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Abstract

Recent advances in large language models
(LLMs) have opened new possibilities for table-
based tasks. However, most existing methods
remain confined to single-table settings, limit-
ing their applicability to real-world databases
composed of multiple interrelated tables. In
multi-table scenarios, LLMs face two key chal-
lenges: reasoning over relational structures be-
yond sequential text, and handling the input
length limitations imposed by large-scale ta-
ble concatenation. To address these issues,
we propose Guided Relational Integration for
multiple Tables (GRIT), a lightweight method
that converts relational schemas into LLM-
friendly textual representations. GRIT em-
ploys hashing-based techniques to efficiently
infer primary–foreign key relationships and
constructs prompts that explicitly encode rele-
vant join paths and question-relevant columns.
GRIT consistently improves table-column re-
trieval performance across diverse multi-table
benchmarks while significantly reducing mem-
ory and computational overhead.

1 Introduction

Tables convey complex information through struc-
tured row-column relationships, which contributes
to high data density and representational efficiency.
To effectively understand such structured data, a
number of pioneering works (Yin et al., 2020;
Herzig et al., 2020; Wang et al., 2021; Deng et al.,
2022) have proposed various methods for explic-
itly encoding table structures. With the rise of
large language models (LLMs), recent studies have
explored extending their semantic generalization
capabilities to table-based tasks (Sui et al., 2024a;
Ma et al., 2024; Nahid and Rafiei, 2024; Patnaik
et al., 2024).

Specifically, end users are increasingly turning
to LLMs with natural language queries in hopes
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Products
Product

ID Description

1 Rucní zadání

2 Nafta

… …

630
CCS Carnet 

Pronájem HW 
(Manual)

Transactions_1k
Transac
-tionID Data Time Customer

ID
Card

ID
Gas-

StationID
Product

ID Amount Price

1 2012-08-24 09:41:00 31543 486621 3704 2 28 672.64

2 15 8 350 165 3693 11.5 18 430.72

…

406 31 4 119 82 2720 19.4 1982

Query: Which year recorded the most gas use paid in EUR?

Yearmonth
CustomerID Data Consumption

5 201207 528.3

5 201302 1598.28

… … …

52353 201311 1566.24

Gasstations
GasStationID ChainID Country Segment

44 13 CZE Value for money

45 6 CZE Premium

… … … …

5772 16 CZE Other

Customers
Id Segment Currency

3 SME EUR

5 LAM EUR

… … …

53314 SME CZK

[Relationship]
The ID column in Yearmonth table references  
 the CustomerID column in Customers table.

(b) with GRIT(a) without GRIT

Join Key columns
Yearmonth.CustomerID, Customers.CustomerID

Query Key columns
Customers.Currency, Yearmonth.Date, 
Yearmonth.Consumption

LLM

Golden
Join Key columns: Yearmonth.CustomerID, Customers.CustomerID
Query Key columns: Customers.Currency, Yearmonth.Date, Yearmonth.Consumption

Join Key columns
Transactions_1k.CustomerID, 
Yearmonth.CustomerID,
  

 Transactions_1k.GasStationID, 
Gasstations.GasStationID

Query Key columns
Yearmonth.Date, Yearmonth.Consumption, 
Yearmonth.CustomerID

LLM

Figure 1: Overview of table-column retrieval without
and with our method, GRIT. Given a query and the
full database schema, the model selects relevant table-
column pairs. Most table rows are omitted for clarity.

of end-to-end reasoning. These LLM-based table
tasks commonly involve a retrieval step, where
relevant tables and columns are first identified be-
fore generating a response. However, Nararatwong
et al. (2024) show that LLMs frequently fail at
this retrieval step, and their downstream reasoning
performance improves significantly when provided
with the correct tabular data. This highlights that
retrieving the relevant table-column pairs is critical
to the quality and reliability of user-facing outputs
in practical applications. While various retrieval
methods have been proposed to filter relevant con-
tent and enhance table understanding (Ye et al.,
2023; Wang et al., 2024; Chen et al., 2024b), most
focus on single-table scenarios, making them in-
sufficient for practical cases when queries span
multiple tables.

In practice, most databases consist of multiple
interrelated tables, necessitating research on multi-
table reasoning and requiring LLMs to handle this
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structural complexity. However, as queries may
require integrating data across several tables via
joins or foreign key relationships, multi-table struc-
tures make information retrieval inherently chal-
lenging. Specifically, LLMs face several key chal-
lenges when dealing with multi-table scenarios:

First, multi-table reasoning requires understand-
ing inter-table schema relationships, which be-
comes particularly difficult for LLMs pretrained
on unstructured text (Yin et al., 2020; Li et al.,
2024). Unlike the unidirectional token predic-
tion in text, tables require a two-dimensional
structural understanding—spanning both rows and
columns—making direct value comparison and
schema mapping substantially more challenging
for LLMs. Second, the use of multiple tables often
causes the input size to exceed the context limits
of LLMs. Indeed, this problem is not limited to
multi-table setting, which has been discussed ear-
lier. Prior studies have consistently shown that
LLM performance degrades as input length in-
creases (Ye et al., 2023; Levy et al., 2024; Zhang
et al., 2024a; Patnaik et al., 2024; Nahid and Rafiei,
2024). Furthermore, Chen et al. (2024b) point out
the limitation of existing approaches for table rea-
soning which require the entire table as input.

As shown in Figure 1 (a), the LLM fails to effec-
tively handle multi-table inputs. Limited context
prevents the model from capturing essential inter-
table relationships, causing it to retrieve incorrect
table-column pairs based on surface-level name
similarity. Recent studies have made pioneering at-
tempts to address multi-table tasks. However, these
approaches still struggle with large input sizes in-
herent in multi-table scenarios. An LM-based ap-
proach (Pal et al., 2023) suffers from input trun-
cation due to limited context length. Following
work (Chen et al., 2024a) tries to optimize join per-
formance but remains limited by substantial com-
putational costs.

In this paper, we shed light on the underexplored
challenges of multi-table reasoning by proposing
Guided Relational Integration for multiple Tables
(GRIT). GRIT introduces a lightweight hashing-
based algorithm that efficiently estimates column
uniqueness and identifies referential links between
tables. This approach enables schema-level re-
lationship extraction while avoiding the compu-
tational cost of exhaustive pairwise comparisons.
Based on the inferred key mappings, we generate
natural language prompts that explicitly encode
table and column names along with their referen-

tial links. Rather than feeding the full table con-
tents, GRIT provides LLMs with compact schema
metadata that preserves essential relational context
while significantly reducing the input size.

We evaluate GRIT on four closed-source and two
open-source LLMs using Spider (Yu et al., 2018)
and Bird (Li et al., 2023), two multi-table datasets.
GRIT consistently improves table-column retrieval
performance across all models. Furthermore, our
method demonstrates substantial improvements in
both inference time and memory efficiency, par-
ticularly in large-scale multi-table scenarios. Our
contribution is three-fold.

• We propose a lightweight hashing-based method,
GRIT, for scalable extraction of table-level struc-
tural dependencies and transforming relational
schemas into LLM-interpretable prompts.

• The proposed method not only maintains high ac-
curacy in identifying table relationships but also
achieves efficiency in time and memory usage.

• We integrate GRIT into multiple proprietary and
open-source LLMs and demonstrate that it con-
sistently improves table-column retrieval perfor-
mance across all baselines.

2 Related works

Early works in table understanding (Yin et al.,
2020; Herzig et al., 2020; Wang et al., 2021; Deng
et al., 2022) focus on explicitly encoding table
structures for various downstream tasks. Building
upon these foundations, the emergence of LLMs
has accelerated new approaches to extend their ca-
pabilities to table-based tasks, either through spe-
cialized fine-tuning methods (Li et al., 2024; Zhang
et al., 2024b) or by integrating advanced reason-
ing techniques such as chain-of-thought prompt-
ing (Wang et al., 2024). Researchers have further
expanded into multimodal approaches that combine
textual and visual information processing (Alonso
et al., 2024; Zheng et al., 2024). However, de-
spite these advancements, the literature has pre-
dominantly focused on single-table settings, leav-
ing multi-table scenarios relatively underexplored.

In real-world applications, data is often orga-
nized into multi-table relational databases. These
settings introduce complex reasoning challenges,
as queries frequently require integrating informa-
tion through joins and foreign key relationships.
Pal et al. (2023) introduced a pretrained model
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designed specifically for multi-table question an-
swering (QA) and table generation. While this
represents significant progress in multi-table rea-
soning, the task remains fundamentally challenging
due to the difficulty of accurately retrieving and in-
tegrating relevant information from multiple tables.
Recognizing the importance of schema-guided re-
trieval in such settings, Chen et al. (2024a) pro-
pose a join-aware retrieval framework that identi-
fies relevant tables by analyzing query intent and
schema relationships. However, without refining
retrieval at the column level, LLMs are still bur-
dened with processing unnecessary content. Build-
ing upon these prior efforts, our work introduces a
fine-grained table-column retrieval approach that
addresses these limitations.

On the other hand, several studies have ques-
tioned the efficiency of LM-based methods for ta-
ble tasks, as table tasks typically require the entire
table as input. Row-column retrieval studies (Lin
et al., 2023; Sui et al., 2024b) attempt to encode
essential information for retrieval purposes. How-
ever, these methods suffer from degraded encoding
quality as table length increases and incur substan-
tial computational costs for embedding entire ta-
bles. Recently, TableRAG (Chen et al., 2024b)
propose an approach combining schema retrieval
with selective cell value retrieval and frequency-
aware truncation. While this method efficiently
delivers table information to LLMs regardless of
table size, it remains applicable only to single-table
scenarios and cannot address larger multi-table sce-
narios that require understanding relationships be-
tween tables. In this work, we leverage hashing-
based algorithms to efficiently identify multi-table
schemas, providing both temporal and spatial effi-
ciency even for large-scale tables within complex
relational database environments.

3 Methodology

3.1 Problem Definition

A standard multi-table retrieval task aims to return
a set of relevant tables from a table corpus given
a query Q. In this paper, we extend this task to
multi-table column retrieval, which seeks to iden-
tify the relevant tables and the specific columns
required to answer the query precisely. Given a
query Q and a database D = {T1, T2, . . . , TJ}
consisting of multiple tables, the task is to retrieve
all table-column pairs (T,C) that are necessary to
construct the correct answer. In multi-table scenar-

ios, it is essential to retrieve both the query-relevant
columns needed to construct the answer and the
join-supporting columns that act as intermediate
keys for navigating across related tables. Without
these relational links, the reasoning path cannot be
constructed, rendering multi-hop inference over the
database schema infeasible. Therefore, the retrieval
objective is to extract both join-key and query-key
table-column pairs.

3.2 Efficient Relation Discovery for Multi-
Table Understanding

User queries over tabular data frequently necessi-
tate integrating information across multiple tables.
As illustrated in Figure 2, answering such queries
typically involves simultaneous value matching
across distinct tables. LLMs are required to in-
fer relationships among disjoint records, yet they
are inherently optimized for unidirectional text se-
quences and lack inductive bias for modeling two-
dimensional tabular structures (Li et al., 2024).
Moreover, while multi-table reasoning often re-
lies on value-level comparisons, feeding the full
content of multiple tables into LLMs is computa-
tionally prohibitive. For example, in a financial
database, a contact column from the user table and
a similarly named contact column from the bank
table may appear semantically similar, yet refer
to entirely different entities. Without examining
the underlying values, such cases can lead to erro-
neous matches. Previous research has attempted
to address this issue through exhaustive pairwise
value comparisons, such as computing Jaccard sim-
ilarity across all column pairs (Chen et al., 2024a).
These approaches, however, raise concerns regard-
ing computational cost and scalability.

Our method, GRIT, pre-analyzes table structures
and encodes them into a more compact, semanti-
cally aligned format, which is then provided to the
LLM. This design alleviates the need for structural
reasoning at inference time and allows the model to
focus on query-relevant operations. Furthermore,
by avoiding exhaustive value-level comparisons,
our method remains scalable and efficient even
when applied to large-scale tables with million plus
rows—making it well-suited for multi-table envi-
ronments.

3.2.1 Primary Key Detection
Primary keys (PKs) designate a unique identifier
for each row in a table, which is essential for en-
abling other tables to reference specific records un-
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Id Venue Name City Id

1 M Chinnaswamy Stadium 1

2
Punjab Cricket Association 
Stadium 2

3 Feroz Shah Kotla 3

… Wankhede Stadium 4

28 Eden Gardens 5

29 Sawai Mansingh Stadium 6

Id Venue Name City Id

1 M Chinnaswamy Stadium 1

2
Punjab Cricket Association 
Stadium 2

3 Feroz Shah Kotla 3

4 Wankhede Stadium 4

5 Eden Gardens 5

6 Sawai Mansingh Stadium 6

Id Venue Name City Id

1 M Chinnaswamy Stadium 1

2
Punjab Cricket Association 
Stadium 2

3 Feroz Shah Kotla 3

4 Wankhede Stadium 4

5 Eden Gardens 5

6 Sawai Mansingh Stadium 6

id Man of the series Orange

1 M Chinnaswamy Stadium 1

2
Punjab Cricket Association 
Stadium 2

3 Feroz Shah Kotla 3

4 Wankhede Stadium 4

5 Eden Gardens 5

6 Sawai Mansingh Stadium 6

Match Id Team1 Team2 Match
Date

Season
Id

Venue
Id

Toss
Winner

Toss
Decide

335987 2 1 2008-
04-18 1 1 2 1

335988 4 3 2008-
04-19 1 2 3 2

981022 13 11 2016-
05-27

9 3 11 1

981024 2 11 2016-
05-29

9 1 11 2

Id Name Country

1 M Chinnaswamy Stadium 1

2 Punjab Cricket Association 
Stadium 2

3 Feroz Shah Kotla 3

4 Wankhede Stadium 4

5 Eden Gardens 5

6 Sawai Mansingh Stadium 6

Query: Where was the ID 336005 match held? 
       Please give me the venue and the city.  

Id Venue Name City Id

1 M Chinnaswamy Stadium 1

2 Punjab Cricket Association Stadium 2

3 Feroz Shah Kotla 3

4 Wankhede Stadium 4

5 Eden Gardens 5

6 Sawai Mansingh Stadium 6

Id Name DOB Batting_hand Bowling_skill Country

1 SC Ganguly 1972-07-08 1 1.0 1

2 BB McCullum 1981-09-27 2 1.0 4

3 RT Ponting 1974-12-19 2 1.0 5

468 KH Devdhar 1989-12-14 2 NULL 1

469 T Mishra 1986-12-22 2 3.0 1

id Man of the series Orange_cap Purple_cap Season_year

1 Banglore 1

2 Chandigarh 1

3 Delhi 1

4 Mumbai 1

11 Durban 2

Venue

Player

Season

Match Id Team1 Team2 Match
Date

Season
Id

Venue
Id

Toss
Winner

Toss
Decide

335987 2 1 2008-04-
18 1 1 2 1

335988 4 3 2008-04-
19 1 2 3 2

981022 13 11 2016-05-
27

9 3 11 1

981024 2 11 2016-05-
29

9 1 11 2

Match

…

Large
scale
table

Multiple tables

Database

Generic LLM process

LLM process with GRIT (Ours)

City
Venue

Player Season
Match

Max token limit

Missing city and venue info—can’t 
connect to match due to input limits.

c!

c"

𝑐#

Primary
Key

Foreign
KeyForeign

Key
c$

Primary
 Key

❶ Efficient table relationship discovery via hashing Considering table 
relation…

❷ Schema-guided prompt design

Match.Match_id 

Match.Match_id 
Venue.Venue_name

City.City_name

X X

LLM

LLM

This query necessitates

This query necessitates

…… …

hash function for PK

hash function for FK

𝑉!,#

…

𝑉!,#

…

Prompt

City

1

2

Figure 2: Framework of GRIT. The left block illustrates the challenges in multi-table settings, where conventional
LLMs struggle to identify relevant table-column pairs. GRIT mitigates this by pre-analyzing table relationships, and
enabling efficient multi-table processing.

ambiguously. Foreign keys (FKs) reference these
identifiers across tables, thereby enabling the ex-
plicit modeling of join paths. Our approach focuses
on identifying primary and foreign key relation-
ships as the foundation for table structure under-
standing. The process of detecting PK candidates
begins with analyzing each table T and its columns.
For a given column C, PK detection aims to iden-
tify columns whose values are unique across all
rows. This is equivalent to evaluating the cardi-
nality of the value set i.e., the number of distinct
values contained in the column.

We employ the HyperLogLog (HLL) algo-
rithm (Flajolet et al., 2007). HLL leverages stochas-
tic principles to efficiently approximate the count
of unique elements in large-scale data. Each input
value is hashed into a binary string using a hash
function 1, and the hash space is divided into mul-
tiple buckets based on a subset of the hash bits.
Each bucket records only the maximum number
of leading zeros observed among the hashed val-
ues assigned to it. The final cardinality estimate is
computed by aggregating these maximum leading-
zero counts across buckets using a harmonic mean.
This probabilistic cardinality estimation technique
offers near-linear scalability in data volume while
requiring only logarithmic space. The following
equation defines the identification of primary key
candidates for each column across all tables in the
database.

1We adopt SHA-1 as the hash function, following the de-
fault provided in Datasketch’s HyperLogLog library.

KPK =
{
(T,C)

∣∣ T ∈ D, C ∈ CT ,
HLL(V(T,C))

|V(T,C)|
≥ τPK

}
(1)

, where D and CT denote the database consisting
of multiple tables and the set of columns in table
T , respectively. V(T,C) is the set of all values in
column C of Table T . τPK is a hyperparameter that
controls the threshold for uniqueness of PK. HLL
eliminates the need for materializing all values in
memory, making it highly memory-efficient, with
fixed-size storage regardless of the number of rows.
Thus, by estimating the distinct ratio of each col-
umn using HLL, we efficiently detect primary key
candidates.

3.2.2 Foreign Key Detection
After identifying candidate primary keys, the next
stage focuses on detecting foreign key (FK) rela-
tionships between tables. Specifically, for every
column C in any table T ∈ D such that T ̸= Tpk,
we verify whether its values reference a primary
key candidate (Tpk, Cpk) ∈ KPK. A foreign key
relationship implies that the value set of C should
be a subset of that in Cpk: VT,C ⊆ VTpk,Cpk .

Enforcing this condition exactly requires materi-
alizing and comparing large sets, which is compu-
tationally expensive and memory-intensive, espe-
cially when candidate columns contain substantial
row counts. To mitigate this challenge, we leverage
Bloom Filter (Bloom, 1970) to approximate mem-
bership in the candidate PK set. A Bloom filter is
a probabilistic data structure that enables fast and
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memory-efficient membership testing. Each ele-
ment is hashed using i independent hash functions,
and the resulting i positions in a bit array are set
to 1. To check whether an element is in the set,
it is hashed again using the same functions; if all
corresponding bits are 1, the element is possibly
present; if any bit is 0, we consider the element is
definitely not in the set. The containment score can
be approximated by:

ϕcon(C,Cpk) =
1

|VT,C |
∑

v∈VT,C

1{BF (v) = 1} (2)

, where 1{BF (v) = 1} is an indicator function
that returns 1 if the value v is present in the Bloom
filter constructed from VTpk,Cpk , and 0 otherwise.

However, only relying on containment scores
can be misleading, particularly in numeric columns,
where unrelated fields may share overlapping val-
ues. For example, consider the following two ta-
bles:

country

origin country

1 USA
2 Europe
3 Japan

production

id model_year country

1 1970 1
2 1970 1
... ... ...

391 1982 3
392 1982 1

The origin column in the country table may be
incorrectly identified as a foreign key referencing
the id column in the production table, simply be-
cause the values in origin (e.g., 1, 2, 3) fall within
the numeric range of id from production. Under
containment-based matching, columns may be mis-
takenly identified as forming valid PK-FK relation-
ships due to value overlap, even in the absence
of any semantic relationship. Thus, containment
serves as a precision-oriented measure of relational
similarity but does not ensure structural validity. To
address this, we incorporate cardinality score and
name similarity score as complementary features.

For structural validation, we define the cardinal-
ity score as:

ϕcard(C,Cpk) =
HLL(VT,C)

HLL(VTpk,Cpk)
. (3)

Here, ϕcard(C,Cpk) denotes the cardinality ratio
between a foreign key candidate column C and a
primary key candidate Cpk, estimated using Hyper-
LogLog. It provides a normalized signal of value
distribution characteristics by measuring the ratio
of unique values in the candidate FK to those in the
candidate PK.

In addition to cardinality, we also consider name
similarity. Let TC denote the set of tokens extracted
from the name of column C. We define f(TC , TCpk)
as the number of matched token pairs between TC
and TCpk , where two tokens are considered matched
if one is a substring of the other. The name similar-
ity score is then computed as:

ϕname(C,Cpk) =
2 · f(TC , TCpk)

|TC |+ |TCpk |
. (4)

While more sophisticated methods exist for com-
puting name similarity such as embedding-based
approaches using language models, we opt for a
token-overlap-based strategy to ensure inference
efficiency.

We integrate three features into a unified scoring
function that estimates the likelihood of a column
C serving as a valid foreign key for a given primary
key candidate Cpk:

SC,Cpk = wcon ·ϕcon +wcard ·ϕcard +wname ·ϕname (5)

, where wcon, wcard, and wname are non-negative
weights representing the relative importance of con-
tainment, cardinality ratio, and name similarity, re-
spectively.

For each candidate PK, we compute a final score
indicating the likelihood that any given column
from any table serves as its FK. Since each FK can
reference only one PK, we assign the FK to the
PK with the highest score, provided that the score
exceeds a predefined threshold τFK. This procedure
ensures that only the most plausible PK–FK pairs
are retained. Finally, we obtain all valid PK–FK
pairs across all tables in the given databases. The
entire procedure for extracting primary–foreign key
relationships is presented in Algorithm 1.

3.3 Schema-Aware Prompt Design for
Table-column Retrieval

In multi-table settings, effective table-column re-
trieval with LLMs requires a clear understanding of
inter-table relationships. While LLMs excel at han-
dling natural language, they often fall short when
it comes to understanding relational database struc-
tures. Here, we transform the table structures and
relationships identified in the previous section into
an LLM-friendly textual representation. In our ap-
proach, we do not provide the full table contents
to the LLM. Instead, we supply only the headers
which allows the model to grasp the structure of
each table. Additionally, we explicitly specify the
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Algorithm 1 GRIT: Structure Extraction via
PK–FK Inference.
Input:
Database D = {T1, T2, ..., TJ}
Output: Detected PK–FK relationships KPK,KFK
over tables in D

1: KPK = {}
2: KFK = {}

� Step 1: Detect Primary Key
3: for T ∈ D do
4: for C ∈ CT do
5: cardinality γ ← HyperLogLog(V(T,C))
6: if γ/|V(T,C)| ≥ τPK then
7: KPK ← KPK ∪ {(T,C)}
8: end if
9: end for

10: end for
� Step 2: Detect PK-FK Relationship

11: for T ∈ D do
12: for C ∈ CT do
13: Sbest ← 0, Cbest ← None
14: for (Tpk, Cpk) ∈ KPK where Tpk ̸= Ts

do
15: ϕcon(C,Cpk) =

∑
v∈VT,C

1{BF (v)=1}
|VT,C |

16: ϕcard(C,Cpk) =
HLL(VT,C)

HLL(VTpk,Cpk )

17: ϕname(C,Cpk) =
2·f(T ,Tpk)
|T |+|Tpk|

18: S ← wcon · ϕcon +wcard · ϕcard +wname · ϕname

19: if S > Sbest then
20: Sbest ← S, Cbest ← (Tpk, Cpk)
21: end if
22: end for
23: if Sbest ≥ τFK then
24: KFK ← KFK ∪ {(T,C)→ Cbest}
25: end if
26: end for
27: end for
28: return KPK,KFK

referential relationships between columns across
different tables, based on the primary-foreign key
constraints identified in the previous section. By
presenting this structural metadata in advance, the
model is relieved of the burden of processing raw
data values and can instead focus on reasoning over
inter-table connections and the roles of columns.
See Appendix B for detailed prompts.

This input design offers two key advantages in
table-column retrieval with LLMs. First, by us-
ing only table headers, the model requires minimal
input and is able to infer the organization of the

database schema without being distracted by row-
level content. Second, the explicit specification of
inter-table relationships eliminates the need for the
model to infer join paths, allowing it to focus more
directly on identifying which columns are relevant
to answering the question. As a result, the model
allocates more attention to information selection
and column relevance, rather than structural infer-
ence, ultimately improving both the accuracy and
efficiency of table-column retrieval.

4 Experimental setting

Dataset. We follow prior table-retrieval stud-
ies (Chen et al., 2024a) using large-scale multi-
table datasets and adopt the text-to-SQL datasets
Spider (Yu et al., 2018) and Bird (Li et al., 2023).
These datasets consist of databases organized by
topic, with queries specific to each topic that
require reasoning over the corresponding tables.
Based on the verified gold SQL expressions from
each dataset, we extract the table-column pairs in-
volved in each query using GPT-4. The prompt
used for this extraction is provided in the Ap-
pendix A.2. Although the datasets provide explicit
primary and foreign key, we do not use them, as
such relationships are often unavailable in real-
world scenarios. To reflect the multi-table setting,
we restrict our evaluation to queries that require
joining at least two tables. Further details and statis-
tics of datasets can be found in the Appendix A.

Evaluation metric. We evaluate table-column
retrieval performance from two perspectives. An-
swering a query requires two types of columns:
(1) columns necessary for joining tables, and (2)
columns directly contributing to the final answer.
Accordingly, we separate the evaluation into join
key table-column pairs and Query table-column
pairs. We evaluate performance using precision,
recall, and F1 score, which are suited for table-
column retrieval tasks where each query involves
multiple relevant columns. Precision measures the
proportion of correctly predicted columns among
all predictions, indicating how well the model
avoids irrelevant outputs, while recall reflects the
model’s ability to recover all necessary columns
required to answer the query.
Backbone. We evaluate four API-based
LLMs—GPT-3.5 Turbo, Claude Haiku, Claude
Sonnet (Anthropic, 2024), and Grok 3—and two
open-source models, LLaMA 3 (Grattafiori et al.,
2024) and Mistral (Jiang et al., 2023). These
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Bird Spider
Model Input Join-key Query-key Join-key Query-key

Closed-source LLM

GPT-3.5 Turbo Header 64.05 59.39 69.81 71.28
+ GRIT 67.98 (+ 6.14%) 60.74 (+ 2.27%) 73.32 (+ 5.03%) 71.86 (+ 0.82%)

Claude Haiku Header 64.68 73.12 81.43 79.41
+ GRIT 73.08 (+ 12.98%) 74.13 (+ 1.38%) 86.22 (+ 5.88%) 82.32 (+ 3.67%)

Claude Sonnet Header 80.63 74.86 87.06 80.48
+ GRIT 82.16 (+ 1.90%) 75.33 (+ 0.62%) 89.73 (+ 3.06%) 82.26 (+ 2.21%)

Grok3 Header 78.76 74.38 84.33 80.74
+ GRIT 79.88 (+ 1.43%) 75.33 (+ 1.28%) 86.55 (+ 2.64%) 81.38 (+ 0.80%)

Open-source LLM

LLaMA3 Header 24.00 33.77 26.86 52.75
+ GRIT 34.02 (+ 41.76%) 36.48 (+ 8.03%) 44.95 (+ 67.32%) 55.51 (+ 5.23%)

Mistral Header 4.28 44.45 19.33 55.62
+ GRIT 8.63 (+ 101.74%) 48.88 (+ 9.98%) 37.30 (+ 92.95%) 56.86 (+ 2.22%)

Table 1: Performance comparison of LLMs with and without GRIT-enhanced schema in table-column retrieval
under multi-table settings. The Header setting provides only table and column names as input, whereas the GRIT
setting additionally includes schema relationships inferred through our method. Join-key refers to the performance
of identifying the table-column pairs required for join operations, while Query-key evaluates the performance of
retrieving the table-columns necessary to answer the question.

Model
Input

Header + GRIT

GPT-3.5 Turbo 34.68 53.71 (+ 54.89%)

Claude Haiku 39.11 55.14 (+ 41.0%)

Table 2: Performance comparison of LLMs with and
without GRIT-enhanced schema in text-to-SQL task.

LLMs, selected for their strong reasoning capabili-
ties, allow us to evaluate both table understanding
performance and the effectiveness of providing
table relationships in an LLM-interpretable format
at inference time.
Implementation details. For effective PK-FK
relationship construction in GRIT, the uniqueness
threshold τPK is set to 0.9. The weights for the
three FK scoring components—containment, cardi-
nality, and name similarity—are configured as 0.7,
0.2, and 0.1, respectively. The threshold for final
FK selection τFK is set to 0.7. For all closed-source
LLMs, the temperature is fixed at 0 to ensure deter-
ministic outputs. We test the open-source LLM on
a single Nvidia RTX A6000.

5 Results and Analysis

5.1 Performance Comparison on Table-
Column Retrieval

Our approach operates as a preprocessing step prior
to feeding data into the LLM. If all tables in the

database are provided as input along with their ac-
tual cell values, the input length exceeds the LLM’s
capacity. Thus, the model cannot identify the rele-
vant tables and columns required to answer a given
query. To validate the effectiveness of GRIT, we
compare two settings: one where only the table
headers are supplied, and another where our GRIT-
derived schema is additionally provided.

Table 1 demonstrates the effectiveness of our ap-
proach, showing consistent improvements across
all baseline models, particularly in join tasks that
require identifying relevant tables and columns.
Notably, models with relatively limited reasoning
capabilities, such as Llama3 and Mistral, show
substantial performance gains with our method.
This improvement can be attributed to these mod-
els’ inherent difficulties in inferring inter-table re-
lationships, which GRIT mitigates by explicitly
pre-processing relational structures into an LLM-
compatible format.

5.2 Performance Comparison on Text-to-SQL

We evaluate whether GRIT’s structural guidance
enhances end-to-end performance beyond table-
column retrieval. The text-to-SQL task involves
translating a natural language question into an exe-
cutable SQL query, conditioned on both the ques-
tion and the schema of a relational database. To
accomplish this, the model must identify relevant
tables and columns, infer appropriate join paths,
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Queries requiring 2 tables Queries requiring ≥ 3 tables
Model Header + GRIT Header + GRIT

ChatGPT 3.5 71.03 72.45 (+ 2.00%) 64.25 76.91 (+ 19.71%)
Claude Haiku 80.76 85.39 (+ 5.74%) 83.49 89.34 (+ 7.01%)
Claude Sonnet 86.39 88.50 (+ 2.44%) 88.95 93.16 (+ 4.73%)

Grok3 84.31 85.58 (+ 1.51%) 84.69 88.70 (+ 4.74%)

LLaMA3 28.09 42.22 (+ 50.31%) 24.79 52.66 (+ 112.43%)
Mistral 18.22 34.72 (+ 90.51%) 24.19 45.93 (+ 89.92%)

Table 3: Comparison of F1 scores in join key table-
column retrieval, evaluated across varying levels of
query complexity in the Spider dataset.

Precision Recall F1

Primary Key 72.23 99.17 82.19

Foreign Key
(ϕcont + ϕname + ϕcard)

95.13 98.85 96.81

−ϕname 83.85 83.51 82.86
−ϕcard 74.36 93.95 80.51

−ϕname − ϕcard 71.59 87.70 76.71

Table 4: Detection performance of primary and foreign
keys by GRIT on the BIRD dataset.

and apply correct filtering conditions. We compare
two input configurations: (1) providing only the
table schema (i.e., table and column names), and
(2) providing the schema along with structural cues
inferred by GRIT. We assess SQL execution accu-
racy on the BIRD dataset using two large language
models: GPT-3.5 Turbo and Claude Haiku.

The results, shown in Table 2, demonstrate that
GRIT not only improves schema-level understand-
ing but also significantly enhances the models’ abil-
ity to generate structurally valid and executable
SQL queries. These findings support our hypoth-
esis that incorporating relational schema informa-
tion is crucial for improving LLM performance on
complex multi-table reasoning tasks.

5.3 Performance by Number of Join Tables

Table 3 shows how model performance in join col-
umn detection varies with the number of tables
required to answer a query in the Spider dataset.
This number directly reflects the number of join
operations involved and serves as a key indicator
of query complexity. As the number of required ta-
bles increases, the task becomes increasingly chal-
lenging due to the need for multi-hop relational
reasoning. GRIT mitigates this challenge by ex-
plicitly identifying inter-table relationships and pro-
viding corresponding join paths, resulting in up to
19.71% performance improvement in the most join-
intensive queries.
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Figure 3: Comparison of PK-FK relationship construc-
tion time across databases. The figure consists of two
bar charts: the lower chart compares the processing time
of Jaccard-join and GRIT, and the upper chart displays
the total number of columns aggregated from all tables
in each database.

5.4 Accuracy and Efficiency Analysis of GRIT

Key Detection Accuracy
In this section, we analyze the trade-off between
GRIT’s accuracy and efficiency on the Bird dataset.
As a hashing-based method, GRIT is inherently ap-
proximate. As shown in Table 4, primary key (PK)
detection yields lower precision due to approxi-
mate uniqueness estimation via HyperLogLog, yet
achieves high recall, indicating minimal omission
of true PKs. Since Foreign key (FK) detection
builds on these PK candidates, high PK recall is cru-
cial for preserving correctness. FK detection bene-
fits from stricter matching constraints and achieves
higher overall scores. Notably, our method main-
tains high recall for both PKs and FKs, demonstrat-
ing its ability to recover most key relationships. To
analyze the contribution of each component to FK
detection, we perform ablation study by indepen-
dently removing ϕcard and ϕname. Removing each
component leads to a performance drop. In particu-
lar, excluding ϕcard results in a substantial decline
in FK precision, highlighting the risk of relying
solely on containment. Without cardinality filter-
ing, overlapping values across unrelated columns
can lead to over-predicted FK relationships.

Efficient Key Discovery at Scale
We then turn to examining the efficiency of our
method. In prior works (Yang et al., 2023; Chen
et al., 2024a), primary key candidates in multi-table
settings are typically identified by evaluating col-
umn uniqueness through exact set operations, while
PK–FK relationships are established by computing
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Database Profile Efficiency (MB)

# Rows # Columns # Tables Jaccard-join GRIT

financial 1,079,680 55 8 3486.36 26.63 (-99.24%)
card games 803,451 117 6 1881.34 13.63 (-99.28%)
codebase community 740,646 71 8 2107.29 9.80 (-99.53%)
formula 1 514,297 96 13 768.31 11.17 (-98.55%)
debit card specializing 423,051 23 5 1260.92 10.00 (-99.21%)
european football 2 222,803 201 7 2613.49 5.75 (-99.78%)
toxicology 49,813 11 4 43.21 0.78 (-98.19%)
california schools 29,941 89 3 232.67 0.76 (-99.67%)
thrombosis prediction 15,952 64 3 101.66 0.52 (-99.49%)
superhero 10,614 31 10 9.03 0.23 (-97.45%)

Table 5: Memory consumption comparison between Jaccard-join and GRIT across databases in the BIRD dataset.

Jaccard similarity between candidate column value
sets. We refer to this combination of exact set-
based uniqueness evaluation and Jaccard similarity-
based relationship construction as the Jaccard-join.
Accordingly, we compare the efficiency of GRIT
against Jaccard-join.

Time efficiency. Figure 3 illustrates that GRIT
achieves significantly higher time efficiency, par-
ticularly in complex database environments with a
large number of columns. The Jaccard-based ap-
proach, which exhaustively visits all possible table-
column pairs, exhibits a steep increase in process-
ing time as the number of columns grows, leading
to significant inefficiency. In contrast, our method
maintains a near-linear relationship between pro-
cessing time and the number of columns, demon-
strating its scalability for large-scale table collec-
tions.

Memory efficiency. To assess memory usage,
we track the peak memory consumption during
PK–FK relationship construction using the trace-
malloc function 2. The results are summarized
in Table 5. GRIT consistently achieves over 97%
memory savings across diverse database environ-
ments. The overall memory complexity of Jaccard-
join grows approximately as O(N2 ·Mavg), where
N is the total number of columns and Mavg is
the average number of rows per column. In con-
trast, GRIT maintains robust memory efficiency,
with usage growing nearly linearly with the total
number of columns and sustaining an approximate
O(N +M) efficiency, where M denotes the total
number of rows across all tables. These results
demonstrate that GRIT enables reliable PK–FK re-
lationship discovery, even in memory-constrained
environments.

2https://docs.python.org/3/library/tracemalloc.html

6 Conclusion

In this paper, we examine the challenges of multi-
table reasoning with LLMs, which requires process-
ing interrelated tables under large-scale input and
structural constraints. To address these issues, we
propose GRIT, a lightweight, hashing-based algo-
rithm that efficiently infers schema-level relation-
ships across all tables in a database. GRIT enables
the construction of natural language prompts that
explicitly encode table structures and inter-table
relationships, allowing LLMs to better understand
and reason over tabular data. Through extensive ex-
periments, we demonstrate that GRIT consistently
improves the performance of multiple LLMs across
multiple benchmarks, while significantly reducing
both time and memory consumption.

Limitations

Our work has two main limitations.
First, as GRIT relies on hashing-based algo-

rithms—HyperLogLog and Bloom Filter—it in-
evitably introduces some approximation errors. Al-
though these probabilistic data structures provide
significant efficiency gains, they cannot guarantee
exact correctness, particularly in corner cases with
highly skewed or ambiguous data distributions. To
mitigate this limitation, we combine multiple com-
ponents, including cardinality, containment, and
name similarity, which helps reduce error bounds
and enhance robustness. Nevertheless, GRIT can-
not fully eliminate the inherent risk of approxima-
tion errors. Despite this trade-off, GRIT delivers
substantial efficiency gains that make it a practical
solution for handling large-scale multi-table inputs.
Accordingly, an appropriate balance between effi-
ciency and accuracy is necessary.

Second, in multi-table settings, it is common to
encounter composite keys, where multiple columns
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jointly serve as a primary or foreign key. Although
GRIT currently focuses solely on single-column
key detection and thus cannot capture relationships
involving composite keys, we believe that explor-
ing efficient methods for composite key handling
represents a promising direction for future work.
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A Dataset

A.1 Statistics from Datasets

Table 6 summarizes row, column, and table statis-
tics for the Bird (Li et al., 2023) and Spider (Yu
et al., 2018) datasets. Average, maximum, and
minimum values are computed over individual
databases within each dataset. Notably, Bird and
Spider contain large-scale databases with up to 1M
and 531K rows, respectively. When issuing a query
to a database, users often do not know in advance
which tables and columns are required to answer
the query. As a result, the entire database is typi-
cally provided as input, leading to the inclusion of
all tables in the input sequence. Figure 4 presents
the total input size of each database when fully tok-
enized by an LLM under this scenario. We observe
that databases far exceed even the largest context
windows. This not only leads to context truncation
and critical information loss but also exacerbates
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Bird Spider

Row Column Table Row Column Table

Avg 357,524 73 7 26,993 22 4
Max 1,079,680 201 14 531,377 56 11
Min 10,614 11 3 12 7 2

Table 6: Statistics from the Bird and Spider. Avg,
Max, and Min are computed across individual databases
within each dataset.
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the challenge for LLMs to understand schema rela-
tionships.

A.2 Prompt for Extracting Table-Column
Pairs from SQL Queries

We design the prompt to obtain the golden table-
column pairs required to execute a given SQL
query. As shown in Figure 5, the prompt guides
the model to identify all necessary table-column
pairs from the query and categorize them into two
distinct groups: columns used exclusively for table
joins, and columns used for answering question.

B Prompt for Schema-Aware
Table-Column Retrieval

We design the prompt to identify the necessary
tables and columns required to answer a given nat-
ural language question using a provided database
schema. The overall structure consists of two key
steps. First, it determines the minimal join path
by selecting only the essential tables and join key
columns needed to connect them. Next, it extracts
the question-relevant columns, which are directly
involved in filtering the data or formulating the
answer. Figure 6 illustrates the overall prompt.

C Algorithm for GRIT

Algorithm 1 illustrates the GRIT process for effi-
ciently extracting structural relationships between
tables to provide LLMs with explicit schema-level
information. The method consists of two main
steps for automatically detecting Primary Key
(PK) and Foreign Key (FK) relationships within
a database. The first step (lines 3–10) involves
identifying candidate primary keys by estimating
the cardinality γ of each column using the Hy-
perLogLog (Flajolet et al., 2007) algorithm. The
second step (lines 11-27) identifies foreign key
candidates based on the extracted primary keys
KPK. For each potential FK–PK pair, a matching
score S is computed based on three components:
containment, cardinality ratio, and name similarity.
This algorithm enables explicit extraction of struc-
tural dependencies, which are later transformed
into prompt formats that are more interpretable to
LLMs for downstream tasks.
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You are given a SQL query.  
Your task is to identify all `table.column` pairs necessary to execute the query.

You must:
1. Analyze step by step which tables and columns are involved.
2. Identify all columns used *only* for joining tables across the minimum set of tables required.
3. Identify all columns that are used to filter, compute, or return results.

Return exactly two comma-separated lists with the following labels:  
- The first list must include columns used *only* for joins. If none, write `None`.  
- The second list must include all other columns used in the query, including for filtering, computation, 
aggregation, or output.

Use this format:
### Join: table.column, table.column, ...
### Question: table.column, table.column, ...

Do not include explanations or reasoning.  
Let’s go through some examples together.

Query:  
SELECT CAST(SUM(IIF(Currency = 'EUR', 1, 0)) AS FLOAT) / SUM(IIF(Currency = 'CZK', 1, 0)) AS ratio FROM 
customers  
Answer:  
### Join: None  
### Question: customers.Currency

Query:  
SELECT T1.CustomerID FROM customers AS T1 INNER JOIN yearmonth AS T2 ON T1.CustomerID = T2.CustomerID WHERE 
T1.Segment = 'LAM' AND SUBSTR(T2.Date, 1, 4) = '2012' GROUP BY T1.CustomerID ORDER BY SUM(T2.Consumption) ASC 
LIMIT 1  
Answer:  
### Join: customers.CustomerID, yearmonth.CustomerID  
### Question: customers.Segment, yearmonth.Date, yearmonth.Consumption

Instruction

Example 1

Example 2

Figure 5: Prompt design for extracting and categorizing relevant table-column pairs from SQL queries.

22008



You are given a database schema and a natural language question. 
Your task is to identify all table.column pairs necessary to answer the question.

You must: 
1. Think step by step about which tables and columns are relevant to the question. 
2. Identify all columns used to perform joins only across the minimum set of tables required to answer the question. 
3. Identify all columns that are directly used to filter or answer the question. 
4. Match each column to the correct table name exactly as shown in the schema. 
5. When multiple tables contain similar values, prioritize values from tables with a primary key. 

In your final output, return two comma-separated lists with clear labels:
- The first list should contain only the columns used for joining tables. 
- The second list should contain only the columns used to filter or answer the question. 

Format: 

Join key columns: table.column, table.column, ... 
Question-relevant columns: table.column, table.column, ... 

Only output these two lines. Do not explain your reasoning. 

---
SCHEMA:
[RELATIONSHIPS]
students.school_id = schools.school_id

TABLE students {
student_id # Unique
name
school_id # schools.school_id
grade_level
}
TABLE schools {
school_id # Unique
school_name
district_code
city
}

QUESTION: What is the district code of the school where the student named Emily is enrolled?

ANSWER:
Join key columns: students.school_id, schools.school_id 
Question-relevant columns: students.name, schools.district_code

SCHEMA:
[RELATIONSHIPS]
appointments.patient_id = patients.patient_id,
appointments.doctor_id = doctors.doctor_id,
patients.doctor_id = doctors.doctor_id

TABLE patients {
patient_id # Unique
name
doctor_id # doctors.doctor_id
}
TABLE doctors {
doctor_id # Unique
name
department
}
TABLE appointments {
appointment_id # Unique
patient_id # patients.patient_id
doctor_id # doctors.doctor_id
appointment_date
purpose
}

QUESTION: What is the department of the doctor who had an appointment with patient ID 101 on 2024-04-02?

ANSWER:
Join key columns: appointments.patient_id, patients.patient_id, appointments.doctor_id, doctors.doctor_id
Question-relevant columns: appointments.patient_id, appointments.appointment_date, doctors.department

SCHEMA:
[RELATIONSHIPS]
students.major_id = majors.major_id,
students.advisor_id = professors.professor_id

TABLE students {
student_id # Unique
name
major_id # majors.major_id
advisor_id # professors.professor_id
}
TABLE majors {
major_id # Unique
major_name
department
}
TABLE professors {
professor_id # Unique
name
office_location
}

QUESTION: What is the office location of Professor Kim?

ANSWER:
Join key columns: None
Question-relevant columns: professors.name, professors.office_location

Instruction

Example 1

Example 2

Example 3

Figure 6: Prompt design for table and column retrieval from questions. The prompt first identifies the minimal set
of tables and join keys required to connect them, then extracts the columns necessary for answering the question.
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