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Abstract
Large language models often retain unintended
content, prompting growing interest in knowl-
edge unlearning. Recent approaches empha-
size localized unlearning, restricting parame-
ter updates to specific regions in an effort to
remove target knowledge while preserving un-
related general knowledge. However, their ef-
fectiveness remains uncertain due to the lack
of robust and thorough evaluation of the trade-
off between the competing goals of unlearn-
ing. In this paper, we begin by revisiting ex-
isting localized unlearning approaches. We
then conduct controlled experiments to rigor-
ously evaluate whether local parameter updates
causally contribute to unlearning. Our findings
reveal that the set of parameters that must be
modified for effective unlearning is not strictly
determined, challenging the core assumption
of localized unlearning that parameter local-
ity is inherently indicative of effective knowl-
edge removal. We release our code at https:
//github.com/HYU-NLP/loc-unlearn

1 Introduction

Due to large-scale pretraining, large language mod-
els (LLMs) often internalize not only useful knowl-
edge but also harmful biases, sensitive data, and
copyrighted or outdated content (Chang et al.,
2023; Mozes et al., 2023; Eldan and Russinovich,
2023; Ye et al., 2022). This has sparked growing
interest in machine unlearning for LLMs, a post-
training technique that selectively removes such
information without full retraining (Blanco-Justicia
et al., 2025; Liu et al., 2025). Despite their promise,
current methods face key limitations: inadvertent
forgetting of unrelated knowledge, susceptibility
to prompt rephrasing, and vulnerability to informa-
tion extraction under white-box conditions (Patil
et al., 2023; Lynch et al., 2024).

In response, recent research has incorporated
the notion of localization (Hase et al., 2023) into
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knowledge unlearning, aiming to first pinpoint pa-
rameter regions presumed to store the target knowl-
edge, and subsequently confine unlearning updates
to those regions (Tian et al., 2024; Jia et al., 2024;
Wang et al., 2024). These studies commonly high-
light that unrestrained parameter updates in un-
learning lead to undesirable forgetting of general
knowledge, and that unlearning should instead tar-
get a critical subset of weights, thereby preserving
the model’s overall utility.

While the idea of localized unlearning is promis-
ing, we identify critical gaps that have largely been
overlooked in this line of work. First, current ap-
proaches frequently depend on surface-level output
evaluation metrics (e.g., ROUGE-L (Lin, 2004))
to quantify the degree of knowledge embedded
in model parameters; however, these metrics are
recently acknowledged to be unreliable for such as-
sessments (Hong et al., 2024a; Wang et al., 2025a).

Second, fair comparison across existing meth-
ods is hindered by the inherent nature of unlearn-
ing, which requires balancing the removal of tar-
geted knowledge with the retention of general util-
ity. This trade-off obscures clear comparisons, as
different approaches often excel in different aspects
of the unlearning task (Wang et al., 2025a).

Most notably, prior work on localized unlearning
tends to emphasize the design of localization tech-
niques while relying on the unverified assumption
that parameter locality inherently reflects unlearn-
ing effectiveness, without establishing whether the
identified regions play a causal role. As a result,
the underlying connection between localization and
knowledge unlearning remains unexplored.

In this paper, we investigate whether the success
of localization truly translates into improved un-
learning, particularly by leveraging a controlled
environment where the ground-truth parameter re-
gions responsible for storing the target knowledge
are explicitly predefined. This setup allows us to
disentangle the contribution of localization to un-
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learning, rather than evaluating localization itself.
Our findings are surprising: even when unlearn-

ing is performed on the ground-truth region, it does
not necessarily yield a better trade-off between for-
getting and retention. This challenges the core
assumption underlying localized unlearning that
constraining parameter updates to specific regions
helps preserve unrelated knowledge elsewhere in
the model. Ultimately, we question the traditional
view of unlearning as full parameter recovery, sug-
gesting that the set of parameters to be updated is
not strictly given, and that the model may achieve
ideal unlearning via flexible parameter adaptation.

2 Background and Related Work

LLM unlearning methods Most unlearning ap-
proaches rely on fine-tuning the target model, with
objectives falling into three categories: (1) gradient
ascent, which minimizes the model’s likelihood on
sentences encoding the target knowledge; (2) pref-
erence optimization, which treats target knowledge
as negative examples; and (3) representation learn-
ing, which randomizes internal representations for
inputs containing the target knowledge. To repre-
sent these paradigms, we evaluate four methods:
WGA (Wang et al., 2025b), NPO (Zhang et al.,
2024), DPO (Rafailov et al., 2023), and RMU (Li
et al., 2024), with details in Appendix A.

Knowledge storage in LLMs A growing body
of work in the field of mechanistic interpretability
suggests that in Transformer-based LLMs, multi-
layer perceptrons (MLPs) play a crucial role in
storing factual knowledge (Meng et al., 2022; Geva
et al., 2021, 2022). Specifically, Geva et al. (2021)
propose that MLPs can be understood as emulated
key-value memories (Sukhbaatar et al., 2015): the
first linear layer projects input hidden states into a
latent key space to produce memory coefficients,
while the second layer maps these coefficients to
value vectors that encode factual information.

Formally, an MLP in the ℓ-th Transformer layer
accepts a hidden state xℓ ∈ Rdm as input and
processes it through two linear layers with a non-
linearity f(·) in between. The final MLP output is
computed as:

Mℓ = f(W ℓ
Kxℓ)W ℓ

V =

dff∑

i=1

mℓ
i · vℓ

i ,

where W ℓ
K ∈ Rdff×dm and W ℓ

V ∈ Rdff×dm are
the weight matrices of the MLP’s first and sec-
ond linear layers, respectively. The intermediate

activations mℓ = f(W ℓ
Kxℓ) serve as memory co-

efficients, and vℓ
i ∈ Rdm , the i-th row of W ℓ

V , is
referred to as a value vector. This formulation al-
lows the MLP output to be interpreted as a linear
combination of value vectors, each weighted by its
corresponding memory coefficient.

In the context of knowledge unlearning, Hong
et al. (2024b) highlight the need for unlearning
techniques that effectively modify the value vec-
tors where knowledge is stored, showing that cur-
rent methods induce modifications in the knowl-
edge retrieval process rather than the value vectors
themselves. Building on this insight, our investi-
gation into localization for knowledge unlearning
attributes factual knowledge to a specific set of
value vectors and designates them as the target
components for localization, allowing us to probe
whether localization offers a viable path forward
for addressing this challenge.

Localization Localization is broadly defined as
the task of identifying the components of a model
responsible for specific knowledge or behavior
(Hase et al., 2023). This notion has been widely
adopted in the field of model editing, particularly
within the locate-then-edit paradigm (Meng et al.,
2022, 2023). Aligned with this line of work, recent
studies in knowledge unlearning increasingly in-
corporate localization techniques (Jia et al., 2024;
Tian et al., 2024). Yet, their performance gains
remain questionable given the lack of robustness
in unlearning evaluations, and the supposed infor-
mativeness of localization for unlearning remains a
tenuous assumption requiring rigorous validation.

Meanwhile, this is not the first work to scruti-
nize the causal validity of localization. Notably,
Hase et al. (2023) examine whether Causal Tracing
(Meng et al., 2022) aids factual knowledge editing,
and Wang and Veitch (2024) evaluate Inference-
Time Intervention (Li et al., 2023) in steering a
model’s truthful behavior. However, these studies
are limited to testing a specific localization method
in the context of single-shot editing. In contrast,
our key contribution is to adopt a method-agnostic
perspective that isolates and evaluates the causal
impact of localization success on fine-tuning–based
knowledge unlearning.

3 Revisiting Localized Unlearning

Datasets and models In this paper, we conduct
experiments using the TOFU dataset (Maini et al.,
2024), which is widely adopted in the field of un-
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learning research. It consists of 4,000 synthetic
QA pairs about fictitious authors, for which we
employ a split of 10% as the forget set and the re-
maining 90% as the retain set in our experimental
setup. We consider two recent open-source LLMs:
LLaMA3.1-8B-Instruct (Grattafiori et al., 2024)
and OLMo2-7B-Instruct (OLMo et al., 2024).

Unlearning evaluation Knowledge unlearning
aims to achieve two primary objectives: the re-
moval of target knowledge and the preservation of
the rest (Jang et al., 2023; Si et al., 2023). To enable
a comprehensive and robust evaluation of unlearn-
ing methods, we decompose this goal into two com-
ponents: (1) quantifying the extent of knowledge
parameterization, and (2) enabling a fair compari-
son of trade-offs between forgetting and retention.

Regarding (1), we not only adopt Forget Qual-
ity (FQ) and Model Utility (MU) as provided by
TOFU, but also incorporate Extraction Strength
(ES) (Carlini et al., 2020). ES has recently been pro-
posed as a robust alternative (Wang et al., 2025a) to
traditional metrics such as Perplexity (Chang et al.,
2024b) and ROUGE-L, which have been criticized
for their limited capacity to capture the internalized
knowledge embedded in model parameters (Hong
et al., 2024a; Wang et al., 2025a). ES is computed
on forget and retain sets, defining Forget Strength
(FS) as 1 − ESforget and Retain Strength (RS) as
ESretain, where higher values indicate stronger for-
getting and retention, respectively.

Regarding (2), we note that prior works often re-
port unlearning performance at a single point along
the unlearning process. However, unlearning typi-
cally entails a trade-off: as the model increasingly
forgets the target knowledge, its ability to retain
general utility tends to decline. Therefore, compar-
ing different methods at an arbitrary point in this
process can be misleading, as each method may
favor a different side of the trade-off.

To this end, we adopt two evaluation strategies,
following practices from Out-of-Distribution De-
tection research. First, we perform a controlled
single-point comparison, denoted as MU95, by
measuring FQ at the point where MU reaches 95%
of the target model’s initial value. This design
ensures a fair comparison across methods by stan-
dardizing the retention level to a tolerable degree of
degradation. Second, to evaluate whether unlearn-
ing methods consistently guide the model toward
more desirable parameter updates throughout the
process, we compute the area under the FS–RS

Model Method AUES (↑) MU95 (↑)

LLaMA3.1-8B-Instruct

Original – -20.37

Random 0.529±0.005 -14.87±0.33

Activations 0.522 -16.84
MemFlex 0.491 -15.97
WAGLE 0.525 -16.61

OLMo2-7B-Instruct

Original – -21.10

Random 0.582±0.001 -14.13±0.22

Activations 0.542 -14.44
MemFlex 0.508 -16.53
WAGLE 0.517 -15.17

Table 1: Comparison of AUES and MU95 for different
localization methods. Higher AUES and MU95 indicate
better trade-off between forgetting and retention. ‘Orig-
inal’ denotes the state of the model before unlearning.
For the ‘Random’ baseline, results are averaged over
three random seeds. The best scores are in bold.

curve, referred to as AUES (Area Under the Extrac-
tion Strength curve). AUES captures the overall
trade-off between forgetting and retention over the
unlearning trajectory. Details of the evaluation are
provided in Appendix B.

Revisiting current approaches Using the evalu-
ation framework above, we measure existing local-
ized unlearning approaches, including Activations
(Chang et al., 2024a), MemFlex (Tian et al., 2024),
and WAGLE (Jia et al., 2024). For each method, we
follow its proposed localization strategies to score
value vectors by relevance to the target knowledge.
We apply the NPO objective to the top 10% of
ranked vectors and compare the results against ran-
domly selected vectors of the same size. Details of
the methods are presented in Appendix C.

As illustrated in Table 1, we observe that unlearn-
ing over randomly selected regions outperforms
unlearning over the regions selected by localization
methods. While this result points to the failure of
current localized unlearning approaches, it raises a
deeper question: is this simply a limitation of exist-
ing localization strategies, or does it cast doubt on
the very existence of a solution that the localization
seeks to uncover? This motivates the investigations
in the following section.

4 Controlled Experiments

Experimental design In this part, we aim to ex-
amine whether localization truly provides a dis-
tinctive basis for guiding knowledge unlearning.
While the previous experiment in §3 underscores
the potential ineffectiveness of localization, this
outcome could be attributed not to the causal link
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Method Metric LLaMA3.1-8B-Instruct OLMo2-7B-Instruct

Random Oracle |∆| p-value Random Oracle |∆| p-value

WGA
AUES (↑) 0.586±0.020 0.593±0.016 0.018±0.013 0.61 0.609±0.020 0.605±0.011 0.008±0.007 0.64
MU95 (↑) -10.33±1.73 -10.00±0.42 0.86±1.02 0.46 -13.88±0.58 -13.77±0.45 0.23±0.20 0.56

NPO
AUES (↑) 0.625±0.016 0.619±0.011 0.011±0.011 0.71 0.638±0.015 0.639±0.017 0.007±0.004 0.52
MU95 (↑) -9.45±1.91 -8.56±1.39 0.90±0.66 0.31 -14.19±0.47 -14.33±0.58 0.14±0.12 0.72

DPO
AUES (↑) 0.497±0.013 0.492±0.012 0.007±0.008 0.66 0.561±0.011 0.568±0.013 0.010±0.008 0.36
MU95 (↑) -13.26±1.06 -13.60±0.72 1.09±1.06 0.68 -13.62±0.31 -13.52±0.53 0.41±0.17 0.57

RMU
AUES (↑) 0.506±0.030 0.502±0.017 0.017±0.010 0.37 0.437±0.024 0.439±0.020 0.004±0.003 0.62
MU95 (↑) -13.75±0.91 -13.64±0.63 0.45±0.24 0.39 -12.95±0.69 -13.62±1.32 0.68±0.79 0.57

Table 2: Comparison of AUES and MU95 between Random and Oracle scenarios across two different LLMs. |∆|
denotes the absolute difference in scores between the two settings, while p-value indicates the statistical significance
of this difference. For each method, we report the mean with the standard deviation as a subscript, computed across
five random seeds. Details of the p-value computation are provided in Appendix D. The best scores are in bold.

between localization and unlearning, but rather to
a failure of the localization process itself. In other
words, given the incompleteness of current localiza-
tion methods (Chang et al., 2024a), the result may
simply reflect that these approaches fail to identify
the appropriate parameter region. To decouple and
eliminate localization accuracy as a confounding
factor, we design a controlled experiment where the
ground-truth region is explicitly predefined, allow-
ing us to assume perfect localization. The specific
operation process is as follows:

1. We begin by fine-tuning a pretrained model θp
on the retain set only, using all model param-
eters, and obtain the resulting model θr. Note
that θr serves as the gold standard in unlearning.

2. We randomly select p% of the value vectors from
the entire model and define them as the target
region, denoted Vtgt. We then train θr on the
forget set, applying updates only to the value
vectors in Vtgt, yielding θo. This ensures that
learning effects on the forget set remain confined
to the target region, allowing us to fully attribute
target knowledge to the value vectors in Vtgt.

3. Again, we randomly select another p% of value
vectors from outside the target region, i.e., from
V \ Vtgt, and define this as the random region,
denoted as Vrdm. We then perform unlearning
from θo using updates restricted to the value
vectors in Vtgt and Vrdm, denoting each scenario
as Oracle and Random, respectively.

As the goal of localization is to identify Vtgt, Ora-
cle simulates an idealized localization, while Ran-
dom serves as its comparative counterpart. By com-

paring the two, we examine whether localization
acts as a necessary condition for effective unlearn-
ing. The proportion p is set to 10%, as it offers a
good compromise—large enough to allow learning
from the forget data, yet small enough to maintain
a meaningful degree of locality.

Results From Table 2, we observe a surprising
result: the improvement offered by Oracle over
Random is marginal (with all p-values exceeding
0.3) and, in some cases, Random even outperforms
Oracle. This trend consistently holds across differ-
ent model types and unlearning methods.

We regard this as compelling evidence against
the assumption that a fixed set of parameters must
be updated to achieve effective unlearning. The re-
sults suggest that unlearning may not rely on a spe-
cific parameter region, but can instead be achieved
through multiple alternative regions in the model.

Further investigation of unlearning objectives
While our findings are significant, we take a fur-
ther step to examine whether this observation is
merely a consequence of the limitations of current
unlearning approaches, all of which operate at the
output level. That is, rather than explicitly spec-
ifying the target values that the value vectors in
Vtgt should aim to reach, existing methods typically
rely on fine-tuning, adjusting model parameters
by minimizing a loss computed over the final out-
puts. Notably, localized unlearning is grounded
in the assumption that the goal of unlearning is to
revert the model back to θr, thereby placing em-
phasis on identifying which parameters should be
updated—ideally, those in Vtgt. However, when
supervision is indirect, optimization may permit di-
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Figure 1: Comparison of Oracle and Random scenarios
updated via L2 minimization of the MLP outputs at
each layer. Plots show RS vs. FS (left) and MU vs. FQ
(right), conducted on the LLaMA3.1-8B-Instruct.

verse parameter configurations within Vtgt that still
satisfy the objective. As a result, the model may
fail to fully leverage the benefits of localization,
leading to underutilization of informative signals.

To this end, we revisit the Oracle vs. Random
experiment using an alternative unlearning mech-
anism that more directly supervises parameter up-
dates: instead of relying on output-level signals,
we minimize the L2 distance between the MLP out-
puts at each layer and those produced by θr. The
results shown in Figure 1 are remarkable: even
when adjusting Vrdm, the MLP outputs of θr can
be reproduced to a degree comparable to Vtgt. This
raises a critical question of whether the set of value
vectors to be edited is strictly confined to Vtgt, or
if resembling θr can be achieved through flexible
adaptation of alternative regions, such as Vrdm.

5 Conclusion

In this paper, we have rigorously examined whether
localization truly provides an effective basis for
unlearning. We begin by proposing an improved
framework to address shortcomings in unlearning
evaluation. Prompted by the breakdown of existing
methods under this framework, we conduct con-
trolled experiments suggesting that the failure of
localized unlearning may stem from the absence of
a uniquely responsible parameter region.

Limitations

We follow prior work (Geva et al., 2021, 2022,
2023; Meng et al., 2022; Chang et al., 2024a; Hong
et al., 2024b) in assuming that MLPs are the pri-
mary components in LLMs responsible for storing
knowledge. Accordingly, we restrict our localiza-

tion analysis to MLPs and do not consider other
components such as attention layers. To handle
value vectors within MLPs as the unit of localiza-
tion and enable fair comparisons across methods,
we reformulate MemFlex (Tian et al., 2024) and
WAGLE (Jia et al., 2024) to score value vectors, as
each originally defines the localization unit differ-
ently—individual weights in WAGLE and LoRA
modules in MemFlex (see Appendix C). This modi-
fication may not precisely reflect the original design
intentions of each method. To assess the impact of
this choice, we additionally report complementary
results in Appendix E.

In §4, to restrict the influence of the forget data
to a predetermined set of value vectors (i.e., the
target region), we trained the model by updating
only that region while freezing the rest. However,
this is a controlled experimental setup rather than a
realistic scenario, and it remains unclear whether
the findings generalize to models trained with up-
dates applied to all parameters. We roughly address
this issue by searching for an optimal injection ra-
tio (i.e., 10%) that maintains comparable training
performance to full-parameter updates, under the
assumption that such a model would generalize
better to the full-parameter setting.
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A Unlearning Methods Details

• WGA (Wang et al., 2025b) is a reweighted variant of Gradient Ascent (GA) (Jang et al., 2023) that
assigns greater influence to high-confidence tokens by weighting the token-wise log-likelihood using
the model’s own predicted probabilities, scaled by a temperature parameter α:

LWGA = −E(x,y)∼Dforget

[∑

i

pθ(yi | y<i, x)
α · log pθ(yi | y<i, x)

]
,

where Dforget denotes forget set, and pθ(yi | y<i, x) is the predicted probability of the i-th token. α
is set to 0.1 throughout the experiments.

• DPO (Rafailov et al., 2023; Zhang et al., 2024) formulates unlearning as a preference optimization
problem using paired comparisons between “preferred” and “dispreferred” responses. The model
is trained to assign higher likelihood to the preferred output relative to a reference model. In the
context of unlearning, the preferred response corresponds to an “I don’t know” variant, while the
dispreferred response is the original answer. The DPO loss is defined as:

LDPO = − 1

β
· E(x,ywin,ylose)∼Dpaired

[
log σ

(
β ·

[
log

pθ(y
win | x)

pref(ywin | x) − log
pθ(y

lose | x)
pref(ylose | x)

])]
,

where σ(·) is the sigmoid function, β is the inverse temperature parameter, and pref denotes the
predicted probability computed by the reference model. β is set to 0.5 throughout the experiments.

• NPO (Zhang et al., 2024) extends DPO to the unlearning setting by removing the need for positive
(preferred) responses. Each example in the forget set is treated as a negative-only preference signal,
encouraging the model to assign lower likelihood to forget data compared to a fixed reference model.
Formally, the NPO loss drops the positive term from DPO and becomes:

LNPO = − 2

β
· E(x,y)∼Dforget

[
log σ

(
−β · log pθ(y | x)

pref(y | x)

)]
,

where the notation follows that of DPO. β is set to 0.5 throughout the experiments.

• RMU (Li et al., 2024) aims to degrade the internal representations of target knowledge by pushing the
hidden states of forget examples toward a fixed random direction. Specifically, a random unit vector
u is sampled uniformly from [0, 1) and held fixed throughout training. For each forget example, the
model is trained to align its hidden states toward c · u, where c is a scaling factor. The RMU loss is
defined as:

LRMU = Ex∼Dforget

[
1

|x|
∑

t∈x

∥∥∥h(ℓ)θ (t)− c · u
∥∥∥
2

2

]
,

where h
(ℓ)
θ (t) denotes the hidden state at token t from layer ℓ, and |x| is the token length of x. We

use ℓ = 21 and c = 2 in all experiments.
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Figure 2: An illustrative example of how AUES and MU95 are calculated from each curve.

B Evaluation Details

• Extraction Strength Computation
Following Wang et al. (2025a), we quantify the strength of memorization using Extraction Strength
(ES), defined as the minimum fraction of the output prefix required to recover the suffix. Formally,

ES(x, y; θ) = 1− 1

|y| min
k

{k | f([x, y<k]; θ) = y≥k} ,

where f denotes the model’s output, x is the input, and y is the target output, with y<k and y≥k

representing the prefix and suffix of y split at position k. Accordingly, Forget Strength (FS) captures
the reduction in ES on the forget set and is computed as FS = 1 − E(x,y)∼Dforget [ES(x, y; θ)]. In
contrast, Retain Strength (RS) reflects the preserved memorization over the retain set, defined as
RS = E(x,y)∼Dretain [ES(x, y; θ)], where Dretain = D \ Dforget.

• AUES
As discussed, AUES is computed as the area under the FS–RS curve, where each point on the
curve corresponds to a pair of FS and RS values achieved under a particular unlearning intensity.
To obtain a diverse range of such points across varying extents of unlearning, we adopt a flexible
post-unlearning control technique known as model mixing (Wang et al., 2025a). Model mixing allows
us to control the extent of unlearning by interpolating between two models: the unlearned model
and original (pre-unlearning) model. By mixing the parameters from these two models, the resulting
model inherits properties from both—akin to a model ensemble—thereby enabling fine-grained
adjustment of unlearning strength.

Specifically, we first unlearn the model to an extent such that FS approaches 1.0 (but does not fully
reach it) to avoid collapsing the model entirely, achieved solely by controlling the learning rate. The
resulting unlearned model θ is then linearly interpolated with the original model θo using a mixing
coefficient α ∈ [0, 1], yielding the interpolated parameters:

(1− α) · θo + α · θ,

By sweeping α from 0 to 1 in steps of 0.05, we obtain multiple intermediate models with varying
unlearning strengths, allowing us to construct a smooth FS–RS curve and compute AUES reliably.

• MU95
Similar to AUES, we also leverage model mixing to compute MU95. By generating intermediate
models with varying degrees of unlearning through the same interpolation process, we obtain a set of
points forming the MU–FQ curve, where each point represents the trade-off between Model Utility
(MU) and Forget Quality (FQ) at a specific unlearning strength.
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MU95 is then defined as the FQ value observed when MU drops to 95% of the original model’s
performance. That is, we interpolate the MU–FQ curve to find the point at which MU reaches 95%
of the initial MU (i.e., the MU of θo), and take the corresponding FQ at that point.

C Localization Methods Details

In this section, we describe the details of the localization methods considered in Section 3. To formalize,
each method assigns an attribution score Aℓ(i) to each value vector vℓ

i , the i-th value vector in the ℓ-th
layer, with respect to a given input x, quantifying the extent to which it carries knowledge relevant to
processing the input.

• Activation (Chang et al., 2024a) is motivated by the key-value memory theory established by Geva
et al. (2022), which suggests that each concept (or piece of knowledge) encoded within the value
vectors is promoted and integrated into the residual stream through its corresponding memory
coefficient (see Section 2). Accordingly, Activation simply uses the magnitude of this coefficient as a
proxy for the contribution of each value vector.

Formally, the attribution score Aℓ(i) is defined as the average over the suffix length T of the product
between the absolute activation coefficient and the norm of the corresponding value vector:

Aℓ(i) =
1

T

T∑

t=1

∣∣∣hℓi,t
∣∣∣
∥∥∥vℓ

i

∥∥∥ ,

where hℓi,t denotes the activation coefficient of the i-th value vector at layer ℓ at timestep t, when the
input consists of all tokens preceding position t, i.e., [p, s<t]. As an additional step, we normalize
the attribution scores within each layer to enable localization across layers, rather than within each
layer independently.

• MemFlex (Tian et al., 2024) assigns attribution scores based on how strongly each value vector
responds to a perturbation. Specifically, given a forget example (xu, yu), the label is randomly
replaced with y∗u, and the resulting gradient ∇θL(xu, y∗u; θo) is computed. This process is repeated
multiple times and averaged to obtain a stable unlearning gradient gℓ,unl

i for vℓ
i . The same procedure

is applied to the retain set to obtain a retention gradient gℓ,ret
i .

Each value vector vℓ
i is then scored based on the direction and magnitude of these gradients. Formally,

the attribution score is given by:

Aℓ(i) = 1

[
cos

(
gℓ,unl
i ,gℓ,ret

i

)
< µ ∧

∥∥∥gℓ,unl
i

∥∥∥ > σ
]
,

where cos(·, ·) denotes the cosine similarity, µ and σ are thresholds for cosine similarity and gradient
magnitude, respectively. We controlled µ and σ such that approximately 10% of the value vectors are
selected. Specifically, µ was set to 0.95, while σ was set to 1.6× 10−4 for LLaMA3.1-8B-Instruct
and 1.4× 10−4 for OLMo2-7B-Instruct.

• WAGLE (Jia et al., 2024) scores each value vector based on its contribution to forgetting while
penalizing its potential interference with retention. While the original WAGLE method scores
individual parameters, we aggregate these scores by averaging over the parameters within each vℓ

i ,
treating the result as its attribution score.

Formally, the attribution score for vℓ
i is computed as:

Aℓ(i) =
1

|vℓ
i |

∑

j∈vℓ
i

(
[θo]j [∇Lf(θo)]j −

1

γ
[∇Lr(θo)]j [∇Lf(θo)]j

)
,

where the index set j ∈ vℓ
i refers to the parameters belonging to vℓ

i , and γ is an empirical scaling
factor estimated as the average diagonal Hessian value over the retain set.
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Method AUES MU95

Random 0.521±0.004 -14.34±0.48

WAGLE 0.526 -16.82

Table 3: AUES and MU95 at a 5% localization ratio under the NPO objective.

D Statistical Significance Testing Details

To test the statistical significance of the observed differences in AUES and MU95 between two unlearning
scenarios, we use non-parametric tests specifically designed for each metric.

AUES permutation test The null hypothesis (H0) is that the two scenarios yield AUES values drawn
from the same underlying distribution, that is, there is no meaningful difference in their ability to trade off
forgetting and retaining. Under this assumption, the pairing of FS–RS values with their original scenario
labels is arbitrary and exchangeable.

To test this, we first compute the observed absolute difference between the AUES values of the two
scenarios. Then, for each permutation round, we randomly swap the paired FS–RS points between the
two groups with 50% probability for each value of α, the model mixing coefficient. We recompute the
AUES for each permuted group and record the absolute difference. Repeating this process over many
iterations yields an empirical null distribution of AUES differences under H0.

The p-value is then computed as the proportion of permutations in which the permuted difference
equals or exceeds the observed one. A small p-value (e.g., p < 0.05) indicates that the observed AUES
difference is unlikely to have occurred by chance, thus providing evidence against the null hypothesis.

MU95 bootstrap test The null hypothesis (H0) is that there is no significant difference in MU95
between the two unlearning scenarios, that is, both scenarios exhibit similar forgetting–retention trade-offs
at the fixed MU threshold.

To test this, we compute the observed absolute difference in MU95 between the two scenarios. Then,
we combine the MU–FQ points from both scenarios into a single pool and perform bootstrap resampling:
in each round, we randomly shuffle and split the pooled points into two groups of the original sizes. For
each resampled group, we identify the FQ value at the point where MU reaches 95% and compute the
absolute difference in MU95 between the two groups.

This process is repeated over many iterations to construct an empirical null distribution of MU95
differences under H0. The p-value is then calculated as the proportion of bootstrap samples where the
resampled MU95 difference is greater than or equal to the observed difference. A low p-value (e.g.,
p < 0.05) suggests that the observed MU95 difference is unlikely to have occurred by chance, providing
evidence against the null hypothesis.

E Supplementary Experiments

E.1 Section 3 Experiment

To test whether our result generalizes beyond the original setup (NPO objective with the top 10% of
ranked vectors), we conducted three follow-up experiments, each modifying a single aspect of the main
configuration. Specifically, (i) we kept the NPO objective and reduced the update fraction from the top
10% to the top 5% of ranked vectors; (ii) we retained the top 10% selection but replaced the NPO objective
with RMU; and (iii) we faithfully reproduced WAGLE’s original individual-weight localization procedure.
All experiments in this appendix use LLaMA3.1-8B-Instruct and are averaged over three random seeds,
reported as mean with the standard deviation shown as a subscript.

Varying the localization ratio (5% under NPO) As shown in Table 3, WAGLE attains a slightly higher
AUES than Random, but the improvement is at best marginally significant and it exhibits a worse MU95
score. These results indicate that our conclusion holds at a 5% localization ratio.
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Method AUES MU95

Random 0.493±0.003 -18.95±0.28

WAGLE 0.498 -19.15

Table 4: AUES and MU95 under the RMU objective with a 10% localization ratio.

Method AUES MU95

Random 0.536±0.001 -11.40±0.02

WAGLE 0.532 -13.54

Table 5: AUES and MU95 for individual-weight localization.

Changing the unlearning objective (RMU with 10%) Table 4 shows that under the RMU objective
WAGLE again yields only a marginal AUES increase over Random, while MU95 remains worse. This
corroborates that our finding is consistent across different unlearning objectives.

Reproducing WAGLE’s original procedure (individual-weight localization) We precisely reproduced
WAGLE’s original setup, which assigns an attribution score to each individual weight rather than to MLP
value vectors. Following Jia et al. (2024), we performed localized unlearning under the NPO objective,
applying updates to the top 80% of weights by attribution score and comparing it with localized unlearning
on 80% of randomly selected weights. As summarized in Table 5, WAGLE yields a slightly lower AUES
than Random and a worse MU95, further confirming that our conclusion holds even when localization
targets individual weights rather than value vectors.

Summary Across all three follow-up experiments: (i) reducing the localization ratio to 5% under
NPO, (ii) switching the unlearning objective to RMU at 10%, and (iii) reproducing WAGLE’s original
individual-weight localization, the purported advantage of WAGLE over Random is at best marginal in
AUES and is consistently accompanied by worse MU95. These results reinforce that our main finding
holds across localization ratios, unlearning objectives, and localization target units.

E.2 Section 4 Experiment
To examine whether our findings generalize beyond TOFU, we evaluated the Oracle vs. Random com-
parison on the LUME Task 2 PII dataset (Ramakrishna et al., 2025), which contains 2,025 AI-generated
synthetic personal records (e.g., phone numbers, e-mail addresses) designed for forgetting fictitious PIIs.
The synthetic nature of LUME, as with TOFU, allows us to precisely control which parameter regions
encode the target knowledge and removes the possibility of prior exposure during pretraining.

Setup We used a 10% forget ratio, a 10% localization ratio, and the NPO objective, averaging over three
random seeds. Because Forget Quality is only defined on TOFU by design, we report AUES only for
LUME.

Results As shown in Table 6, Oracle and Random achieve nearly identical AUES, differing by only
0.017 (p=0.44), which is statistically negligible. This mirrors our TOFU results and further indicates that
successful localization does not necessarily translate into improved unlearning performance on LUME.

F Hyperparameter Details

Global settings We use a batch size of 16, a weight decay of 0.01, and train for 5 epochs in all
experiments. Method-specific hyperparameters for each unlearning objective and localization method are
detailed in Appendix A and Appendix C, respectively.

Model checkpoints We initialize from the publicly released instruction-tuned checkpoints on Hug-
ging Face: LLaMA3.1–8B–Instruct (meta-llama/Llama-3.1-8B-Instruct) and OLMo2–7B–Instruct
(allenai/OLMo-2-1124-7B-Instruct).
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Metric Random Oracle |∆| p-val

AUES 0.473±0.028 0.482±0.017 0.017 0.44

Table 6: AUES on the LUME Task 2 PII dataset with a 10% forget ratio and a 10% localization ratio under the
NPO objective. Values are reported as mean with the standard deviation shown as a subscript, computed over three
random seeds.

Section 3 Experiments

• Learning Full Data: LR 9.5e−6.

• Unlearning:
– Mask Seeds: {7, 19, 99}.

– Learning Rates:
* Table 1: Random 6e−5; Activations 1e−5; WAGLE 1e−5; MemFlex 4e−5.

* Table 3: Random and WAGLE 1e−4.

* Table 4: Random 2e−5; WAGLE 8e−6.

* Table 5: Random and WAGLE 1e−5.

Section 4 Experiments

• Table 2
– Mask Seeds: {7, 19, 31, 47, 99}.

– LLaMA3.1-8B-Instruct
* Learning: Retain set LR 1e−5; Forget set LR 2e−4 with λretain = 2.

* Unlearning (Learning Rates): WGA 2e−5; NPO 8e−5; DPO 4e−4; RMU 2.3e−5.

– OLMo2-7B-Instruct
* Learning: Retain set LR 1e−5; Forget set LR 3e−4 with λretain = 2.

* Unlearning (Learning Rates): WGA 2e−5; NPO 5e−5; DPO 1.5e−3; RMU 3e−5.

• Figure 1
– Mask Seeds: Oracle = 7; Random A = 7, B = 11, C = 49.

– Learning: Same settings as above.

– Unlearning: LR 4e−4 with α = 2.

• Table 6
– Learning: Retain set LR 3e−5; Forget set LR 3e−4 with λretain = 2.

– Unlearning: LR 2e−4.

G Resources, Licenses, and Packages

We used the TOFU dataset (Maini et al., 2024), which is released under the MIT License. All experiments
were conducted on two NVIDIA A100 GPUs with 80 GB of VRAM each. We relied on several publicly
available libraries, including transformers (Wolf et al., 2020) and datasets (Lhoest et al., 2021). We
made use of AI assistants, specifically ChatGPT, to help with code implementation and to aid in writing.
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