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Abstract

Context faithfulness is essential for reliable rea-
soning in context-dependent scenarios. How-
ever, large language models often struggle to
ground their outputs in the provided context,
resulting in irrelevant responses. Inspired by
the emergent expert specialization observed in
mixture-of-experts architectures, this work in-
vestigates whether certain experts exhibit spe-
cialization in context utilization—offering a
potential pathway toward targeted optimization
for improved context faithfulness. To explore
this, we propose Router Lens, a method that
accurately identifies context-faithful experts.
Our analysis reveals that these experts progres-
sively amplify attention to relevant contextual
information, thereby enhancing context ground-
ing. Building on this insight, we introduce
Context-faithful Expert Fine-Tuning (CEFT),
a lightweight optimization approach that selec-
tively fine-tunes context-faithful experts. Ex-
periments across a wide range of benchmarks
and models demonstrate that CEFT matches or
surpasses the performance of full fine-tuning
while being significantly more efficient'.

1 Introduction

Faithfulness to the provided context is essential for
ensuring the reliability and coherence of responses
in many context-dependent scenarios, such as long
sequence processing (Li et al., 2024; Wu et al.,
2025), In-Context Learning (ICL) (Zhang et al.,
2025; Qi et al., 2025), and Retrieval-Augmented
Generation (RAG) (Shi et al., 2024; Sun et al.,
2025). Despite their remarkable fluency, Large Lan-
guage Models (LLMs) often generate outputs that
are only loosely grounded in the given context or,
in more concerning instances, hallucinate informa-
tion not supported by it (Zhou et al., 2023; Chuang
et al., 2024; Huang et al., 2025).

'Our code is publicly available at https://github.com/
bigai-nlco/RouterLens.
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Figure 1: A case from NQ-Swap (Longpre et al., 2021)
where MoE experts exhibit different tendencies of con-
text faithfulness (answer is underlined in green).

Prior work has proposed sophisticated prompt-
ing (Zhou et al., 2023), decoding (Shi et al., 2024),
and alignment (Bi et al., 2024) techniques to en-
hance context faithfulness—the ability to accu-
rately attend to and integrate relevant contextual
information during response generation. More re-
cently, expert specialization in Mixture-of-Experts
(MoE) models has emerged as a promising direc-
tion (Wang et al., 2024b), potentially enabling more
targeted optimization of model capacity for context
utilization. Previous studies have shown that MoE
experts tend to specialize in processing different
aspects of input. The router network typically acti-
vates distinct experts when handling tokens from
diverse tasks (Jiang et al., 2024), domains (Muen-
nighoff et al., 2024), and syntactic units (Antoine
et al., 2025). Building on these observations, we
identify that experts in MoE models exhibit vary-
ing degrees of context faithfulness, as illustrated
in Figure 1. This raises an intriguing question: Do
context-faithful experts exist within MoE models?

In this work, we present a systematic analysis
of expert specialization in MoE LLMs, with a par-
ticular focus on their ability to leverage contex-
tual information. A common approach to identi-
fying experts responsible for specific functionali-
ties involves analyzing expert activation frequen-
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cies across layers (Jiang et al., 2024; Wang et al.,
2024b), under the assumption that the most fre-
quently activated experts are those most relevant
to the task. However, this assumption is under-
mined by the load balancing constraint imposed
during pretraining (Dai et al., 2024), which en-
forces uniform expert usage and consequently lim-
its the router network’s ability to select the most
beneficial experts (Dai et al., 2022). As a result, ex-
perts identified through standard activation-based
heuristics may not accurately reflect optimal spe-
cialization for context-dependent behavior.

To investigate the above limitations, we pro-
pose Router Lens, an effective method for elicit-
ing aspect-relevant experts by fine-tuning only the
router network on context-dependent tasks, while
keeping all other model parameters fixed. This en-
ables the model to dynamically route inputs to ex-
perts that are more effectively aligned with contex-
tual information. Experts that are frequently acti-
vated in the updated model are then identified as
context-faithful experts. We show that tuning the
router alone significantly improves performance
on context-dependent tasks, providing strong ev-
idence that certain experts are indeed specialized
for context utilization. Further analysis reveals that
these experts progressively amplify attention to
contextually salient signals and guide intermediate
representations toward more accurate outputs.

Motivated by the specialization potential of
context-faithful experts, we move beyond full fine-
tuning and introduce Context-faithful Expert
Fine-Tuning (CEFT), a parameter-efficient strat-
egy that fine-tunes only the experts most relevant
to context utilization. CEFT enhances the model’s
ability to utilize contextual information while sub-
stantially reducing the number of trainable param-
eters. We evaluate CEFT across a diverse set of
context-dependent tasks and models. Experimental
results show that CEFT not only matches, but often
surpasses, the performance of full fine-tuning. Our
contributions can be summarized as:

* We propose Router Lens, a novel framework
for identifying context-faithful experts in MoE
models. Our analysis shows that these experts
play a critical role in effective context utilization.

* We introduce Context-faithful Expert Fine-
Tuning (CEFT), an optimization strategy tar-
geted at the context-faithful experts identified by
Router Lens, achieving competitive or superior
performance compared to fully fine-tuning.

* We conduct comprehensive experiments across
multiple benchmarks and models, demonstrat-
ing the generalizability and effectiveness of our
approach in enhancing contextual faithfulness.

2 Preliminaries

2.1 Context-dependent Tasks

In context-dependent task, the correct prediction
or output depends not only on the input query ¢
but also on an additional context ¢, which provides
essential supporting information (Kazi et al., 2023;
Fan et al., 2024; Bi et al., 2024). Formally, let Q
be the space of queries, C be the space of possible
contexts, and ) be the space of outputs. A context-
dependent task is defined by a function:

such that y = f(q,c) (1)

f:OxC =Y,
where y € ) is the task output.

2.2 Mixture-of-Experts LLMs

MoE is an architecture where the Feed-Forward
Network (FFN) (Vaswani et al., 2017) are replaced
by MoE modules to efficiently increase model ca-
pacity (Xue et al., 2024). Each MoE layer consists
of N, parallel experts e (sharing FFN structure).
For each input token, a subset of k experts is ac-
tivated (i.e. top-k) based on learned gating scores
computed by a router network (Dai et al., 2022).
Let ug) be the input of the ¢-th token at the ¢-th

MoE layer. The output hg) is computed as:

¢ {4 ¢ ¢ {4
) =ul? + 3 o FENG (oY) @
1€S:
where S; is the set of top-k experts for token ¢, and
(0) h . ) .
g; + are the corresponding gating weights.

The gating weights are produced by the router
network, parameterized by 97@, which computes a
score vector and applies a softmax operation:

sg) — Router® (uy); 0{9) € RN 3)

T

exp <s§?)
~(0) _ ) 4
Sit = © 4
ZjESt €xp (Sj,t)
o [30, ities, -
it 0, otherwise.

Here, Router®)(; 9@) denotes the router network
in layer ¢. Only the experts with the top-k gating
scores contribute to the final output.
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3 Eliciting Context-faithful Experts

3.1 Router Lens

To identify experts relevant to a specific capability,
prior work often uses expert activation frequency as
a proxy—experts that are activated more frequently
are assumed to be more important (Jiang et al.,
2024; Wang et al., 2024b). Howeyver, in pretrained
MOoE models, the router network is typically opti-
mized with a strong load balancing constraint to
enforce uniform expert usage (Wang et al., 2024a).
While this constraint improves training stability
and computational efficiency, it can obscure the
natural emergence of expert specialization for par-
ticular capabilities such as context utilization. As
a result, models may struggle to accurately iden-
tify and leverage the most beneficial experts for
context-dependent tasks.

To address this limitation, we propose a novel
expert elicitation method, Router Lens. As shown
in Figure 2, it begins with a lightweight adaptation
step—router tuning, which encourages the router
network to relearn expert selection tailored to a
specific context-dependent task. Following this, we
introduce a context-dependence ratio, computed us-
ing the tuned router network, as a principled metric
for identifying context-faithful experts.

Specifically, let the MoE parameters be denoted
as 0 = {60,,0,}, where 6, are the parameters of
all router networks across layers, and 6, represents
all remaining parameters of the model, including
the experts, attention layers, embeddings, and layer
norms, etc. In router tuning, we freeze 6, and up-
date only the router parameters €, to minimize
the context-dependent task loss. Formally, the opti-
mization objective is:

r%in Liask (f(z;0,,60,)) st 6, fixed, (6)

T

where z is the model input, f(-) is the MoE model
forward function, and Ly, is the supervised loss
specific to the context-dependent task. In this way,
gradient descent optimization is applied only with
respect to 6,

O, < 6, — n- verﬁtask(f('f; Hrv 90)) )

where 1 denotes the learning rate.
To identify the context-faithful experts, we de-

fine the Context-dependence Ratio ry) for expert

e; in the /-th layer, measuring the frequency for

/MOE FFN Layer —\ [ : : )
Expert / el | Expert I |
I I
L S 1
)
Expert 2 Expert 2
-/
—
E Expert N, [«eeedienandeeea» | Expert N,
K Routing Statistics —/ / \ /

Step 1. Router Tuning. Step 2. CE Identification.

Figure 2: [llustration of Router Lens, where the Context-
faithful Experts (CE) in each layer are identified by the
tuned router network.

which expert ¢ is selected by the tuned router net-
work across the training dataset. Formally:

1
R D D D

S =177 t=1

where N; is the total number of input samples,
L; is the number of tokens in the j-th sample. The
value of indicator function 1 ( gz(gt’] ) > 0) equals 1 if
expert 7 is selected (i.e., receives a non-zero gating
weight), and 0 otherwise. A higher 1"1@ indicates
that expert ¢ is selected more frequently across
samples of context-dependent tasks, reflecting its
importance to context utilization. Then, we identify
the experts with top-k high context-dependent ratio
as context-faithful experts.

3.2 Experimental Setting

Below, we list the datasets, metrics, and models
used in the empirical study. For implementation
details, please refer to the Appendix A.

Dataset and Metrics We evaluate our approach
on several widely used datasets for context-
dependent tasks, including SQuAD (Rajpurkar
et al., 2016), NQ (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), NQ-Swap (Longpre
et al., 2021), and ConfiQA (Multi-Conflicts subset)
(Bi et al., 2024). Dataset statistics are summarized
in Table 6. Among these, SQuAD, NQ, and Hot-
potQA are classic question answering benchmarks
that span a spectrum of reasoning challenges upon
context, from local comprehension to multi-hop
reasoning. Moreover, we also include two counter-
factual QA benchmarks: NQ-Swap and ConfiQA,
offering a more challenging and complementary
evaluation of a model’s ability to identify and rely
on the correct evidence. For all datasets, we report
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Models SQuAD NQ HotpotQA NQ-Swap ConfiQA
EM F1 EM EM F1 EM F1 EM F1
OLMOoE-1B-7B 26.6 49.4 18.3 39.9 27.0 46.1 28.1 40.5 38.7 49.9
w/ Router Tuning 80.5 88.1 62.4 75.3 60.4 76.1 76.4 77.8 76.9 79.9
DeepSeek-V2-Lite 25.2 48.6 25.9 48.1 30.8 50.4 274 38.0 19.1 353
w/ Router Tuning 83.6 91.1 65.1 77.5 61.7 71.7 82.2 84.3 75.3 78.2
MiniCPM-MOoE-8x2B 45.8 65.1 35.1 55.8 389 57.3 42.8 50.5 38.6 48.2
w/ Router Tuning 80.5 89.0 61.1 74.3 60.7 76.6 71.7 74.0 65.7 70.3
Mixtral-8x7B 21.1 43.5 19.6 41.3 25.5 434 16.3 29.9 12.3 20.3

w/ Router Tuning 49.6 63.2 44.0

62.4 57.0 73.2 64.1 67.1 67.6 74.9

Table 1: The performance comparison between untuned and router tuned MoE models on context-dependent tasks.

Models Methods EM F1
Base 24.1 34.6

OLMOoE-1B-7B RT 100 100
.. Base 37.0 45.2
MiniCPM-MoE-8x2B RT 99.8 998

Table 2: The performance of Router Tuning (RT) on
CounterFact dataset that needs no complex reasoning.

Exact Match (EM) and token-level F1 scores as
evaluation metrics. For additional dataset details,
please refer to Appendix B.

MoE Models We select four widely used open-
source MoE-based LLMs for evaluation: OLMOoE-
1B-7B (Muennighoff et al., 2024), DeepSeek-V2-
Lite (DeepSeek-Al et al., 2024), MiniCPM-MOoE-
8x2B (Hu et al., 2024), and Mixtral-8x7B (Jiang
et al., 2024). These models cover a diverse range
of configurations in terms of the number of experts
(from 8 to 64) and overall model sizes (from 7B
to 47B), providing a comprehensive testbed for an-
alyzing expert behavior in context-dependent sce-
narios. Detailed configurations for each model are
listed in Table 7. To ensure consistent and determin-
istic outputs across models, we adopt greedy decod-
ing (Germann, 2003) for all experiments. For addi-
tional model details, please refer to Appendix C.

3.3 Results of Expert Elicitation

In this section, we present the results of router tun-
ing and analyze the role of context-faithful experts
in enhancing context utilization.

Table 1 summarizes the model performance on
a variety of context-dependent benchmarks, both
before and after router tuning. Across all evaluated
models and tasks, router tuning consistently yields
substantial improvements over the base models.
This demonstrates that modifying only the expert
selection mechanism significantly boosts the per-

OLMoE-1B-7B

76.4 77.8
717 740
53.4
50.5
465 49.0
42.0 40.5 40,0 428
33.2
28.1 29.1
I 18.5
0 . . . .
EM Fl EM Fl

@ rRT B RT w/ OE masked

MiniCPM-MoE-8x2B

& =N ®
S S S

Performance (%)

[ )
S

RT w/ CE masked Base

Figure 3: Comparison of the performance impact on
NQ-Swap when masking % original experts (OE) vs. the
top-k context-faithful experts (CE), evaluated on router-
tuned (RT) OLMoE-1B-7B and MiniCPM-MoE-8x2B
models, relative to their respective base models (Base).

formance of context-dependent tasks, indicating
the presence of context-faithful experts.

To assess whether the performance gains from
the newly selected experts arise solely from en-
hanced compositional reasoning rather than effec-
tive context utilization, we also conduct experi-
ments on the CounterFact dataset (Meng et al.,
2022), where the model must rely on the provided
counterfactual context to answer a simple question
correctly. The task does not require complex rea-
soning, making it well-suited for isolating and eval-
uating the role of context-faithful experts. Table 2
reports the EM and F1 scores of OLMoE-1B-7B
and MiniCPM-MoE-8x2B on CounterFact. We ob-
serve substantial performance improvements after
router tuning, further providing strong evidence for
the existence of context-faithful experts.

To examine the importance of these experts,
we conduct a causal intervention experiment by
masking the identified context-faithful experts on
the router-tuned models. Specifically, by setting
their gating weights to zero and measuring the
resulting performance degradation. We conduct
this experiment on the NQ-Swap dataset using the
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OLMOoE-1B-7B MiniCPM-MoE-8x2B

@ SQuAD NQ @ HotpotQA NQ-Swap

ConfiQA

Figure 4: t-SNE visualization of context-faithful expert
activation patterns in OLMoE-1B-7B and MiniCPM-
MoE-8x2B. For each model, 1,000 examples per dataset
are randomly selected for projection.

OLMOoE-1B-7B and MiniCPM-MoE-8x2B models.
As illustrated in Figure 3, masking the context-
faithful experts leads to substantial drops in per-
formance, with EM score decreasing by 73.2% for
OLMOoE-1B-7B and 44.2% for MiniCPM-MoE-
8x2B. In contrast, masking an equal number of
originally selected experts results in smaller per-
formance declines. These findings highlight that
context-faithful experts play a critical role in solv-
ing context-dependent tasks.

3.4 Consistency of Context-Faithful Experts

We further investigate whether the same context-
faithful experts are consistently activated across dif-
ferent context-dependent tasks. To this end, we an-
alyze expert activation patterns in OLMoE-1B-7B
and MiniCPM-MoE-8x2B. For each input sample,
we calculate the activation frequency of context-
faithful experts across all layers and concatenate
these values into a feature vector. We then apply t-
SNE (Van der Maaten and Hinton, 2008) to project
these vectors into a 2D space for visualization. As
shown in Figure 4, samples from different datasets
form clearly separable clusters in both OLMoE-1B-
7B and MiniCPM-MoE-8x2B. This indicates that
the router learns task-specific activation patterns
for context-faithful experts, demonstrating that the
model adapts its routing behavior based on the con-
textual requirements of each task, highlighting both
the interpretability and task-awareness enabled by
the router-tuning mechanism.

While the results above suggest that different
tasks benefit from distinct expert configurations,
an important question remains: Can a tuned router
network generalize its ability to activate context-
faithful experts to unseen tasks? To explore this,
we assess the transferability of the tuned router
by applying model router-tuned on one dataset to

OLMOoE-1B-7B MiniCPM-MoE-8x2B
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Figure 5: Cross-task transfer performance of router-
tuned models. Each cell shows the absolute EM score
improvement over the base model, where the model
is trained on the dataset in row ¢ and evaluated on the
dataset in column j.

other datasets, without any additional adaptation.
As shown in Figure 5, router-tuned models con-
sistently outperform their base counterparts on un-
seen tasks. This suggests that the learned routing
strategies capture generalizable and context-aware
behaviors, enabling effective expert selection even
outside the training domain.

3.5 Inner Working Mechanism of
Context-faithful Experts

Moreover, we investigate how context-faithful ex-
perts contribute to improving context faithfulness.
In Transformer-based models, the self-attention
mechanism plays a central role in perceiving and in-
tegrating contextual information (Sun et al., 2025).
By assigning higher attention scores to relevant con-
text tokens, the model can more effectively utilize
the provided context. To assess whether context-
faithful experts enhance this mechanism, we ex-
amine whether their activation leads to increased
attention over contextual tokens compared to the
untuned model. To this end, we introduce the Con-
text Attention Gain (CAG) metric.

Let AEK) € RN»xLsxLs denote the attention ma-
trices at layer /¢ for the ¢-th sample, where N}, is
the number of heads and L; is the sequence length
of input. Let C; C {1,..., L.} represent the set
of context token indices in sample ¢. We average
attention across all heads for the last token:

() 1\ (L,h)
_(¢ 4,h
a’ = E ALy, 9
7 I\Ih = K [ ] ( )

Then, compute the attention mass assigned to all
context tokens:

o) =3 al K]

keC;

(10)
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Figure 6: Visualization of layer-wise attention gain on context and answer (CAG and AAG) for the router-tuned

model over the untuned model on the NQ-Swap test set.
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Based on the context below , output the correct answer for the following quesionl

Context : Ice Age is an American media franchise centering on a group of mammals
surviving the Paeolithic ice age . It is produced by Blue Sky Studios , a division
of 20th Century Fox , and featuring the voices of Ray Romano , John Leguizamo ,
Denis Leary , and Chris Wedge . Five films have been released in the series thus
far with Ice Age in 1964 , Ice Age : The Meltdown in 2006 , Ice Age : Dawn of
the Dinosaurs in 2009 , Ice Age : Continental Drift in 2012 , and Ice Age :
Collison Course in 2016 .

--0.01

Question : when did the first ice age come out -002

(a) Layer 6

Based on the context below , output the correct answer for the following question .

0.19
Context : Ice Age is an American media franchise centering on a group of mammals I0-13
surviving the Paeolithic ice age . It is produced by Blue Sky Studios , a division
of 20th Century Fox , and featuring the voices of Ray Romano , John Leguizamo ,

Denis Leary , and Chris Wedge . Five films have been released in the series thus -0.08
far with Ice Age in-. Ice Age : The Meltdown in 2006 , Ice Age : Dawn of
the Dinosaurs in 2009 , Ice Age : Continental Drift in 2012 , and Ice Age :
Collision Course in 2016 .

-0.02

Question : when did the first ice age come out —004

(b) Layer 12

Figure 7: Case study of attention gain from context-faithful experts in OLMoE-1B-7B on an NQ-Swap example. At
(a) Layer 6 and (b) Layer 12, i.e., mid-level layer and deeper layer, the router-tuned model progressively increases
attention to the context and answer tokens (i.e., “1964”), illustrating a “think twice” mechanism. Notably, the base
model fails on this example, while the router-tuned model provides the correct answer.

Let az(zgase and ozl(ér)t denote the attention to context
tokens for the base and router-tuned models, re-
spectively. Finally, compute the average difference

in context attention over all N, samples:

N, () ()
1 oL — o
0 _ 2,1t i,base
CAGY = > g an
S =1 Qi,base

Similarly, we define Answer Attention Gain
(AAG) indicator for analyzing the effect of context-
faithful experts on the answer within context.

As shown in Figure 6, we visualize the CAG
and AAG scores across all layers for OLMoE-1B-
7B-Instruct and MiniCPM-MOoE-8x2B, evaluated
on the NQ-Swap test set. We observe that in both
mid and deep layers, the router-tuned models allo-
cate more attention to the overall context and, in
particular, to the key answer tokens within the con-
text, compared to their untuned counterparts. This
amplification suggests that context-faithful experts
effectively recalibrate the model’s focus toward the
most relevant parts of the context.

We hypothesize that this layer-wise attention
amplification reflects a two-stage reasoning pro-
cess. As illustrated in Figure 7, context-faithful
experts in the mid-level layers help the model ini-
tially broaden its attention across the entire con-
text—effectively “scanning” and identifying poten-
tially relevant information. In the deeper layers, the

model then narrows its focus, concentrating atten-
tion on the most critical spans within that context.
In other words, the model appears to “think twice”:
first by attending broadly to gather context, and
then by selectively reinforcing attention on crucial
details to inform its final decision (For more cases,
please refer to Figure 14).

In addition, we define Answer Probability Gain
(APG) metric to examine how context-faithful ex-
perts influence the model’s intermediate decision-

making process. Let h%)a o € R be the hidden
state output by the MoE module at layer ¢ for the
last token of input ¢ where d is hidden size, and
let y; be its true answer tokens. We employ Logit
Lens (Dar et al., 2023), using the projection ma-
trix W € RV ¥4 (where V is the vocabulary size)
of language model head, to compute the probabil-
ity p%) (yi) assigned to y; at layer ¢ under model
m € {base,rt} where rt refers to “router-tuned”.
We then compute the average probability gain of

the correct answer over all N4 samples:

Ns (&) \ (0 ‘
APG(Z) = 1 E Prt (yl) pbase(yl) (12)
N 4 0 (.
¥ =1 pbase(yl)

This metric quantifies how much context-faithful
experts increase the model’s implicit confidence in
the correct answer at each layer.
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OLMOoE-1B-7B MiniCPM-MoE-8x2B

APG
APG
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Figure 8: Layer-wise visualization of the Answer Probability Gain (APG) of the router-tuned models (OLMoE-

1B-7B and MiniCPM-MoE-8x2B) over their untuned counterparts on the NQ-Swap test set, illustrating how
context-faithful experts progressively enhance the model’s confidence in the correct answer across layers.

Figure 8 visualizes the layer-wise APG scores
for OLMoE-1B-7B and MiniCPM-MoE-8x2B on
the NQ-Swap test set. We observe that, due to the
context-faithful experts’ effective amplification of
attention to both the broader context and the key an-
swer tokens, the models are able to more accurately
integrate relevant contextual information, leading
to a substantial increase in the predicted probability
of the correct answer in the deeper layers.

4 Context Faithfulness Optimization

4.1 Context-faithful Expert Fine-Tuning

Our previous analysis reveals a clear distinction
between context-faithful experts and others: the
former selectively amplify attention to relevant con-
textual information and key answer spans. By fo-
cusing on fine-tuning these high-impact experts,
it is expected to achieve: (1) Efficiency: Signifi-
cantly reduce the number of trainable parameters.
(2) Robustness: Mitigate overfitting by preserv-
ing the pretrained weights of non-critical experts.
(3) Effectiveness: Exploit the specialized routing
behavior to further improve context utilization.
Motivated by this consideration, we propose
Context-faithful Expert Fine-Tuning (CEFT) —
a two-stage training strategy (Algorithm 1). CEFT
first identifies context-faithful experts using Router
Lens analysis, then fine-tunes only these selected
experts while freezing the rest of the model.

4.2 Empirical Results

Main Performance To evaluate the effective-
ness of the proposed CEFT approach, we com-
pare it against two baseline strategies: standard
Fully Fine-Tuning (FFT) and Expert-Specialized
Fine-Tuning (ESFT) (Wang et al., 2024b). While
ESFT also targets expert-level adaptation by only
tuning a subset of experts deemed relevant to the
task, it relies on the original, untuned router net-
work to identify these experts, which may result

Algorithm 1 CEFT

Require: Training dataset Diyin, MoE model M,
number of selected experts k

Ensure: Fine-tuned MoE model M*

1: // Phase 1: Expert Identification

Freeze all parameters of M except the router

Optimizing router parameters on Diin

for each layer ¢ in the MoE model do
for each expert e; in layer £ do

()

i

()

i

Compute context-dependence ratio r
end for
Select top-k experts with the highest r

as context-faithful experts Ec(fr)ltext
9: end for
10: // Phase 2: Identified Expert Fine-Tuning
11: Freeze all parameters of M except the experts
in Ec(fr)next for each layer ¢
12: Train M on Dy, to obtain final model M*

in sub-optimal expert selection due to the influ-
ence of load balancing constraint and the limited
task-awareness of the untuned router. In contrast,
CEFT first adapts the router to reveal truly context-
faithful experts—those that significantly enhance
context-dependent reasoning—and then fine-tunes
only these high-impact experts for more precise and
efficient adaptation. For implementation details,
please refer to the Appendix A. As shown in Ta-
ble 3, CEFT consistently matches or surpasses FFT
and ESFT across MoE models and benchmarks,
indicating its parameter-effectiveness in leveraging
contextual information for improving generaliza-
tion in context-dependent tasks.

Mitigation of Catastrophic Forgetting We fur-
ther evaluate OLMoE-1B-7B and MiniCPM-MoE-
8x2B on MMLU (Hendrycks et al., 2021) to assess
the impact of RT, FFT, and CEFT on the mod-
els’ original capabilities. As shown in Table 4, the
decline in MMLU performance is approximately
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Methods SQuAD NQ HotpotQA NQ-Swap ConfiQA
EM F1 EM F1 EM F1 EM F1 EM F1
OLMOoE-1B-7B
FFT 81.6 88.8 62.1 75.3 63.3 78.8 88.3 88.8 85.5 88.9
ESFT 82.6 89.7 62.6 75.5 63.0 78.7 91.4 91.7 86.9 89.2
CEFT 83.1 90.3 64.1 76.9 63.8 79.1 90.5 90.8 87.1 89.4
DeepSeek-V2-Lite
FFT 85.4 92.0 67.7 79.6 62.2 78.3 91.3 92.5 87.3 90.6
ESFT 86.2 92.9 68.5 80.3 65.9 81.6 91.7 92.5 86.3 88.8
CEFT 87.0 93.5 69.0 81.2 63.7 80.1 92.7 93.6 87.3 89.4
MiniCPM-MoE-8x2B
FFT 81.5 89.6 62.8 75.9 62.8 78.6 90.4 91.0 86.3 88.8
ESFT 83.3 90.7 65.9 78.6 64.3 80.4 88.1 89.1 84.4 87.2
CEFT 83.8 91.6 66.6 79.3 64.9 80.9 90.7 92.0 84.8 87.5
Mixtral-8x7B

FFT 65.3 76.5 453 59.7 56.3 73.6 68.0 69.6 83.1 87.8
ESFT 66.1 71.2 45.9 60.3 56.8 73.7 67.2 68.4 79.3 85.9
CEFT 68.8 78.9 47.1 61.1 56.7 74.1 68.7 71.4 81.7 87.9

Table 3: Performance comparison of Fully Fine-Tuning (FFT), Expert-Specialized Fine-Tuning (ESFT) (Wang
et al., 2024b), and Context-faithful Expert Fine-Tuning (CEFT). Bold numbers indicate the best performance, while

underlined numbers denote the second-best.

Training Dataset Base FFT  CEFT RT
OLMoE-1B-7B
NQ-Swap 50.5 32.1 43.6 48.0
ConfiQA 50.5 45.1 48.3 49.6
MiniCPM-MoE-8x2B
NQ-Swap 55.7 46.0 54.1 55.5
ConfiQA 55.7 53.3 554 55.2

Table 4: Performance of OLMoE-1B-7B and MiniCPM-
MoE-8x2B models on MMLU benchmark after employ-
ing different training methods.

proportional to the number of trainable parameters,
with CEFT being substantially less susceptible to
catastrophic forgetting compared to FFT.
Training Efficiency Figure 9 illustrates the sub-
stantial reduction in trainable parameters achieved
by CEFT. For instance, OLMoE-1B-7B with FFT
requires 6.9B parameters, whereas CEFT needs
only 0.5B—a 13.8x reduction. This highlights
CEFT as an efficient approach for adapting MoE
models to context-dependent tasks, delivering com-
parable performance with far fewer trainable pa-
rameters than FFT.

Effect of Trainable Expert Count We conduct
an ablation study on the number of training experts
used in CEFT for OLMoE-1B-7B, using the NQ-
Swap and ConfiQA datasets. Model performance
is evaluated with varying numbers of experts: 1, 4,

50 BrrT 46.7

CEFT (Ours)
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Figure 9: Comparison of trainable parameters (fewer is
better) between Fully Fine-Tuning (FFT) and Context-
faithful Expert Fine-Tuning (CEFT).

8, 16, and 32. As shown in the Table 5, increasing
the number of experts generally improves perfor-
mance up to a point, after which the gains plateau or
slightly decline. This behavior can be attributed to
the following: (1) Training too few experts may fail
to capture enough context-faithful experts, limiting
the model’s ability to leverage context information.
(2) Training too many experts may involve irrel-
evant or noisy experts, leading to overfitting and
degraded generalization. These findings suggest
that using a moderate number of experts provides
a favorable trade-off between performance and effi-
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H#Experts NQ-Swap ConfiQA
EM F1 EM F1
1 87.5 88.5 84.4 88.0
4 90.2 91.0 854 88.3
8 90.5 90.8 87.1 89.4
16 88.8 89.4 88.0 91.1
32 88.1 88.8 85.6 88.8

Table 5: Performance of OLMoE-1B-7B model on NQ-
Swap and ConfiQA with varying numbers of experts
trained by CEFT.

ciency in CEFT. Notably, we observe that setting
the number of training experts to match the ac-
tual number of activated experts in the model often
yields strong results (8 for OLMoE-1B-7B).

5 Related works

Context Faithfulness Context faithfulness refers
to the extent to which a model’s output remains
accurate, consistent, and grounded in the provided
context. Unlike factual consistency, it emphasizes
alignment specifically with the input context rather
than with external world knowledge (Zhou et al.,
2023; Xu et al., 2024). In tasks such as RAG, main-
taining context faithfulness is critical to ensure the
reliability and trustworthiness of generated content
(Zhou et al., 2024). Recent studies have shown that
LLMs often generate responses that are fluent yet
contextually unfaithful (Du et al., 2024; Xie et al.,
2024). Various techniques, including prompt engi-
neering (Zhou et al., 2023), decoding constraints
(Shi et al., 2024), attention amplification (Sun et al.,
2025), mechanistic approaches (Yu et al., 2023;
Ortu et al., 2024; Minder et al., 2025), and learning-
based methods such as RAG-fashioned fine-tuning
(Zhang et al., 2024) and reinforcement learning
with context-aware rewards (Bi et al., 2024), have
been proposed to improve grounding in the given
context. Differently, our work focuses on an under-
explored direction: leveraging the expert specializa-
tion in terms of the context utilization to improve
the MoE performance on context-dependent tasks.
Expert Specialization The MoE architecture re-
places the standard FFN layer (Vaswani et al., 2017)
with a modular MoE layer comprising multiple
parallel experts and a router network to sparsely
activate top-k experts (Xue et al., 2024). During
the pretraining stage of MoE, a load balancing loss
is typically incorporated to force balanced expert
utilization (Dai et al., 2024), which encourages the
formation of expert specialization. Recently, a lot

of work has focused on the understanding of expert
specialization, finding that different experts are re-
sponsible for different tokens (Muennighoff et al.,
2024), domains (Jiang et al., 2024), tasks (Wang
et al., 2024b), semantic units (Li and Zhou, 2025),
or syntactic units (Antoine et al., 2025). These find-
ings facilitate the targeted optimization of the spe-
cialized experts (Wang et al., 2024b). Inspired by
these, our work investigates the expert specializa-
tion of context faithfulness.

6 Conclusion

In this work, we investigate expert specialization
of context faithfulness in MoE models. We propose
Router Lens to uncover context-faithful experts.
Building upon this, our CEFT approach selectively
updates the model parameters, yielding strong em-
pirical gains while maintaining efficiency.
Looking forward, we see several exciting direc-
tions: combining mechanistic interpretability tech-
niques such as SAE (Kang et al., 2025) to further
unravel MoE experts; extending our methods to
other forms of specialization such as reflection (Li
et al., 2025) and reasoning (Liu et al., 2025). We
hope this work inspires further research into aspect-
specific expert discovery and optimization.

Limitations

The proposed Router Lens relies on fine-tuning the
router network to discover context-faithful experts.
Thus, it cannot identify such experts in a zero-shot
or training-free setting. Moreover, improving the
context utilization ability of these experts also de-
pends on training procedures; we currently lack a
method to directly enhance their behavior without
additional supervision or optimization.

Ethics Statement

All experiments in this work are conducted on pub-
licly available datasets commonly used in natural
language processing research. No human subjects,
personal data, or sensitive content are involved. We
acknowledge that large-scale language models may
carry risks of misuse, bias, or hallucination, and our
work aims to improve their transparency and con-
trollability, which may help mitigate such issues in
the long term.
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Prompt template used in experiments

Based on the context below, output the
correct answer for the following question.

Context: ...Mission commander Paul and
pilot Buzz Aldrin, landed the lunar module
Eagle on July 20, 1969, at 20:18 UTC. Paul
became the first human to step onto the
lunar surface six hours after...

Question: Who took the first steps on the
moon in 1969?

Figure 10: Prompt template used during training and
evaluation for context-dependent tasks.

A Implementation Details

Prompt Template To evaluate MoE models on
context-dependent tasks, we adopt a unified prompt
template as illustrated in Figure 10. This template
explicitly instructs the model to generate an answer
based on the given context and question.

Router Tuning We fine-tune the model for 1
epoch on SQuAD, NQ, and HotpotQA datasets,
and 3 epochs on NQ-Swap and ConfiQA datasets.
All experiments use the AdamW (Loshchilov and
Hutter, 2019) optimizer with a learning rate of Se-
4, a warmup ratio of 0.1, and cosine learning rate
decay. The batch size is set to 8, and the maximum
sequence length is 300. All the experiments are run
on one NVIDIA A100 80GB GPU.
Context-faithful Expert Fine-Tuning The hy-
perparameters are identical to those used in Router
Tuning, except that CEFT fine-tunes the parameters
of the context-faithful experts instead of the router.

B Datasets

SQuAD Itis a widely used benchmark for extrac-
tive question answering (Rajpurkar et al., 2016).
Each example consists of a question and a context
paragraph from Wikipedia, with the answer being a
span within the paragraph (CC BY-SA 4.0 license).
NQ Itis alarge-scale dataset collected from real
user queries issued to the Google search engine
(Kwiatkowski et al., 2019). Each question is paired
with a Wikipedia page. Compared to SQuAD, NQ
is more challenging due to its longer contexts and
more diverse question types (Apache-2.0 license).
HotpotQA It is a multi-hop question answering
dataset where answering each question requires
reasoning over multiple paragraphs including both
supporting facts and distractor documents (CC BY-
SA 4.0 license) (Yang et al., 2018).
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Dataset #Train #Val #Test
SQuAD 82,258 4,330 10,507
NQ 98,867 5,204 12,836
HotpotQA 69,281 3,647 5,904
NQ-Swap 3,000 746 1,000
ConfiQA 4,000 500 1,500

Table 6: The statistics of datasets used in this work.

Models Params (A/F) #Experts (A/F)
OLMOE-1B-7B 1.3B/6.9B 8/64
DeepSeek-V2-Lite 2.4B/15.7B 6/64
MiniCPM-MoE-8x2B 4B/ 13.6B 2/8
Mixtral-8x7B 12.9B /46.7B 2/8

Table 7: Overview of the MoE models used in this work.
A and F refer to “Activated” and “Full”.

NQ-Swap It is a variant of the NQ (Longpre
et al., 2021), where part of the relevant document
context is swapped with similar-looking but seman-
tically misleading content, forcing the model to rely
more heavily on context utilization (MIT License).
ConfiQA It is designed to evaluate the context-
faithfulness when knowledge conflicts (Bi et al.,
2024). The dataset is constructed by sampling real-
world facts, generating multi-hop paths, and cre-
ating counterfactual contexts by replacing entities.
We use its MC (Multi-Conflicts) subset that in-
cludes multiple counterfactuals (MIT License).

C Models

OLMoE-1B-7B OLMOoE-1B-7B is a fully open-
source MoE developed by researchers from the
Allen Institute for AI (Muennighoff et al., 2024).
This model consists of 16 layers where 8 out of
64 experts are activated in each, and has 7 billion
parameters but activates only 1 billion parameters
per input token. We use its Instruct version in this
work: OLMoE-1B-7B-0924-Instruct.
DeepSeek-V2-Lite This is a small version of the
DeepSeek-V2 model (DeepSeek-Al et al., 2024).
It has 27 layers where each MoE layer consists of
2 shared experts, 64 routed experts, and 6 activated
experts. This configuration results in a total of 15.7
billion parameters, with 2.4 billion activated for
each token. We use the parameters of its chat ver-
sion: DeepSeek-V2-Lite-Chat.
MiniCPM-MoE-8x2B MiniCPM-MoE-8x2B is
a MoE variant of the MiniCPM model (Hu et al.,
2024). It initializes using sparse upcycling, replac-
ing MLP layers with MoE layers. With two 2 of
8 experts activated, it results in approximately 4B

Methods NQ-Swap ConfiQA
ACCLLM EM F1 ACCLLM EM F1
FFT 91.9 88.3 88.8 90.5 85.5 88.9
ESFT 93.6 91.4 91.7 90.8 86.9 89.2
CEFT 92.4 90.5 90.8 91.5 87.1 894

Table 8: The accuracy (Accrpy) computed by LLM-
as-a-judge, EM, and F1 scores of OLMoE-1B-7B on
NQ-Swap and ConfiQA.

activated parameters. This approach significantly
boosts performance across various benchmarks,
while maintaining computational efficiency.
Mixtral-8x7B  Mixtral-8x7B is built upon the
Mistral 7B model but incorporates 8 experts in each
layer (Jiang et al., 2024). This design allows each
token to access a vast pool of 47B parameters, yet
only 13B parameters (2 experts in each layer) are
actively used during inference. We use its Instruct
version, Mixtral-8x7B-Instruct-v0.1.

D Evaluation by LLM-as-a-judge

EM and F1 are widely used metrics for evaluat-
ing question answering tasks. Both are standard
in benchmarks such as SQuAD and NQ, ensur-
ing comparability and providing a comprehensive
assessment of model performance. Additionally,
we supplement our results with LLM-as-a-judge
for OLMoE-1B-7B on the NQ-Swap and Con-
fiQA datasets. Specifically, we employ Qwen3-32B
(Yang et al., 2025) to assess the correctness of the
MOoE models’ predictions.

The Table 8 reports the accuracy computed by
the LL.M-as-a-judge (Accrpm), alongside the EM
and F1 scores for OLMoE-1B-7B. As expected,
Accy v tends to be higher than EM, reflecting its
more permissive evaluation criteria. However, all
three metrics show consistent performance trends
across models and datasets.

E Layer-wise Context-faithful Expert
Collaboration Analysis

We investigate the collaborative effect of context-
faithful experts—specifically, whether activating
more such experts leads to greater performance
gains on context-dependent tasks.

To this end, we perform two sets of fine-
tuning experiments on the NQ-Swap dataset using
OLMOoE-1B-7B and MiniCPM-MoE-8x2B: (1) X-
th Layer Router Tuning, where we fine-tune the
router of a single layer at a time, and (2) First-
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Figure 11: The performance on NQ-Swap when fine-tuning the router of single layer (X-th Layer Router Tuning)
and fine-tuning the routers of first layers (First-X Layers Router Tuning).
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Figure 12: Visualization of layer-wise Context Attention Gain (CAG) and Answer Attention Gain (AAG) for
router-tuned models with varying numbers of tuned layers, relative to the untuned baseline, on the NQ-Swap test set.

X Layers Router Tuning, where we progressively
fine-tune the routers of the first X layers.

As shown in Figure 11, the results reveal clear
differences between two models. For X-th Layer
Router Tuning, OLMoE-1B-7B shows substantial
improvements even when tuning only a single early
layer, suggesting that adjusting routing decisions
at individual layers can significantly enhance con-
text utilization. In contrast, MiniCPM-MoE-8x2B
exhibits negligible gains from tuning single layer,
implying that it requires multi-layer router adapta-
tion to benefit from tuning. We hypothesize that this
discrepancy arises partly from architectural differ-
ences: OLMoE-1B-7B employs more experts per
layer (64) and activates more experts per token (8)
than MiniCPM-MoE-8x2B, making each routing
decision more influential and context-sensitive. For
First-X Layers Router Tuning, both models show
incremental performance improvements as more
layers are tuned, indicating that context-faithful
experts across layers collaborate to improve per-
formance. However, the gains gradually saturate
with the inclusion of more tunable layers, suggest-
ing that some experts across different layers may
perform redundant roles.

We further analyze the attention gain on both
the context and the answer across different First-X
Layers Router-Tuned models to examine whether
different groups of context-faithful experts exhibit
similar effects. As shown in Figure 12, the observed
"think twice" phenomenon is not an isolated arti-
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Corr Between EM and CAG

80
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0.8 0.9
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07
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Figure 13: The correlation between the model’s EM
performance and the answer (context) attention gain.

fact caused by a particular combination of context-
faithful experts. Instead, it is a consistent behavior
that emerges across models with varying numbers
of tuned layers. To better understand the influence
of this phenomenon—particularly the substantial
increase in attention gain on both the context and
the answer—we visualize the relationship via a
scatter plot. Additionally, we compute the Pearson
correlation coefficient between the attention gain
on the answer and the corresponding performance
improvements. As illustrated in Figure 13, we ob-
serve a strong positive correlation (r = 0.95), indi-
cating that greater attention gain on the answer is
closely associated with higher model performance.
This result provides further evidence that context-
faithful experts enhance the model’s ability to fo-
cus on the most relevant contextual information
in deeper layers, ultimately contributing to more
context-faithful predictions.
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Methods BLEU METEROR ROUGE-L Models Base RT FFT CEFT
OLMOoE-1B-7B OLMOoE-1B-7B 56.6 89.0 96.5 96.1
Base 19 35.5 217 MiniCPM-MoE-8x2B  63.5 86.4 96.5 95.1
RT 15.9 38.0 39.6
FFT 17.1 38.5 40.8 Table 10: Performance on MemoTrap dataset.
CEFT 16.2 38.3 40.8
MiniCPM-MoE-8x2B Methods EM F1
Base 1.8 35.6 22.8 Base 28.1 40.5
RT 11.6 34.8 36.8 ContextCite 28.9 41.2
FFT 15.6 38.7 40.3 CFP 46.1 51.6
CEFT 15.9 38.3 39.7 CAD 55.9 60.8
Context-DPO 65.7 69.8
Table 9: Performance on Gigaword benchmark. CEFT 90.5 90.8
w/ ContextCite 90.7 91.2
w/ CAD 90.8 91.0

F Performance on Non-QA Task

We also examine RT and CEFT on other context-
dependent task, e.g., summarization. We evaluate
OLMOoE-1B-7B and MiniCPM-MoE-8x2B on the
widely used Gigaword benchmark (Rush et al.,
2015), where we sample 2000/500/500 examples
as the train/validation/test sets, respectively.

Table 9 reports their performance in terms of
BLEU, METEOR, and ROUGE-L scores. Our ex-
periments show that router tuning consistently im-
proves summarization performance over the base
model. Furthermore, with CEFT—which selec-
tively tunes the experts identified by the tuned
router—we achieve performance comparable to
full fine-tuning. These results validate the effec-
tiveness and generalizability of our method beyond
contextual QA and reasoning tasks.

G Performance on Task Independent on
the Context

We further evaluate CEFT on the MemoTrap
dataset (Shi et al., 2024), a benchmark specifically
designed to detect whether language models mem-
orize and regurgitate training data. Notably, Memo-
Trap is independent of any additional context, and
therefore does not require context faithfulness.

Table 10 reports the accuracy of OLMoE-1B-7B
and MiniCPM-MoE-8x2B on MemoTrap. From
these results, we observe the following in this
context-independent task: (1) Router tuning helps
the model activate the appropriate experts for the
task and leads to significant performance improve-
ment. (2) CEFT, by selectively training the most
relevant experts, achieves performance compara-
ble to full fine-tuning. These findings demonstrate
the effectiveness of both Router Lens and CEFT
beyond context-dependent tasks.

Table 11: Performance comparison of methods designed
for improving context faithfulness on NQ-Swap.

H Comparison with Other Methods for
Context Utilization

We further compare our CEFT approach with
Context-Faithful Prompting (CFP) (Zhou et al.,
2023), Context-Aware Decoding (CAD) (Shi et al.,
2024), ContextCite (Cohen-Wang et al., 2024), and
Context DPO (Bi et al., 2024) on the NQ-Swap
and ConfiQA datasets. Among these, CFP, CAD,
and ContextCite are unsupervised methods optimiz-
ing for prompt engineering, decoding, and context
pruning, respectively. In contrast, Context DPO
adopts a direct preference optimization to guide
LLMs to prefer context-faithful outputs.

Table 11 shows the performance comparison
between CEFT and the above context-utilization
methods. Across both datasets—NQ-Swap and
ConfiQA, CEFT consistently achieves the best re-
sults, significantly outperforming all baselines in
both EM and F1 scores. These results highlight
the effectiveness of CEFT in leveraging context-
faithful experts to model context-sensitive behavior
more accurately than prior unsupervised prompt-
ing or decoding strategies, as well as preference-
optimized approaches.

We combine ContextCite and CAD with CEFT
to explore potential improvements, respectively.
However, neither ContextCite nor CAD yields
substantial gains. A possible explanation is that
both context-level and decoding-level optimiza-
tions have limited capacity to enhance performance
in this setting, particularly since they are unsuper-
vised and not directly aligned with the model’s
training objectives.
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Figure 14: More cases of attention gain from context-faithful experts in OLMoE-1B-7B on NQ-Swap examples. The

correct answers to these examples are “West Indies’
and “Judi Dench”, respectively.

’, “Tahiti”, “Adam Beach”, “Tom Piper”

, “Harry Dean Stanton”,
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