copying
and rule learning.

B.4 Baselines

The following provides a detailed introduction to the
Baseline methods: Base Model refers to the base
model that has not undergone Continual Pretraining
(CPT).

Full-scale applies CPT using the full set of data
sources for the model.

Random involves uniformly randomly sampling a
fixed amount of data from the original dataset.

DSIR (Xie et al., 2023) (Data Selection via Impor-
tance Resampling) is a domain adaptation data selec-
tion method that requires a target dataset. It calculates
the Hashed N-gram features of the data and uses impor-
tance resampling to select data from the source dataset
that is similar in distribution to the target dataset. In this
case, we use the training set of the CFinBench financial
domain benchmark data as the target dataset.

ETA-DACP (Xie et al., 2024) (Efficient Task-
Agnostic Domain-adaptive Continual Pre-training) is a
method that uses part-of-speech entropy as a reference
for data diversity, combined with either hard or soft
sampling to efficiently select domain-adaptive data. In
this study, we use the part-of-speech entropy combined
with hard sampling method, which showed the best per-

22079



LR SeqLen Batch Size Optimizer Scheduler Warmup

5e-5 4096 1.6M (tokens) AdamW Cosine Annealing (min ratio = 0.1) 0.1

Table 2: Continual Pre-training Configurations

formance in domain knowledge question answering in
the original paper, as a comparison baseline.

PPL (Marion et al., 2023; Yin and Rush, 2024) (Per-
plexity) refers to the method of calculating the perplex-
ity for each data sample using the model to be trained,
and then selecting the samples with the highest per-
plexity for continual pretraining. This method automat-
ically identifies the data most valuable for training a
specific model.

C Generalization Verification of
CDF-GC

To verify the generalizability of our proposed method,
we conducted comparative experiments on different
data selection methods under the identical experimen-
tal setup as subsection 3.2, with only the base model
replaced by Qwen2.5-0.5B. The results are presented
in Table 3. It is shown that our method CDF-GC out-
performs all baseline methods in both domain-specific
tasks and comprehensive capabilities. Notably, due
to the Qwen series models already possessing strong
Chinese processing capabilities and the constraints im-
posed by the quality of the original training dataset, the
performance improvement of the model through contin-
ual pre-training is relatively limited.

D Training loss comparison between
CDF-GC and Full-scale

During CPT with data selected by CDF-GC, we ob-
served elevated training loss values compared to full-
scale. To systematically analyze this phenomenon,
we present comparative training loss curves between
CDF-GC and full-scale training in Figure 7.
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Figure 7: Training loss curves (cross-entropy) compar-
ing CDF-GC with full-scale baseline. All trajectories
are smoothed to reveal underlying trends.

The training curves reveal that CDF-GC-selected
data exhibits slower loss convergence compared to full-
dataset training during CPT, which we attribute to
the inherent complexity of high-GC samples contain-
ing more sophisticated linguistic patterns and present-
ing greater learning difficulty. Notably, despite show-
ing a final loss gap, CDF-GC achieves improvement
on domain-specific QA benchmarks (CFinBench), sug-
gesting that partial acquisition of complex features suf-
fices for downstream performance gains and that the
method’s selective pressure effectively identifies peda-
gogically valuable samples even without complete con-
vergence.

Considering that cross-entropy loss is related to per-
plexity (PPL = exp(loss)), which is also an effective
data complexity metric, we conjecture that the high-
GC characteristic of data may be associated with high
PPL. Therefore, we sampled 1,000 data points from the
fin_articles subset of Fincorpus, plotted a scatter
diagram of GC versus PPL, and calculated the correla-
tion coefficient. However, the results reveal only weak
correlation between GC and PPL (r = 0.0479), sug-
gesting that GC score distinct from perplexity. The ex-
perimental results are shown in Figure 8:
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Figure 8: Correlation analysis between grammatical
complexity (GC) and perplexity (PPL) for 1,000 ran-
domly sampled documents from the fin_articles
subset.
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Model Domain General Benchmarks Avg.
CFinBench CMMLU MMLU Xiezhi ICLEval

Base Model 38.34 49.47 44.74 54.22 39.85 45.32

Random 36.71 45.84 41.38 50.37 37.99 42.46
DSIR 37.54 45.25 41.79 49.74 38.53 42.57
ETA-DACP 37.46 45.53 42.41 50.74 39.07 43.04
PPL 38.08 45.69 42.00 49.85 38.77 42.88

CDF-GC (Ours) 38.52 45.86 42.31 50.65 38.53 43.17

Table 3: Performance comparison of data selection methods for continual pre-training in the financial domain.
This table presents a comparative evaluation of CDF-GC against four baseline data selection strategies – Random,
DSIR, ETA-DACP, and PPL – when applied to the Fincorpus financial dataset. All experiments were conducted
using the Qwen2.5-0.5B model as the base and employed identical configurations in CPT and evaluation. The
best and second-best performance metrics achieved by each method are highlighted in bold and underlined text,
respectively.
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