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Abstract

We introduce CREPE (Rapid Chest X-
ray Report Evaluation by Predicting Multi-
category Error Counts), a rapid, interpretable,
and clinically grounded metric for automated
chest X-ray report generation. CREPE uses a
domain-specific BERT model fine-tuned with
a multi-head regression architecture to pre-
dict error counts across six clinically meaning-
ful categories. Trained on a large-scale syn-
thetic dataset of 32,000 annotated report pairs,
CREPE demonstrates strong generalization and
interpretability. On the expert-annotated ReX-
Val dataset, CREPE achieves a Kendall’s τ cor-
relation of 0.786 with radiologist error counts,
outperforming traditional and recent metrics.
CREPE achieves these results with an inference
speed approximately 280 times faster than large
language model (LLM)-based approaches, en-
abling rapid and fine-grained evaluation for
scalable development of chest X-ray report gen-
eration models.

1 Introduction

The automatic generation of radiology reports from
chest X-ray images has seen rapid progress with
the advent of advanced generative AI technologies.
Such systems hold substantial promise to reduce ra-
diologists’ workload and enhance clinical workflow
efficiency by enabling the automated production of
clinically meaningful reports at scale (Chen et al.,
2024; Zambrano Chaves et al., 2025).

A central challenge that remains is the reli-
able evaluation of these generated reports. Cur-
rent metrics for evaluating chest X-ray report gen-
eration fall into four main categories: overlap-
based, embedding-based, named entity recognition
(NER)-based, and large language model (LLM)-
based approaches. Overlap-based metrics, like
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) measure surface-level lexical similarity but
miss clinical meaning. Embedding-based metrics,

such as BERTScore (Zhang et al., 2020) and Sem-
bScore (Smit et al., 2020) capture semantic align-
ment but not factual or relational accuracy. NER-
based metrics, like F1 RadGraph (Jain et al., 2021;
Delbrouck et al., 2024) and RaTEScore (Zhao et al.,
2024) focus on extracted medical entities and rela-
tions, but their reliability depends on the underlying
NER system and they can miss nuanced contextual
errors. LLM-based metrics, such as GREEN (Ost-
meier et al., 2024) and FineRadScore (Huang et al.,
2024) achieve strong alignment with human judg-
ment, yet are limited by high computational cost
and slow inference. These trade-offs motivate the
need for a fast, clinically appropriate, and robust
evaluation metric.

In this work, we introduce CREPE (Rapid Chest
X-ray Report Evaluation by Predicting Multi-
category Error Counts), a novel evaluation metric
designed for both rapid inference and clinically
interpretable assessment. CREPE leverages a med-
ical domain-specific BERT model with multiple
regression heads to predict continuous error counts
across six clinically meaningful categories. By ex-
plicitly modeling these error categories, CREPE
outputs both a fast, interpretable overall score and
a detailed error breakdown, thus providing action-
able, clinically relevant feedback beyond conven-
tional summary metrics.

Our primary contributions are as follows:

• Fast and Fine-Grained Evaluation: We pro-
pose CREPE, a rapid and fine-grained eval-
uation metric that predicts clinically inter-
pretable multi-category error counts via re-
gression, achieving performance comparable
to or exceeding state-of-the-art LLM-based
metrics in alignment with radiologist assess-
ments.

• Large-Scale Synthetic Training Data: We
construct a large-scale synthetic dataset com-
prising 32,000 report pairs with detailed,
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Figure 1: Overview of CREPE and Comparative Performance. (Left) Schematic illustration of CREPE’s
evaluation pipeline: a ground truth and generated chest X-ray report are concatenated and processed by the CREPE
model, which predicts continuous error counts across six clinically defined categories; the total error count is used as
the final CREPE score. (Right) Comparative analysis of evaluation metrics on the ReXVal dataset, plotting Kendall’s
τ correlation with radiologist error counts (x-axis) against average computation time per report pair (y-axis, log
scale). CREPE achieves superior correlation with expert assessments while maintaining low computational cost,
enabling fast and clinically aligned report evaluation.

category-specific error annotations, automati-
cally generated using LLMs under strict data
governance.

• Robust Generalization: We demonstrate
strong generalization and robustness of
CREPE across diverse public evaluation
benchmarks, including challenging out-of-
distribution datasets.

• Efficiency and Scalability: CREPE delivers
substantial reductions in computational cost
and inference time compared to LLM-based
evaluation methods, enabling practical and
scalable assessment for both research and real-
world development pipelines.

An overview of the CREPE pipeline and its com-
parative performance is illustrated in Figure 1.

2 Related Work

2.1 General Text Evaluation Metrics
Traditional natural language generation (NLG) met-
rics are widely adopted for evaluating generated
text in machine translation and summarization.
Overlap-based metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) measure
n-gram precision and recall, respectively, provid-
ing straightforward and interpretable scores but

offering limited insight into the semantic or fac-
tual correctness of generated content. Embedding-
based metrics like BERTScore (Zhang et al., 2020)
address some of these limitations by comparing
contextualized token embeddings from pretrained
language models, thus better capturing semantic
similarity.

More recently, LLM-based evaluators, including
Prometheus (Kim et al., 2023) and G-Eval (Liu
et al., 2023) have been proposed to deliver holis-
tic and dimension-specific quality assessments
through instruction-tuned LLMs. Although these
approaches achieve stronger alignment with human
judgments, their high computational cost and in-
ference latency limit their practical application in
large-scale or rapid evaluation settings.

2.2 Radiology Report Evaluation Metrics
Metrics tailored for clinical text generation aim to
address the unique demands of the medical domain,
where factual accuracy and clinical interpretability
are critical. NER-based metrics such as F1 Rad-
Graph (Jain et al., 2021; Delbrouck et al., 2024)
focus on the extraction and matching of medical
entities and their relations to evaluate factual con-
sistency, while SembScore (CheXbert vector sim-
ilarity) (Smit et al., 2020) represents findings as
structured vectors for semantic comparison.
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Composite metrics such as RadCliQ (Yu et al.,
2023a) employ linear regression to combine the
outputs of BLEU, BERTScore, SembScore, and F1
RadGraph into a single score. RaTEScore (Zhao
et al., 2024) uses medical NER model to emphasize
entity-level factual precision. LLM-based metrics
such as GREEN (Ostmeier et al., 2024) and Fin-
eRadScore (Huang et al., 2024) leverage the rea-
soning capabilities of language models to provide
fine-grained, expert-aligned scoring. While each of
these methods advances clinical alignment or inter-
pretability, they often introduce complexity, require
specialized domain resources, or incur substantial
computational cost, which can hinder scalability
and routine deployment.

2.3 Regression-Based Text Evaluation

Regression-based approaches aim to bridge the gap
between metric predictions and human judgments
by training models to directly regress to quality
scores or error counts from text features. Notable
examples include COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020), which use pre-
trained language model encoders with regression
heads to approximate human evaluation. While
these methods can offer improved correlation with
human ratings, they typically operate as black-box
predictors and may not provide detailed, clinically
interpretable feedback.

Overall, despite substantial progress in the devel-
opment of evaluation metrics, a fast, interpretable,
and clinically grounded method for chest X-ray
report generation remains an open challenge.

3 CREPE

Our proposed metric, CREPE, evaluates the qual-
ity of chest X-ray reports by directly predicting
error counts across clinically relevant categories.
By providing structured, category-specific error
estimates, CREPE enables both quantitative assess-
ment and interpretable feedback, thereby facilitat-
ing robust comparison and targeted diagnostic im-
provement in automated report generation.

3.1 Problem Formulation

Given a reference report Rref and a generated re-
port Rcand, the goal is to predict a vector of error
counts,

n = [nA, nB, . . . , nF ],

where each element corresponds to one of six clini-
cally defined error categories:

Figure 2: CREPE Model Architecture. Tokenized ref-
erence and candidate reports are encoded by a medical
domain-specific BERT model, and the pooled represen-
tation is used by the error counting module to output
category-wise error counts.

(A) False prediction of finding

(B) Omission of finding

(C) Incorrect location or position of finding

(D) Incorrect severity of finding

(E) Mention of comparison not present in the ref-
erence impression

(F) Omission of comparison describing a change
from a previous study

as defined in the annotation protocol used for the
ReXVal dataset (Yu et al., 2023b).

The overall error count score, S, is given by the
sum of the predicted error counts:

S =
∑

c∈E
nc, (1)

where E = {A,B,C,D,E, F}. Lower values of
S indicate higher report quality, with category-level
predictions providing actionable insights for further
model refinement.

3.2 Model Architecture

The CREPE model is built upon a pretrained BERT
model specifically tailored for biomedical text,
which we fine-tune for regression-based error pre-
diction. For each error category, the model jointly
estimates both the expected error count and the
presence of any error, thereby enabling detailed
and clinically interpretable evaluation. The overall
architecture of the model is shown in Figure 2.
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Encoder and Feature Extraction. Let x denote
the tokenized input sequence formed by concate-
nating Rref and Rcand, separated by special tokens.
This sequence is processed by the BERT encoder,
yielding a pooled representation h ∈ Rd:

h = BERT(x)[CLS] (2)

A dropout layer is applied to h to prevent over-
fitting. This pooled output serves as the shared
feature for all downstream prediction heads.

Error Regression Heads. For each error cate-
gory c ∈ E , an independent regression head pre-
dicts the error count:

n̂c = fc(h) (3)

where fc(·) is a category-specific feedforward layer
outputting a predicted error counts n̂c. The collec-
tion of outputs, n̂ = [n̂A, n̂B, . . . , n̂F ], constitutes
the predicted error vector.

Error Detection Heads. To address the chal-
lenge of class imbalance, where certain error cat-
egories are infrequently represented in the train-
ing data as shown in Figure 4, the model incorpo-
rates auxiliary error detection heads during training.
These heads are designed to predict the presence
or absence of each error type, and their outputs
are used exclusively for loss calculation to enhance
learning for rare categories. Specifically, for each
category c, the model produces a logit:

p̂c = gc(h) (4)

where gc(·) is a category-specific feedforward layer.
During training, a sigmoid activation is applied to
obtain a probability estimate for error presence, but
these predictions are not used at inference time.

Loss Function. As shown in Figure 3, the
CREPE model is trained with a dual-objective loss
that captures both the count and presence of clin-
ically meaningful errors. For each error category
c ∈ E , the model predicts a continuous error count
n̂c as well as an auxiliary presence logit p̂c. Let
n = [nA, . . . , nF ] denote the ground-truth error
counts, and p = [pA, . . . , pF ] denote the binary
presence indicators, where pc = I[nc > 0].

The regression loss encourages accurate estima-
tion of error counts and is computed using mean
squared error (MSE):

Lreg =
1

|E|
∑

c∈E
MSE(n̂c, nc) (5)

Figure 3: Prediction Heads Architecture. The pooled
[CLS] embedding is passed through a dropout layer
and then fed into two parallel sets of output heads for
each error category: error regression heads (left) predict
continuous error counts, while auxiliary error detection
heads (right) predict the presence or absence of errors
during training.

The presence loss penalizes incorrect predictions
of whether an error of a given type is present and
is computed using binary cross-entropy (BCE):

Lpres =
1

|E|
∑

c∈E
BCE(p̂c, pc) (6)

The total loss used for training is the average of
the regression and presence losses:

L =
Lreg + Lpres

2
(7)

This combined objective allows the model to
learn both precise error count estimation and im-
proved sensitivity to rare or underrepresented error
categories, resulting in more accurate and inter-
pretable evaluation of chest X-ray reports.

Inference and Scoring. As shown in Figure 1,
the CREPE model outputs predicted error counts
n̂c for each of the six error categories given a pair of
reference and generated reports. The CREPE met-
ric is defined as the sum of predicted error counts:

CREPE =
∑

c∈E
n̂c (8)

A lower CREPE score indicates higher report qual-
ity, and this aggregate value serves as the primary
metric for evaluating overall performance through
correlation-based analysis. In addition, category-
level error predictions can be analyzed individually,
for example using mean absolute error (MAE), to
provide more granular diagnostic feedback or to
target specific clinical priorities.
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Metric ReXVal ReFiSco-v0 RadEvalX RaTE-Eval RaTE-Eval†
τ ρ τ ρ τ ρ τ ρ τ ρ

BLEU-4 0.383 0.516 0.489 0.616 0.074 0.096 0.197 0.247 0.134 0.166
ROUGE-L 0.570 0.748 0.524 0.662 0.257 0.356 0.200 0.281 0.220 0.302
METEOR 0.484 0.653 0.468 0.617 0.201 0.284 0.174 0.245 0.248 0.338
BERTScore 0.521 0.694 0.541 0.689 0.326 0.452 0.224 0.315 0.256 0.351
F1 RadGraph 0.585 0.765 0.475 0.609 0.171 0.243 0.306 0.393 0.258 0.328
SembScore 0.495 0.666 0.461 0.605 0.318 0.434 0.198 0.280 0.245 0.336
RaTEScore 0.520 0.697 0.433 0.571 0.316 0.438 0.339 0.460 0.310 0.419
RadCliQ-v1 0.623 0.809 0.510 0.656 0.326 0.449 0.299 0.415 0.304 0.414
GREEN 0.626 0.798 0.592 0.709 0.411 0.539 0.374 0.457 0.409 0.494
GREEN EC 0.775 0.899 0.723 0.811 0.448 0.577 0.252 0.315 0.432 0.517
CREPE 0.786 0.933 0.697 0.825 0.580 0.745 0.267 0.375 0.407 0.541

Table 1: Correlation with Radiologist Error Counts Across Datasets. Kendall’s τ and Spearman’s ρ correlation
coefficients for each evaluation metric on five benchmark datasets. Bold indicates the best and underline the
second-best value for each metric and dataset. 95% confidence intervals are reported in Table 5.

3.3 Synthetic Training Data Generation

Obtaining large-scale, expert-annotated error
counts for chest X-ray reports is logistically and
financially challenging. To address this, we con-
structed a synthetic training dataset through an au-
tomated pipeline, designed to maximize clinical rel-
evance while adhering strictly to responsible data
use policies for sensitive medical data.

Report Pair Sampling. We randomly sam-
pled 32,000 image-report pairs from the MIMIC-
CXR (Johnson et al., 2019) training set to serve as
the basis for synthetic data generation.

Synthetic Report Generation. For each selected
image, a candidate report was generated using
CheXagent (Chen et al., 2024), a vision-language
foundation model specialized for chest X-ray inter-
pretation.

Error Analysis. To identify and classify errors
between reference and candidate reports, we used
Gemini 2.5 Pro 03-25 preview version deployed
via Vertex AI on Google Cloud (Google, 2025).
This ensured that all analysis was performed in a se-
cure environment, fully compliant with the MIMIC-
CXR data use agreement, which prohibits sending
data to external services such as public LLM APIs.

Label Extraction. We adapted the prompt from
GREEN (Ostmeier et al., 2024) to obtain, for each
reference–candidate report pair, error counts across
six predefined categories, separately for clinically
significant and clinically insignificant errors. For
each category, we summed the significant and in-

Figure 4: Distribution of per-category error counts
in the synthetic training dataset. The highly skewed
distributions highlight substantial class imbalance, moti-
vating the use of a dual-objective loss to improve learn-
ing of rare error categories.

significant error counts to create the final label
vector [nA, nB, . . . , nF ] used for CREPE model
training. The distribution of error counts for each
category is illustrated in Figure 4.

This data generation pipeline enabled us to cre-
ate a diverse and representative training dataset,
supporting robust model learning across a wide
range of clinically meaningful error types while
strictly adhering to data governance requirements.
For full details on data generation, including
prompts and hyperparameters used for the genera-
tion models, see Appendix A.2.
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Figure 5: Kendall’s τ Correlation with Radiologist Error Counts Across Datasets. Bar plots show Kendall’s
τ values (with 95% confidence intervals) for each evaluation metric on multiple public benchmarks. CREPE
consistently achieves the highest or near-highest correlation with expert error counts across all datasets.

4 Experiments

4.1 Experimental Setup
We designed a comprehensive experimental frame-
work to evaluate CREPE’s performance across mul-
tiple aspects of chest X-ray report evaluation. Be-
low, we describe the datasets used for benchmark-
ing, the baseline metrics for comparison, and the
main implementation and optimization details for
reproducibility.

Evaluation Datasets. We evaluated CREPE
on four publicly available datasets containing
radiologist-annotated errors: ReXVal (Yu et al.,
2023b), ReFiSco-v0 (Tian et al., 2023), RadE-
valX (Calamida et al., 2024), and RaTE-Eval (Zhao
et al., 2024). ReXVal consists of expert-labeled
report-level errors from the MIMIC-CXR dataset,
and we additionally use a filtered variant, ReX-
Val*, with identical report pairs removed to reduce
class imbalance. ReFiSco-v0 provides line-level
severity annotations, which we map to binary error
labels and aggregate at the report level. RadEvalX
comprises 100 IU-Xray (Pavlopoulos et al., 2019)
reports with expert annotations for six standard
error categories, plus two uncertainty-related cate-
gories. For RaTE-Eval, we use only the sentence-
level human rating task, which covers nine imaging
modalities and 22 anatomies and includes normal-
ization of error counts by potential error opportu-
nities. We also report raw, unnormalized counts
for comparison and denote the raw-count variant as
RaTE-Eval†. Detailed descriptions of dataset con-
struction, annotation protocols, and pre-processing
are provided in Appendix A.3.

Baselines. To contextualize CREPE’s perfor-
mance, we compared it against general text evalu-
ation metrics, including BLEU-4 (Papineni et al.,
2002), ROUGE-L (Lin, 2004), METEOR (Baner-

jee and Lavie, 2005), and BERTScore (Zhang et al.,
2020), as well as radiology report evaluation met-
rics, such as F1 RadGraph (Jain et al., 2021), Sem-
bScore (Smit et al., 2020), RaTEScore (Zhao et al.,
2024), RadCliQ (Yu et al., 2023a), GREEN (Ost-
meier et al., 2024), and GREEN error count
(GREEN EC).

Implementation Details. Our experiments were
conducted using BiomedBERT (Gu et al., 2021), a
medical domain-specific BERT model, as the foun-
dation for the CREPE model. The entire BERT
encoder and all regression and presence heads were
fine-tuned on the synthetic dataset for 10 epochs,
with a validation split of 0.1 and a batch size of 64.
Sequences were truncated or padded to a maximum
length of 512 tokens, selected based on corpus
statistics. The longest sequence observed was 502
tokens in the fMIMIC-CXR training set and 451 to-
kens in the synthetic corpus, making 512 sufficient
to cover all cases without introducing excessive
padding. We employed mixed-precision training
(FP16) to accelerate computation. All experiments
were performed on a single NVIDIA A6000 GPU.

Hyperparameter Optimization. Key hyperpa-
rameters, including learning rate, weight decay,
and warmup ratio, were optimized via automated
search using Optuna (Akiba et al., 2019). The opti-
mal configuration was selected based on validation
set performance, as measured by Kendall’s τ corre-
lation.

4.2 Results

We comprehensively evaluate CREPE across four
key dimensions: correlation with human expert
judgments (Sec. 4.3), robustness to class imbalance
(Sec. 4.4), computational efficiency (Sec. 4.5), and
absolute error-prediction accuracy (Sec. 4.6).
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Figure 6: Correlation Between Metric Scores and Radiologist-Identified Errors (ReXVal). Scatter plots show
the relationship between each evaluation metric’s score and the total number of radiologist-identified errors on the
ReXVal dataset. Each subplot includes a regression line and 95% confidence intervals. CREPE achieves the highest
correlation with expert error counts. Kendall’s τ and Spearman’s ρ are shown in the subplot titles.

4.3 Correlation with Human Judgments

To assess clinical validity, we evaluate the cor-
relation between each metric’s predictions and
radiologist-annotated error counts across five pub-
lic benchmarks with varying annotation protocols
and levels of difficulty. Table 1 reports Kendall’s τ
and Spearman’s ρ for all metrics. CREPE achieves
the highest or second-highest correlation on most
datasets, demonstrating strong alignment with hu-
man expert ratings. On ReXVal, CREPE attains
a Kendall’s τ of 0.786 and a Spearman’s ρ of
0.933, while maintaining competitive performance
on line-level (ReFiSco-v0), category-extended
(RadEvalX), and out-of-distribution multi-modality
(RaTE-Eval) datasets.

Figure 5 summarizes Kendall’s τ (with 95%
confidence intervals) across all benchmarks, illus-
trating that CREPE is consistently among the top-
performing metrics in terms of agreement with ra-
diologist judgments.

For a more detailed view, Figure 6 visualizes
the relationship between metric scores and total
radiologist-identified errors on ReXVal. The scat-
ter plots show that CREPE exhibits a monotonic
association with expert error counts, in line with its
correlation statistics.

Taken together, these results suggest that CREPE
provides reliable alignment with expert judgment
across a range of evaluation settings and dataset
characteristics.

4.4 Robustness to Class Imbalance

To examine the impact of class imbalance, partic-
ularly the prevalence of zero-error pairs in ReX-
Val, we constructed a filtered version, ReXVal*,

Metric ReXVal ReXVal* ∆τ

BLEU-4 0.383 0.215 −0.168
ROUGE-L 0.570 0.459 −0.111
METEOR 0.484 0.355 −0.129
BERTScore 0.521 0.404 −0.117
F1 RadGraph 0.585 0.484 −0.101
SembScore 0.495 0.368 −0.127
RaTEScore 0.520 0.408 −0.113
RadCliQ-v1 0.623 0.500 −0.123
GREEN 0.626 0.500 −0.126
GREEN EC 0.775 0.729 −0.046
CREPE 0.786 0.753 −0.033

Table 2: Robustness to Class Imbalance. Kendall’s τ
for each metric on the original ReXVal dataset and the
filtered set ReXVal*, after removing 26 identical report
pairs. ∆τ shows the change in correlation.

by removing report pairs where the reference and
candidate reports were identical. As shown in Ta-
ble 2, this filtering results in a notable decline in the
performance of conventional metrics; the average
decrease in Kendall’s τ is approximately 0.12. In
contrast, CREPE’s correlation with human judg-
ments decreases by only 0.033, corresponding to a
4.2 percent relative drop. These results suggest that
CREPE remains robust and continues to reliably
differentiate clinically meaningful errors even in
more challenging evaluation settings.

4.5 Computational Efficiency

We compare the inference time per sample for all
metrics using the ReXVal dataset. As shown in
Figure 1 and Table 3, CREPE processes a report in
9.5 milliseconds, which is comparable to the fastest
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Metric Time (ms)
BLEU-4 4.29
ROUGE-L 125.99
METEOR 24.83
BERTScore 9.65
F1 RadGraph 36.59
SembScore 18.86
RaTEScore 160.28
RadCliQ-v1 370.58
GREEN 2642.37
GREEN EC 2642.37
CREPE 9.53

Table 3: Speed Comparison. Average computation
time per sample (milliseconds) for each evaluation met-
ric on the ReXVal dataset.

neural baselines such as BERTScore. In contrast,
LLM-based methods such as GREEN require over
2,600 milliseconds per sample, making them ap-
proximately 280 times slower. This substantial
speed advantage demonstrates that CREPE is well-
suited for rapid and large-scale evaluation, without
sacrificing alignment with expert judgment.

4.6 Error Score Accuracy

Among public benchmarks, the ReXVal and RaTE-
Eval datasets provide category-level error counts,
enabling direct assessment of absolute prediction
accuracy. On the ReXVal dataset, CREPE achieves
a mean absolute error (MAE) of 1.252±1.022, rep-
resenting a 25.2% reduction compared to GREEN
EC (1.674 ± 1.241). On the RaTE-Eval dataset,
CREPE achieves an MAE of 0.739± 0.627, which
is 33% lower than the MAE of GREEN EC
(1.102 ± 0.632). Both metrics offer category-
specific predictions, but CREPE’s consistently
lower error across datasets demonstrates the ef-
fectiveness of regression-based modeling when de-
tailed supervision is available.

4.7 Qualitative Case Studies

To complement the quantitative evaluation, we also
provide qualitative case studies that highlight both
typical behaviors and failure modes of CREPE.
The examples drawn from the ReXVal dataset are
presented in Appendix A.1.

5 Ablation Studies

We conducted ablation studies on the balanced
ReXVal* dataset to quantify the contributions of

Head Counts τ

1 0.723
2 0.730
6 (ours) 0.753
Loss Function τ

MSE only 0.718
Poisson NLL only 0.738
MSE + BCE (ours) 0.753
Encoder Backbone τ

ClinicalBERT 0.693
Bio_ClinicalBERT 0.716
BiomedBERT (ours) 0.753

Table 4: Ablation on Model Components. Impact of
regression head granularity, loss function, and encoder
backbone on Kendall’s τ for ReXVal*.

key architectural and modeling choices. Unless oth-
erwise specified, all variants share the same hyper-
parameters as the full model (six regression heads,
dual-objective MSE + BCE loss, and BiomedBERT
backbone).

5.1 Number of Regression Heads

To assess the impact of output granularity, we com-
pared three regression head configurations: (1) a
single head predicting the total error count, (2) two
heads for clinically significant and insignificant er-
rors, and (3) six heads for category-specific errors,
which is the default setting. As shown in Table 4,
increasing the number of regression heads leads
to consistently higher agreement with radiologist
judgments, with the six-head model achieving the
best Kendall’s τ . This shows that dividing the task
into error-specific heads is more effective than re-
lying on a single head, as each head only needs to
capture one type of clinical error.

5.2 Loss Function

We evaluated three loss formulations: mean
squared error (MSE) only, Poisson negative log
likelihood (NLL) only, and a dual-objective
MSE+BCE loss that incorporates an auxiliary er-
ror presence term. As shown in Table 4, the dual-
objective loss yields the highest correlation with
expert annotations. This indicates that predicting
both the error count and the presence of each error
type helps the model handle rare categories more
effectively, complementing the multi-head struc-
ture where each head specializes in a single error
type.
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5.3 Encoder Backbone

To determine the importance of domain-specific
pre-training, we replaced BiomedBERT with two
clinical BERT models: ClinicalBERT (Wang
et al., 2023; Liu et al., 2025) and
Bio_ClinicalBERT (Alsentzer et al., 2019),
keeping all other settings fixed. As reported
in Table 4, BiomedBERT yields the highest
Kendall’s τ . The reason for BiomedBERT’s superior
performance may be related to its pre-training on a
broader biomedical literature corpus, potentially
offering better coverage of radiology terminology
than models trained solely on clinical notes.
Details about encoder backbones are provided in
Appendix A.4.

6 Conclusion

We presented CREPE, an efficient evaluation met-
ric for automated chest X-ray report generation that
predicts clinically meaningful error counts using
a domain-specific BERT model with a multi-head
regression architecture. CREPE provides both an
overall score and interpretable category-level feed-
back, demonstrating strong correlation with expert
judgments, robustness to class imbalance, and fast
inference compared to existing evaluation methods.
Future work includes extending this approach to
additional medical imaging domains and further
investigating its generalizability.

Limitations

CREPE has several limitations. The model re-
quires a GPU for efficient inference, which may
restrict use in low-resource environments compared
to lightweight rule-based metrics. Although infer-
ence is fast, the creation of synthetic training data
involves substantial computation and large LLMs,
which can limit reproducibility. Performance on
multiple public benchmarks is strong, yet accu-
racy on out-of-distribution modalities and reporting
styles is not guaranteed.

Another limitation is the reliance on LLM-based
synthetic annotations rather than large-scale expert
curation, which may introduce biases; radiologist
validation is a key next step. In terms of scor-
ing, CREPE currently aggregates errors with an
unweighted sum, which does not reflect clinical
priorities, though per-category outputs allow cus-
tom weighting. Finally, while all corpora used
here fit within 512 tokens, longer reports in other

domains may require chunking or longer-context
encoders.
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A Appendix

A.1 Qualitative Case Studies
To complement the quantitative evaluation, we present several qualitative examples from the ReXVal
dataset that illustrate how CREPE behaves in practice (Figure 8). Each panel compares the reference and
candidate reports and the corresponding distribution of errors over categories A–F.

For clarity, the six error categories are as follows:

(A) False prediction of finding

(B) Omission of finding

(C) Incorrect location or position of finding

(D) Incorrect severity of finding

(E) Mention of comparison not present in the reference impression

(F) Omission of comparison describing a change from a previous study

Successful Case 1 (post-lobectomy). The candidate omits the post–left upper lobectomy context present
in the reference. Both the radiologist and CREPE assign most of the penalty to category B, indicating a
clinically meaningful omission. CREPE adds small mass in categories E and F, reflecting minor surface
or phrasing differences, but the dominant signal aligns with the expert assessment.

Successful Case 2 (esophageal findings and aspiration). The reference documents a dilated distal
esophagus and directs the reader to prior CT details, while the candidate emphasizes “no aspiration,”
describes intraluminal air, and proposes a barium swallow. Both the radiologist and CREPE assign high
error counts in A and B, capturing that the candidate both under-reports salient findings and introduces
unsupported content. The tails in C–F are small and closely track each other, showing that CREPE follows
the expert’s overall error profile in a mixed-error setting.

Failure Case 1 (resolving pneumonia). Both reports agree on improved aeration of the left lower
lobe; the candidate additionally states “no pleural effusion,” which is not discussed in the reference.
The radiologist marks minimal penalties, primarily in A and B. CREPE, however, amplifies the errors,
assigning a stronger penalty in B. This overprediction reflects that the model is sensitive to seemingly
innocuous additions and tends to over-penalize content which does not materially alter the clinical
interpretation.

Failure Case 2 (pneumothorax with communication details). The key clinical finding, "a small right
apical pneumothorax", is consistent across reports; the remaining differences are templated metadata about
communication (roles, times). The radiologist assigns only a small penalty (mainly in A), recognizing
that clinical content is preserved. CREPE, in contrast, spreads penalties across multiple categories (A–E),
overestimating errors in what are essentially administrative details. This represents another failure case,
where the model overpredicts categories in response to non-clinical discrepancies. Addressing such cases
may require masking boilerplate fields.

Across these cases, CREPE generally matches the radiologist on the clinically central errors (notably
omissions and contradictions). Its main weaknesses appear in failure cases, where the model overpredicts
certain categories, either due to sensitivity to benign additions or to metadata that carries no clinical rele-
vance. These examples illustrate both the strengths of CREPE in capturing clinically aware discrepancies
and the areas where refinement is needed to further align with expert judgment.
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A.2 Details for Synthetic Data Generation
We provide here the details and prompts used to generate the synthetic training data for the CREPE model.

A.2.1 Candidate Report Generation
To generate candidate reports, we utilized StanfordAIMI/CheXagent-8b from the Hugging Face
Hub (Wolf et al., 2020) with default inference settings. From the MIMIC-CXR training split, we
randomly sampled 32,000 examples. For each sample, the ‘FINDINGS’ section was used as the reference
report; if this section was unavailable, we instead used the ‘IMPRESSION’ section. The candidate report
was generated by providing the associated chest X-ray image along with a standardized prompt.

{image} Provide a radiological report for the following image. ASSISTANT:
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A.2.2 Error Count Data Generation
To obtain error counts, we used gemini-2.5-pro-preview-03-25 accessed via Vertex AI on Google
Cloud, again with default parameters (temperature 1.0, topP 0.95, candidateCount 1). For each refer-
ence–candidate pair, the model was prompted to compare the candidate report against the reference,
following explicit instructions to assess both clinically significant and clinically insignificant errors across
six predefined categories. The prompt also required the model to return a structured output, detailing error
counts and explanations for each category, as well as matched findings between the reports.

Objective:
Evaluate the accuracy of a candidate radiology report in comparison to a reference radiology report
composed by expert radiologists.

Process Overview:
You will be presented with:
1. The criteria for making a judgment.
2. The reference radiology report.
3. The candidate radiology report.
4. The desired format for your assessment.

1. Criteria for Judgment:
For each candidate report, determine:

- The count of clinically significant errors.
- The count of clinically insignificant errors.

Errors can fall into one of these categories:
a) False report of a finding in the candidate.
b) Missing a finding present in the reference.
c) Misidentification of a finding's anatomic location/position.
d) Misassessment of the severity of a finding.
e) Mentioning a comparison that isn't in the reference.
f) Omitting a comparison detailing a change from a prior study.

Note: Concentrate on the clinical findings rather than the report's writing style.
Evaluate only the findings that appear in both reports.

2. Reference Report:
{reference_report}

3. Candidate Report:
{candidate_report}

4. Reporting Your Assessment:
Follow this specific format for your output, even if no errors are found:
Do NOT abbreviate the name of the error type.
```
[Explanation]:
<Explanation>

[Clinically Significant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Clinically Insignificant Errors]:
(a) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>
....
(f) <Error Type>: <The number of errors>. <Error 1>; <Error 2>; ...; <Error n>

[Matched Findings]:
<The number of matched findings>. <Finding 1>; <Finding 2>; ...; <Finding n>
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A.3 Dataset Details and Processing

We provide detailed descriptions of each benchmark used in our evaluation. Figure 7 visualizes the
distribution of total error counts across all datasets.

Figure 7: Total error count distributions for all evaluation datasets.

A.3.1 ReXVal
ReXVal contains radiologist-annotated errors for generated reports compared to ground-truth reports
from the MIMIC-CXR dataset. Six radiologists independently evaluated both clinically significant and
insignificant errors, assigning counts for each of six predefined error categories. For each ground-truth
report, four candidate reports were generated by different automated methods. To address class imbalance,
we also evaluate on ReXVal*, a variant where pairs with identical reference and candidate reports are
removed.

A.3.2 ReFiSco-v0
ReFiSco-v0 provides line-level radiologist error annotations for MIMIC-CXR reports, categorizing each
line as ‘No error’, ‘Not actionable’, ‘Actionable nonurgent error’, ‘Urgent error’, or ‘Emergent error.’ We
map ‘No error’ to zero and all other categories to one, then aggregate the binary error labels across lines
to produce report-level error counts.

A.3.3 RadEvalX
RadEvalX consists of 100 reports sampled from the IU-Xray dataset, selected to balance normal and
abnormal findings. Each report and its generated counterpart were annotated by experts for six standard
error categories, consistent with ReXVal, as well as two additional categories related to uncertainty
(mention or omission of uncertainty). For our evaluation, we sum error counts across all categories.

A.3.4 RaTE-Eval
For RaTE-Eval, we use the sentence-level human rating benchmark, which spans nine imaging modalities
and 22 anatomical regions, representing a multi-modality and out-of-distribution test case. Annotators
counted errors per sentence, and scores are normalized by the number of potential error opportunities. For
consistency, we also report results using the raw, unnormalized error counts, denoted as RaTE-Eval†

A.3.5 Additional Notes
All datasets were used in accordance with their respective data use agreements and ethical guidelines.
Where necessary, we standardized error category definitions across datasets for consistency in evaluation.
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A.4 Details for BERT Encoder Backbones
We summarize here the key characteristics and pretraining corpora for each encoder backbone used in our
experiments.

A.4.1 medicalai/ClinicalBERT

ClinicalBERT is a domain-adapted BERT model initially trained on general English text and then further
pre-trained on a large corpus of de-identified clinical notes. Its training corpus encompasses approximately
1.2 billion words of clinical narratives, including diverse disease phenotypes and a wide range of free-text
observations from electronic health records. The model is designed for masked language modeling and
fine-tuned for downstream clinical NLP tasks such as information extraction, symptom detection, and
temporal representation of patient trajectories. ClinicalBERT has demonstrated high performance in
extracting clinically relevant information from free-text notes, with an average F1 score of 94.5% in
symptom extraction tasks on annotated samples.

A.4.2 emilyalsentzer/Bio_ClinicalBERT

Bio_ClinicalBERT is based on the BERT architecture, initialized from BioBERT, and further pre-trained
on approximately two million clinical notes from the MIMIC-III database. This corpus includes a
comprehensive range of note types, including both discharge summaries and general clinical narratives.
The pre-training process follows standard masked language modeling objectives and leverages the
full MIMIC corpus for greater domain coverage. Bio_ClinicalBERT embeddings are intended as a
community resource for downstream medical NLP tasks. Pre-training required significant computational
resources, estimated at 17–18 days on a high-end GPU.

A.4.3 microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract

BiomedBERT, previously named PubMedBERT, used as the primary encoder backbone for CREPE, is pre-
trained on large-scale biomedical text corpora, including PubMed abstracts and clinical literature. The
model employs the standard BERT-base architecture and is optimized for masked language modeling to
capture domain-specific biomedical terminology and semantics. For our experiments, BiomedBERT was
further fine-tuned on the CREPE training set for the specific task of clinical error count regression.
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Metric ReXVal ReXVal* ReFiSco-v0
τ ρ τ ρ τ ρ

BLEU-4 0.383 [0.274, 0.482] 0.516 [0.371, 0.633] 0.215 [0.104, 0.333] 0.294 [0.144, 0.447] 0.489 [0.408, 0.561] 0.616 [0.520, 0.692]
ROUGE-L 0.570 [0.490, 0.636] 0.748 [0.661, 0.809] 0.459 [0.373, 0.537] 0.633 [0.523, 0.716] 0.524 [0.443, 0.602] 0.662 [0.569, 0.742]
METEOR 0.484 [0.400, 0.558] 0.653 [0.546, 0.738] 0.355 [0.260, 0.444] 0.497 [0.369, 0.606] 0.468 [0.388, 0.538] 0.617 [0.514, 0.694]
BERTScore 0.521 [0.441, 0.598] 0.694 [0.597, 0.776] 0.404 [0.313, 0.497] 0.558 [0.438, 0.668] 0.541 [0.467, 0.606] 0.689 [0.604, 0.759]
F1 RadGraph 0.585 [0.512, 0.650] 0.765 [0.686, 0.823] 0.484 [0.401, 0.563] 0.661 [0.562, 0.742] 0.475 [0.392, 0.547] 0.609 [0.509, 0.690]
SembScore 0.495 [0.416, 0.574] 0.666 [0.571, 0.751] 0.368 [0.271, 0.455] 0.513 [0.388, 0.621] 0.461 [0.387, 0.538] 0.605 [0.512, 0.691]
RaTEScore 0.520 [0.439, 0.589] 0.697 [0.601, 0.770] 0.408 [0.319, 0.495] 0.564 [0.448, 0.667] 0.433 [0.356, 0.504] 0.571 [0.472, 0.654]
RadCliQ-v1 0.623 [0.566, 0.676] 0.809 [0.749, 0.855] 0.540 [0.475, 0.602] 0.730 [0.654, 0.791] 0.510 [0.433, 0.576] 0.656 [0.564, 0.729]
GREEN 0.626 [0.555, 0.685] 0.798 [0.729, 0.843] 0.541 [0.459, 0.614] 0.713 [0.617, 0.789] 0.592 [0.518, 0.663] 0.709 [0.632, 0.781]
GREEN EC 0.775 [0.728, 0.814] 0.899 [0.861, 0.924] 0.729 [0.667, 0.776] 0.864 [0.807, 0.900] 0.723 [0.660, 0.780] 0.811 [0.744, 0.866]
CREPE 0.786 [0.749, 0.816] 0.933 [0.907, 0.949] 0.753 [0.703, 0.794] 0.911 [0.871, 0.937] 0.697 [0.640, 0.747] 0.825 [0.761, 0.873]

Metric RadEvalX RaTE-Eval RaTE-Eval†
τ ρ τ ρ τ ρ

BLEU-4 0.074 [-0.092, 0.231] 0.096 [-0.120, 0.301] 0.197 [0.119, 0.270] 0.247 [0.151, 0.339] 0.134 [0.060, 0.208] 0.166 [0.075, 0.255]
ROUGE-L 0.257 [0.111, 0.382] 0.356 [0.155, 0.519] 0.200 [0.136, 0.260] 0.281 [0.192, 0.362] 0.220 [0.146, 0.284] 0.302 [0.201, 0.387]
METEOR 0.201 [0.065, 0.334] 0.284 [0.100, 0.458] 0.174 [0.105, 0.244] 0.245 [0.150, 0.340] 0.248 [0.183, 0.310] 0.338 [0.251, 0.420]
BERTScore 0.326 [0.195, 0.442] 0.452 [0.274, 0.596] 0.224 [0.160, 0.284] 0.315 [0.226, 0.395] 0.256 [0.196, 0.316] 0.351 [0.270, 0.432]
F1 RadGraph 0.171 [0.053, 0.294] 0.243 [0.070, 0.409] 0.306 [0.235, 0.374] 0.393 [0.304, 0.476] 0.258 [0.185, 0.329] 0.328 [0.235, 0.418]
SembScore 0.318 [0.165, 0.447] 0.434 [0.228, 0.593] 0.198 [0.134, 0.258] 0.280 [0.190, 0.360] 0.245 [0.186, 0.308] 0.336 [0.256, 0.421]
RaTEScore 0.316 [0.192, 0.435] 0.438 [0.270, 0.583] 0.339 [0.280, 0.396] 0.460 [0.379, 0.534] 0.310 [0.250, 0.369] 0.419 [0.340, 0.494]
RadCliQ-v1 0.326 [0.206, 0.459] 0.449 [0.288, 0.609] 0.299 [0.238, 0.357] 0.415 [0.332, 0.492] 0.304 [0.247, 0.363] 0.414 [0.338, 0.488]
GREEN 0.411 [0.308, 0.517] 0.539 [0.408, 0.661] 0.374 [0.303, 0.439] 0.457 [0.371, 0.532] 0.409 [0.343, 0.470] 0.494 [0.419, 0.562]
GREEN EC 0.448 [0.341, 0.546] 0.577 [0.441, 0.686] 0.252 [0.184, 0.320] 0.315 [0.229, 0.396] 0.432 [0.369, 0.495] 0.517 [0.443, 0.585]
CREPE 0.580 [0.477, 0.669] 0.745 [0.625, 0.826] 0.267 [0.202, 0.331] 0.375 [0.288, 0.457] 0.407 [0.349, 0.466] 0.541 [0.468, 0.611]

Table 5: Correlation with Radiologist Error Counts and Confidence Intervals. Kendall’s τ and Spearman’s ρ
correlation coefficients, with 95% confidence intervals, for each evaluation metric on six datasets. Bold indicates
the best and underline the second-best values for each metric and dataset.
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Figure 8: Qualitative Case Studies. Examples derived from ReXVal. The reference (ground truth) and candidate
reports, and the error counts across categories A–F from a board-certified radiologist and from CREPE.
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