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Abstract

Mixture of Experts (MoE) offers remarkable
performance and computational efficiency by
selectively activating subsets of model param-
eters. Traditionally, MoE models use homo-
geneous experts, each with identical capac-
ity. However, varying complexity in input
data necessitates experts with diverse capa-
bilities, which prevents homogeneous MoE
from effective expert specialization and effi-
cient parameter utilization. In this study, we
propose a novel Heterogeneous HMoE frame-
work, where experts differ in size and thus
possess diverse capacities. This heterogene-
ity allows for more specialized experts to han-
dle varying token complexities more effec-
tively. To address the imbalance in expert ac-
tivation, we propose a novel training objective
that encourages frequent activation of smaller
experts so as to improve computational effi-
ciency and parameter utilization. Extensive ex-
periments demonstrate that HMoE achieves a
lower loss rate with fewer activated parameters
and outperforms conventional homogeneous
MoE models on various pre-training evalua-
tion benchmarks. Our codes are available at
https://github.com/AnWang-AI/HMoE.

1 Introduction

Mixture of Experts (MoE) (Jacobs et al., 1991;
Shazeer et al., 2017; Lepikhin et al., 2020; Fedus
et al., 2022; Jiang et al., 2024; Dai et al., 2024) is
a cutting-edge technique in the field of large lan-
guage models (LLMs) (Brown et al., 2020; Achiam
et al., 2023; Ouyang et al., 2022; Touvron et al.,
2023a,b; Dubey et al., 2024) that excels in both
performance and computational efficiency. At its
core, MoE operates on the principle of dividing a
model into multiple components, known as experts
(Shazeer et al., 2017), each specializing in different
tasks or aspects of the data. This specialization
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Figure 1: Comparisons of our heterogeneous MoE-3B
with conventional homogeneous MoE-3B. Our proposed
HMoE is superior in both performance and efficiency.

allows MoE to activate a subset of parameters, so
as to enhance the model’s robustness and flexibil-
ity. The main advantage of MoE lies in that it
can scale with model parameters without incurring
extra computational costs.

The specialization of experts (Oldfield et al.,
2024; Chen et al., 2023; Krishnamurthy et al., 2023;
Qiu et al., 2025) is crucial for improving compu-
tational efficiency and performance under sparse
activation. However, almost all MoE models (Jiang
et al., 2024; Dai et al., 2024; Wu et al., 2024; Huang
et al., 2024) rely on identical experts with similar
representational capacities. This design often leads
to quick convergence, because experts learn sim-
ilar features over time, without consideration of
their uniqueness and specialization (Zhou et al.,
2022; Cai et al., 2024). Such uniformity limits
the model’s ability to generalize effectively across
tasks and undermines its performance. Moreover,
the lack of functional differentiation among experts
makes it challenging for MoE models to efficiently
handle complex inputs in NLP (Huang et al., 2024).
When all experts have equivalent representational
capacities, the system fails to utilize its parameters
optimally. As a result, the potential depth and di-
versity required for processing nuanced inputs get
lost, and the effectiveness of the MoE architecture
become compromised.

To address these challenges, a simple idea is to
change the current homogeneous experts to het-
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erogeneous ones. Homogeneous indicates that all
experts share identical architecture and size, while
heterogeneous indicates that they do not. The chal-
lenges of heterogeneous MoE mainly exist in the
following aspects: (a) How to introduce an ap-
propriate level of heterogeneity to experts? This
fundamental difference between homogeneous and
heterogeneous MoE would significantly impact per-
formance. (b) How to design and guide the desired
load distributions for heterogeneous experts? The
optimal activation of heterogeneous experts is dif-
ferent from that in conventional MoE. We should
first conclude what kind of expert activation dis-
tribution is optimal for heterogeneous MoE, and
then provide effective guidance towards such ac-
tivation, balancing both parameter efficiency and
model effectiveness.

In this study, we introduce a novel HMoE pre-
trained language model with varied expert sizes to
create heterogeneity. We note that, without training
guidance, the intuitive HMoE version does not out-
perform traditional MoE. Larger experts get more
activation, while smaller ones are underused, re-
ducing the model’s representational capacity and
hindering heterogeneous expert utilization.

We propose novel HMoE training objectives,
P-Penalty Loss, that encourage the activation of
smaller experts, leading to a more rational alloca-
tion of activated parameters and improved model
capability. Besides, we analyze three strategies
of designing different heterogeneous expert size
distributions, discovering the insights of optimal
heterogeneity of experts in HMoE.

We conduct extensive experiments to evaluate
the effectiveness and efficiency of the proposed
HMoE. We contribute to the success of the en-
hanced HMoE for the following reasons: (a) Ex-
perts of varying sizes provide diverse capacities and
promote higher specialization; (b) Expert hetero-
geneity ensures complex inputs get the necessary
resources while simpler inputs are processed eco-
nomically; (c) Leveraging MoE’s inherent imbal-
ance by activating more small experts to enhance
their overall capability and further reduce comput-
ing costs.

We summarize our contributions as follows:
(1) We introduce a novel HMoE model, improv-

ing both effectiveness and efficiency. To the best
of our knowledge, this work should be the first to
explore heterogeneous MoE as a base language
model.

(2) We propose a new training objective that en-

courages the activation of smaller experts, leading
to more efficient utilization of experts and prevent-
ing the disproportionate reliance on larger experts
in HMoE.

(3) Experiments show that HMoE should per-
form significantly better while activating fewer pa-
rameters, thus boosting computational efficiency
while enhancing downstream outcomes.

2 Methodology

2.1 Classical Mixture of Experts

Unlike dense models, most MoE models (Lepikhin
et al., 2020; Fedus et al., 2022; Huang et al., 2024;
Dai et al., 2024; Jiang et al., 2024; Sun et al., 2024)
replace the FFN layer of the transformer (Vaswani
et al., 2017) block with a MoE layer. The MoE
layer consists of a router gi(·) and multiple experts
{e1, e2, ..., eN}. The experts are composed of a
set of independent Feed-Forward Network (FFN)
layers. Experts are responsible for processing in-
put data according to their specialized knowledge.
For each token, a subset of experts is activated to
execute computations, and the router generates a
probability distribution. The probability of this dis-
tribution indicates the likelihood of assigning the
token to each expert.
Routing Strategy. The routing strategy is applied
to select experts to be activated from N experts.
The Top-K Routing (Shazeer et al., 2017) strategy
is the most widely-used strategy, which always ac-
tivates a fixed number of experts for each token. It
calculates the score, which represents the probabil-
ity of selecting each expert. We select the top k
experts with the highest scores to activate.

Recently, Top-P Routing (Huang et al., 2024)
has been proposed to dynamically activate different
numbers of experts for each token. Specifically, it
first sorts scores from highest to lowest. Then,
given a fixed threshold p, if the highest probability
is larger than the threshold, we only activate one
expert. Otherwise, we progressively add additional
experts until the cumulative probability exceeds the
threshold p.
Issues of Homogeneous MoE. Currently, most
MoE work employs a homogeneous design. Each
expert in the MoE layer usually has the same struc-
ture and size. Undoubtedly, this is a simple de-
sign that avoids introducing more hyperparameters.
However, it also brings the following problems:
(1) Lack of Expert Specialization: Different ex-
perts within a homogeneous MoE show a tendency
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(b) Our proposed heterogeneous MoE.

Figure 2: Two distinct model structures for Mixtures of Experts are compared: (a) conventional homogeneous
MoE model with all experts having identical parameter sizes; (b) our proposed heterogeneous MoE model (HMoE)
characterized by substantial variations in parameter sizes of each expert, incorporating a parameter penalty loss
during training to promote utilization of experts with smaller parameter volumes.

towards similarity (Zhou et al., 2022). Since homo-
geneous experts have the same modeling capabili-
ties, the router may randomly distribute tokens to
them during pre-training. Without differentiation
mechanisms, multiple experts may focus on sim-
ilar features, resulting in low specialization. Our
analysis in section 3.4 shows this tendency. (2) In-
efficient Parameter Allocation: Intuitively, simpler
inputs can be effectively handled by smaller experts
with less computational capacity, whereas more
complex inputs require the enhanced capability of
larger experts. However, homogeneous MoE mod-
els use experts with identical capacities, resulting
in redundant computations for simple inputs and
insufficient computational resources for complex
ones. While Top-P Routing (Huang et al., 2024)
introduces dynamic routing by assigning varying
numbers of experts to different tokens, its reliance
on fixed thresholds and simplistic difficulty model-
ing limits its ability to adapt effectively to diverse
inputs. (3) Representation Collapse and Load Im-
balance: Homogeneous MoE has a trend toward
representation collapse (Chi et al., 2022), which oc-
curs when the majority of input tokens are assigned
to only a few experts. This phenomenon also leads
to load imbalance. The interconnected nature of
representation collapse and load imbalance ham-
pers the model’s performance and efficiency.

2.2 Heterogeneous Mixture of Experts

To alleviate the above issues in homogeneous MoE,
we propose Heterogeneous Mixture of Experts.
HMoE includes a router and expert network, with
the key distinction that the models of experts within
the same layer are different. To achieve an HMoE,
we could design different structures and different

sizes for experts. However, within the transformer
model, experts with different structures make the
training process extremely unstable. Therefore, in
this work, we mainly explore HMoE with different
expert sizes, as shown in Figure 2.

2.2.1 An Intuitive Exploration on HMoE
For each expert ei, we follow the FFN design in
LLaMa (Touvron et al., 2023a). The detailed com-
putation is as follows:

ei(x) = Wo,i · (SiLU(Wg,i · x)⊙ (Wp,i · x)) ,
(1)

SiLU(z) = z · σ(z), σ(z) =
1

1 + e−z
, (2)

where Wg,i ∈ Rhinput×hffn,i , Wp,i ∈ Rhinput×hffn,i

and Wo,i ∈ Rhffn,i×hinput are trainable parameters
of expert ei. hinput and hffn,i are dim of input x and
hidden state in FFN. To bring in heterogeneity for
exploration, we intuitively change the hidden dim
hffn,i to control the size of each expert ei.

2.2.2 Results of the Intuitive HMoE
We implement the aforementioned intuitive HMoE
and conduct an evaluation. Contrary to our expec-
tations, the results do not demonstrate an improve-
ment over homogeneous MoE. Figure 3 shows the
results and activation ratios of experts in HMoE.

Upon investigation, we found that the primary
cause of this underperformance lies in the pro-
nounced imbalance of load distribution among ex-
perts in the MoE model. Larger experts were ac-
tivated much more frequently, while smaller ones
were substantially underutilized. Importantly, this
imbalance cannot be explained solely by expert
size, as the relationship between size and activation
rate is not strictly monotonic. The stochastic nature

21957



1 2 3 4 5 6
FLOPs 1e19

39

40

41

42

43
A

ve
ra

ge
 P

er
fo

rm
an

ce

Intuitive Heterogeneous MoE
Homogenerous MoE

a b c d e f g h
Expert

0.0

0.1

0.2

A
ct

iv
at

ed
 R

at
io

Figure 3: Experimental results of intuitive exploration
on HMoE. (a) The left figure compares the results of
the intuitive HMoE and conventional Homogeneous
MoE. Average performance is the average score of six
evaluation benchmarks as introduced in section 3.1. The
Homogeneous MoE adapts load balancing loss, while
the intuitive Heterogeneous MoE does not utilize any
auxiliary loss. (b) The right figure shows the activated
ratios of experts in the intuitive HMoE. The relative
expert sizes in HMoE are {9, 11, 13, 15, 17, 19, 21, 23},
matching experts a to h.

of the router’s selection process, particularly when
experts are of comparable size, further contributes
to this phenomenon. Ultimately, the imbalance
can be traced to a Matthew effect: larger experts,
having stronger representational capacity, are more
likely to be favored by the router, which in turn
reinforces their dominance. As a result, smaller ex-
perts receive insufficient training, thereby limiting
the model’s overall representational capacity.

2.3 Enhanced Heterogeneous MoE

Considering the above-mentioned issues, we pro-
pose the following strategies to enhance HMoE.

2.3.1 Activating More Small Experts

In HMoE, the presence of both large and small ex-
perts introduces a challenge where the optimization
goal of the language model naturally favors the fre-
quent activation of larger experts due to their supe-
rior performance. This tendency results in smaller
experts being underutilized, while larger experts
are activated more often, leading to a significant
increase in activated parameters. This phenomenon
diverges from the intended model objective, where
we aim to align the tasks handled by large and small
experts with their respective capacities. Specif-
ically, we want larger experts to focus on more
complex understanding and reasoning tasks, while
smaller experts handle simpler tasks. This ensures
that all specialized experts are effectively utilized
and sufficiently trained according to their strengths.

Previous work (Fedus et al., 2022) adapts load
balancing loss Llb to eliminate load unbalancing

among different experts in Homogeneous MoE:

Llb = N
N∑

i=1

Ti ∗ P̂i,

Ti =
1

T

T∑

t=1

1{ei ∈ Et}, P̂i =
1

T

T∑

t=1

Pi,t,

(3)

where Ti represents the partation of tokens assigned
to expert ei. P̂i represents the gating probability
assigned to ei. Pi,t represents the gating probability
assigned to ei for token xt. Et represents the set of
activated experts for the token xt.

The objective of the load balancing loss is to
achieve experts evenly activated. Nevertheless,
it does not satisfy our motivation for designing
HMoE. Because of the disparity in expert sizes, the
load-balancing loss fails to stop the model from
preferring to activate larger experts. To address
the issue where larger experts are predominantly
utilized, leading to the underutilization of smaller
experts and a considerable rise in activated param-
eters, we introduce a novel training objective pa-
rameter penalty (P-Penalty) loss LP-Penalty as:

LP-Penalty = N
N∑

i=1

Mi ∗ P̂i,

Mi =
1

T

T∑

t=1

1{ei ∈ Et} × hffn,i.

(4)

Mi represents the average dimension of the hid-
den state of the expert ei on the entire input x. It
imports the influence of expert size into the loss.
When the model employs more large experts, the
loss rises. Hence, it will direct the model to more
economically utilize smaller experts. In contrast,
for necessary occasions, using larger experts can
yield greater benefits than parameter penalties. At
this point, larger experts will also be activated to
take part in the calculation. To be noted, if all ex-
pert has the same size, our parameter penalty loss
is equal to the classical load balancing loss.

Besides, with the Top-P routing strategy, we find
that MoE tends to activate an increasing number
of experts during training, which reduces the effi-
ciency of MoE. Therefore, we implement the router
entropy loss (Huang et al., 2024) to prevent the
model from using too many parameters, maintain-
ing its ability to selectively activate experts as:

Lentropy = N

N∑

i=1

Pi × log(Pi). (5)
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In our HMoE, besides the original language mod-
eling loss, the final loss for both Top-K and Top-P
routing strategies further includes the parameter
penalty loss LP-Penalty, with Top-P additionally in-
corporating the router entropy loss Lentropy.

2.3.2 Designing More Optimal Heterogeneity
Intuitively, the specific sizes of each heterogeneous
expert have a large impact on the final results. In
this work, we mainly explore three types of hetero-
geneity structures for experts:

(1) Geometric strategy. The geometric strategy
assigns expert sizes in a geometric sequence, such
as {1, 2, 4, 8, 16, 32, 64, 128} as relative size pro-
portions of the experts. This design emphasizes a
few large-scale experts, which can lead to unbal-
anced resource allocation and neglect of smaller
experts, potentially causing severe load imbalance
and limiting its suitability for tasks requiring bal-
anced processing.

(2) Arithmetic strategy. The arithmetic strat-
egy assigns expert sizes in an arithmetic sequence,
such as {9, 11, 13, 15, 17, 19, 21, 23}. This ap-
proach can ensure balanced resource allocation and
smaller size gaps between experts, giving smaller
experts meaningful expressive abilities and improv-
ing training stability. This study primarily adopts
this strategy for research on HMoE.

(3) Hybrid strategy. The hybrid strategy that
jointly combines both homogeneous and heteroge-
neous, such as {1, 1, 1, 1, 2, 2, 4, 4}, is also a good
competitor. We designed this setup based on the
assumption that the MoE model requires multiple
experts with similar capabilities or functionalities.
Especially in scenarios involving expert combina-
tions, completely differentiated experts might have
drawbacks. It has the flexibility to adjust the pro-
portion of homogeneous and heterogeneous parts
based on different task requirements.

As a pioneer of HMoE, we propose three strate-
gies of different heterogeneity levels and conduct
extensive evaluations in different settings for more
insights. More optimal HMoE distributions and
structures will be explored in the future.

3 Experiments

3.1 Experimental Settings

Pre-training Datasets. For our pre-training data,
we used the RedPajama (Computer, 2023) dataset.
It is an open-source dataset consisting of various
sources like the common crawl, C4 (Raffel et al.,

2020), GitHub, Wikipedia, books (Gao et al., 2020),
arXiv, and StackExchange.

Competitors. In our main experiment, we evalu-
ated Dense, homogeneous MoE, and our HMoE
model: (1) Dense, which are standard Trans-
former decoder-only models, following the design
of LLaMa (Touvron et al., 2023a), without MoE
layers, implemented with 0.2B and 1B parameters.
(2) Homogeneous MoE, where FFN layers are re-
placed with MoE Layers including eight homoge-
neous experts, implemented with 0.4B, 3B, and
16B total parameters, using both Top-K (k=2) and
Top-P (p=0.6) routing strategies. (3) HMoE, our
proposed method with Heterogeneous MoE Lay-
ers replacing FFN layers, also implemented with
0.4B, 3B, and 16B total parameters with both Top-
K (k=2) and Top-P (p=0.6) strategies. To reflect
the difference in performance between pure hetero-
geneous models and conventional homogeneous
models, the expert size distribution employs an
arithmetic strategy (The relative expert sizes are
{9, 11, 13, 15, 17, 19, 21, 23}). The detailed set-
ting is introduced in the Appendix A and B.

Evaluation. We evaluated these models on six dif-
ferent benchmarks (Gao et al., 2021) including
PIQA (Bisk et al., 2020), hellaswag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), ARC (Clark
et al., 2018), winogrande (Sakaguchi et al., 2021)
and SIQA (Sap et al., 2019). These tasks examine
models’ language understanding, logical reason-
ing, knowledge utilization, and social awareness
capabilities. We assessed all benchmarks under
zero-shot settings. The average performance de-
picted in Figures 1, 3, 5, and 6 is the average score
obtained across these six benchmarks. Since the ac-
tivated parameters of different methods are varied,
we ensure a fair comparison by basing our model
evaluations on identical computational training
costs (FLOPs) instead of the number of training
tokens. Since the parameter activations of both
HMoE design and Top-P routing strategy dynam-
ically evolve during training, we compute the av-
erage activation parameters over 3 million tokens
after complete training to ensure reliable compari-
son of dynamic activation patterns. This approach
reflects the model’s stable activation characteristics
during inference.
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Figure 4: Analysis of isoFLOP for conventional MoE (Top-P) and our proposed HMoE (Top-P). The subfigure (a)
shows examples of the activated model parameters and loss for three training FLOPs. The subfigure (b) shows the
optimal activated model parameters for various training FLOPs. The subfigure (c) shows the variations in loss as
FLOPs increase, given the optimal activated parameter settings.

3.2 Main Results

3.2.1 IsoFLOP Analysis

We conduct isoFLOP comparisons as shown in Fig-
ure 4. The isoFLOP analysis is a methodology
used to evaluate model performance and training
efficiency by fixing the training computation bud-
get (measured in FLOPs) and comparing different
model configurations. For this analysis, we adapt
the TopP routing (p=0.6) strategy and train 16 con-
ventional MoE models and 16 HMoE models of
different sizes, ranging from 100M to 3B parame-
ters, and record their activation parameters and loss
values at different training FLOP levels. At each
FLOP point, the activation parameter correspond-
ing to the lowest loss is selected as the optimal
activation parameter for that specific FLOP budget.
This approach enables a systematic comparison of
model efficiency and performance under equivalent
computational constraints.

We find that if the training FLOPs are too few,
the loss of HMoE is not superior to traditional MoE.
However, from early stages of training (around
2.5 × 1019 FLOPs), HMoE shows a stable trend
of outperforming its homogeneous MoE. Further-
more, across different training costs, the optimal ac-
tivation parameter for HMoE consistently remains
lower than that of homogeneous MoE. As the train-
ing cost increases, the gap in optimal activation pa-
rameters widens, highlighting the significant model
efficiency advantage of HMoE. This should sug-
gest that with larger models and more data, the
benefits of heterogeneity may become even more
pronounced, both in performance and efficiency.

3.2.2 Performance on Benchmarks
Table 1 presents a comparative analysis of the re-
sults of various models on benchmarks. We have:

(1) The results show MoE outperforming Dense
models across all metrics, with HMoE showing par-
ticularly outstanding results. The HMoE models
achieved superior performance in almost all evalu-
ation metrics, significantly surpassing conventional
MoE and Dense models.

(2) For models utilizing 7 × 1019 FLOPs, the
HMoE-0.4B model, particularly with the Top-P
routing strategy, stands out. It achieves an average
improvement of 1.21

(3) We observe that HMoE demonstrates a
more pronounced performance improvement on the
ARC-Easy and HellaSwag tasks compared to con-
ventional MoE. The rationale could be that these
two tasks are comparatively easier, and P-penalty
loss in HMoE is employed to guarantee sufficient
training for the small experts. Meanwhile, because
HMoE allocates more parameters to the larger ex-
pert, the model’s performance on more challenging
tasks remains uncompromised.

(4) Furthermore, the comparison between Top-
K and Top-P routing within the HMoE model is
also insightful. The Top-P routing strategy gen-
erally yields better results, implying that the dy-
namic routing strategy cooperates well with hetero-
geneous experts. We attribute this to the fact that
both Top-P routing and heterogeneous experts are
designed to adapt to the complexity of the input.

3.3 Ablation Study
We conduct an ablation study to analyze auxiliary
losses and expert heterogeneity. All experiments
are based on models with 400M total parameters.
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Method Activated Parameters PIQA hellaswag BoolQ ARC-Easy winogrande SIQA AVG

7× 1019 FLOPs Training
Dense-0.2B 176M 56.20 26.83 61.43 31.05 51.69 32.65 43.30
MoE-0.4B (Top-K) 163M 57.67 27.81 62.13 29.70 50.59 32.82 43.45
MoE-0.4B (Top-P) 173M 56.92 27.73 56.54 30.18 51.67 32.89 42.66
HMoE-0.4B (Top-K) 153M 56.67 28.26 59.80 31.93 52.49 32.91 43.68
HMoE-0.4B (Top-P) 173M 58.98 28.10 60.78 34.14 52.21 32.83 44.51

2.6× 1020 FLOPs Training
Dense-1B 1.32B 58.92 29.57 61.70 35.26 51.85 32.86 45.03
MoE-3B (Top-K) 0.77B 61.92 32.80 60.06 33.96 52.51 32.58 45.64
MoE-3B (Top-P) 1.23B 61.42 32.16 61.47 33.51 52.27 32.91 45.62
HMoE-3B (Top-K) 0.70B 61.04 32.89 60.26 36.14 52.49 32.82 45.94
HMoE-3B (Top-P) 0.68B 61.79 33.22 61.69 36.49 52.96 33.00 46.53

9× 1020 FLOPs Training
MoE-16B (Top-P) 3.83B 64.96 41.33 62.56 41.40 51.85 32.91 49.16
HMoE-16B (Top-P) 1.77B 65.12 43.03 61.40 44.21 52.09 33.27 49.85

Table 1: Results on six pre-training model evaluation benchmarks. Our HMoE consistently outperforms Homoge-
neous MoE. To be noted, in order to ensure a relatively fair comparison, in the experimental results of each block,
although the activation parameters of different models are different, they are all trained with the same training cost
(FLOPs), rather than based on the same number of training tokens.

3.3.1 Effectiveness of Auxiliary Losses

Our proposed P-Penalty loss plays a key role in
HMoE’s performance. To better understand the
impact of auxiliary losses, we conduct an ablation
study. As shown in Figure 5 (left), the P-Penalty
loss helps HMoE achieve the best results among all
auxiliary losses. Additionally, Figures 3 (right) and
5 (right) illustrate how auxiliary losses influence ex-
pert activation. We observe that the load balancing
loss does not alleviate the tendency of larger ex-
perts being activated more frequently than smaller
experts. This imbalance may limit HMoE’s ability
to outperform conventional MoE. In contrast, the
P-Penalty loss appears to better align the model’s
objectives by encouraging the activation of smaller
experts more frequently, thereby contributing to
improved model performance and efficiency.

3.3.2 Analyses on Expert Heterogeneity

The expert size distribution in HMoE significantly
influences model performance. Figure 6 (left) com-
pares HMoE across various distributions: geomet-
ric, arithmetic, and hybrid. Our results show that
the geometric distribution performs the worst. Fig-
ure 6 (right) shows that smaller experts in the ge-
ometric progression are less frequently activated.
Even with a P-Penalty loss, this may suggest their
capacity is insufficient because of their too-small
size. Conversely, the hybrid model outperforms the
arithmetic one. This finding may indicate that a mix
of experts with both similar and varied sizes offers
greater potential for exploration and optimization
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Figure 5: The left figure shows the effectiveness of
auxiliary losses. The right figure shows the activated
parameter ratio varying by model size across load bal-
ancing loss (above) and our P-Penalty loss (below).

within the HMoE model.

3.4 In-depth Analyses on HMoE Experts
To compare the expert specialization in our pro-
posed Heterogeneous Mixture of Experts (HMoE)
and traditional Homogeneous Mixture of Experts
(MoE), we analyzed the behavior of experts in both
setups. Figure 7 provides a similarity analysis using
heatmaps, where each cell represents the Wasser-
stein distance between the token distributions of
expert pairs on downstream tasks. In the Homo-
geneous MoE framework, the experts primarily
cluster into two groups, suggesting limited differ-
entiation among experts in this framework. This
indicates that homogeneous setups may struggle to
promote diverse expert specialization effectively.
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Figure 6: Analysis of expert heterogeneity through ab-
lation. The figure on the left illustrates a performance
comparison across various expert-size design strategies.
The right figure displays the activation ratios of experts
in HMoE using a geometric strategy.
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Figure 7: Similarity study of homogeneous and hetero-
geneous experts. In the homogeneous MoE, all experts
have identical sizes. In the heterogeneous MoE, the rel-
ative expert sizes are {9, 11, 13, 15, 17, 19, 21, 23} as
experts from a to h.

In contrast, the HMoE framework demonstrates a
more refined expert specialization. Experts of simi-
lar sizes exhibit higher similarity, forming distinct
clusters (e.g., expert pairs a/b, c/d, and f/g). This
clustering may suggest that experts with compara-
ble sizes tend to develop similar capabilities. The
heterogeneous design thus encourages specialized
expert behavior, emphasizing the advantages of in-
troducing heterogeneity in fostering diversity and
differentiation among experts.

Figure 8 shows the activation ratios of experts for
tokens with varying difficulty levels. The activation
ratio is the frequency that a token activates each
expert divided by the total activations. We observe
relative “hard” tokens (tokens with multiple mean-
ings or tokens with low frequency of occurrence)
activate larger experts more often, while smaller
experts are consistently activated may be due to
their general capabilities.

It is noteworthy that, although we present only a
few examples, this phenomenon is universally ob-
served. This should suggest that our HMoE model
effectively allocates tokens to appropriate experts.

Easy
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Figure 8: Visualization of the activated experts ratio
to tokens with different understanding difficulty. The
expert size design is the same as Figure 7.

4 Related Work

The Mixture of Experts (MoE) model was first pro-
posed by Jacobs et al. (1991), where each expert
independently learns a subset of the dataset and is
then integrated into a unified system. Building on
this, (Shazeer et al., 2017) introduced the Sparsely-
Gated Mixture-of-Experts layer (SMoE), which
employs a gating network for expert selection and
proposes a Top-K routing strategy, where a fixed
number of experts are selected for each token. Fur-
ther advancements were made by Gshard (Lepikhin
et al., 2020) and SwitchTransformer (Fedus et al.,
2022), which incorporated MoE into the Trans-
former architecture’s FFN layers, utilizing top-1
and top-2 routing, respectively. Expert-choice MoE
(Zhou et al., 2022) introduced Expert Choice Rout-
ing, allowing each expert to independently select a
certain number of tokens, thereby achieving load
balancing. AutoMoE (Jawahar et al., 2022) estab-
lishes a search space tailored for small-scale hetero-
geneous MoE, utilizing the top-1 routing strategy,
and employs Neural Architecture Search to derive a
sub-network. Their experiments focus on machine
translation tasks, and their approach is not suitable
for pre-trained language models. Lu et al. (2024)
illustrates that not all experts are equal in the MoE
model. They discard less important experts and
find the model that keeps the most performance.
Huang et al. (2024) introduces the Top-P routing
strategy, dynamically allocating the number of ex-
perts to each token. Qiu et al. (2025) proposes a
global batch with LBL for expert specialization.
To be noted, our work is the first work exploring
HMoE as a base language model based on Top-K
and Top-P routing, and demonstrates the superior-
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ity of HMoE in both performance and efficiency.

5 Conclusion

In this work, we propose a novel HMoE model, fea-
turing experts of varying sizes to handle different
token complexities. We enhance it by proposing
a new training objective and exploring expert size
distribution. Our experimental results show that
HMoE improves both performance and computa-
tional efficiency. We believe that our work opens
new avenues for the development of large language
models. Future research could explore further op-
timization techniques and broader applications of
heterogeneous expert architectures, potentially ex-
tending the benefits observed in this study to an
even wider array of NLP tasks.

6 Limitation

While our study demonstrates the substantial bene-
fits of HMoE, several avenues for further improve-
ment and exploration remain.

First, our experiments indicate that as training
costs increase, the efficiency and performance ad-
vantages of HMoE become more evident. Although
these findings suggest that HMoE could offer even
greater benefits at larger scales, the precise ex-
tent of these advantages remains an open ques-
tion. Second, our experiments relied on two widely
adopted MoE routing strategies—Top-P and Top-
K—which yielded strong performance and con-
firmed the broad applicability of our method. Nev-
ertheless, the growing interest in more advanced
routing approaches, such as shared experts and
other dynamic mechanisms, highlights an impor-
tant future direction. Our expert-size configura-
tion is naturally complementary to such techniques,
and integrating them could further enhance perfor-
mance. Finally, in this study, all experts were ini-
tialized using standard schemes regardless of their
size. We hypothesize that tailoring initialization
to expert size may further amplify their differen-
tiation, leading to improved diversity and effec-
tiveness. Exploring such size-aware initialization
strategies represents another promising direction
for future research.
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A Detailed Model Setting

All methods are based on the Transformer decoder-
only architecture following LLaMa (Touvron et al.,
2023a). We employ the LLaMa2 (Touvron et al.,
2023b) tokenizer with a vocabulary size of 32,000.
We conducted a small-scale experimental explo-
ration to determine the setting of model parameters.

For the Dense-0.2B model, we configure 12 Trans-
former Blocks, with the hidden dimensions of the
FFN layers being 3584. In the attention layer, we
use 12 heads, each with a dimension of 64. For
the Dense-1B model, we also configure 12 Trans-
former Blocks, but the hidden dimensions of the
FFN layers are set to 32,768. In the attention layer,
there are 16 heads, each maintaining a dimension
of 64.

For both MoE (homogeneous MoE) and HMoE
models, we utilize three different model sizes. (1)
In the configuration with 0.4B total parameters, the
total hidden dimension for all experts in each MoE
layer sums to 12,288, and there are 12 Transformer
Blocks. Each layer in the MoE model contains 8
experts. All other specifications align with Dense-
0.4B settings. (2) In the configuration with 3B
total parameters, the aggregate hidden dimension
for all experts in each MoE layer is 32,768 and
there are 12 Transformer Blocks. Each layer in the
MoE model contains 8 experts. All other specifi-
cations match those of Dense-1B settings. (3) In
the configuration with 16B total parameters, the
aggregate hidden dimension for all experts in each
MoE layer is 65536 and there are 40 Transformer
Blocks. Each layer in the MoE model contains 16
experts. To be noted,the distribution of expert sizes
in HMoE follows an arithmetic progression.

For Homogeneous MoE, we set the load balanc-
ing loss coefficient to 1 × 10−2, as implemented
in Huang et al. (2024). For HMoE, we set the co-
efficient of parameter penalty loss as 0.1. For the
Top-P routing strategy, we set the coefficient of
router entropy loss as 3× 10−2.

B Detailed Training Setting

Our models are trained utilizing NVIDIA A800
(80G memory) or H800 GPUs (80G memory).
Models with fewer than 3 billion parameters are
trained on a single node with 8 A800 GPUs. MoE
with 16 billion parameters are trained using four
nodes with a total of 32 H800 GPUs. The AdamW
optimizer is used, with a first-moment decay of
β1 = 0.9 and a second-moment decay of β2 =
0.999. A weight decay of 1 × 10−5 is applied.
The learning rate is gradually increased from 0 to
1 × 10−4 over the initial 1000 steps and is main-
tained thereafter. The context length is set to 4096,
and the global accumulated batch size is 640. All
experiments use a unified random seed value of
12345. We implemented the Zero2 (Rajbhandari
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et al., 2020) strategy to accelerate model training
and gradient checkpointing to save GPU memory.
All model and training code is developed with the
torch (Paszke et al., 2017) library.

C Efficient Training of Heterogeneous
MoE

The efficient training of heterogeneous MoE mod-
els presents significant challenges to existing train-
ing approaches, necessitating innovative solutions
to overcome these obstacles. One primary issue
stems from the fact that experts do not have uniform
shapes, which invalidates the traditional batched
matrix multiplication method for expert computa-
tion. To address this challenge, Megablocks (Gale
et al., 2023) implements efficient block sparse ma-
trix multiplication kernels, which effectively han-
dle the complexities introduced by variable-sized
experts. Another concern is the problem of un-
balanced computation and communication arising
from the heterogeneous nature of experts, which
can lead to inefficient resource utilization. To miti-
gate these issues, ES-MoE (Kim et al., 2024) intro-
duces expert-wise offoading and dynamic expert
placement strategy. This approach involves per-
forming expert computation in a serialized manner.
Expert parameters are offloaded to CPU memory
and are fetched back to GPU memory as needed,
based on the distribution of tokens. By doing so,
ES-MoE not only reduces GPU memory overhead
incurred by expert parameters but also alleviates the
computation load imbalance issue, leading to better
hardware resource utilization. Future research in
the area may focus on developing more sophisti-
cated load-balancing techniques and optimizing
memory management strategies both for model
states and activations.

D Heterogeneous Expert Parallelism

To address the load imbalance issue caused by the
frequent activation of small experts in our model,
we propose a new heterogeneous expert parallelism
strategy. The key problem arises from the fact that
small experts are activated more often than large
experts, leading to an imbalance in computational
load across devices. When experts of different
sizes are deployed on separate devices, this imbal-
ance results in devices hosting small experts being
frequently accessed and involved in computation,
while devices hosting large experts are rarely uti-
lized, causing resource wastage.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

Expert 1 Expert 6 Expert 2 Expert 5 Expert 4Expert 3

GPU 1 GPU 2 GPU 3

Activated
Frequency

Expert Size

Expert Parallelism

Figure 9: Example of our heterogeneous expert par-
allelism strategy. We integrate large experts with low
activation frequency and small experts with high acti-
vation frequency into the same device to achieve load
balancing.

To mitigate this issue, we place both small and
large experts on the same device as shown in Fig-
ure 9, ensuring that the combined size of large and
small experts on each device is approximately bal-
anced. This strategy allows for the efficient use of
GPU memory across devices by optimizing the dis-
tribution of experts. It also ensures a more balanced
access frequency across devices, as the load is bet-
ter distributed between devices hosting both small
and large experts. Through this strategy, we can
solve the efficiency problem caused by the activa-
tion imbalance in HMoE, leading to better resource
utilization and overall system performance.

E Efficiency Analysis

In this section, we compare the efficiency of the
heterogeneous MoE with that of the traditional ho-
mogeneous MoE model in both training and infer-
ence stages, under the condition of having the same
total number of parameters and experts.

Both the heterogeneous MoE and the homoge-
neous MoE demonstrate similar training speeds
when the total parameter count and the number
of experts are kept constant as shown in Table 2.
However, due to the design of the parameter penalty
loss in the heterogeneous MoE, the activation pa-
rameters of the experts gradually decrease through-
out the training process. Initially, the activation
parameters of the heterogeneous MoE are higher
than those of the homogeneous MoE, leading to a
slight reduction in training speed at the beginning.
As training progresses, the training speeds of both
models become comparable.
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Model Training Samples per Second Average Activated Parameters during Inference

HMoE-0.4B 13.83 153M
MoE-0.4B 13.86 163M

Table 2: Efficiency comparasion. We show the speed calculated for single A800 GPU.

During inference, the heterogeneous MoE out-
performs the homogeneous MoE in terms of speed.
This is because the average activation parameters
in the pre-trained heterogeneous MoE are smaller,
which causes the model to favor selecting smaller
experts for computation. As a result, even though
the number of experts selected for each inference
task may be similar between the two models, the
computational load per expert is reduced in the
heterogeneous MoE. This leads to faster inference
times compared to the homogeneous MoE, which
utilizes experts of a larger size.

F Detailed Introduction of MoE

F.1 Mixture of Experts
Different from dense models, most MoE models
replace the FFN layer of the transformer (Vaswani
et al., 2017) block with the MoE layer. The MoE
layer consists of a router gi(·) and multiple experts
{e1, e2, ..., eN}. The experts are composed of a
set of independent Feed-Forward Network (FFN)
layers. Experts are responsible for processing the
input data according to their specialized knowledge.
For each token, a subset of experts is activated to
execute computations, and the router is responsible
for generating a probability distribution. The prob-
ability of this distribution indicates the likelihood
of assigning the token to each expert. We obtain the
output of MoE layer based on following process:

MoE(x) =
N∑

i

gi(x) · ei(x),

ei(x) = FFNi(x),

(6)

where x is the input states of current layer.

F.2 Routing Strategy
The routing strategy is applied to select experts to
be activated from N experts. The Top-K Rout-
ing (Huang et al., 2024) strategy is one of the
most widely-used strategy, which always activates
a fixed number of experts for each token. We first
calculate the probability distribution P using a soft-
max function. P represents the initial score of

selecting each expert. Then, we keep the highest k
scores and normalize them. The detailed computa-
tion is as:

P = softmax(Wr · x) =
exp (Wr · x)∑N
j=1 exp (Wr · x)

,

(7)

gi(x) =

{
Pi∑

j∈Top-K(P) Pj
, i ∈ Top-K(P)

0, i /∈ Top-K(P),
(8)

where Top-K(P) returns the indices of the largest
k elements in P, and Wr is a learnable router
parameter.

Recently, Top-P Routing (Huang et al., 2024)
is proposed to dynamically activate different num-
ber of experts for each token. Specifically, we
first obtain P̃ by sorting P from highest to lowest.
Then given a fixed threshold p, which is a hyper-
parameter, if the highest probability is larger than
threshold, we only use one expert. Otherwise, we
progressively add additional experts until the cu-
mulative probability exceeds the threshold p. The
detailed computation is as:

t = argmin
k∈{1...,N}

∑

j<=k

P̃j ≥ p, (9)

Top-P(P) = {Index(1), ..., Index(t)}, (10)

gi(x) =

{
Pi∑

j∈Top-P(P) Pj
, i ∈ Top-P(P)

0, i /∈ Top-P(P),
(11)

where t represents the minimum number of experts
that need to be activated. Index(j) returns the
indices of element P̃j in original distribution P.

G Further Ablation on Expert
Heterogeneity

Our experiments reveal a strong correlation be-
tween loss and the performance of downstream
tasks: lower loss generally leads to better perfor-
mance. With this insight, we investigated how to
determine Expert Heterogeneity. Figure 10 illus-
trates the loss obtained by training HMoE using an
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Figure 10: Various distributions of expert sizes in HMoE
and their corresponding losses. All distributions follow
arithmetic strategy. The x-axis represents the ratio of
the size of the largest expert to the size of the smallest
expert within the distribution.

arithmetic sequence strategy with varying levels of
variance, all within the same computational budget.
We observed that as the ratio between the largest
and smallest experts increases (i.e., as the variance
increases), the model’s performance initially de-
grades but then improves. This suggests that in the
heterogeneous design of HMoE, an optimal level
of heterogeneity enhances performance compared
to either excessive heterogeneity or complete ho-
mogeneity. This is consistent with the reason why
the geometric distribution strategy has poor results.
A large gap in expert ability is not conducive to
model training and may lead to representation col-
lapse. Based on these findings, we have adopted
a relatively balanced heterogeneous distribution in
our main experiment.

H Performance on Challenge
benchmarks

We include MMLU and ARC-Challenge as addi-
tional benchmarks to further strengthen the eval-
uation. Under a training configuration of 2.6 ×
1020, for ARC-Challenge, the baseline SMoE-3B
achieves a score of 23.41, while our HMoE-3B
model achieves 25.42, showing an improvement of
+2.01. For MMLU, SMoE-3B achieves 24.00, and
HMoE-3B achieves 24.57, yielding an improve-
ment of +0.57. Given that both MMLU and ARC-
Challenge are relatively challenging for models op-
erating under the current computational budget, the
evaluation results are susceptible to random fluc-
tuations. We therefore recommend referencing a
comprehensive comparison incorporating the addi-
tional experimental metrics presented in this study
to ensure a reliable and conclusive assessment.

I Activated Parameter Ratio Analysis

We present the activated parameter ratios of ARC
tasks in HMoE layers in Table 4. Specifically, we
observe that ARC-Challenge activates more pa-
rameters compared to ARC-Easy. This implies
that our model can dynamically activate parame-
ters based on the difficulty of the task. This phe-
nomenon is consistent with that in the MoE with
Top-P routing strategy (Huang et al., 2024). By
activating more parameters for more difficult tasks,
the model achieves better performance, while for
simpler tasks, it gains higher efficiency. This ap-
proach balances efficiency and performance. To
be noted, the difference in activated ratios between
difficult and simple tasks is not very large, ensuring
stable computational costs.

J Expert Activation Patterns

We have recorded the tokens with the highest activa-
tion percentages for different sizes of experts in the
ARC tasks. As shown in Table 5, smaller experts
are most frequently activated by relative simple
words or words with less phonetic information. In
contrast, larger experts are most frequently acti-
vated by suffix tokens. We believe that these suffix
tokens may be more ambiguous and thus more dif-
ficult to understand. Medium-sized experts, on the
other hand, are more frequently engaged with to-
kens that have clearer semantics. Importantly, this
pattern emerges naturally through training rather
than being intentionally designed, and the results
in the table represent direct counts of activation
frequency without any selective filtering.

K Activated parameters of different
experts

We explore the underlying causes of the stable
or declining trend in activated parameters within
HMoE with Top-P routing. As depicted in Figure
11, the activation of smaller experts increases over
the course of training, while larger experts experi-
ence a decline in their activation rates. This high-
lights the effectiveness of our proposed P-Penalty
loss. The increased activation rates of smaller ex-
perts enhance their capacity to comprehend general
knowledge. This shift causes the role of smaller
experts to increasingly resemble that of shared ex-
perts (Dai et al., 2024). Additionally, the activa-
tion frequency of different experts remains con-
stant throughout the training process, indicating
the router’s consistent token allocation.
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Model Activated Parameter Ratio MMLU ARC-Challenge

MoE-3B (Top-P) 1.23B 24.00 23.41
HMoE-3B (Top-P) 0.68B 24.57 25.42

Table 3: Performance of MoE and HMoE on challenge benchmarks including MMLU and ARC-Challenge under a
training configuration of 2.6× 1020 FLOPs.

Task Activated Parameter Ratio

ARC-Challenge 21.09
ARC-Easy 20.23

Table 4: Average Activated parameter ratios (%) in
HMoE layers for ARC (Clark et al., 2018) tasks.

Expert Dim Top Tokens

2304 the, such, your, these, most, you,
both, no, they, each

3328 tables, valley, sun, temper, places,
day, war, water, through, clean

3840 known, least, lowest, immedi-
ately, bare, heavy, known, higher,
several, independent

5376 _ly, _zen, _icker, _last, _per, _var,
_orous, _next, _end, _flat

5888 _decom, _iz, _ro, _inf, _scra,
_coord, _er, problem, _och, _foss

Table 5: Top activated tokens for each expert.

L P-Penalty Loss during Training

This work proposes P-Penalty Loss to adjust the
activation changes of experts of different sizes. To
demonstrate the effectiveness of P-Penalty Loss,
we show its changes during training in Figure 12.
As training progresses, the language modeling loss
continues to decline, while the P-Penalty Loss rises
rapidly in the first 1,000 steps (approximately 3B
tokens) before gradually decreasing. This is be-
cause larger experts, due to their stronger expres-
sive capabilities, yield a greater reduction in LM
loss from activation compared to the penalty im-
posed by P-Penalty Loss.

M Compatibility with Low-cost Inference
Mechanisms

A concern regarding heterogeneous MoE is
whether allocating parameters to smaller experts
inherently weakens the representation ability of
the model. In fact, the proposed HMoE does not
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Figure 11: Activated parameters of experts in HMoE
(Top-P). The values in the legend indicate the hidden
dimensions of the experts, which represent their sizes.
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Figure 12: Training losses: (a) P-Penalty Loss, (b) Lan-
guage modeling Loss.

reduce the total number of expert parameters but
redistributes them across experts of different sizes.
Thus, in theory, the total representation capacity is
preserved. The heterogeneous distribution mainly
influences the dynamics of expert activation rather
than the overall parametric budget.

It is also worth noting that HMoE is compatible
with other low-cost inference mechanisms, such
as dynamic early-exit (Laskaridis et al., 2021; Sui
et al., 2025) and pruning strategies (Men et al.,
2024). These approaches aim to reduce the compu-
tational cost at inference time, without modifying
the underlying expert structures during training. In
contrast, HMoE focuses on structural optimization
during model design. Therefore, the two directions
are complementary rather than mutually exclusive.
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