
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21896–21910
November 4-9, 2025 ©2025 Association for Computational Linguistics

VistaWise : Building Cost-Effective Agent
with Cross-Modal Knowledge Graph for Minecraft

Honghao Fu1,2‡*, Junlong Ren1‡, Qi Chai1, Deheng Ye3, Yujun Cai2, Hao Wang1†

1The Hong Kong University of Science and Technology (Guangzhou)
2The University of Queensland, 3Tencent

honghao.fu@uq.edu.au, {jren686, qchai315}@connect.hkust-gz.edu.cn
dericye@tencent.com, yujun.cai@uq.edu.au, haowang@hkust-gz.edu.cn

Abstract

Large language models (LLMs) have shown
significant promise in embodied decision-
making tasks within virtual open-world envi-
ronments. Nonetheless, their performance is
hindered by the absence of domain-specific
knowledge. Methods that finetune on large-
scale domain-specific data entail prohibitive
development costs. This paper introduces Vista-
Wise, a cost-effective agent framework that in-
tegrates cross-modal domain knowledge and
finetunes a dedicated object detection model
for visual analysis. It reduces the requirement
for domain-specific training data from millions
of samples to a few hundred. VistaWise inte-
grates visual information and textual dependen-
cies into a cross-modal knowledge graph (KG),
enabling a comprehensive and accurate under-
standing of multimodal environments. We also
equip the agent with a retrieval-based pool-
ing strategy to extract task-related information
from the KG, and a desktop-level skill library to
support direct operation of the Minecraft desk-
top client via mouse and keyboard inputs. Ex-
perimental results demonstrate that VistaWise
achieves state-of-the-art performance across
various open-world tasks, highlighting its effec-
tiveness in reducing development costs while
enhancing agent performance.

1 Introduction

The development of agents in open-world environ-
ments is widely regarded as a promising avenue for
advancing artificial general intelligence (Liu et al.,
2024; Reed et al., 2022). These agents have to navi-
gate intricate environments and make decisions un-
der conditions of uncertainty. Among the various
platforms for developing such agents, Minecraft
has emerged as a prominent virtual environment,
owing to its open-ended design and the extensive
range of task possibilities (Wang et al., 2024b).

*The work was done during an internship at HKUST(GZ).
†Corresponding Author. ‡Equal Contribution.

Early efforts (Baker et al., 2022) within Minecraft
focused on training visual models using reinforce-
ment learning in simulators (Guss et al., 2019;
Fan et al., 2022). However, these approaches face
challenges related to systematic exploration (Wang
et al., 2020), interpretability (Zhao et al., 2021),
and generalization (Wang et al., 2024b).

With the advancement of Large Language Mod-
els (LLMs), applying LLM agents on Minecraft
has become a prominent trend (Zhu et al., 2023;
Wang et al., 2023b). However, due to limitations
in environmental perception and grounding, LLM-
based agents in Minecraft often rely on environ-
mental APIs (e.g., MineFlayer1) to obtain accu-
rate textual descriptions of the environment and
execute actions (Wang et al., 2024b; Zhao et al.,
2025). This reliance may hinder generalization,
as not all virtual environments provide such APIs.
Additionally, directly utilizing APIs for high-level
actions (e.g., chopping logs) restricts the auton-
omy and potential of LLM-based agents (Cai et al.,
2024b). In contrast, an ideal agent should rely
solely on visual cues for reasoning and perform
tasks using low-level and hybrid action spaces,
which involve mouse and keyboard (MNK) opera-
tions, more closely mimicking human behavior.

Building on this objective, several studies (Wang
et al., 2024c; Cai et al., 2024a; Wang et al., 2024d)
propose the use of Multimodal LLMs (MLLMs)
for reasoning based on visual information, sub-
sequently enhancing visual policies with the rea-
soning outcomes. In parallel, to mitigate perfor-
mance degradation or hallucinations resulting from
the LLM’s lack of domain-specific knowledge in
virtual environments, finetuning the LLM with
knowledge tailored to the target virtual world has
become a widely adopted strategy (Wang et al.,
2023b, 2024d,c; Zhao et al., 2025; Qin et al., 2024).
However, several challenges exist: (1) The re-

1https://github.com/PrismarineJS/mineflayer

21896

In Minecraft, I am focusing on crafting wooden pickaxe

Current inventory:

... (Omit other information)

What is the best next action for me to take?

None (x0, y0) (x1, y1) None

You need to gather before crafting a .

Use the crafting grid and in your inventory to craft a .

(a) Without external knowledge

(b) Injected with external knowledge

...

Figure 1: The motivation of injecting external knowl-
edge. (a) LLMs may generate incorrect dependencies
due to a lack of domain-specific knowledge in the vir-
tual world; (b) Injecting external knowledge enables
LLMs to generate more accurate responses.

liance on additional visual policies to predict ac-
tions diminishes the LLM’s decision-making po-
tential. Moreover, this approach usually models
visual input globally, incorporating irrelevant noise
that results in unstable predictions for MNK opera-
tions (Cai et al., 2024a). (2) General visual policies
or LLMs may underperform due to the lack of
domain-specific knowledge. However, finetuning
them with large-scale domain-specific data needs
prohibitive development costs.

To address these problems, we propose Vista-
Wise, a cost-effective agent with a cross-modal
knowledge graph for Minecraft. VistaWise incor-
porates an object detection model to identify vi-
sual entities, effectively minimizing irrelevant in-
formation and noise. This model is the sole com-
ponent in VistaWise that requires finetuning on
domain-specific data. It is efficiently finetuned with
fewer than 500 annotated frames extracted from
gameplay videos, thereby significantly reducing
the training cost for embedding domain knowledge
into the visual modality.

VistaWise utilizes an LLM as the policy to di-
rectly predict actions, harnessing the LLM’s rea-
soning and decision-making capabilities. To miti-
gate hallucinations (e.g., as shown in Figure 1), we
aim to integrate domain-specific knowledge into
the textual modality through external knowledge
retrieval (Lewis et al., 2020), thus eliminating the
need for additional finetuning of the LLMs. In-
spired by the efficacy of knowledge graphs (KGs)
in reducing hallucinations (Edge et al., 2024), we
construct a textual KG using online textual infor-
mation as the external knowledge base to provide
factual dependencies. Given the multimodal nature

of tasks in Minecraft, the visual information ex-
tracted by the object detection model is further em-
bedded into the graph, enabling the construction of
the cross-modal knowledge graph that enhances the
agent’s comprehensive and accurate understanding
of the environment. To mitigate the inference cost
of LLMs due to information redundancy, we further
design a retrieval-based graph-pooling strategy for
efficiently accessing the cross-modal information
stored within the graph structure.

To enhance the agent’s dynamic decision-
making capabilities, we integrate a concise task de-
scription, Chain-of-Thought (CoT) reasoning (Wei
et al., 2022), and a memory module. To facilitate
action execution, we develop a skill library that
references human players’ MNK behaviors using
PyAutoGUI, from which the LLM autonomously
generates parameters based on visual cues. This
approach empowers the agent to directly control
the game on the desktop, eliminating the need for
simulation environments or environmental APIs.
Our key contributions are summarized as follows:

• We propose a cost-effective agent framework
that incorporates multimodal domain-specific
knowledge by finetuning an object detection
model and externally retrieving textual knowl-
edge, reducing training data requirements
from millions to only a few hundred samples.

• We integrate visual and textual information
via a KG to construct cross-modal represen-
tations, enhancing the agent’s understanding
of multimodal tasks. We also design a pool-
ing strategy termed retrieval-based pooling to
extract information from the introduced KG.

• By directly leveraging the LLM’s reasoning
and decision-making capabilities, VistaWise
outperforms other non-API-based baselines
in complex tasks, achieving a success rate of
33% in obtaining diamonds, surpassing the
previous state-of-the-art rate of 25%.

2 Related Work

2.1 Agents in Minecraft
Agents based on vision models. MineRL (Guss
et al., 2019) and MineDOJO (Fan et al., 2022) offer
simulation platforms for developing virtual agents
in Minecraft. Early agents utilize visual models
trained through reinforcement or imitation learn-
ing as policies. VPT (Baker et al., 2022) employs
internet-scale pretraining for sequential decision-
making via semi-supervised imitation learning.

21897

STEVE-1 (Lifshitz et al., 2023) extends VPT by
incorporating additional prior knowledge derived
from task descriptions and task execution videos.
However, these methods face challenges related to
systematic exploration, interpretability, and gener-
alization (Wang et al., 2024b).
Agents based on LLMs. Compared to traditional
visual models, LLMs excel in complex cognitive
tasks and causal reasoning, driving the develop-
ment of Minecraft agents based on LLM poli-
cies (Zhu et al., 2023; Chai et al., 2025). To ad-
dress limitations of LLMs in visual capabilities,
Voyager (Wang et al., 2024b) proposes to leverage
environmental APIs to obtain precise data and ex-
ecute high-level actions. With the emergence of
Multimodal LLMs (MLLMs), subsequent works
such as STEVE (Zhao et al., 2025), LARM (Li
et al., 2024), MP5 (Qin et al., 2024), LLaMA-
Rider (Feng et al., 2024), and Odyssey (Liu et al.,
2024) further enhance agent performance by incor-
porating visual inputs and finetuning MLLMs with
domain-specific data. However, these methods rely
on certain APIs to gather information and execute
actions, facing challenges in generalization, as not
all environments provide such APIs.
Agents integrating LLMs and vision models. To
enable LLM-based agents to execute actions solely
based on visual input, without reliance on APIs,
JARVIS-1 (Wang et al., 2024c) introduces the use
of MLLMs for long-term planning. ROCKET-
1 (Cai et al., 2024a) further incorporates priors from
MLLMs and SAM (Kirillov et al., 2023) to train
a visual policy. However, these approaches incur
substantial costs in data collection and training. In
this paper, we offer a more efficient framework by
minimizing the complexity of these processes.

2.2 LLMs with Knowledge Graph
LLMs have demonstrated remarkable language un-
derstanding and zero-shot transfer abilities across
various natural language processing tasks. How-
ever, they still lack up-to-date or domain-specific
knowledge (Wang et al., 2023a), which hinders
their generalization. Recent works have proposed
to adopt the knowledge graph (KG) to provide
up-to-date and structured domain-specific knowl-
edge to improve LLM reasoning on knowledge-
intensive tasks (Pan et al., 2024). Many methods
(Zhang et al., 2022; Jiang et al., 2023b; Baek et al.,
2023; Jiang et al., 2023a) combine LLMs with KGs
through converting retrieved relevant knowledge
from KGs to textual prompts for LLMs. Never-

theless, the effectiveness of these methods mainly
depends on the quality of the retrieved knowledge.
To retrieve more accurate and reliable knowledge
from KGs, recent works (Jiang et al., 2023c; Sun
et al., 2024; Jiang et al., 2024; Wang et al., 2025b)
utilize LLMs to enhance reasoning on KGs.

3 Proposed Method

3.1 Overview

Figure 2 shows the framework of VistaWise, which
leverages visual inputs and desktop-level control to
interact with Minecraft. VistaWise is built around
an LLM and consists of three graph-based pro-
cesses: (1) text-modal graph construction, (2) cross-
modal graph construction, (3) task-specific infor-
mation retrieval, and two interaction modules: (i) a
desktop-level skill library and (ii) a memory stack.

3.2 Cross-modal Information Integration

Text-modal graph construction. As shown in
Figure 1(a), the agent may misinterpret entity de-
pendencies and suffer from hallucinations due to
a lack of domain-specific knowledge, resulting in
incorrect reasoning during crafting tasks. While
finetuning LLMs to incorporate new knowledge is
a viable approach, it suffers from significant costs
related to data collection and additional training.
An alternative and widely recognized solution is to
provide factual support via an external knowledge
base (Lewis et al., 2020; Jiang et al., 2023d), where
a structured KG is an effective way to provide
factual dependencies (Wang et al., 2025a; Edge
et al., 2024; Hu et al., 2024; Han et al., 2024).
We structure online textual knowledge into a KG
Ginit = (Vinit, Einit), where entity nodes Vinit (e.g.,
“Player,” “Tools,” “Iron Ingot”) and their relation-
ships E (e.g., “includes,” “can be used to mine,” “is
used to craft”) capture factual dependencies. In
practice, we find that entity names alone are suffi-
cient for the LLM to understand these dependen-
cies. Therefore, we remove other information (e.g.,
background knowledge) of the nodes, creating a
more lightweight representation. It reduces the
external knowledge injected, thus decreasing the
computational costs while maintaining comparable
performance as indicated in Table 2 and Sec. 4.4.
Visual perception. To predict the next action, the
agent must not only comprehend the factual de-
pendencies within the virtual world but also per-
ceive entities in the observable space. In order
to accurately perceive the environment and mit-

21898

KG

Construction

Memory

Stack

Desktop-level Skill Library

Skill 1
def mine(duration):

 pyautogui.mouseDown(button='left')

 time.sleep(duration)

 pyautogui.mouseUp(button='left')

Skill 2
def craft_plank(log_x,log_y):

 pyautogui.press('e')

 pyautogui.moveTo(log_x, log_y)

 pyautogui.click()

 ...

Visual Attributes

Embedding

Environmental

Perception

Conditional

Perception

Cross-modal Graph Construction

Text-modal Graph Construction

Analysis

Control

REC & Sampling

Skill Library Construction

P
u

s
h P

o
p

Retrieve

Generate

Parameters

Perform Action

Prompt

LLM

Chain of Thought

Task Description

Textualize

Retrieval-based

Pooling

Static Text KG

Online Knowledge Sources

Dynamic

Vision-Text KG

+

G
u

id
e

Task-Specific

Information Retrieval

Pooled KG

Figure 2: The overview of VistaWise. VistaWise is based on an LLM and incorporates three graph-based processes:
(1) text-modal graph construction, integrating external textual domain knowledge via a lightweight KG to establish
factual dependencies and mitigate hallucinations; (2) cross-modal graph construction, embedding real-time visual
information from a dedicated object detection model into the text-modal graph, forming a vision-text graph with
dynamic visual attributes; (3) task-specific information retrieval, utilizing a retrieval-based pooling strategy to
extract task-related information from the vision-text graph, guided by both the task-specific prompt and the real-time
visual attributes of the graph. Furthermore, VistaWise comprises two interaction modules: (i) a desktop-level skill
library, allowing the agent to act in the Minecraft desktop client via MNK operations, with action parameters
generated autonomously by the LLM; (ii) a memory stack, storing and querying decision history to support
reasoning. At each timestep, the agent makes decisions and executes actions based on the prompt, retrieved
information, memory, and skill library, altering the game environment to advance the task.

igate token overhead from visual inputs, we uti-
lize a dedicated object detection model to replace
the object grounding and detection functions of
MLLMs, extracting real-time entity information
(e.g., coordinates, bounding boxes) from the ob-
servable space. We classify the entities into two
categories: environmental entities, which repre-
sent the spatial distribution of the environment, and
conditional entities, which can be used to track
the progress of the agent’s task. We define the
observable space for the agent at timestep t as
O(t) = {oenv(t), oinv(t)}, where oenv and oinv rep-
resent the environment and inventory spaces in
Minecraft. The goal is to enable the agent to accu-
rately perceive the spatial locations of interactive
or semantically significant visual entities within
O. The agent’s perception is based on two parallel
processes: one for environmental entities and an-
other for conditional entities, both supported by an
object detection model D. To model the virtual en-
vironment, we define the environmental entities in
oenv(t) as E(t) = {et,1, et,2, . . . , et,n} (e.g., trunks,
lava, ores). The agent interacts with these entities
to gather resources and modify the environment to
achieve the goal task. For any observable entity e
at any timestep, the agent obtains its desktop-view
information D(oenv, e) = {xe, ye, we, he}, where

(xe, ye) represents the center coordinates of e, and
we and he denote the width and height of its bound-
ing box. Let Venv represent all the information
related to E in oenv accessible through D. The Venv
at timestep t is expressed as:

Venv(t) = {D(oenv(t), et,i) | et,i ∈ E(t), i = 1, 2, . . . , n}.
(1)

Moreover, we define the visual entities in oinv(t)
(e.g. item icons) as conditional entities C(t) =
{ct,1, ct,2, . . . , ct,m}. For any c at any timestep, the
information the agent can observe is D(oinv, c) =
{xc, yc}, where (xc, yc) are the center coordinates
of c. Agent tracks task progress and assesses
whether conditions for specific actions (e.g., craft-
ing) are met based on C. Let Vinv denote all infor-
mation related to C in oinv accessible through D.
The Vinv at timestep t is expressed as:

Vinv(t) = {D(oinv(t), ct,i) | ct,i ∈ C(t), i = 1, 2, . . . ,m}.
(2)

In addition, a significant challenge is assessing the
distance between the agent and e based on visual
information. It is primarily raised by the distri-
bution gap between real-world and virtual envi-
ronment visuals, which renders deep estimation
models trained on real-world data ineffective in
capturing the spatial distribution of oenv. Drawing
inspiration from how human players empirically

21899

estimate distances based on the size of visual en-
tities, we use we and he to determine whether the
agent is within the interaction range of e, employ-
ing empirical thresholds kw and kh, respectively.
This enables the agent to perceive spatial distance
in a coarse-grained manner.
Cross-modal graph construction. The real-time
visual information is embedded as attributes of the
corresponding entity nodes in the static KG that de-
scribes factual relationships. This visual attributes
embedding process updates the text KG with static
dependencies into a cross-modal vision-text KG
with dynamic visual attributes. At timestep t, we
embed the results of the visual perception process
as attributes to the corresponding entity nodes in
Ginit, which include the spatial and conditional in-
formation (Venv(t) and Vinv(t)) of the observed en-
vironment. This approach cross-modally integrates
the static text-modal KG with dynamic spatial and
conditional visual context, enhancing the agent’s
understanding of the environment by linking real-
time visual perception to the semantic entities repre-
sented in the KG. The resulted cross-modal vision-
text graph is denoted as G = (V, E).

3.3 Graph-based Information Retrieval
We retrieve task-related cross-modal information
from the cross-modal KG to support the reasoning
and decision-making processes of the agent and
reduce the computational resources occupied by
redundant information. However, the lightweight
design of the KG results in insufficient descrip-
tive text, weakening traditional semantic similarity-
based retrieval. Therefore, we propose a retrieval-
based graph-pooling strategy for accessing the in-
formation stored within the introduced KG.
Prompt synthesis. For a task s, we define a task
description Ttd(s) to guide the agent’s focus on
task-relevant information, such as “In Minecraft, I
am focusing on chopping logs and need to make
reasonable action choices based on the position of
logs on the screen and my crosshair position.” To
support reasoning, we include CoT Tcot(s) (Wei
et al., 2022), like “Is the crosshair close enough
to the target?”, “Does the crosshair need further
alignment?”, or “Do you need to move closer to
the target?”. The synthetic prompt for task s can be
defined as I(s) = {Ttd(s), Tcot(s)}, which guides
the information retrieval process and prompts the
agent’s next action.
Retrieval-based pooling. Due to the limited tex-
tual attributes in the constructed lightweight graph

A

E

D

C

B D

C
PSP

Task Description

In Minecraft, I am focusing on {task}..., my goal is to obtain {target}...

Chain of Thought

- Is the current crosshair close enough to the

target...

- Do you need to move closer to...

- Is there Entity D in the inventory?

- What were your decisions in previous rounds?

- ...

E

D

C
Player

Target Target

Player

Target

EMP

Player

Keep paths from

Player to Target

Keep the

related Entities

Entities w/o Visual AttributesStart/End Entities Entities with Visual Attributes Both Types

Vision-Text Graph

Names

of entities

with visual

attributes

Figure 3: Retrieval-based pooling. It first employs
path searching pooling (PSP) to retain paths from the
“Player” node to the task-specific “Target” node in the
KG. Subsequently, entity matching pooling (EMP) pre-
serves entities referenced in the task prompt and those
with visual attributes in the dynamic vision-text graph.
The pooled graph is textualized and input to the LLM,
providing the agent with factual dependencies and real-
time visual information.

G = (V, E), traditional information retrieval meth-
ods relying on semantic similarity (Ren et al.,
2025) face robustness issues (Edge et al., 2024).
To address this, we propose a retrieval-based pool-
ing mechanism for the graph, as shown in Figure 3,
which includes path searching pooling (PSP) and
entity matching pooling (EMP). Let p represent a
path between two nodes in V . The PSP retains
p ∈ PP-T(s), where PP-T(s) denotes the set of
paths from the player node vplayer to the task target
node vtarget(s), capturing global dependencies for
task s. Each path p ∈ PP-T(s) consists of a node
set V(p) and an edge set E(p). The nodes Vglobal(s)
and edges Eglobal(s) along all related paths for task
s can be expressed as:

Vglobal(s) =
⋃

p∈PP-T(s)

V(p), (3)

Eglobal(s) =
⋃

p∈PP-T(s)

E(p). (4)

Following PSP, the EMP checks whether each node
in Vglobal(s) appears in the synthetic prompt I(s)
and visual attributes at timestep t, and retains the
corresponding nodes Vlocal(s, t) ∈ Vglobal(s) and
their edges Elocal(s, t) ∈ Eglobal(s) to retrieve dy-
namic local dependencies that adapt to the real-time
task progress. After pooling, the KG G′(s, t) =
(Vlocal(s, t), Elocal(s, t)) contains information that
most relevant to the agent’s state at timestep t,
which is then textualized as input to the LLM.

21900

3.4 Desktop-level Skill Library

Previous works that employ LLMs as policies typ-
ically utilize APIs (e.g., MineFlayer) to construct
skill libraries for agents, with each agent interacting
with the environment in high-level action spaces
to accomplish complex tasks (Wang et al., 2024b).
However, it limits the agent’s ability to generalize,
as not all environments provide APIs (Cai et al.,
2024b). A potential improvement is enabling inter-
action through MNK operations, yet existing works
that adopt this method rely on action libraries tai-
lored to specific simulators, restricting their trans-
ferability (Wang et al., 2024c; Cai et al., 2024b,a).

To address this limitation, we develop a desktop-
level skill library L based on the concept of gen-
eral computer control (Tan et al., 2024), utiliz-
ing PyAutoGUI in hybrid action spaces (Wang
et al., 2024c). This library encompasses low-level
MNK operations (e.g., pressing a key or dragging
the mouse) and their combinations (e.g., crafting
items). By enabling the agent to act directly within
the Minecraft desktop client through MNK inputs,
the library removes the dependency on simulators
or environment-specific APIs. Examples of skill
functions within the library are shown on the right
side of Figure 2. The agent can access the li-
brary, retrieve the necessary skill functions, and
autonomously generate input parameters based on
the observable visual information.

3.5 Memory Stack

Given the recency sensitivity of decision-making
(i.e., recent decisions matter more) and the causal-
ity of continuous decisions in virtual games, we
design a memory module based on the Last-In-
First-Out (LIFO) stack storage concept in physi-
cal computer systems, termed the “memory stack”.
The LIFO property prioritizes the recent memory
and ensures the agent can query the decision history
continuously. At each timestep, the agent pushes
its latest decision to the top of the memory stack.
At timestep t, a query q(t) with specified recall
steps prompts the stack to pop decision histories
H(t) = M(q(t)) from top to bottom, allowing the
agent to recall decisions from the most recent to
earlier ones with controllable recall steps.

3.6 Agent Workflow Modeling

Let πθ denote a parameterized LLM. At timestep
t for task s, the agent uses πθ as policy to predict
an executable action A(t) (a skill function and its

parameters) based on the synthetic prompt P(s, t),
the pooled knowledge graph G′(s, t), decision his-
tories H(t), and the accessible skill library L. This
workflow can be modeled as:

A(t) = πθ(I(s),G′(s, t),H(t),L). (5)

After At is executed in the Minecraft environment
Env, the observable space at the next timestep can
be expressed as:

O(t+ 1) = Env(A(t)). (6)

4 Experiment

4.1 Dataset and Implementation
Dataset. We collect a small-scale dataset2 to train
an object detection model for Minecraft, defining
23 types of visual entities. From Minecraft game-
play videos, we extract 471 frames and annotate
3,304 instances using X-AnyLabeling. This dataset
is used to finetune a pretrained object detection
model for application in Minecraft environments.
Additional details are provided in Appendix B.
Implementation details. We use the pretrained
YOLOv10-L (Wang et al., 2024a) object detec-
tion model for entity perception, finetuned with
Minecraft data on an L4 GPU with 24G VRAM.
The dataset is split into training and testing sets
in a 9:1 ratio, with finetuning conducted over 150
epochs, a batch size of 16, and an input image
size of 768. Other settings follow YOLO’s default
configurations in the Ultralytics package. The em-
pirical thresholds in Sec.3.2 are kw = 110 and
kh = 275. We use GPT-4o (Achiam et al., 2023)
as the LLM policy. The agent acts in the Vanilla
1.11.2 Minecraft client on a Windows 10 machine,
equipped with a 1080p resolution monitor, a 3060
Ti GPU with 8G VRAM, an i7-12700F CPU, and
32GB of RAM. Unless otherwise specified, experi-
mental results are based on 15 repeated trials. The
setup of the game environment and details of the
skill library are provided in Appendix C and D.

4.2 Comparison against other methods
We compare our method with 7 non-API-based
baselines3. These methods includes: STEVE-
1 (Lifshitz et al., 2023), GROOT (Cai et al., 2024b),
DEPS (Wang et al., 2023b), Omni JARVIS (Wang

2The dataset is available at https://drive.google.com/
file/d/1QXGtSJJWw4emKB8RLGYUvq_fNEDCxhP_/view?
usp=sharing

3We exclude comparisons with works using environmental
APIs (e.g., MineFlayer) for perception and action.

21901

https://drive.google.com/file/d/1QXGtSJJWw4emKB8RLGYUvq_fNEDCxhP_/view?usp=sharing
https://drive.google.com/file/d/1QXGtSJJWw4emKB8RLGYUvq_fNEDCxhP_/view?usp=sharing
https://drive.google.com/file/d/1QXGtSJJWw4emKB8RLGYUvq_fNEDCxhP_/view?usp=sharing

Table 1: Comparison with other non-API-based baselines. The comparison includes the scale of the training
dataset and the GPU VRAM threshold required for integrating domain knowledge, and the success rate of milestone
goals for “obtain diamond”. ‘*’ indicates that base models are finetuned on domain-specific text, but the dataset and
GPU resources scale were not disclosed. ‘-’ denotes not available publicly.

Method Venue Dataset Scale GPU VRAM

STEVE-1 NeurIPS’23 160M frames 192 GB 0.04 0.04 - 0.00 0.00 0.00 0.00 0.00 0.00
GROOT ICLR’24 1.6B frames 384 GB 0.05 0.05 - 0.00 0.00 0.00 0.00 0.00 0.00
DEPS NeurIPS’23 * * 0.90 0.80 - 0.80 0.70 - - 0.10 0.01
Omni JARVIS NeurIPS’24 990M tokens 640 GB 0.95 0.95 0.82 - - 0.82 0.32 0.32 0.08
JARVIS-1 TPAMI’24 * * 0.97 0.96 0.95 0.94 0.94 0.57 0.55 0.34 0.09
VPT NeurIPS’22 140B frames 23040 GB 0.99 0.99 0.99 0.98 0.78 0.84 0.60 0.57 0.15
ROCKET-1 CVPR’25 1.6B frames * 1.00 1.00 1.00 - 1.00 - - - 0.25

VistaWise (Ours) EMNLP’25 471 frames 24 GB 1.00 1.00 1.00 1.00 1.00 0.73 0.73 0.73 0.33

Table 2: Ablation study on textual entity attributes
in the KG on the success rate of milestone goals.

Attributes

Full information 1.00 1.00 1.00 0.80 0.80 0.27
Names only 1.00 1.00 1.00 0.73 0.73 0.33

et al., 2024d), JARVIS-1 (Wang et al., 2024c),
VPT (Baker et al., 2022), and ROCKET-1 (Cai
et al., 2024a). Results for STEVE-1 and GROOT
are taken from Omni JARVIS, while other results
are sourced from the respective original papers.
Performance on “obtain diamond”. We test our
method with the ultimate goal of “obtaining dia-
mond,” a classic challenge for agents in Minecraft.
Table 1 compares our performance with others
across 9 sequential sub-goals leading to this ob-
jective: obtain crafting table → obtain wooden
pickaxe → ... → obtain diamond . These sub-
goals must be executed sequentially, with failure
at any stage resulting in the failure of subsequent
goals. The results demonstrate that our method
achieves state-of-the-art (SOTA) performance on
the ultimate goal and most of the sub-goals.
Efficiency. As shown in Table 1, we finetune the
object detection model using only 471 frames ex-
tracted from game videos and 24 GB GPU VRAM,
whereas other methods typically rely on at least
160M frames with 192 GB VRAM or 990M tokens
of text with 64 GB VRAM. Despite the substan-
tially smaller dataset scale and VRAM usage, we
achieve SOTA performance. It demonstrates the
effectiveness of our approach in reducing develop-
ment costs related to data collection and training.

4.3 Ablation Study
Entity attributes. In Sec.3.3, we construct a KG to
integrate external textual knowledge for the agent,
reducing hallucinations in complex crafting tasks.
To minimize token overhead, we retain only entity
names and exclude other information (e.g., back-

Similarity-based w/o EMP w/o PSP EMP-PSP PSP-EMP
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
lse

 P
os

iti
ve

 R
at

e
(F

PR
)

0.67 0.69

0.39

0.20
0.25

Similarity-based w/o EMP w/o PSP EMP-PSP PSP-EMP
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fa
lse

 N
eg

at
iv

e
Ra

te
 (F

NR
)

0.04

0.01
0.00

0.12

0.01

Figure 4: Ablation study on information retrieval
strategies. (Left) False Positive Rate (FPR), the pro-
portion of redundant information in the retrieved re-
sults. (Right) False Negative Rate (FNR), the pro-
portion of missed information to all that should have
been retrieved. Lower FPR and FNR indicate better
retrieval. “Similarity-based”, “EMP”, and “PSP” refer
to the similarity-based strategy, entity matching pooling,
and path searching pooling, respectively, while “EMP-
PSP” and “PSP-EMP” denote their execution order.

ground knowledge). As shown in Table 2, the agent
successfully understands entity dependencies de-
spite the omission of full information, with no craft-
ing failures. Variations in success rates between
the two ablation groups stem from the random dis-
tribution of in-game resources.
Knowledge retrieval strategies. Figure 4 com-
pares similarity-based and pooling-based retrieval
strategies in our lightweight KG using False Posi-
tive Rate (FPR) and False Negative Rate (FNR).
The similarity-based strategy employs a BERT
model (all-MiniLM-L6-v2) to embed prompts and
graph attributes, and the cosine similarity between
them to retrieve relevant entities. We also exam-
ine the roles of path pooling, entity pooling, and
their order. The results indicate that the pooling
strategy outperforms similarity-based retrieval in
the introduced KG. Moreover, performing entity
pooling first disrupts the node-edge structure, po-
tentially losing critical paths. Thus, considering
both FPR and FNR, the optimal strategy is path

21902

Table 3: Ablation study on LLM policies and visual
perception methods. ‘V’ denotes leveraging the vi-
sual capabilities of the MLLM for image understanding,
while ‘OD’ refers to using an object detection model.
“a/b” indicates that the agent successfully achieved the
goal a times out of b consecutive attempts.

LLM Policy Method

V 2/3 0/3 0/3 0/3 0/3
Gemini-1.5-pro OD 3/3 3/3 3/3 2/3 1/3

V+OD 3/3 3/3 3/3 2/3 1/3

V 0/3 0/3 0/3 0/3 0/3
Qwen-VL-Max OD 3/3 0/3 0/3 0/3 0/3

V+OD 3/3 0/3 0/3 0/3 0/3

V 3/3 0/3 0/3 0/3 0/3
GPT-4o OD 3/3 3/3 3/3 2/3 1/3

V+OD 3/3 3/3 3/3 2/3 1/3

Table 4: Ablation study on memory stack, CoT
and KG. “a/b” indicates that the agent successfully
achieved the goal a times out of b consecutive attempts.

Method

w/o Memory Stack 3/3 3/3 3/3 0/3 0/3
w/o CoT 2/3 0/3 0/3 0/3 0/3
w/o KG 3/3 2/3 2/3 1/3 0/3

Full 3/3 3/3 3/3 2/3 1/3

pooling followed by entity pooling.
LLM policies and visual perception. Table 3
evaluates several common MLLMs (Team et al.,
2023; Bai et al., 2023; Achiam et al., 2023) within
our framework, assessing agent performance with
and without object detection models or MLLM
visual capabilities. Results show that without accu-
rate visual entity information from object detection,
relying solely on MLLM’s visual capability is inad-
equate for complex tasks. Besides, as object detec-
tion provides sufficient information, additional vi-
sual input does not significantly affect performance.
It indicates that using an object detection model
can effectively replace MLLM’s visual capability
and enhance the agent’s spatial perception.
Memory stack, CoT and KG. We examine the ef-
fectiveness of several components in Table 4. The
results demonstrate that the memory stack is crucial
for handling complex tasks, CoT serves as the foun-
dation for decision-making, and KG contributes to
enhancing stability in crafting tasks.

4.4 Inference Costs
In addition to the costs associated with model train-
ing, managing inference overhead is crucial to en-
hancing the cost-efficiency of LLM-based agents.
As illustrated in Figure 5, we quantify this overhead

0 100000 200000 300000 400000
Tokens

0

1

2

3

4

5

6

7

8

9

10

11

Ob
ta

in
ed

 It
em

s

Total Tokens: 324456

Total Tokens: 430814

Total Tokens: 468756

Base method
with FA
with V
Total tokens of base method
Total tokens with FA
Total tokens with V

Figure 5: The tokens consumed by our proposed
agent to successfully achieve various goals. “Vista-
Wise” is our standard framework proposed in Sec.3,
while “with FA” and “with V” indicate the addition of
full graph attributes (Table 2) and the use of visual input
(Table 3) to the standard framework, respectively.

through the token consumption required to achieve
various goals. For the ultimate goal of “obtain dia-
mond,” omitting full entity attributes during exter-
nal knowledge injection and disabling the MLLM’s
visual capabilities leads to a reduction in token con-
sumption by 30.6% and 41.0% respectively, while
the agent performance shows no significant degra-
dation as indicated in Tables 2 and 3. Moreover,
by leveraging the lightweight graph-based repre-
sentations of cross-modal information, our frame-
work achieves budget-friendly inference. Based on
GPT-4o pricing for 160 iterations, our framework
incurs a cost of ∼ $1.28. In comparison, the earlier
cost-transparent4 LLM policy-based agent Voyager,
under the same conditions, costs around ∼ $25,
achieving a 94.9% reduction in cost. These results
validate the cost-effective nature of our method.

5 Conclusion

We present VistaWise, a cost-effective agent frame-
work for open-world embodied decision-making
in Minecraft. With cross-modal domain-specific
knowledge through retrieving external textual de-
pendencies and training a dedicated object detec-
tion model, VistaWise minimizes the need for ex-
tensive domain-specific training data. It constructs
a cross-modal KG combining visual information
and textual dependencies for better task understand-
ing. It also includes a retrieval-based pooling strat-
egy to extract task-relevant data from the KG, and a
desktop-level skill library to control the Minecraft
desktop client directly via MNK inputs. VistaWise
effectively reduces development costs while main-
taining high performance, offering a novel and effi-
cient solution for virtual open-world agents.

4https://github.com/MineDojo/Voyager/blob/main/FAQ.md

21903

Limitations

Utilizing an LLM as the policy within VistaWise
impacts the agent’s real-time performance, as each
action iteration necessitates waiting for LLM infer-
ence and, if applicable, a server response. While
pausing the virtual environment’s processes syn-
chronizes the agent’s decision-making with the en-
vironment’s timescale, it results in increased time
for the agent to complete tasks.

Acknowledgments

This research is supported by the National Natural
Science Foundation of China (No. 62406267), Ten-
cent Rhino-Bird Focused Research Program and
the Guangzhou Municipal Science and Technology
Project (No. 2025A04J4070).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Jinheon Baek, Alham Aji, and Amir Saffari. 2023.
Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
In The 61st Annual Meeting Of The Association For
Computational Linguistics.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966, 1(2):3.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost
Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. 2022.
Video pretraining (vpt): Learning to act by watch-
ing unlabeled online videos. Advances in Neural
Information Processing Systems, 35:24639–24654.

Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun
Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
2024a. Rocket-1: Master open-world interaction
with visual-temporal context prompting. arXiv
preprint arXiv:2410.17856.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma,
Anji Liu, and Yitao Liang. 2024b. Groot: Learning
to follow instructions by watching gameplay videos.
In The Twelfth International Conference on Learning
Representations.

Qi Chai, Zhang Zheng, Junlong Ren, Deheng Ye,
Zichuan Lin, and Hao Wang. 2025. Causalmace:

Causality empowered multi-agents in minecraft co-
operative tasks. Preprint, arXiv:2508.18797.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343–
18362.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng
Zheng, and Zongqing Lu. 2024. Llama-rider:
Spurring large language models to explore the open
world. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 4705–4724.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. Minerl: a large-scale
dataset of minecraft demonstrations. In Proceedings
of the 28th International Joint Conference on Artifi-
cial Intelligence, pages 2442–2448.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan
Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A
Rossi, Subhabrata Mukherjee, Xianfeng Tang, and 1
others. 2024. Retrieval-augmented generation with
graphs (graphrag). arXiv preprint arXiv:2501.00309.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan,
Chen Ling, and Liang Zhao. 2024. Grag: Graph
retrieval-augmented generation. arXiv preprint
arXiv:2405.16506.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yaliang Li,
and Ji-Rong Wen. 2023a. Reasoninglm: Enabling
structural subgraph reasoning in pre-trained language
models for question answering over knowledge graph.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3721–3735.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song,
Chen Zhu, Hengshu Zhu, and Ji-Rong Wen. 2024.
Kg-agent: An efficient autonomous agent framework
for complex reasoning over knowledge graph. arXiv
preprint arXiv:2402.11163.

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen.
2023b. UniKGQA: Unified retrieval and reasoning
for solving multi-hop question answering over knowl-
edge graph. In The Eleventh International Confer-
ence on Learning Representations.

Jinhao Jiang, Kun Zhou, zican Dong, KeMing Ye, Xin
Zhao, and Ji-Rong Wen. 2023c. StructGPT: A gen-
eral framework for large language model to reason
over structured data. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

21904

https://arxiv.org/abs/2508.18797
https://arxiv.org/abs/2508.18797
https://arxiv.org/abs/2508.18797
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=R635gF7lXD
https://openreview.net/forum?id=R635gF7lXD
https://openreview.net/forum?id=R635gF7lXD

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023d. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969–7992.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
and 1 others. 2023. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 4015–4026.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,
33:9459–9474.

Zhuoling Li, Xiaogang Xu, Zhenhua Xu, SerNam Lim,
and Hengshuang Zhao. 2024. Larm: Large auto-
regressive model for long-horizon embodied intelli-
gence. arXiv preprint arXiv:2405.17424.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba,
and Sheila McIlraith. 2023. Steve-1: A generative
model for text-to-behavior in minecraft. Advances in
Neural Information Processing Systems, 36:69900–
69929.

Shunyu Liu, Yaoru Li, Kongcheng Zhang, Zhenyu
Cui, Wenkai Fang, Yuxuan Zheng, Tongya Zheng,
and Mingli Song. 2024. Odyssey: Empowering
minecraft agents with open-world skills. arXiv
preprint arXiv:2407.15325.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering, 36(7):3580–3599.

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin,
Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing Shao.
2024. Mp5: A multi-modal open-ended embod-
ied system in minecraft via active perception. In
2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16307–16316.
IEEE.

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, and 1 others.
2022. A generalist agent. Transactions on Machine
Learning Research.

Junlong Ren, Hao Wu, Hui Xiong, and Hao Wang. 2025.
Sca3d: Enhancing cross-modal 3d retrieval via 3d
shape and caption paired data augmentation. arXiv
preprint arXiv:2502.19128.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Interna-
tional Conference on Learning Representations.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia,
Gang Ding, Boyu Li, Bohan Zhou, Junpeng Yue,
Jiechuan Jiang, Yewen Li, and 1 others. 2024. Cra-
dle: Empowering foundation agents towards general
computer control. In NeurIPS 2024 Workshop on
Open-World Agents.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin,
Jungong Han, and 1 others. 2024a. Yolov10: Real-
time end-to-end object detection. Advances in Neural
Information Processing Systems, 37:107984–108011.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2024b. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yu-
lun Li, Jeffrey Clune, and Kenneth Stanley. 2020.
Enhanced poet: Open-ended reinforcement learning
through unbounded invention of learning challenges
and their solutions. In International conference on
machine learning, pages 9940–9951. PMLR.

Shijie Wang, Wenqi Fan, Yue Feng, Xinyu Ma,
Shuaiqiang Wang, and Dawei Yin. 2025a. Knowl-
edge graph retrieval-augmented generation for
llm-based recommendation. arXiv preprint
arXiv:2501.02226.

Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun,
Jundong Li, and Yada Zhu. 2025b. Reasoning of
large language models over knowledge graphs with
super-relations. In The Thirteenth International Con-
ference on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023a. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi-
aojian Ma, Yitao Liang, and Team CraftJarvis. 2023b.
Describe, explain, plan and select: interactive plan-
ning with large language models enables open-world
multi-task agents. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, pages 34153–34189.

21905

https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=rTCJ29pkuA
https://openreview.net/forum?id=rTCJ29pkuA
https://openreview.net/forum?id=rTCJ29pkuA
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, and 1 others.
2024c. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Zihao Wang, Shaofei Cai, Zhancun Mu, Haowei Lin,
Ceyao Zhang, Xuejie Liu, Qing Li, Anji Liu, Xiao-
jian Shawn Ma, and Yitao Liang. 2024d. Omnijarvis:
Unified vision-language-action tokenization enables
open-world instruction following agents. Advances
in Neural Information Processing Systems, 37:73278–
73308.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773–
5784.

Zelin Zhao, Karan Samel, Binghong Chen, and 1 oth-
ers. 2021. Proto: Program-guided transformer for
program-guided tasks. Advances in neural informa-
tion processing systems, 34:17021–17036.

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Boyi Li,
Shengyu Hao, Shidong Cao, Tian Ye, and Gaoang
Wang. 2025. See and think: Embodied agent in
virtual environment. In European Conference on
Computer Vision, pages 187–204. Springer.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao,
Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei
Lu, Xiaogang Wang, and 1 others. 2023. Ghost in
the minecraft: Generally capable agents for open-
world environments via large language models with
text-based knowledge and memory. arXiv preprint
arXiv:2305.17144.

A The Explanation of Icons

We explain the goals represented by the icons men-
tioned in the main paper in Table 5.

Table 5: The explanation of icons mentioned in the main
paper.

Icons (Goals) Explanations

Obtain log. Chop a tree using the hands
or an axe to collect wood logs.

Obtain wooden plank. Craft wooden
planks from logs.

Obtain stick. Craft sticks from wooden
planks.

Obtain crafting table. Craft a crafting
table from wooden planks.

Obtain wooden pickaxe. Use wooden
planks and sticks to craft a wooden pick-
axe at the crafting table.

Obtain cobblestone. Mine stone blocks
with wooden pickaxe to collect cobble-
stone.

Obtain stone pickaxe. Craft a stone
pickaxe using cobblestones and sticks
at the crafting table.

Obtain iron ore. Mine iron ore blocks
(found underground) with stone pick-
axe.

Obtain furnace. Craft a furnace using
cobblestones at the crafting table.

Obtain iron ingot. Smelt the iron ore in
a furnace using fuel.

Obtain iron pickaxe. Craft an iron pick-
axe using iron ingots and sticks at the
crafting table.

Obtain diamond, the rarest mineral in
our environment. Mine diamond ore
blocks (found deep underground) with
an iron pickaxe.

B Dataset

We use X-AnyLabeling to annotate a total of 3,304
visual entities across 471 frames extracted from
the gameplay video. The entity details and their
corresponding annotation counts are provided in
Table 6. Entities such as trunk, plank_icon, and
log_icon exhibit higher annotation counts, since
each of them has different types of textures (such
as oak, birch, etc.).

21906

Table 6: The defined visual entity types in the dataset
and their annotation counts in the 471 frames of the
game screen.

Entities Annotations

bedrock 59
coal_icon 110
coal_ore 101
cobblestone_icon 249
crafting_table_icon 106
diamond_icon 79
diamond_ore 50
diamond_pickaxe_icon 15
dirt_icon 115
furnace_icon 67
iron_icon 103
iron_ore 141
iron_ore_icon 76
iron_pickaxe_icon 38
lava 15
log_icon 361
non_cobblestone_icon 152
plank_icon 446
stick_icon 181
stone_pickaxe_icon 72
trunk 608
water 37
wood_pickaxe_icon 123

Total 3304

C Game Environment

We use the Vanilla 1.11.2 Minecraft desktop client
as the virtual environment for the agent, with the
specific game world settings detailed in Table 7.

D Skill Library

We present some important skill functions from the
skill library and their explanations in Table 8.

The construction of the skill library is semi-
automated. We first manually design a few simple
template functions, then define the requirements
and pass them to an LLM to generate the corre-
sponding functions. Specifically, the human effort
involved includes: (i) Designing a small number
of template functions intended to cover all relevant
keyboard and mouse operations in the game; (ii)
Defining the requirements, including the name of
each skill function, its input parameters, and brief
descriptions of both the function and its parame-
ters; (iii) Manually refining the generated functions

Table 7: Game world settings.

Game Options Settings

Game Mode Survival
Generate Structures ON
Bonus Chest OFF
Allow Cheats ON
Sea Level 63
Caves Yes
Strongholds Yes
Villages Yes
Mineshafts Yes
Temples Yes
Ocean Monuments Yes
Woodland Mansions Yes
Ravines Yes
Dungeons Yes
Dungeon Count 7
Water Lakes Yes
Water Lake Rarity 4
Lava Lakes No
Lava Lake Rarity 80
Lava Oceans No
Biome Plains
Biome Size 4
River Size 4

when issues are present. Using GPT-4o mini, we
successfully generate all skill functions, with fewer
than half requiring minor manual adjustments.

E Knowledge Graph

Entity and relationship extraction is automated us-
ing a multi-stage process. We employ an LLM
(GPT-4o mini) with a web plugin to construct the
knowledge graph. Selected websites are provided
to the LLM, which summarizes the knowledge (en-
tities and their dependencies) from these sites. Due
to context length limitations, each site is processed
individually, and the outputs are merged into a
rough draft document. The LLM is then prompted
to refine this document, remove redundancy, and
generate a Python-compatible knowledge graph us-
ing the NetworkX package.

While this approach produces detailed graphs,
it may also introduce task-irrelevant relations, re-
sulting in unnecessary complexity. To mitigate this,
we restrict edge types to nine specific categories
("can use", "can mine", "is used to craft", "is used
to produce", "can be put in/on", "is the fuel of",

21907

"includes", "can be used to mine", and "outputs")
to ensure relevance and clarity. Then, a brief man-
ual review is conducted to remove redundant or
irrelevant nodes, further improving the quality of
the graph. Human involvement is primarily lim-
ited to (i) selecting source websites, (ii) defining
allowed relation types, and (iii) performing minor
refinements.

F Prompt Template

As an example, we report the prompt template for
action prediction in Table 9.

21908

Table 8: Examples from the desktop-level skill library.

Skill Function Explanation

craft_furnace(c_x, c_y) Use cobblestone to craft a furnace. ‘c_x’ and ‘c_y’ are the x and y
coordinates of the cobblestone in the player’s inventory.

craft_iron_pickaxe(i_x, i_y, s_x,
s_y)

Use iron ingots and sticks to craft an iron pickaxe. ‘i_x’ and ‘i_y’ are the
x and y coordinates of the iron ingots in the player’s inventory, ‘s_x’ and
‘s_y’ are the x and y coordinates of the sticks.

craft_plank(l_x, l_y) Use logs to craft planks. ‘l_x’ and ‘l_y’ are the x and y coordinates of the
logs in the player’s inventory.

craft_stick(p_x, p_y) Use planks to craft sticks. ‘p_x’ and ‘p_y’ are the x and y coordinates of
the planks in the player’s inventory.

craft_stone_pickaxe(c_x, c_y, s_x,
s_y)

Use cobblestone and sticks to craft a stone pickaxe. ‘c_x’ and ‘c_y’ are
the x and y coordinates of the cobblestone in the player’s inventory, ‘s_x’
and ‘s_y’ are the x and y coordinates of the sticks.

craft_wood_pickaxe(p_x, p_y, s_x,
s_y)

Use planks and sticks to craft a wooden pickaxe. ‘p_x’ and ‘p_y’ are the x
and y coordinates of the planks in the player’s inventory, ‘s_x’ and ‘s_y’
are the x and y coordinates of the sticks.

dig_horizontal_mine_tunnels(k) Select a pickaxe in the hotbar and use it to dig horizontal tunnels to explore
ores. ‘k’ is a number from 1 to 9 corresponding to the key for the pickaxe
in the hotbar.

dig_vertical_mine_tunnels(k, d) Select a pickaxe from the hotbar and use it to dig a vertical mine tunnel to
reach (deeper) underground. ‘k’ is a number from 1 to 9 corresponding to
the key for the pickaxe in the hotbar. ‘d’ is mouse press duration.

mine_log(d) When log is within 5 meters and the crosshair is correctly aligned with the
target, mine the log. ‘d’ is mouse press duration.

mine_diamond_ore(k, d) When diamond ore is within 5 meters and the crosshair is correctly aligned
with the target, mine the diamond ore. ‘k’ is the key for the iron pickaxe
in the hotbar, and ‘d’ is mouse press duration.

mine_iron_ore(k, d) When iron ore is within 5 meters and the crosshair is correctly aligned
with the target, mine the iron ore. ‘k’ is the key for the stone pickaxe in
the hotbar, and ‘d’ is mouse press duration.

move_forward(d) Move forward for a certain duration. ‘d’ is the press duration of ‘w’.

move_item_to_hotbar(t_x, t_y) Move a specific item from the inventory to the hotbar. ‘t_x’ and ‘t_y’ are
the x and y coordinates of the target item in the player’s inventory.

place_blocks_underfoot(k, n) Place cobblestone blocks underfoot to raise the player from lower to higher
position. ‘k’ is a number from 1 to 9 corresponding to the key for the
cobblestone in the hotbar. ‘n’ is the number of placed blocks.

put_functional_block(k, d) Select a functional block such as a crafting table or furnace from the hotbar
and place it on the ground. ‘k’ is a number from 1 to 9 corresponding to
the key for the functional block in the hotbar. ‘d’ is mouse press duration.

smelt_iron_ore(i_o_x, i_o_y, p_x,
p_y)

Use a furnace to smelt iron ore and obtain iron ingots. ‘i_o_x’ and ‘i_o_y’
are the x and y coordinates of the iron ore in the player’s inventory, ‘p_x’
and ‘p_y’ are the x and y coordinates of the planks.

turn(x, y) Turn the view to the target. ‘x’ and ‘y’ are the horizontal and vertical pixel
offset of the crosshair from the target, with positive or negative values.

turn_and_move_forward(d, x, y) Firstly turn to the target, then move forward. ‘x’ and ‘y’ are the pixel
offset of the crosshair from the target, corresponding to the horizontal
and vertical directions, with positive or negative values. ‘d’ is the press
duration of the key ‘w’.

21909

General Prompt Template
In Minecraft, player is focusing on {task_description}, requiring strategic action choices

based on the environment and inventory status The crosshair position is at {crosshair_position}
in the screen. If applicable, the distance between the player and the {target} is {greater
than/close to/less than} the interactable range.

Here is some knowledge related to the current status that may help clarify item-behavior
dependencies: {retrieved_knowledge_graph}.

Current inventory status: {retrieved_attributes_of_observable_inventory}.

Current environment status: {retrieved_attributes_of_observable_environment}.

Available actions are defined as functions with the following formats and descriptions:
{skill_library}.

Previous round(s) of action decision(s): {retrieved_memory}.

Please address these questions to determine the next optimal action: {chain_of_thought}.

Based on this reasoning, decide the best next action and calculate the required parameter
values. The output format must be: “Action: skill_function(*params)”.

Table 9: General prompt template for action prediction.

21910

