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Abstract

In linguistics, coherence can be achieved by
different means, such as by maintaining refer-
ence to the same set of entities across sentences
and by establishing discourse relations between
them. However, most existing work on coher-
ence modeling focuses exclusively on either en-
tity features or discourse relation features, with
little attention given to combining the two. In
this study, we explore two methods for jointly
modeling entities and discourse relations for
coherence assessment. Experiments on three
benchmark datasets show that integrating both
types of features significantly enhances the per-
formance of coherence models, highlighting
the benefits of modeling both simultaneously
for coherence evaluation.

1 Introduction

Coherence is a property of well-written texts that
makes them easier to read and understand than a
sequence of randomly strung sentences (Lapata and
Barzilay, 2005). Its modeling benefits many down-
stream NLP tasks, such as machine translation (Sia
and Duh, 2023), topic modeling (Li et al., 2023),
text generation (Guan et al., 2023), and dialog gen-
eration (Mendonca et al., 2024).

In linguistics, text coherence can be achieved in
several ways, with two of the most widely stud-
ied being entity-based and discourse relation-based
coherence (Reinhart, 1980; Jurafsky and Martin,
2025). Entity-based coherence focuses on how
entities are introduced and maintained throughout
a text (Prince, 1981; Grosz et al., 1995). In con-
trast, discourse relation-based coherence considers
the logical or rhetorical relationships between sen-
tences (Kehler et al., 2008; Rohde et al., 2018).
These perspectives have inspired distinct model-
ing approaches: entity-based methods (Barzilay
and Lapata, 2008; Guinaudeau and Strube, 2013;
Tien Nguyen and Joty, 2017; Jeon and Strube,

• Did you know that John is still in Germany?

• He was planning to leave Berlin today but ran

into a citywide strike.

• All the roads were blocked, and buses and trains

were cancelled.

• So, he couldn’t get to the airport and now has to

stay in the city for a few more days.

Reason

Instantiation

Result

Figure 1: An example of a coherent text, whose coher-
ence should be explained using both entities and dis-
course relations. We bold the interlinked entities in the
text and show the discourse relations between sentences.

2022) typically model local coherence by track-
ing entity transitions, while discourse-based meth-
ods (Lin et al., 2011; Feng et al., 2014; Wang et al.,
2019; Wu et al., 2023) evaluate coherence based
on parsed discourse relations.

While these approaches have proven effective
individually, real-world texts often require a more
integrated view. In practice, entity and discourse
relation cues frequently coexist and interact in com-
plex ways. To illustrate this, we present an exam-
ple in Figure 1, which contains four sentences and
is considered highly coherent. Establishing the
coherence using entities is not straightforward in
this case, as there are no overlapping entities be-
tween the second and third sentences. Instead, we
must use a more complex linguistic phenomenon,
namely bridging (Clark, 1975; Hou et al., 2018), to
link “city” (in “citywide”) and “road”. Meanwhile,
the connection between these sentences is more
readily explained by a discourse relation (e.g., In-
stantiation), as the third sentence elaborates on the
strike mentioned earlier. However, relying solely
on discourse relations also has limitations, as it can
compromise the smooth tracking of the protagonist
if the referents are unclear. For example, if the final

21922



sentence were changed to “So, Maria couldn’t get
to the airport...” the discourse relation might still
hold, but the referent switch (i.e., John → Maria)
would disrupt the overall coherence. This under-
scores the need to jointly consider both entity con-
tinuity and discourse structure. Despite their com-
plementary nature, few studies have empirically
investigated whether combining these two perspec-
tives leads to more effective coherence assessment.

To address this gap, we propose two approaches
for jointly modeling entities and discourse relations
in coherence evaluation. The first approach iden-
tifies the entities in a document and the discourse
relations between sentences, then organizes them,
along with the sentences, in a flat structure. We
introduce a fusion Transformer that jointly models
these elements to assess coherence. The second
approach avoids dedicated fusion modules by in-
corporating entity and discourse relation informa-
tion directly into prompts, allowing large language
models (LLMs) to leverage them during inference.

We evaluate1 our methods on three benchmarks:
two for assessing discourse coherence and one
for automatic essay scoring. Our models signif-
icantly outperform strong baselines, demonstrating
the benefits of joint modeling. Further analysis
reveals that integrating both entities and discourse
relations enables better learning of coherence pat-
terns, which help to mitigate the effects of imbal-
anced data distributions in datasets and improve
models’ generalization across domains.

2 Related Work

Our work is related to existing approaches that en-
hance coherence modeling using entities, discourse
relations, or Transformer-based models.
Entity-based. The most well-known entity-based
model is the Entity Grid, proposed by Barzilay and
Lapata (2008), which constructs a two-dimensional
matrix to capture the transitions of entities between
adjacent sentences. This model has been improved
by various subsequent efforts, such as incorporat-
ing semantically related entities (Filippova and
Strube, 2007) and integrating entity-specific fea-
tures (Elsner and Charniak, 2011). Another promi-
nent entity-centered approach is the Entity Graph,
proposed by Guinaudeau and Strube (2013), which
measures textual coherence by evaluating the extent
to which sentences are connected to each other via
shared discourse entities. Building on similar ideas,

1https://github.com/liuwei1206/EntyRelCoh

Mesgar and Strube (2015, 2016) model coherence
using the local connectivity structure of sentences.
With the rise of deep learning, neural networks
have also been applied to capture entity-based co-
herence patterns. For example, Tien Nguyen and
Joty (2017) and Joty et al. (2018) extend the entity
grid using convolutional neural networks. Jeon and
Strube (2020) introduce a structure-aware model
to approximate Centering Theory, which is further
refined by Jeon and Strube (2022) through the use
of more linguistically grounded units, such as noun
phrases and proper names.
Discourse Relation-based. Compared to entity-
based models, fewer studies have employed dis-
course relations for coherence assessment, largely
due to the limited performance of early discourse
parsers. One of the earliest works in this area is
by Lin et al. (2011), who use discourse relations
as features for evaluating coherence. Specifically,
they adopt an approach similar to the entity grid,
constructing a two-dimensional matrix where rows
represent sentences and columns represent entities,
and each cell (si, ej) contains the set of discourse
roles of the entity ej that appears in the sentence si.
Feng et al. (2014) extend this approach by replac-
ing shallow discourse relations with deeper ones
derived from an RST (Mann and Thompson, 1988)
parser. However, Mesgar and Strube (2015) criti-
cize these methods as conceptually flawed, arguing
that treating discourse relations as features of en-
tities contradicts their linguistic function, which
is to link sentences or elementary discourse units
(EDUs). More recently, Wu et al. (2023) propose
a multi-task framework that jointly identifies dis-
course relations between sentences and evaluates
the overall coherence of a text.

Unlike these two lines of work focusing solely
on entities or discourse relations, we aim to com-
bine both for more effective coherence modeling.
Transformer-based. Our work is also related to
recent studies that use Transformer models for co-
herence assessment. Abhishek et al. (2021) demon-
strate that RoBERTa significantly outperforms ear-
lier embedding-based models, with performance
further improving under a multi-task training setup
incorporating NLI tasks. Laban et al. (2021) use
Transformer models to tackle the shuffle test task,
achieving near-perfect accuracy (97.88%). To
probe the capabilities of language models in co-
herence prediction, Beyer et al. (2021) design tar-
geted test suites addressing diverse aspects of dis-
course and dialogue coherence. Building on these
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Figure 2: Sentences (in Figure 1) linked by entities and
discourse relations.

directions, Zhao et al. (2023) propose DiscoScore,
a BERT-based metric inspired by Centering The-
ory, which models coherence from multiple dis-
course perspectives and shows a high correlation
with human judgments across coherence and fac-
tual consistency. More recently, large language
models have also been applied to coherence evalu-
ation. Naismith et al. (2023) show that GPT-4 can
produce coherence ratings comparable to those of
human annotators, accompanied by well-reasoned
explanations. Similarly, Mansour et al. (2024) as-
sess ChatGPT and LLaMA on essay scoring tasks,
finding that, with appropriate prompting, both mod-
els achieve strong performance even in one-shot
settings.

3 Method

In this section, we introduce how to identify entities
and discourse relations in a document, followed by
two methods that use the identified entities and
discourse relations to evaluate coherence.

Given a document, we use Stanza (Qi et al.,
2020) to identify all nouns and co-references, and
to segment the text into sentences. We focus on
nouns rather than entities because previous stud-
ies have shown that using nouns leads to better
performance in coherence modeling (Elsner and
Charniak, 2011; Tien Nguyen and Joty, 2017). For
discourse relations, we follow prior work(Lin et al.,
2011) that adopts the Penn Discourse Treebank
(PDTB) framework (Prasad et al., 2008). Specif-
ically, we use the discourse parser discopy, de-
veloped by Knaebel (2021), to extract relations
between adjacent sentences, with a few modifica-
tions. First, we use PDTB 3.0 (Webber et al., 2019)
instead of PDTB 2.0 (Prasad et al., 2008), as the
former includes more relation types and is an im-
proved version of the latter. Second, for implicit
discourse relation classification, we use the model

s1 s2 s3 s4 e e e r1 r2 r3

1 2 3 4 1 1 2 1 2 3

1 2 3 4 2 4 4 2 3 4

Multi-head Position-
Aware Attention

Add & LN

Feed Forward

Add & LN s1 s2 s3 s4 r1 r2 r3e e e
s1
s2
s3

e

e
e

s4

r1
r2
r3

visible matrix

Figure 3: The sentences, entities, and discourse rela-
tions in Figure 2 are organized into a flat structure, in
which each element is assigned a two-dimensional posi-
tion, indicating its start and end position in the original
sentence sequence. This flat input is then processed by
a fusion Transformer.

proposed by Liu and Strube (2023), which achieves
state-of-the-art performance. We provide more de-
tails about the parser in Appendix A.

After identifying nouns, coreference relations,
and discourse relations, we link two sentences if:
(1) they share the same nouns or there is a corefer-
ence link between mentions in the sentences, or (2)
they are connected by a discourse relation. In the
first case, we add an edge labeled “entity” between
the sentences, while in the second case, we add
an edge labeled with the specific type of discourse
relation. Figure 2 shows how the sentences in Fig-
ure 1 are linked through the identified entities and
discourse relations, forming a graph structure.

However, since the Transformer is designed
for sequence modeling (Vaswani et al., 2017),
it doesn’t naturally handle graph-structured in-
put. One possible solution is to use Graph Neu-
ral Networks (GNNs), but standard GNNs are
permutation-invariant and cannot capture order in-
formation (Wu et al., 2021), which is crucial for
coherence modeling (Lapata, 2003). Below we
introduce two approaches to address these issues.

3.1 Method I: Fusion

In this approach, we introduce a flat structure to or-
ganize sentences, entities, and discourse relations,
and design a fusion transformer to jointly model
these elements. Figure 3 shows an overview.

In the flat structure, sentences, entities, and dis-
course relations are concatenated into a sequence.
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Each element in this sequence is assigned a two-
dimensional position (see the bottom part in Figure
3), indicating its start and end positions within the
original sentence sequence. Take s1 and r1 for an
example, their positions are (1, 1) and (1, 2), re-
spectively, which means that s1 is the first sentence
in the text and r1 links the first and second sen-
tences. This flat structure preserves sentence order
as well as the connections among sentences, enti-
ties, and discourse relations. Its sequential format
also makes it well-suited for Transformer models.

To handle this flat structure, we propose a fusion
Transformer that enhances the vanilla Transformer
with a novel position-aware attention mechanism
and a visible matrix. Specifically, we first use a text
encoder, such as RoBERTa or LLama, to obtain
the representations of sentences, entities, and dis-
course relations. Then, we input all the elements
along with their two-dimensional positions into the
position-aware attention. The position-aware atten-
tion between the i-th and the j-th elements in the
sequence is defined as:

Aij = qik
T
j + qir

T
i−j + ukT

j + vrTi−j (1)

where qi,kj , ri−j = eiWq, ejWk,pei−jWr, ei
means the representation of the i-th element, pei−j

denotes the relative position embedding between
the i-th and the j-th elements, and Wq, Wk,
Wr, u, v are trainable parameters. The first and
third terms in Eq. 1 are content-based addressing,
where the former calculates weight between query
and key, and the latter governs a global content
bias (Dai et al., 2019). The second and last terms
compute weight with relative positional informa-
tion, which can be used to guide the attention be-
tween relevant elements. Since each element in the
flat structure has a 2D position, we can calculate
four types of relative distances between the i-th and
j-th elements: (i) starti−startj; (ii) starti−endj;
(iii) endi − startj; (iv) endi − endj. The final rel-
ative position embedding between the i-th and j-th
elements, i.e., pei−j , is defined as a non-linear
transformation over the four relative distances:

pei−j = (psi−sj ⊗psi−ej ⊗pei−ej ⊗pei−ej )Wp

(2)
The position embedding p is initialized as in Trans-
former, where p2k

pos = sin
(
pos/100002k/dmodel

)

and p2k+1
pos = cos

(
pos/100002k/dmodel

)
.

To prevent sentences from attending to irrelevant
entities and discourse relations, we further intro-

duce a visible matrix M to guide the attention:

Mij =

{
0, if C1 | C2 | C3 | C4

−∞, otherwise
(3)

where C1 is i = j (i.e., self-connection), C2 is
that both i-th and j-th elements are sentences (text
content), C3 is that one element is a sentence and
the other is an entity, and the sentence links to
the entity (entity patterns), and C4 is defined as
nodes i and j is one sentence and one relation,
and the relation works on the sentence (discourse
relation patterns). We apply the visible matrix to
the attention calculation:

A∗ = Softmax(A+M) (4)

Then layer normalizations and a feed-forward net-
work (as shown in Figure 3) are applied to produce
the text representation. Finally, we input the rep-
resentation into a softmax classifier, and use the
cross-entropy loss for training.

3.2 Method II: Prompt
While the first approach can model coherence us-
ing entity and discourse relation information, it
relies on an additional fusion module and cannot
fully leverage the generative capabilities of Large
Language Models (i.e., it merely treats LLMs as
a feature extractor). Inspired by Ye et al. (2024),
we explore a second approach that uses natural lan-
guage to describe the connections among sentences,
entities, and discourse relations, and then prompts
LLMs to take these information into account for
coherence assessment. Figure 4 illustrates this ap-
proach using the example from Figure 1 and its
corresponding connection graph from Figure 2.

Given a graph composed of sentences, entities,
discourse relations, and their connections, we tra-
verse all sentence nodes in the order they appear
in the text, from left to right. Sentences are added
to the prompt and labeled with their position (e.g.,
s1, s2, etc., see Figure 4). For each sentence node,
we perform a depth-first search to find all two-hop
neighboring nodes that are bridged by an entity or
a discourse relation. This allows us to break down
the graph into a list of triples, where each triple (si,
rij, sj) includes two sentences, si and sj, along with
the relation rij between them. We only retain triples
where i < j, following the natural left-to-right read-
ing order of humans, as suggested by Liu et al.
(2023b). For example, the graph in Figure 2 is bro-
ken down into the following triples: (s1, entity, s2),
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You are an AI assistant tasked with coherence assessment. You will be given a set of sentences from a text, along with parsed relations between some sentence 

pairs. Each relation is represented as a triple in the form (si, r, sj), where si and sj denote the i-th and j-th sentences from the text and r is the relation between 

them. The relation r can be one of the following: (1) “entity”: indicates that the two sentences discuss the same entities; (2) a discourse relation, such as 

“reason” and “contrast”: indicates there is a discourse relation between the two sentences. Your task is to evaluate the overall coherence level of the text by 

considering the content of the sentences and the relations between them. Please assign one of the following coherence levels to the text: {low, medium, high}.

Here are the sentences in the given text:

s1: Did you know that John is still in Germany?

s2: He was planning to leave Berlin today but ran into a citywide strike.

s3: All the roads were blocked, and buses and trains were cancelled.

s4: So, he couldn’t get to the airport and now has to stay in the city for a few more days.

Here are the relations between sentences: (s1, entity, s2), (s1, reason, s2), (s1, entity, s4), (s2, instantiation, s3), (s2, entity, s4), (s3, result, s4)

Large Language Models high

input

generate

Figure 4: Illustration of our second approach. We use natural language to describe the relationships between
sentences, entities, and discourse relations in Figure 2, presenting the graph structure in a concise and intuitive way.
We then instruct LLMs to consider these elements for coherence assessment.

(s1, reason, s2), (s1, entity, s4), (s2, instantiation,
s3), (s2, entity, s4), (s3, result, s4). These triples
are expressed in natural language format, making
them easy for LLMs to process. More importantly,
they retain all the connection information between
sentences, entities, and discourse relations. Finally,
we include the list of triples in the prompt and in-
struct the LLMs to assess coherence by considering
both the content of the sentences and the patterns
of entities and discourse relations between them
(see Figure 4).

4 Experiments

Datasets. We conduct experiments on three widely
used corpora in coherence modeling: GCDC (Lai
and Tetreault, 2018), CoheSentia (Maimon and
Tsarfaty, 2023), and TOEFL (Blanchard et al.,
2013). GCDC is a corpus designed for evaluat-
ing discourse coherence, containing texts from four
distinct domains: Yahoo online forum posts, En-
ron emails, emails from Hillary Clinton’s office,
and Yelp business reviews. Each text in the dataset
is rated by experts on a scale of 1 to 3, indicat-
ing low, medium, and high levels of coherence.
CoheSentia is another dataset used to assess dis-
course coherence. Unlike GCDC, which consists
of real-world texts, CoheSentia contains stories
generated by GPT-3 and is annotated by humans
with coherence scores ranging from 1 to 5. How-
ever, the score distribution is highly imbalanced,2

which makes it difficult for models to converge
during training (Maimon and Tsarfaty, 2023). To

2Over 50% of the data is labeled with a score of 5.

address this, we group scores 1 and 2 as low co-
herence, scores 3 and 4 as medium coherence, and
score 5 as high coherence. The TOEFL dataset
was originally created for automated essay scoring
but has since been widely used to evaluate coher-
ence models (Burstein et al., 2010; Jeon and Strube,
2020). It includes essays written in response to
eight prompts (P1 to P8) along with score levels
(low/medium/high) for each essay.
Implementation Details. We implement our mod-
els using the PyTorch library. For Method I, we ex-
periment with two widely used text encoders (Ab-
hishek et al., 2021; Parmar et al., 2024): the
pre-trained language model RoBERTabase (Liu
et al., 2019b) and the large language model
Llama-3.1-8B-Instruction (Grattafiori et al.,
2024).3 Training is performed using the AdamW
optimizer with an initial learning rate of 1e-3, a
batch size of 32, and a maximum of 20 epochs.

For Method II, which is specifically designed
for large language models (LLMs), we evaluate
it using Llama-3.1-8B-Instruction.3 The evalua-
tion is conducted under two settings: zero-shot
and fine-tuned. In the zero-shot setting, the model
is not trained beforehand; instead, it is directly
prompted to generate labels. This setup tests
whether incorporating entity and discourse rela-
tion features can help with coherence evaluation
in cold-start scenarios. In the fine-tuned setting,

3We use the 8B LLaMA model instead of the 70B due
to memory limitations that prevent fine-tuning larger models.
However, our resources do support zero-shot experiments with
the 70B model. To maintain consistency across settings, we
use the 8B model throughout the main text, but include zero-
shot results for the 70B model in the Appendix E.
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Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Jeon and Strube (2022) 64.200.4 55.300.3 58.400.2 57.300.2 58.90 -
Liu et al. (2023b) 66.200.8 57.000.8 63.650.7 58.051.2 61.23 -

Fusion

RoBERTa

TextOnly 64.550.7 57.500.9 60.050.4 58.200.8 60.10 60.641.5

TextEnty 66.200.8 58.801.1 63.150.9 59.201.1 61.83 63.132.0

TextRel 66.450.9 59.701.0 63.351.1 60.401.3 62.48 63.741.8

Our Method I 67.600.5 60.500.3 63.750.5 61.100.4 63.24 66.241.6

Llama

TextOnly 63.550.5 56.650.8 59.450.8 57.451.0 59.27 63.131.2

TextEnty 64.800.8 58.100.4 62.100.5 57.900.8 60.73 65.801.5

TextRel 65.100.7 58.750.4 62.850.3 59.350.5 61.51 66.651.6

Our Method I 67.250.4 60.100.3 64.100.5 61.300.5 63.18 69.121.5

Prompt

Llama zero-shot

TextOnly 54.50 38.00 34.00 40.50 40.88 50.10
TextEnty 55.00 39.00 41.50 44.50 45.00 51.35
TextRel 57.50 41.00 42.00 45.50 46.50 52.17
Our Method II 56.50 41.00 42.00 48.00 46.88 53.83

Llama fine-tuned

TextOnly 63.550.8 56.800.9 60.051.0 55.451.2 58.96 64.951.4

TextEnty 65.001.2 57.600.5 60.451.0 56.300.9 59.84 65.381.5

TextRel 64.550.7 59.100.5 61.100.7 57.250.5 60.50 66.421.4

Our Method II 65.150.6 60.551.2 62.051.2 57.550.5 61.33 67.281.1

Table 1: Mean accuracy results (with std) on GCDC and CoheSentia.

we fine-tune the Llama model using LoRA for 3
epochs, with a learning rate of 5e-5 and a batch
size of 2. This setup evaluates whether instruction-
tuning the LLM to consider entities and discourse
relations can enhance its performance.

To account for training variability, we perform
10-fold cross-validation on the GCDC training
dataset (Lai and Tetreault, 2018), 5-fold cross-
validation on the CoheSentia corpus, and 5-fold
cross-validation on the dataset for each prompt in
the TOEFL corpus (Taghipour and Ng, 2016). Fol-
lowing prior work, we use standard accuracy (Acc,
%) as our primary evaluation metric.4

Baselines. To validate the importance of modeling
entities and discourse relations simultaneously, we
compare it with the following baselines:

• TextOnly. This baseline relies solely on tex-
tual information for coherence modeling. In
Method I, this involves using a text encoder
to obtain sentence representations, a sentence-
level transformer to capture coherence pat-
terns, and a softmax classifier for prediction.
In Method II, it prompts LLMs to evaluate
coherence based only on the text.

4We also report the results of Macro-F1 in Appendix C.

• TextEnty. This is an ablated version of our
approach in which the discourse relation ele-
ments are removed from the sentence-entity-
discourse relation graph.

• TextRel. This is another ablated version of
our method, where we remove the entity ele-
ments from the graph.

Further, we compare our approaches against pre-
vious state-of-the-art models on each corpus. For
more details on the datasets, implementation, and
baselines, please refer to Appendix B.

4.1 Overall Results
GCDC / CoheSentia. Table 1 shows the results
on GCDC and CoheSentia datasets, where the “Fu-
sion” block shows the results relying on an extra
fusion module to integrate entity and discourse re-
lation features, while the “Prompt” block presents
the results using natural languages to incorporate
entity and discourse relation patterns into the input
prompt of LLMs.

For the Fusion style, we show the results based
on RoBERTa and LLama. Regardless of whether
RoBERTa or Llama is used as the text encoder,
TextEnty and TextRel consistently outperform the
TextOnly baseline on GCDC and CoheSentia. This
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg
Jeon and Strube (2022) 78.38 75.70 76.58 76.56 79.10 76.41 75.03 74.54 76.54
Liu et al. (2023b) 75.791.1 76.251.1 74.141.2 75.810.7 77.010.9 77.081.1 73.550.8 72.910.7 75.34

Fusion

RoBERTa

TextOnly 76.360.9 75.101.0 75.290.5 75.331.5 75.901.0 75.611.9 73.760.9 73.341.1 75.08
TextEnty 79.051.4 77.151.2 77.730.8 76.981.3 77.641.6 78.321.5 76.491.3 75.791.0 77.39
TextRel 78.940.8 77.410.7 77.800.8 77.550.8 78.490.9 78.331.5 77.081.2 76.250.5 77.73
Our Method I 79.920.8 78.460.9 78.680.9 78.251.2 79.231.1 79.421.27 78.210.9 77.131.1 78.66

Llama

TextOnly 75.170.8 73.881.3 73.631.6 73.671.4 75.891.0 75.100.9 73.671.4 72.871.5 74.24
TextEnty 77.030.8 75.591.4 75.141.5 75.201.5 77.070.9 77.120.8 75.480.6 74.171.4 75.85
TextRel 76.350.9 76.400.7 75.980.5 75.401.2 76.641.7 76.651.6 75.181.1 75.161.3 75.97
Our Method I 78.241.7 78.111.9 77.011.1 76.591.1 79.231.3 79.471.6 77.321.1 76.501.8 77.81

Prompt

Llama zero-shot

TextOnly 51.39 55.19 52.72 50.63 54.37 50.62 46.92 49.44 51.41
TextEnty 56.85 53.78 54.48 54.00 53.83 57.15 55.89 54.64 55.08
TextRel 58.51 56.45 54.73 55.59 56.43 57.19 57.41 53.72 56.25
Our Method II 59.90 57.75 56.73 56.13 57.28 58.02 58.19 55.91 57.49

Llama fine-tuned

TextOnly 79.031.1 76.761.4 76.241.5 77.521.4 79.491.4 76.021.4 76.691.1 75.280.9 77.13
TextEnty 80.131.2 76.631.2 75.641.3 77.731.0 79.551.5 76.571.6 78.951.4 76.411.3 77.70
TextRel 79.351.5 77.151.6 77.161.4 76.611.2 80.151.1 75.411.5 78.291.3 76.891.4 77.63
Our Method II 80.021.6 77.921.5 77.581.2 78.131.3 81.131.5 77.291.3 77.881.0 77.181.5 78.39

Table 2: Mean accuracy results (with std) on TOEFL dataset.

suggests that incorporating entity or discourse re-
lation features enhances coherence assessment,
which is in line with the findings of previous
entity-based (Jeon and Strube, 2022) and discourse
relation-based studies (Wu et al., 2023). The im-
provement of TextRel over TextOnly is greater than
that of TextEnty over TextOnly. This is because,
in both GCDC and CoheSentia, discourse relations
are more commonly used to connect sentences than
entity cues. For instance, discourse relations like
cause and concession are frequently employed in
CoheSentia to make stories more compact and en-
gaging (Chaturvedi et al., 2017). Our Method I
significantly outperforms both the TextEnty and
TextRel baselines, showing a 1% to 2% improve-
ment on GCDC and approximately a 3% gain on
CoheSentia. These results highlight the value of
jointly modeling entity and discourse relation fea-
tures for effective coherence assessment.

For the Prompt style, we present the results of
Llama in both zero-shot and fine-tuned settings.
In the zero-shot setting, incorporating entity and
discourse relation information enhances Llama’s
performance in coherence assessment. On GCDC,
TextEnty and TextRel outperform the TextOnly
baseline by more than 4% to 5%. In contrast, the
improvement on CoheSentia is more modest, with
gains of about 1% to 2%. Combining these fea-
tures further boosts performance, leading to im-
provements of over 6 points on GCDC and 3.5%
on CoheSentia, compared to the TextOnly base-
line. These results suggest that prior knowledge of
entity- and discourse relation-based coherence can

be effectively leveraged for coherence assessment
in cold-start scenarios. When fine-tuning LLaMA
with LoRA, the performance improvements of
TextEnty, TextRel, and EntyRel over TextOnly still
exists, but the gains are smaller compared to the
zero-shot setting. We speculate that this is be-
cause fine-tuning allows the model to somewhat
implicitly capture coherence-relevant signals, such
as entity transition and discourse relations (Xiao
et al., 2021), so the explicit incorporation of them
leads to limited improvement.
TOEFL. Results on TOEFL are shown in Table 2.
Similar to the findings on GCDC and CoheSentia,
both entity and discourse relation patterns con-
tribute positively to the task in the fusion set-
ting. Specifically, TextEnty and TextRel outper-
form the TextOnly baseline by 2% to 3% when us-
ing RoBERTa or Llama as the text encoder. Com-
bining entity and discourse relation features fur-
ther enhances performance. Our Method I using
RoBERTa as the text encoder achieves an aver-
age accuracy of 78.66%, significantly outperform-
ing the previous state-of-the-art model (Jeon and
Strube, 2022). We observe similar results in the
prompt setting: in the zero-shot scenario, Method
II achieves an accuracy of 6.08% higher than the
TextOnly baseline, and 1.26% higher in the fine-
tuned setting.

5 Analysis

To understand how jointly modeling entities and
discourse relations contributes to coherence assess-
ment, we analyze the accuracy of different models
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Model

TextOnly

TextEnty

TextRel

Ours

Prediction

High

Low

Medium

Low

…… The reviewer's tone is conversational and informal, but their points are clearly stated and easy to follow.

Explanation

The relation between s7 and s10 is "entity", indicating that they discuss the same entities. However, s7 is discussing the 

cost-effectiveness of prescriptions, while s10 is discussing the cost-effectiveness of Fry's and Walmart. This lack of

coherence between the entities being discussed suggests a low coherence level.

The relations between sentences provide a clear narrative flow, but the contrast between the customer's satisfaction 

with the store's prices and their dissatisfaction with the pricing of vegetables creates a sense of inconsistency.

The relations between sentences provide a clear narrative flow, but the content of the sentences are often abrupt and

lack cohesion, indicating a low level of coherence.

[There‘s two older men here that are always in a lousy mood.]1 [They can’t wait for 62.]2 [Andrea M. is correct about the cart corrals.]3 …[Really 

saves us money in that dept.]7 [But I can only give 3 stars on account that their pricing for vegetables and other items is a ripoff.]8 [Why is there 

only one dollar sign showing above?]9 [People are SOOOO brainwashed into thinking that Fry‘s and Walmart save you money.]10 …

(s1, cause, s2), (s2, norel, s3), (s3, level-of-detail, s4), (s4, norel, s5), (s5, norel, s6), (s6, cause, s7), (s7, norel, s8), (s7, entity, s10), …

TextOnly

TextEnty

TextRel

Ours

Medium

Medium

Low

Low

… seemingly unrelated statements, …. the presence of a few cohesive elements, … indicates some level of coherence.

… various unrelated topics… s5 and s6 discuss the same entities, which is a positive sign of coherence.

The text discusses various unrelated topics … The relations between sentences are mostly conjunctions and

sometimes norel, which indicate a simple sequence of ideas rather than a deeper connection between them.

The text discusses various unrelated topics… The relations between sentences are mostly conjunctions, indicating a

lack of strong logical connections between the ideas.

[Look at you...such a hoax spreader...ha]1 [Anyway, i was so busy yesterday i didn‘t have a chance to do anything about it anyway.]2 [so no harm, 

no foul.]3 [how are you doing?]4 [as for Enron, as you well know our stock’s not doing so great these days, but i‘m not overly stressed.]5 … [Can’t 

wait to hear how your preparations are coming along...for the wedding and the move.]7 [btw, have you set a firm date yet?]8

(s1, norel, s2), (s2, cause, s3), (s3, norel, s4), (s4, conjunction, s5), (s5, conjunction, s6), (s5, entity, s6), (s6, conjunction, s7), (s7, conjunction, s8)

Figure 5: Two examples (truncated) showing how entities and discourse relations aid coherence assessment. Both
texts are labeled as low coherence. We use a zero-shot prompt setting, and the "explanation" refers to Llama’s brief
justification for its prediction.

across each coherence label. Table 3 presents the
models’ performance on the TOEFL P5 dataset in
both the Fusion setting (with Llama as the text en-
coder) and the fine-tuned Prompt setting. TextOnly
exhibits a strong bias, achieving high accuracy on
“medium” and “high” coherence labels but signif-
icantly lower accuracy on the “low” label. We
attribute this to the imbalanced label distribution in
the TOEFL P5 dataset, where over 90% of samples
are annotated as “medium” or “high” coherence.
TextEnty and TextRel help mitigate this bias by
incorporating entity and discourse relation infor-
mation, respectively. For example, in the Fusion
setting, they improve accuracy on low-coherence
data by 6.57% and 7.69%. Our Methods I and II go
further by jointly modeling entities and discourse
relations, resulting in the smallest performance gap
across all three coherence levels. These results
suggest that incorporating entities and discourse
relations helps the model learn more effective co-
herence patterns and improves its robustness to
imbalanced data distributions.

To better understand how entities and discourse
relations influence model behavior, we present two
case studies in Figure 5. The two examples are

Low Medium High Range

Fusion
(Llama)

TextOnly 66.67 78.99 77.88 12.32
TextEnty 73.24 80.44 76.79 7.20
TextRel 74.36 80.45 78.41 6.09
Our Method I 81.16 81.99 77.19 4.80

Prompt
(fine-tuned)

TextOnly 68.22 83.29 82.93 15.07
TextEnty 71.70 85.23 85.49 13.79
TextRel 70.59 84.09 84.05 13.50
Our Method II 73.47 85.39 84.71 11.92

Table 3: Accuracy results for each coherence label on
TOEFL P5. Range indicates the difference between the
highest and lowest values.

from GCDC corpus and annotated as low coher-
ence. In both cases, we use a zero-shot prompt
setting, asking Llama to evaluate the coherence
level of a given text and provide a brief explana-
tion for its assessment (see Appendix D for de-
tails). As shown in the first example, without entity
and discourse relation information (i.e., TextOnly),
Llama evaluates the text as having high coherence.
TextRel identifies some inconsistencies but still
fails to classify it as medium coherence. In con-
trast, TextEnty and Our Method II correctly assess
the text as having low coherence, due to the lack
of cohesion, specifically, missing entity-based sig-
nals. In the second example, all models recognize
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Enron → Others TOEFL P1 → Others

Fusion
(Llama)

TextOnly 47.48 68.79
TextEnty 50.62 (+3.14) 72.02 (+3.23)
TextRel 50.98 (+3.55) 72.87 (+4.08)
Our Method I 53.82 (+6.34) 74.40 (+5.61)

Prompt
(fine-tuned)

TextOnly 52.50 76.72
TextEnty 53.67 (+1.17) 78.42 (+1.70)
TextRel 54.75 (+2.25) 78.15 (+1.43)
Our Method II 56.00 (+3.50) 78.60 (+1.88)

Table 4: Accuracy of models in a cross-domain setting.

that the sentences in the text cover various unre-
lated topics. However, TextOnly and TextEnty are
slightly influenced by the presence of cohesive ele-
ments, leading them to predict the text as medium
coherence. In contrast, TextRel and Our Method
II correctly and confidently classify it as low co-
herence, due to the lack of logical connections be-
tween the sentences. These two cases effectively
illustrate the importance of modeling both entity
and discourse relation patterns for accurate coher-
ence assessment.

To assess whether our models have truly learned
more robust coherence patterns, we further eval-
uate their transferability in cross-domain settings.
Specifically, we train TextOnly, TextEnty, TextRel,
and Our Method in both Fusion and Prompt set-
tings on the Enron subset of GCDC (or Prompt 5
of TOEFL) and test their performance on other sub-
sets of GCDC (or other TOEFL prompts). Table
4 presents the results. Both TextEnty and TextRel
consistently outperform the TextOnly baseline in
cross-domain settings, indicating that entity and
discourse relation patterns are effective domain-
agnostic features for coherence assessment. More-
over, our methods achieve the best performance
across all cross-domain experiments, demonstrat-
ing the effectiveness of jointly modeling entities
and discourse relations.

6 Conclusions

This paper explores whether combining entity and
discourse relation information improves coherence
modeling. We propose two novel methods that
jointly model entities and discourse relations for co-
herence assessment. Experiments on three bench-
mark datasets show that our approaches consis-
tently outperform strong baselines, emphasizing
the value of integrating both features. Additionally,
we demonstrate that these features enhance model
robustness in scenarios with imbalanced labels and
across different domains.

Limitations

Our work has several limitations. First, the PDTB
parser used in this study is far from perfect. Future
research should focus on developing more power-
ful parsers to support discourse relation analysis
for coherence modeling. For instance, it would
be worthwhile to explore whether LLM-based ap-
proaches can produce better PDTB parsing results.
Second, our experiments are limited to PDTB-style
discourse relations. Extending the analysis to other
frameworks, such as RST (Mann and Thompson,
1988), could offer valuable insights. Finally, due to
budget and computational constraints, we only ex-
perimented with Llama-8B (and only used Llama-
70B in zero-shot setting). It would be interesting
to evaluate our approach using other or larger lan-
guage models, such as GPT-4.

Acknowledgements

The authors would like to thank the three anony-
mous reviewers for their comments. This work
has been funded by the Klaus Tschira Foundation,
Heidelberg, Germany.

References
Tushar Abhishek, Daksh Rawat, Manish Gupta, and

Vasudeva Varma. 2021. Transformer models
for text coherence assessment. arXiv preprint
arXiv:2109.02176.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1–34.

Anne Beyer, Sharid Loáiciga, and David Schlangen.
2021. Is incoherence surprising? targeted evalua-
tion of coherence prediction from language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4164–4173, Online. Association for Computa-
tional Linguistics.

Daniel Blanchard, Joel Tetreault, Derrick Higgins,
Aoife Cahill, and Martin Chodorow. 2013. Toefl11:
A corpus of non-native english. ETS Research Report
Series, 2013(2):i–15.

Jill Burstein, Joel Tetreault, and Slava Andreyev. 2010.
Using entity-based features to model coherence in
student essays. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 681–684, Los Angeles, California.
Association for Computational Linguistics.

21930

https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.18653/v1/2021.naacl-main.328
https://doi.org/10.18653/v1/2021.naacl-main.328
https://doi.org/10.1002/j.2333-8504.2013.tb02331.x
https://doi.org/10.1002/j.2333-8504.2013.tb02331.x
https://aclanthology.org/N10-1099/
https://aclanthology.org/N10-1099/


Snigdha Chaturvedi, Haoruo Peng, and Dan Roth. 2017.
Story comprehension for predicting what happens
next. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1603–1614, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Herbert H. Clark. 1975. Bridging. In Theoretical Issues
in Natural Language Processing.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori Hashimoto. 2023. Alpacafarm:
A simulation framework for methods that learn from
human feedback. In Thirty-seventh Conference on
Neural Information Processing Systems.

Micha Elsner and Eugene Charniak. 2011. Extend-
ing the entity grid with entity-specific features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 125–129, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Vanessa Wei Feng, Ziheng Lin, and Graeme Hirst. 2014.
The impact of deep hierarchical discourse structures
in the evaluation of text coherence. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
940–949, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Katja Filippova and Michael Strube. 2007. Extend-
ing the entity-grid coherence model to semantically
related entities. In Proceedings of the Eleventh Eu-
ropean Workshop on Natural Language Generation
(ENLG 07), pages 139–142, Saarbrücken, Germany.
DFKI GmbH.

Xiyan Fu and Anette Frank. 2023. SETI: Systematicity
evaluation of textual inference. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 4101–4114, Toronto, Canada. Association for
Computational Linguistics.

Xiyan Fu and Anette Frank. 2024a. Compositional
structured explanation generation with dynamic mod-
ularized reasoning. In Proceedings of the 13th Joint
Conference on Lexical and Computational Semantics
(*SEM 2024), pages 385–401, Mexico City, Mexico.
Association for Computational Linguistics.

Xiyan Fu and Anette Frank. 2024b. Exploring contin-
ual learning of compositional generalization in NLI.
Transactions of the Association for Computational
Linguistics, 12:912–932.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
1995. Centering: A framework for modeling the local
coherence of discourse. Computational Linguistics,
21(2):203–225.

Jian Guan, Zhenyu Yang, Rongsheng Zhang, Zhipeng
Hu, and Minlie Huang. 2023. Generating coherent
narratives by learning dynamic and discrete entity
states with a contrastive framework. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 12836–12844.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 93–103, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Yufang Hou, Katja Markert, and Michael Strube. 2018.
Unrestricted bridging resolution. Computational Lin-
guistics, 44(2):237–284.

Sungho Jeon and Michael Strube. 2020. Centering-
based neural coherence modeling with hierarchical
discourse segments. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7458–7472, Online. As-
sociation for Computational Linguistics.

Sungho Jeon and Michael Strube. 2022. Entity-based
neural local coherence modeling. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7787–7805, Dublin, Ireland. Association for
Computational Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associa-
tion for Computational Linguistics, 3:329–344.

Shafiq Joty, Muhammad Tasnim Mohiuddin, and Dat
Tien Nguyen. 2018. Coherence modeling of asyn-
chronous conversations: A neural entity grid ap-
proach. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 558–568, Melbourne,
Australia. Association for Computational Linguistics.

Daniel Jurafsky and James H. Martin. 2025. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition with Language Models,
3rd edition. Online manuscript released January 12,
2025.

21931

https://doi.org/10.18653/v1/D17-1168
https://doi.org/10.18653/v1/D17-1168
https://aclanthology.org/T75-2034/
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=4hturzLcKX
https://openreview.net/forum?id=4hturzLcKX
https://openreview.net/forum?id=4hturzLcKX
https://aclanthology.org/P11-2022/
https://aclanthology.org/P11-2022/
https://aclanthology.org/C14-1089/
https://aclanthology.org/C14-1089/
https://aclanthology.org/W07-2321/
https://aclanthology.org/W07-2321/
https://aclanthology.org/W07-2321/
https://doi.org/10.18653/v1/2023.findings-acl.252
https://doi.org/10.18653/v1/2023.findings-acl.252
https://doi.org/10.18653/v1/2024.starsem-1.31
https://doi.org/10.18653/v1/2024.starsem-1.31
https://doi.org/10.18653/v1/2024.starsem-1.31
https://doi.org/10.1162/tacl_a_00680
https://doi.org/10.1162/tacl_a_00680
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/J95-2003/
https://aclanthology.org/J95-2003/
https://doi.org/10.1609/aaai.v37i11.26509
https://doi.org/10.1609/aaai.v37i11.26509
https://doi.org/10.1609/aaai.v37i11.26509
https://aclanthology.org/P13-1010/
https://aclanthology.org/P13-1010/
https://doi.org/10.1162/COLI_a_00315
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2020.emnlp-main.604
https://doi.org/10.18653/v1/2022.acl-long.537
https://doi.org/10.18653/v1/2022.acl-long.537
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.18653/v1/P18-1052
https://doi.org/10.18653/v1/P18-1052
https://doi.org/10.18653/v1/P18-1052
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/


Andrew Kehler, Laura Kertz, Hannah Rohde, and Jef-
frey L. Elman. 2008. Coherence and coreference
revisited. J. Semant., 25(1):1–44.

René Knaebel. 2021. discopy: A neural system for
shallow discourse parsing. In Proceedings of the
2nd Workshop on Computational Approaches to Dis-
course, pages 128–133, Punta Cana, Dominican Re-
public and Online. Association for Computational
Linguistics.

Philippe Laban, Luke Dai, Lucas Bandarkar, and
Marti A. Hearst. 2021. Can transformer models mea-
sure coherence in text: Re-thinking the shuffle test.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
1058–1064, Online. Association for Computational
Linguistics.

Alice Lai and Joel Tetreault. 2018. Discourse coherence
in the wild: A dataset, evaluation and methods. In
Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pages 214–223, Melbourne,
Australia. Association for Computational Linguistics.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 545–552, Sapporo,
Japan. Association for Computational Linguistics.

Mirella Lapata and Regina Barzilay. 2005. Automatic
evaluation of text coherence: models and represen-
tations. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, IJCAI’05,
page 1085–1090, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Raymond Li, Felipe Gonzalez-Pizarro, Linzi Xing,
Gabriel Murray, and Giuseppe Carenini. 2023.
Diversity-aware coherence loss for improving neu-
ral topic models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1710–1722,
Toronto, Canada. Association for Computational Lin-
guistics.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011. Au-
tomatically evaluating text coherence using discourse
relations. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 997–1006, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Wei Liu, Yi Fan, and Michael Strube. 2023a. HITS at
DISRPT 2023: Discourse segmentation, connective
detection, and relation classification. In Proceedings
of the 3rd Shared Task on Discourse Relation Pars-
ing and Treebanking (DISRPT 2023), pages 43–49,
Toronto, Canada. The Association for Computational
Linguistics.

Wei Liu, Xiyan Fu, and Michael Strube. 2023b. Mod-
eling structural similarities between documents for
coherence assessment with graph convolutional net-
works. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7792–7808, Toronto,
Canada. Association for Computational Linguistics.

Wei Liu, Xiyan Fu, Yue Zhang, and Wenming Xiao.
2021. Lexicon enhanced Chinese sequence labeling
using BERT adapter. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5847–5858, Online. Association
for Computational Linguistics.

Wei Liu and Michael Strube. 2023. Annotation-inspired
implicit discourse relation classification with auxil-
iary discourse connective generation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15696–15712, Toronto, Canada. Association
for Computational Linguistics.

Wei Liu and Michael Strube. 2025. Discourse relation-
enhanced neural coherence modeling. In Proceed-
ings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 4748–4762, Vienna, Austria. Associa-
tion for Computational Linguistics.

Wei Liu, Stephen Wan, and Michael Strube. 2024. What
causes the failure of explicit to implicit discourse
relation recognition? In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 2738–2753, Mexico City, Mexico. Association
for Computational Linguistics.

Wei Liu, Tongge Xu, Qinghua Xu, Jiayu Song, and
Yueran Zu. 2019a. An encoding strategy based word-
character LSTM for Chinese NER. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2379–2389, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT Pretraining
Approach. CoRR, abs/1907.11692.

Aviya Maimon and Reut Tsarfaty. 2023. COHESEN-
TIA: A novel benchmark of incremental versus holis-
tic assessment of coherence in generated texts. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
5328–5343, Singapore. Association for Computa-
tional Linguistics.

21932

https://doi.org/10.1093/JOS/FFM018
https://doi.org/10.1093/JOS/FFM018
https://doi.org/10.18653/v1/2021.codi-main.12
https://doi.org/10.18653/v1/2021.codi-main.12
https://doi.org/10.18653/v1/2021.acl-short.134
https://doi.org/10.18653/v1/2021.acl-short.134
https://doi.org/10.18653/v1/W18-5023
https://doi.org/10.18653/v1/W18-5023
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.18653/v1/2023.acl-short.145
https://doi.org/10.18653/v1/2023.acl-short.145
https://aclanthology.org/P11-1100/
https://aclanthology.org/P11-1100/
https://aclanthology.org/P11-1100/
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.18653/v1/2023.acl-long.431
https://doi.org/10.18653/v1/2023.acl-long.431
https://doi.org/10.18653/v1/2023.acl-long.431
https://doi.org/10.18653/v1/2023.acl-long.431
https://doi.org/10.18653/v1/2021.acl-long.454
https://doi.org/10.18653/v1/2021.acl-long.454
https://doi.org/10.18653/v1/2023.acl-long.874
https://doi.org/10.18653/v1/2023.acl-long.874
https://doi.org/10.18653/v1/2023.acl-long.874
https://doi.org/10.18653/v1/2025.acl-long.236
https://doi.org/10.18653/v1/2025.acl-long.236
https://doi.org/10.18653/v1/2024.naacl-long.150
https://doi.org/10.18653/v1/2024.naacl-long.150
https://doi.org/10.18653/v1/2024.naacl-long.150
https://doi.org/10.18653/v1/N19-1247
https://doi.org/10.18653/v1/N19-1247
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2023.emnlp-main.324
https://doi.org/10.18653/v1/2023.emnlp-main.324
https://doi.org/10.18653/v1/2023.emnlp-main.324


William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text - Interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Watheq Ahmad Mansour, Salam Albatarni, Sohaila
Eltanbouly, and Tamer Elsayed. 2024. Can large
language models automatically score proficiency of
written essays? In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 2777–2786, Torino, Italia.
ELRA and ICCL.

John Mendonca, Isabel Trancoso, and Alon Lavie. 2024.
ECoh: Turn-level coherence evaluation for multilin-
gual dialogues. In Proceedings of the 25th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 516–532, Kyoto, Japan. Associ-
ation for Computational Linguistics.

Mohsen Mesgar and Michael Strube. 2015. Graph-
based coherence modeling for assessing readability.
In Proceedings of the Fourth Joint Conference on Lex-
ical and Computational Semantics, pages 309–318,
Denver, Colorado. Association for Computational
Linguistics.

Mohsen Mesgar and Michael Strube. 2016. Lexical
coherence graph modeling using word embeddings.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1414–1423, San Diego, California. Associa-
tion for Computational Linguistics.

Marius Mosbach, Anna Khokhlova, Michael A. Hed-
derich, and Dietrich Klakow. 2020. On the interplay
between fine-tuning and sentence-level probing for
linguistic knowledge in pre-trained transformers. In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP,
pages 68–82, Online. Association for Computational
Linguistics.

Ben Naismith, Phoebe Mulcaire, and Jill Burstein. 2023.
Automated evaluation of written discourse coherence
using GPT-4. In Proceedings of the 18th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 394–403, Toronto,
Canada. Association for Computational Linguistics.

Juri Opitz and Sebastian Burst. 2019. Macro F1 and
macro F1. CoRR, abs/1911.03347.

Mihir Parmar, Hanieh Deilamsalehy, Franck Dernon-
court, Seunghyun Yoon, Ryan A. Rossi, and Trung
Bui. 2024. Towards enhancing coherence in extrac-
tive summarization: Dataset and experiments with
LLMs. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 19810–19820, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word

representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC‘08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Ellen F. Prince. 1981. Toward a taxonomy of given-new
information. In Peter Cole, editor, Radical Pragmat-
ics, pages 223–255. Academic Press, New York.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Tanya Reinhart. 1980. Conditions for text coherence.
Poetics Today, 1(4):161–180.

Hannah Rohde, Alexander Johnson, Nathan Schneider,
and Bonnie Webber. 2018. Discourse coherence:
Concurrent explicit and implicit relations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2257–2267, Melbourne, Australia. As-
sociation for Computational Linguistics.

Suzanna Sia and Kevin Duh. 2023. In-context learn-
ing as maintaining coherency: A study of on-the-
fly machine translation using large language models.
In Proceedings of Machine Translation Summit XIX,
Vol. 1: Research Track, pages 173–185, Macau SAR,
China. Asia-Pacific Association for Machine Trans-
lation.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1882–1891, Austin,
Texas. Association for Computational Linguistics.

Dat Tien Nguyen and Shafiq Joty. 2017. A neural local
coherence model. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1320–1330,
Vancouver, Canada. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xinhao Wang, Binod Gyawali, James V. Bruno,
Hillary R. Molloy, Keelan Evanini, and Klaus Zech-
ner. 2019. Using Rhetorical Structure Theory to

21933

https://doi.org/doi:10.1515/text.1.1988.8.3.243
https://doi.org/doi:10.1515/text.1.1988.8.3.243
https://aclanthology.org/2024.lrec-main.247/
https://aclanthology.org/2024.lrec-main.247/
https://aclanthology.org/2024.lrec-main.247/
https://doi.org/10.18653/v1/2024.sigdial-1.44
https://doi.org/10.18653/v1/2024.sigdial-1.44
https://doi.org/10.18653/v1/S15-1036
https://doi.org/10.18653/v1/S15-1036
https://doi.org/10.18653/v1/N16-1167
https://doi.org/10.18653/v1/N16-1167
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2023.bea-1.32
https://doi.org/10.18653/v1/2023.bea-1.32
https://arxiv.org/abs/1911.03347
https://arxiv.org/abs/1911.03347
https://doi.org/10.18653/v1/2024.emnlp-main.1106
https://doi.org/10.18653/v1/2024.emnlp-main.1106
https://doi.org/10.18653/v1/2024.emnlp-main.1106
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/L08-1093/
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://www.jstor.org/stable/1771893
https://doi.org/10.18653/v1/P18-1210
https://doi.org/10.18653/v1/P18-1210
https://aclanthology.org/2023.mtsummit-research.15/
https://aclanthology.org/2023.mtsummit-research.15/
https://aclanthology.org/2023.mtsummit-research.15/
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/P17-1121
https://doi.org/10.18653/v1/P17-1121
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W19-2719


assess discourse coherence for non-native sponta-
neous speech. In Proceedings of the Workshop on
Discourse Relation Parsing and Treebanking 2019,
pages 153–162, Minneapolis, MN. Association for
Computational Linguistics.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The Penn Discourse TreeBank 3.0 anno-
tation manual. Philadelphia, University of Pennsyl-
vania, 35:108.

Hongyi Wu, Xinshu Shen, Man Lan, Shaoguang Mao,
Xiaopeng Bai, and Yuanbin Wu. 2023. A multi-task
dataset for assessing discourse coherence in Chinese
essays: Structure, theme, and logic analysis. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6673–
6688, Singapore. Association for Computational Lin-
guistics.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. 2021. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24.

Wen Xiao, Patrick Huber, and Giuseppe Carenini. 2021.
Predicting discourse trees from transformer-based
neural summarizers. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4139–4152, Online.
Association for Computational Linguistics.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
and Yongfeng Zhang. 2024. Language is all a graph
needs. In Findings of the Association for Computa-
tional Linguistics: EACL 2024, pages 1955–1973,
St. Julian’s, Malta. Association for Computational
Linguistics.

Wei Zhao, Michael Strube, and Steffen Eger. 2023. Dis-
coScore: Evaluating text generation with BERT and
discourse coherence. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 3865–3883,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 400–410, Bangkok,
Thailand. Association for Computational Linguistics.

21934

https://doi.org/10.18653/v1/W19-2719
https://doi.org/10.18653/v1/W19-2719
https://doi.org/10.18653/v1/2023.emnlp-main.412
https://doi.org/10.18653/v1/2023.emnlp-main.412
https://doi.org/10.18653/v1/2023.emnlp-main.412
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.18653/v1/2021.naacl-main.326
https://doi.org/10.18653/v1/2021.naacl-main.326
https://aclanthology.org/2024.findings-eacl.132/
https://aclanthology.org/2024.findings-eacl.132/
https://doi.org/10.18653/v1/2023.eacl-main.278
https://doi.org/10.18653/v1/2023.eacl-main.278
https://doi.org/10.18653/v1/2023.eacl-main.278
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38


Explicit Distribution Implicit Distribution
Asynchronous 8.69% Asynchronous 4.64%
Cause 7.87% Cause 24.23%
Concession 19.94% Cause+Belief 0.82%
Condition 5.99% Concession 6.72%
Conjunction 36.55% Condition 0.85%
Contrast 4.58% Conjunction 20.84%
Disjunction 1.23% Contrast 3.86%
Instantiation 1.30% Equivalence 1.21%
Level-of-detail 1.01% Instantiation 6.84%
Manner 1.23% Level-of-detail 14.60%
Negative-condition 0.54% Manner 0.74%
Purpose 1.63% Purpose 3.31%
Similarity 0.42% Substitution 1.34%
Substitution 0.96% Synchronous 2.35%
Synchronous 8.07% NoRel 8.18%

Table 5: Explicit and Implicit relations used in this study
and their distribution in the training corpus.

A PDTB Parser

We use an updated version of discopy (Knaebel,
2021) to parse discourse relations in documents.
The first update involves replacing the PDTB
2.0 (Prasad et al., 2008) relation set with PDTB
3.0 (Webber et al., 2019). Specifically, we focus
on identifying both explicit and implicit discourse
relations between adjacent sentences. For explicit
relations, we select 15 types that have sufficient
training data (Liu et al., 2023a, 2024). For im-
plicit relations, we include the 14 most frequent
types, along with a “NoRel” label to account for
cases where no relation is present—common in
low-coherence texts. Table 5 lists all the relations
used in this study along with their distribution in
PDTB 3.0.

The second update incorporates the model pro-
posed by Liu and Strube (2023) for recognizing
implicit relations, due to its state-of-the-art perfor-
mance. We implement the parser using RoBERTa
and train it on PDTB 3.0, following the data split
introduced by Ji and Eisenstein (2015). The parser
achieves 89.61% accuracy on the explicit test set
and 67.80% on the implicit test set of PDTB 3.0.

B Experimental Settings

B.1 Dataset

The GCDC dataset includes texts from four do-
mains: online forum posts from Yahoo, emails
from the Enron corpus, emails from Hillary Clin-
ton’s office, and online business reviews from Yelp.
The CoheSentia datasets consists of stories gener-
ated by GPT-3. The TOEFL dataset comprises es-
says written in response to eight different prompts.
Table 6 presents statistics for these three corpora.

Dataset Split #Doc Avg #Sent Avg #Word

GCDC

Clinton
Train 1000 8.9 182.9
Test 200 8.8 186.0

Enron
Train 1000 9.2 185.1
Test 200 9.3 191.1

Yahoo
Train 1000 7.8 157.2
Test 200 7.8 162.7

Yelp
Train 1000 10.4 178.2
Test 200 10.1 179.1

CoheSentia - Total 483 7.0 122.2

TOEFL

Prompt 1 Total 1656 13.7 339.1
Prompt 2 Total 1562 15.7 357.8
Prompt 3 Total 1396 14.7 343.5
Prompt 4 Total 1509 15.1 338.0
Prompt 5 Total 1648 15.2 358.4
Prompt 6 Total 960 15.3 358.3
Prompt 7 Total 1686 14.0 336.6
Prompt 8 Total 1683 14.7 340.9

Table 6: Statistics of datasets, where #Doc, #Sent, and
#Word mean the number of documents, sentences, and
words, respectively.

B.2 Implementation

Fusion. In the Fusion setting, we use a text encoder,
such as RoBERTa or LLaMA, to obtain sentence
representations. This is done by passing a sen-
tence through the encoder, extracting token-level
representations, and then averaging the representa-
tions of the tokens within the sentence. We experi-
mented with both average pooling and [CLS] pool-
ing methods. Our results show that average pooling
consistently outperforms [CLS] pooling (Liu and
Strube, 2025). For instance, on the TOEFL P1
dataset using a RoBERTa encoder, the accuracy
of the TextOnly baseline and Our Method I with
average pooling is 76.36 and 80.55, respectively,
compared to 72.58 and 77.56 with [CLS] pooling.
This improvement is likely because average pool-
ing incorporates information from all tokens in the
sentence, preserving more linguistic features. In
contrast, [CLS] pooling relies solely on the [CLS]
token’s representation, which can result in the loss
of important information. Similar results are ob-
served for average pooling and [CLS] pooling in
Mosbach et al. (2020). For entity and discourse
relation elements in the flat structure, we convert
them as vectors using GloVe embeddings (Penning-
ton et al., 2014). We use two layers of Fusion
Transformers to jointly model sentences, entities,
and discourse relations. Each layer consists of 8
attention heads and has a hidden size of 256. The
model is trained using the AdamW optimizer with
an initial learning rate of 1e-3, a batch size of 32, a
dropout rate of 0.1, and a maximum of 20 training
epochs.
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You are an AI assistant tasked with coherence assessment. You will be given a set of sentences from a text. Your task is to evaluate the overall coherence level of 

the text by reading the content of the sentences. Please assign one of the following coherence levels to the text: {low, medium, high}.

Here are the sentences in the given text:

s1: Did you know that John is still in Germany?

s2: He was planning to leave Berlin today but ran into a citywide strike.

s3: All the roads were blocked, and buses and trains were cancelled.

s4: So, he couldn’t get to the airport and now has to stay in the city for a few more days.

Large Language Models high

input

generate

Figure 6: Illustration of TextOnly baseline in the Prompt setting. We instruct LLMs to consider only textual content
for coherence assessment.

Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Fusion

RoBERTa

TextOnly 47.580.9 48.741.0 45.710.9 45.630.8 46.92 57.081.7

TextEnty 52.381.2 48.841.4 48.211.8 47.241.6 49.17 59.942.1

TextRel 52.421.3 51.041.5 48.561.7 47.351.8 49.84 60.351.9

Our Method I 54.491.6 51.271.1 48.630.8 47.861.1 50.56 62.981.7

Llama

TextOnly 47.541.8 48.731.6 44.381.0 46.091.4 46.68 59.951.6

TextEnty 50.821.0 50.981.1 47.740.8 47.291.4 49.20 62.522.0

TextRel 49.731.7 50.771.6 47.370.9 48.530.6 49.10 63.672.1

Our Method I 53.781.3 52.371.6 50.501.3 47.591.3 51.06 65.251.8

Prompt

Llama zero-shot

TextOnly 34.78 32.02 32.39 32.79 33.88 40.06
TextEnty 40.24 34.71 38.69 36.56 37.55 41.09
TextRel 41.43 36.37 39.12 36.56 38.37 42.46
Our Method II 41.74 34.40 37.99 40.14 38.82 45.56

Llama fine-tuned

TextOnly 46.181.6 44.831.1 46.411.4 38.211.3 43.90 57.461.7

TextEnty 47.411.7 45.371.5 46.691.6 39.181.2 44.66 58.361.8

TextRel 46.911.5 46.531.4 47.731.3 40.151.2 45.33 62.171.4

Our Method II 48.781.5 49.461.3 48.231.3 41.000.9 46.87 63.651.5

Table 7: Mean macro-F1 results (with std) on GCDC and CoheSentia.

Prompt. In the Prompt setting, the data is
organized in the Alpaca format (Dubois et al.,
2023). Our implementation is built on LlamaFac-
tory (Zheng et al., 2024), a unified framework
that incorporates a range of state-of-the-art effi-
cient training methods for large language models
(LLMs). In the zero-shot setting, we do not train
the models; instead, we directly use LlamaFactory
for evaluation. In the fine-tuned setting, we train
using LoRA with a rank of 24, a LoRA alpha of 48,
a dropout rate of 0.1, a learning rate of 5e-5, and a
total of 3 training epochs.

B.3 Baselines
TextOnly. This baseline relies solely on textual
content for coherence assessment. In the Fusion set-
ting, we first use a text encoder to generate sentence
representations, which are then passed through a
sentence-level Transformer for feature extraction
and finally fed into a Softmax layer for classifica-

tion. Notably, no entities or discourse relations are
used in this process. In the Prompt setting, we eval-
uate coherence by inputting only the text into large
language models (LLMs). The prompt template
used is shown in Figure 6.

TextEnty. This baseline is an ablated version of
our approach. In the Fusion setting, we remove
discourse relation elements from the flat structure,
retaining only sentences and entities. In the Prompt
setting, we include only triples connected by entity
relations, such as (si, entity, sj), in the prompt.

TextRel. This baseline is another ablated version of
our approach. In the Fusion setting, we remove en-
tity elements from the flat structure, retaining only
sentences and discourse relations. In the Prompt
setting, we include only triples connected by dis-
course relations, such as (si, reason, sj), in the
prompt.
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg

Fusion

RoBERTa

TextOnly 74.921.7 70.831.8 74.501.5 75.681.8 76.341.7 72.641.6 72.141.6 71.971.3 73.63
TextEnty 75.181.8 72.361.5 74.061.4 76.261.2 76.571.7 74.621.6 75.421.6 73.681.7 74.77
TextRel 75.001.9 72.701.9 75.681.8 74.941.6 76.701.7 72.861.9 73.851.6 73.761.5 74.44
Our Method I 78.630.9 75.331.5 77.980.6 77.111.6 77.680.6 77.231.3 75.901.9 74.821.5 76.84

Llama

TextOnly 70.521.7 68.291.3 70.910.8 70.501.6 72.421.4 71.252.1 70.461.3 68.721.7 70.38
TextEnty 72.391.3 70.661.9 72.711.6 72.131.8 73.501.8 73.531.5 71.291.8 69.371.6 72.11
TextRel 72.301.5 71.591.3 72.980.6 72.121.8 72.361.8 72.501.8 71.411.5 70.571.4 71.98
Our Method I 74.301.4 73.972.0 74.481.1 73.761.4 75.482.4 75.961.6 73.821.8 72.542.0 74.16

Prompt

Llama zero-shot

TextOnly 45.48 50.80 49.15 47.17 40.96 48.88 41.58 47.17 46.40
TextEnty 51.48 48.48 51.27 49.16 58.48 52.95 52.26 50.48 50.57
TextRel 50.37 50.14 51.09 50.64 51.28 51.76 52.56 50.15 51.00
Our Method II 51.89 50.70 52.73 50.87 51.77 53.06 53.32 51.35 51.96

Llama fine-tuned

TextOnly 74.921.7 70.831.8 74.501.5 75.681.8 76.341.7 72.641.6 72.141.6 71.971.3 73.63
TextEnty 75.181.8 72.361.5 74.061.4 76.261.2 76.571.7 74.621.6 75.421.6 73.681.7 74.77
TextRel 75.001.9 72.701.9 75.681.8 74.941.6 76.701.7 72.861.9 73.851.6 73.761.5 74.44
Our Method II 75.692.0 71.711.8 76.211.3 76.111.7 78.711.7 74.821.5 73.822.0 74.481.7 75.19

Table 8: Mean macro-F1 results (with std) on TOEFL dataset.

You are an AI assistant tasked with coherence assessment. You will be given a set of sentences from a text, along with parsed relations between some sentence 

pairs. Each relation is represented as a triple in the form (si, r, sj), where si and sj denote the i-th and j-th sentences from the text and r is the relation between 

them. The relation r can be one of the following: (1) “entity”: indicates that the two sentences discuss the same entities; (2) a discourse relation, such as 

“reason” and “contrast”: indicates there is a discourse relation between the two sentences. Your task is to evaluate the overall coherence level of the text by 

considering the content of the sentences and the relations between them. Please assign one of the following coherence levels to the text: {low, medium,

high}.

Here are the sentences in the given text:

s1: Did you know that John is still in Germany?

s2: He was planning to leave Berlin today but ran into a citywide strike.

s3: All the roads were blocked, and buses and trains were cancelled.

s4: So, he couldn’t get to the airport and now has to stay in the city for a few more days.

Here are the relations between sentences: (s1, entity, s2), (s1, reason, s2), (s1, entity, s4), (s2, instantiation, s3), (s2, entity, s4), (s3, result, s4)

Please format your outputs as follows:

<justification>[Explain how you arrived at the result, using at most one or two sentences, keeping it as concise as possible]</justification>

<answer>[your evaluation result]</answer>

Large Language Models high

input

generate

Figure 7: Prompt with explanation.

C Macro-F1 Results

As noted in Section 5, the labels in the GCDC,
CoheSentia, and TOEFL corpora are imbalanced.
While accuracy is commonly used as the evaluation
metric for coherence assessment (Lai and Tetreault,
2018; Jeon and Strube, 2020) and many other NLP
tasks (Fu and Frank, 2023, 2024b,a), it does not
account for the uneven label distribution (Liu et al.,
2019a, 2021). To address this, we also report model
performance using Macro-F1, a standard metric for
evaluating imbalanced datasets (Opitz and Burst,
2019). Tables 7 and 8 present the results on the
GCDC, CoheSentia, and TOEFL datasets. The
trends in Macro-F1 scores closely mirror those ob-
served in accuracy: incorporating entities and dis-

course relations improves performance, and com-
bining both yields the best results.

D Prompt with Explanation

In the case studies presented in Section 5, we
prompt LLaMA not only to evaluate the coher-
ence level of a given text but also to provide a brief
explanation for its judgment. This is done by mod-
ifying the instruction template used with LLaMA.
Figure 7 shows the prompt used in these case stud-
ies for Our Method II. Similar prompts are used for
TextOnly, TextEnty, and TextRel.

E Zero-shot results using LLama-3.3-70B

Coherence assessment involves processing entire
documents as input, which are typically quite
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Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Prompt
Llama-3.3-70B
zero-shot

TextOnly 56.50 51.00 43.50 47.50 49.63 55.07
TextEnty 57.50 51.50 45.50 52.00 51.63 56.11
TextRel 59.50 52.50 49.50 52.50 53.50 56.73
Our Method II 60.00 53.50 52.50 53.00 54.75 57.56

Table 9: Mean accuracy results of Llama-3.3-70B on GCDC and CoheSentia in the zero-shot setting.

Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Prompt
Llama-3.3-70B
zero-shot

TextOnly 41.84 36.30 36.12 35.55 37.45 45.84
TextEnty 44.61 38.68 40.74 38.68 40.68 48.74
TextRel 45.69 41.42 42.83 39.74 42.42 48.46
Our Method II 47.00 40.68 41.69 41.56 42.73 50.62

Table 10: Mean macro-F1 results of Llama-3.3-70B on GCDC and CoheSentia in the zero-shot setting.

Models P1 P2 P3 P4 P5 P6 P7 P8 Avg

Prompt
Llama-3.3-70B
zero-shot

TextOnly 57.25 58.51 54.58 54.67 57.95 56.46 53.62 54.37 55.93
TextEnty 60.51 58.26 56.30 58.05 58.25 60.42 60.26 56.80 58.61
TextRel 61.05 59.35 56.88 58.45 59.83 60.21 61.33 56.51 59.20
Our Method II 62.56 60.24 59.74 59.91 61.35 62.19 61.80 58.23 60.75

Table 11: Mean accuracy results of Llama-3.3-70B on TOEFL dataset in the zero-shot setting.

Models P1 P2 P3 P4 P5 P6 P7 P8 Avg

Prompt
Llama-3.3-70B
zero-shot

TextOnly 48.28 52.18 51.06 49.55 48.29 52.45 48.43 51.70 50.24
TextEnty 51.42 51.69 53.36 52.34 51.72 55.06 54.21 53.62 52.93
TextRel 52.37 53.42 53.87 53.82 52.55 54.87 56.45 53.88 53.90
Our Method II 54.01 54.38 55.64 54.28 54.84 56.07 57.35 55.16 55.22

Table 12: Mean macro-F1 results of Llama-3.3-70B on TOEFL dataset in the zero-shot setting.

lengthy (see Table 6). As a result, training and
inference require GPUs with substantial memory
capacity. Due to hardware limitations, we employ
LLaMA-3.1-8B as the language model for imple-
menting Method II in Section 4. Although we also
experimented with the more advanced LLaMA-
3.3-70B model, it caused out-of-memory errors
during fine-tuning. However, our GPU is capable
of running LLaMA-3.3-70B in a zero-shot setting
for Method II. Accordingly, we report the zero-
shot results (including Accuracy and Macro-F1)
using LLaMA-3.3-70B in Tables 9, 10, 11, and
12. As shown, the results are consistent with those
obtained using LLaMA-3.1-8B: incorporating en-
tity and discourse relations improves the model’s
performance in coherence assessment, and jointly
modeling both types of information yields the best
results.
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