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Abstract

Rebus puzzles, visual riddles that encode
language through imagery, spatial arrangement,
and symbolic substitution, pose a unique
challenge to current vision-language models
(VLMs). Unlike traditional image captioning
or question answering tasks, rebus solving
requires multi-modal abstraction, symbolic
reasoning, and a grasp of cultural, phonetic and
linguistic puns. In this paper, we investigate the
capacity of contemporary VLMs to interpret
and solve rebus puzzles by constructing a
hand-generated and annotated benchmark of
diverse English-language rebus puzzles, rang-
ing from simple pictographic substitutions to
spatially-dependent cues ("head" over "heels").
We analyze how different VLMs perform, and
our findings reveal that while VLMs exhibit
some surprising capabilities in decoding simple
visual clues, they struggle significantly with
tasks requiring abstract reasoning, lateral
thinking, and understanding visual metaphors.
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1 Introduction & Background

Vision-language models (VLMs) have demon-
strated rapid progress across a range of multi-modal
tasks, from image captioning and visual question an-
swering to more structured reasoning benchmarks.
However, there remain fundamental gaps in our un-
derstanding of these models’ ability to perform both
abstract and lateral reasoning - capabilities which
are critical to human cognition. This gap in under-
standing is, in part, due to the fact that standard eval-
uations for vision-language modeling tend to reward
direct visual-text alignment or rote recall, leaving
open whether VLMs can generalize to composi-
tional, symbolic, and context-dependent inferences.

Towards solving such issues with standard
benchmarking, “puzzle-based” evaluations have
been explored as an alternative test for higher-order
AI reasoning. In VLMs, early studies tested models
on games such as Iconary (Clark et al., 2021) and
IQ-style challenges (Huang et al., 2023), with

Figure 1: Rebus Puzzles: Two example rebus puzzles
along with the cognitive skills required to solve them
In this short paper, we use a set of 432 hand-created
and annotated rebus puzzles to map the capabilities and
limitations of VLMs.

recent benchmarks such as VGRP-Bench (Ren
et al., 2025) using visual grid logic puzzles to
demonstrate that multi-modal language models
struggle with systematic deduction and TruthQuest
(Mondorf and Plank, 2024) using “Knights and
Knaves” logic puzzles to test LLM suppositional
reasoning. In textual riddles, benchmarks like
RiddleSense (Lin et al., 2021) test basic reasoning,
while BRAINTEASER (Jiang et al., 2023) and
LatEval (Huang et al., 2024) focus on lateral
thinking, showing models often default to incorrect
commonsense answers or struggle with interactive
inquiry. Bongard in Wonderland (Dai et al., 2024)
tests puzzles that require basic human-like abilities,
revealing that VLMs struggle even to detect basic
visual concepts and perform abstract reasoning.

One particularly interesting puzzle type, “rebus
puzzles,” is a form of visual wordplay that encodes
phrases, idioms, or concepts through combinations
of images, letters, symbols, and spatial arrange-
ments. Solving a rebus puzzle requires more
than image recognition or surface-level language
modeling: it calls for the integration of visual cues
with symbolic abstraction, phonetic manipulation,
and a sensitivity to cultural and linguistic context.
For example, the word “WATER” in a curved down-
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ward shape (Figure 1) evokes the phrase “Waterfall.”
These puzzles can be simple to humans (particularly
expert puzzle solvers), but deceptively rich in the
kinds of cognitive processes they require. Recently,
Gritsevskiy et al. (2024) introduced a benchmark us-
ing drawn/digital images rebus puzzles that require
broad world knowledge. While an exciting first step,
the benchmark includes a heavy skew towards par-
ticular categories, for example, 28% of the dataset
is Massachusetts towns. Following this work,
Kraaijveld et al. (2025) developed an automatic
generator for several types of rebus-like tasks, but
evaluated models within a multiple-choice context
and tested only a small subset of generative rules.

In this short paper, we use a hand-generated and
annotated probe dataset of 432 rebus puzzles, each
labeled with both the ground truth solution and
detailed cognitive skill categories, to systematically
examine the visual and reasoning capabilities of
modern vision and language models. We evaluate
not only overall model performance and how it
compares to human solvers, but also how different
forms of context, prompt design, and skill-specific
cues influence models’ puzzle-solving ability. To
understand this accuracy further, we additionally
examine the robustness of models to prompt
variations, their ability to self-correct when given
feedback, and how performance varies across
different modalities and reasoning types. To our
knowledge, this is the first work to study reasoning
models on open-ended rebus tasks (A detailed com-
parison with prior work is provided in Appendix B).
Overall, while we find that models, particularly
reasoning models, exhibit partial competency
on rebus puzzles, even the strongest models lag
substantially behind human solvers on puzzles that
require deeper levels of lateral thinking, primarily
driven by weaknesses in reasoning capability rather
than perception and understanding.

2 Dataset & Metrics

In this short paper, we construct a human-crafted
probe dataset of rebus puzzles that can challenge
VLMs to reason effectively about visual-linguistic
information. We collected puzzle images via an
online resource1 for rebus puzzles. The authors
manually inspected, filtered, and corrected each
puzzle image to ensure accuracy and consistent
resolution throughout the dataset with a minimum
of two annotations per puzzle.

Alongside the puzzle images and answers, the
authors further annotated each puzzle with a set of
visual-linguistic skills required to solve that puzzle.

1ESL Vault: Rebus Puzzles

Table 1: Overall accuracy[95% CI] on our probe dataset
for various VLMs and human scorers.

Model Naive Matching LLM-Judged

GPT-5 60.42[0.556,0.651] 69.44[0.653,0.736]
o3 54.56[0.498,0.590] 54.60[0.500,0.590]
o4-mini 48.16[0.433,0.532] 55.62[0.509,0.599]
gemini-2.5-pro 39.99[0.354,0.442] 47.27[0.424,0.519]
gemini-2.5-flash 19.26[0.157,0.231] 24.19[0.204,0.285]
gpt-4o 18.75[0.153,0.225] 26.52[0.225,0.308]
claude-3.7-sonnet 10.20[0.076,0.132] 16.31[0.127,0.199]
gemini-2.0-flash 8.37[0.058,0.011] 17.25[0.139,0.206]
gpt-4o-mini 8.28[0.058,0.110] 12.28[0.093,0.155]
claude-3.7-haiku 6.48[0.042,0.088] 9.03[0.065,0.120]
Molmo-72B-0924 1.86[0.007,0.032] 4.43[0.025,0.065]
qwen2.5-VL-7B 3.01[0.014,0.046] 3.98[0.021,0.060]
qwen2.5-omni-7B 1.88[0.007,0.032] 1.90[0.007,0.032]
Molmo-7B-D-0924 1.35[0.004,0.025] 1.85[0.001,0.030]
pixtral-12B 1.35[0.005,0.025] 1.39[0.005,0.255]
phi-4 0.46[0.000,0.013] 0.96[0.002,0.019]

Human (Non Expert) 16.4-37.23 21.86-44.71
Human (Expert) 76.4 80.80

Puzzles were organized into 11 distinct cognitive
categories: Absence or Negation (AN), Text
Orientation (TO), Quantitative or Mathematical
Reasoning (QMR), Visual Metaphors and Cultural
References (VMCR), Symbolic Substitution (SS),
Font Style/Size (FS), Letter and Word Manipulation
(LWM), Phonetics and Wordplay (PW), Spatial and
Positional Reasoning (SPR), Image Recognition
(IR) and Text Recognition (TR). A detailed descrip-
tion of each of the categories is given in Table D.2.

To evaluate the performance of VLMs, we adopt
two evaluation methods: “Naive Matching” and
“LLM-Judged” evaluation. The Naive Matching
method evaluates responses based on exact
string matching with the ground-truth answers,
while the LLM-Judged evaluation method uses
Prompted LLMs (gpt-4o, Qwen3-8B) to compare
ground truth and candidate answers directly (see
Appendix H for details).

3 Results & Discussion

Overall performance on the probe dataset is given in
Table 1. We can see that models have a wide range of
performance - while closed source reasoning models
such as GPT-5, o3, and o4-mini perform relatively
well, especially compared to human non-expert/non-
native English speaking solvers, open-source rea-
soning models as non-reasoning models struggle to
solve the tasks. Compared to expert solvers, how-
ever, there remains a significant model accuracy gap.

Skill-specific results are given in Table 2. While
models are surprisingly competent in solving
symbolic manipulation (SS/SPR) and quantitative
reasoning samples (QMR, likely to to a focus on
math-specific benchmarks during training), they
have significant gaps in abstract reasoning/lateral
thinking, particularly in recognizing the absence
of objects (AN), and in solving visual metaphors
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Table 2: Per-skill model Naive Matching performance using the base prompt, with (N) the number of samples
of each type. Categories: Absence/Negation (AN), Text Orientation (TO), Quantitative Reasoning (QMR), Visual
Metaphors/Cultural References (VMCR), Symbolic Substitution (SS), Font Style/Size (FS), Letter and Word Manipu-
lation (LWM), Phonetics/Wordplay (PW), Spatial Reasoning (SPR), Image Recognition (IR), Text Recognition (TR).

Model Reasoning
Model

AN (12) TO (14) QMR (18) VMCR (23) SS (35) FS (43) LWM (62) PW (78) SPR (97) IR (301) TR (340)

qwen2.5-VL-7B 0.0 0.0 0.0 0.0 5.71 0.0 1.61 1.28 3.09 1.33 2.35
Molmo-72B-0924 0.0 7.14 5.56 0.0 2.86 0.0 1.61 1.28 4.12 1.0 2.35
claude-3.5-haiku 0.0 14.29 16.67 4.35 2.86 4.65 6.45 1.28 15.46 3.65 8.24
claude-3.7-sonnet ✔ 0.0 35.71 22.22 13.04 14.29 13.95 11.29 7.69 16.49 6.64 12.35
gemini-2.0-flash 8.33 28.57 22.22 8.7 8.57 6.98 16.13 5.13 13.4 4.65 9.71
gemini-2.5-flash ✔ 8.33 14.29 33.33 17.39 25.71 11.63 20.97 20.51 19.59 17.61 21.18
gpt-4o-mini 0.0 7.14 5.56 13.04 17.14 13.95 6.45 5.13 12.37 7.31 9.71
gpt-4o 16.67 42.86 27.78 13.04 28.57 25.58 16.13 16.67 22.68 14.29 21.47
gemini-2.5-pro ✔ 33.33 57.14 61.11 30.43 48.57 37.21 38.71 33.33 43.30 37.87 42.94
o4-mini ✔ 25.0 71.43 66.67 34.78 65.71 32.56 43.55 42.31 43.30 45.85 50.59
o3 ✔ 33.33 71.43 77.78 34.78 62.86 41.86 43.55 50.00 50.52 54.15 55.00
GPT-5 50.00 78.57 77.78 52.17 60.00 51.16 54.84 51.28 62.89 57.81 61.18

(VMCR). Indeed, the general gap between perfor-
mance in symbolic substitution (SS) vs. phonetics
and wordplay (PW) suggests that VLMs are better
at learning and applying these more direct, almost
rule-based symbolic transformations.

The gap between spatial and positional reasoning
(SPR) and letter and word manipulation (LWM) in
most models is similarly interesting: In models that
perform decently on SPR but struggle more with
LWM, we see that they can understand the layout
of elements but fail when the puzzle demands a
subsequent, often abstract, manipulation or rein-
terpretation of the textual components themselves.
This general distinction implies a disconnect
between understanding spatial configuration and
then applying complex linguistic or symbolic logic
to the content within that configuration.

Notable as well, is the interplay in performance
between text recognition (TR), font-style/size
(FS) and text orientation (TO). Generally high TR
paired with relatively high TO (for the best models)
suggests that models can read text even when its
orientation is unusual. However, somewhat lower
scores in FS for these models compared to their TR
indicate that while they can read the text, they are
not always effectively using cues from font style
or size to derive the solution.

In general, from this exploration we confirm that
VLMs (and even reasoning VLMs) are stronger
on tasks that are more perceptual or involve more
direct, learned mappings and weaker on tasks
requiring deeper levels of abstraction.

In-Context Learning A larger question remains
as to if models understand the concept of a “rebus”
puzzle from the prompt alone. Following Brown
et al. (2020), we phrase the task as an in-context
learning problem to remove this prompt-specific
bias (See Appendix C for details). Table 3 shows
the performance of providing a single in-context

Table 3: Comparison of models using an ICL
example. Adding an ICL example decreases o4-mini
performance, has minimal effect on GPT-4o, and
improves Qwen2.5-VL performance.

Model Naive LLM-Judged

gpt-4o 19.03% (↑ 0.28%) 25.78% (↓ 0.74%)
o4-mini 45.83% (↓ 2.33%) 53.19% (↓ 2.43%)
qwen2.5-VL-7B 3.43% (↑ 0.42%) 6.70% (↑ 2.72%)

example consisting of an image, an answer, and
reasoning. Model performance is largely the same,
with Qwen2.5-VL showing minor gains, suggesting
that performance is not prompt-limited, and instead,
is inherent to the underlying VLM. It’s also worth
noting that ICL is unlikely to help stronger models
with more capable reasoning, as each visual puzzle
requires additional lateral thinking, and examples
often do not allow for such generalization. Smaller
models like Qwen2.5-VL, however, may not
understand the “rebus” concept, may benefit from
a reasoning example.

Skill-Guided Prompting. In addition to general
puzzle understanding, we also wanted to explore
if models lack the capability to understand and
apply which cognitive thinking skills are required
for each puzzle. Table 4 demonstrates the impact of
providing models with the required skills necessary
to solve each puzzle in the prompt itself (See Ap-
pendix D for details). Interestingly, incorporating
these skill-related prompts generally leads to minor
improvements in model performance, suggesting
the existence of an awareness vs. execution gap: the
primary bottleneck for VLMs in solving complex
rebus puzzles may not be a failure to identify what
kind of reasoning is needed, but rather a more
fundamental limitation in how to execute that
reasoning effectively.

Iterative Refinement. Arising from a lack of
overall performance, we also wondered if perhaps
models are locally close to the solution, and could
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Table 4: Comparison of models using a skill guidance
example.

Model Naive LLM-Judged

gpt-4o 20.79% (↑ 2.04%) 27.47% (↑ 0.95%)
o4-mini 49.77% (↑ 1.61%) 57.20% (↑ 1.58%)
gpt-4o-mini 7.93% (↓ 0.35%) 12.70% (↑ 0.42%)
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Figure 2: Iterative refinement performance. In general,
multiple attempts lead to nominal performance gains.

refine the solution given the opportunity. We thus ex-
plored an experimental setup in which models were
prompted with a “retry” prompt if they failed the first
time (see Appendix E for details). The results, given
in Figure 2, show that while models can experience
improvement over time, they still reach a perfor-
mance ceiling after a number of attempts. There
is, however, a notable gap between accuracy after 1
and 5 attempts, even in the weakest models, indicat-
ing significant potential for iterative refinement or
self-correction in models’ puzzle-solving processes.

Vision? Or Language? To further analyze poor
VLM performance, we aimed to understand how
closely, if at all, model performance was tied to
visual perception quality. To test this, we replaced
each image with a detailed caption of the image,
and used the same puzzle solving prompt, this time
conditioned on language alone (see Appendix F).
The results in Table 5 show that models, particularly
reasoning models, suffer from a lack of access
to the direct visual input. We hypothesize that
the lack of direct visual access is significantly
more impactful for reasoning models due to a
lack of the models’ ability to perform iterative
examination of the underlying visual content during
the decoding/reasoning process, and it is interesting
and exciting future work to explore the extent to
which such iterative reasoning processes impact
overall downstream performance in VLMs.

Image Retrieval. To further evaluate the impact
of visual reasoning, we explored how underlying
visual contrastive models (which are often used
as VLM feature extractors) perform in retrieving
the correct answers (see Appendix G for details/full
results). The results are in Table 6. Unsurpris-
ingly, architectural design significantly impacts
performance, however interestingly, MobileCLIP

Table 5: Comparison of models using caption-only
inputs. Without visual information, particularly
GPT-o4-mini shows a huge drop in performance, while
smaller models like Qwen2.5-VL even shows a small
amount of improvement with detailed captions.

Model Naive LLM-Judged

gpt-4o 16.01% (↓ 2.74%) 22.48% (↓ 4.04%)
o4-mini 41.09% (↓ 7.07%) 47.99% (↓ 7.63%)
gpt-4o-mini 7.85% (↓ 0.43%) 12.28% (0.00%)
qwen2.5-VL-7B 3.23% (↑ 0.22%) 4.69% (↑ 0.71%)

Table 6: Selected contrastive VLM retrieval perfor-
mance on our probe dataset. Full results in Table G.1.

Model/Size/Resolution R@1 R@5 P@1 MRR NDCG

OpenAI CLIP/B32/224 21.1 35.4 21.1 28.4 40.1
OpenCLIP/B16/224 25.9 40.3 25.9 33.0 44.0
MobileCLIP/S2/224 31.7 49.8 31.7 40.0 50.3
SigLIP/So400m/224 28.0 43.3 28.0 35.8 46.4
SigLIP 2/B16/256 26.9 37.5 26.9 32.5 43.4
SigLIP 2/L16/256 30.3 43.1 30.3 36.8 47.2
SigLIP 2/So400m-16/256 29.2 43.5 29.2 36.1 46.6
SigLIP 2/So400m-16/384 28.9 43.3 28.9 36.1 46.6
SigLIP 2/So400m-16/512 28.5 41.9 28.5 35.4 46.0
SigLIP 2/GOPT16/256 32.2 44.0 32.2 38.6 48.6
SigLIP 2/GOPT16/384 31.2 44.9 31.2 37.9 48.0
Tulip/B16/224 28.7 42.1 28.7 35.0 45.6
Tulip/So400m-14/384 31.7 47.0 31.7 39.0 49.1
Tulip/GOPT16/384 30.1 45.8 30.1 37.7 48.1

(Vasu et al., 2024) shows strong results despite
its efficiency focus, likely due to underlying data
distribution (the DataCompDR dataset). SigLIP 2
(Tschannen et al., 2025) and TULIP (Tang et al.,
2025) both contain explicit visual reconstruction
objectives, which likely lead to their second-best
overall accuracies on the task. Model scale and
patch size also drive performance, with larger scales
(L, GOPT, So400m) and smaller patch sizes (B16 vs
B32) generally yielding better metrics, suggesting
finer tokenization aids visual feature representation.
Notably, for the SigLIP 2 family, increasing
resolution beyond 256 did not consistently improve
metrics, sometimes showing slight decreases at
384 and 512, confirming that our Rebus puzzles do
not require high-fidelity visual encoding and rather
require more flexible latent spaces.

4 Conclusion

Overall, our work confirms that while Vision-
Language Models (VLMs) have made strides,
they still lack the lateral thinking and nuanced
multi-modal abstractions necessary to solve visual
puzzles. This short paper raises several important
questions for future work, particularly in areas
such as understanding negation, interpreting visual
metaphors, and moving beyond perceptual tasks
to deeper abstract reasoning. Further exploration
is also crucial to understand the limits of iterative
refinement and to close the awareness versus
execution gap in these models, as well as to explore
how iterative examination of visual content during
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reasoning impacts downstream performance,
especially given the observed importance of direct
visual access for reasoning models. Ultimately,
addressing these challenges will be pivotal in
developing VLMs that can not only solve visual
puzzles but also exhibit more human-like, robust,
and generalizable multi-modal understanding
across a spectrum of real-world applications.

Limitations

While this short paper represents several insights
into the capabilities of VLMs in solving rebus puz-
zles, several limitations should be acknowledged:

Limited Scope/Diversity. Because the puzzles
are all hand-generated and annotated, the dataset
that we explore is relatively small (with only 432
samples). This means that exhaustively exploring
the full breadth of possible categories is impossible.
Further, though the puzzles are carefully annotated,
they may still contain biases or overlook certain
nuances present in a broader range of puzzles.
Moreover, these puzzles are all English-only, and
while rebus puzzles exist in other languages (Sarti
et al., 2024; Salvi et al., 2016; Watson, 1898), this
analysis does not explore those capabilities.

Reliance on closed-source/OpenAI models. As
shown in Table 1, the analysis presented in this
paper is somewhat limited by the core performance
of most VLMs. The only VLMs that achieve
competency at all on these kinds of puzzles are
GPT-based models, meaning that we rely heavily
on those models in the analysis in section 3.
This limitation means that our findings may not
transfer to VLMs in general, and may be somewhat
over-specified to OpenAI.

Dataset Specificity and World Knowledge.
Although efforts were made to minimize reliance
on domain-specific knowledge, the nature of
rebus puzzles can sometimes involve cultural
references or idiomatic expressions that might
not be universally understood or represented in
the models’ training data. The comparison with
other benchmarks like REBUS, which has a heavy
reliance on world knowledge (e.g., Massachusetts
towns) in Appendix B highlights this challenge.

Prompt Variance. While we explore several
prompting strategies for eliciting the best perfor-
mance from VLMs, the optimal prompt may not be
one of the ones that we use in this work, and while
in Appendix I we explore several variations, and
find that there are minimal differences, that may
not necessarily be the case. Somewhat mitigating

this limitation is our observation in section 3 that in-
context examples did not significantly boost models’
performance — suggesting that inherent reasoning
capabilities are a more significant bottleneck than
prompt understanding for these models.

Potential Risks. While our analysis offers insight
into the strengths and weaknesses of contemporary
VLMs on rebus puzzles, several risks should
be considered when interpreting these findings.
First, as mentioned above, our study is limited to
English-language, culturally Western rebus puzzles,
which may not capture the diversity or complexity
found in other languages or cultural contexts,
potentially limiting the generalizability of our
conclusions. Additionally, although our probe set is
hand-crafted, we cannot fully exclude the possibil-
ity that some puzzle types or answer patterns may
overlap with data seen during VLM pretraining,
which could affect the assessment of true reasoning
ability. Finally, there is a risk that readers may
overgeneralize our observations beyond the scope
of this study. Our results should not be taken as a
comprehensive assessment of VLM capabilities, but
rather as a focused exploration of their behavior on
a specific set of challenging visual-language tasks.
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Appendix

The appendix consists of the following further
discussion:

• Appendix A provides information on the code
release, including links to the code bases and
datasets used in the project.

• Appendix B provides further comparison
between our probe dataset with the REBUS and
COLUMBUS datasets.

• Appendix C provides technical details for the
in-context learning experiments.

• Appendix D provides technical details for the
skill-guided prompting experiments.

• Appendix E provides technical details for the
iterative refinement experiments.

• Appendix F provides technical details for our
caption-based perception experiments.

• Appendix G provides technical details for the
image-retrieval experiments.

• Appendix H provides details on our Naive and
LLM-Judged accuracy computations.

• Appendix I explored the impact of the specific
prompt on the overall results.

• Appendix J outlines the models used in this paper.
• Appendix K provides qualitative examples of

model reasoning on our dataset.
• Appendix L details the use of AI in the creation

of this manuscript.

A Code & Data

We make the code for our analysis available under
the MIT license here. We make our annotations
freely available under the MIT license, while all
original content created by ESL Vault is licensed
with respect to their terms of use.

B Detailed Comparisons with related work

The REBUS benchmark (Gritsevskiy et al., 2024)
is a hand-crafted, multi-modal dataset designed to
evaluate the reasoning and symbolic understanding
abilities of VLMs using 333 original rebus puzzles
spanning 13 diverse categories, such as cities,
movies, marine life, and more. Each puzzle presents
an image-based wordplay challenge that requires
models to integrate visual recognition, string manip-
ulation, and multi-step reasoning to infer the correct
answer, which is always a single word or phrase
matching a specified category. The dataset includes
a mix of hand-drawn and digitally composed
puzzles and is annotated with advanced character-
istics such as inexact spellings, specific real-world
references, and the need for reading comprehension.

The collected puzzles in the REBUS benchmark
from Gritsevskiy et al. (2024) are primarily focused
on real-image understanding. REBUS is heavily
biased towards cities, particularly Massachusetts,
with 39.64% of the dataset consisting of city clues,
27.63% focused on towns in Massachusetts, and
6.01% consisting of MBTA stations, with only
26.62% of the data falling outside these categories
(into further categories: Marine life (N = 16,
4.8%), Composers (N = 14, 4.2%), Famous
movies (N=13, 3.9%), Surnames (N=12, 3.6%),
Food (N = 10, 3.0%), Kentucky (N = 7, 2.1%),
Common phrases (N=4, 1.2%), Christmas songs
(N =3, 0.9%), Cartoon characters (N =3, 0.9%),
Animals (N=2, 0.6%), Farm things (N=2, 0.6%),
Common objects (N=1, 0.3%), Countries (N=1,
0.3%), Weaponry (N=1, 0.3%).

The COLUMBUS benchmark (Kraaijveld
et al., 2025) is a synthetic, multi-modal dataset
designed to evaluate the lateral (creative) thinking
capabilities of VLMs through approximately 1,000
multiple-choice rebus puzzles derived from English
idioms and compound words. Each puzzle presents
either textual or iconographic elements that must
be interpreted unconventionally to select the correct
phrase or word from four options. The dataset
employs a structured, taxonomy-driven method-
ology to generate puzzles and distractor choices,
balancing both visual and linguistic challenges.

The primary limitations of the COLUMBUS
benchmark stem from its synthetic design — each
puzzle is generated automatically using a set of 18
latent rules that manipulate visual and textual ele-
ments in formulaic ways. These rules are organized
into three categories: individual, relational, and
modifier. Individual rules alter a single element’s
visual properties, such as reversing the order of
letters (reverse), changing their direction (up or
down), adjusting size (big or small), applying color,
crossing out text, or highlighting before, after, or
in the middle of a word. Relational rules specify
the spatial relationship between elements, such
as placing one element next to, inside, above, or
outside another. Modifier rules involve repeating
an element a specific number of times (e.g., two or
four), or substituting an element with a homophone
or phonetically similar word (sound).

This reliance on a fixed taxonomy means that
the diversity and creativity of puzzles are inherently
limited by the pre-defined rules. This can lead
to repetitive puzzle structures and a lack of the
nuanced ambiguity, surprise, or cultural references
found in human-authored rebus puzzles. Addition-
ally, some rules are underrepresented due to their
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LONG TIME NO SEE

OURS

ONCE UPON A TIME

DECOY

REBUS DATASET

MISSION PARK

ASHGABAT
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COLOMBUS DATASET

A. A BIRD IN THE HAND IS 
WORTH TWO IN THE BUSH

B. EARLY BIRD
C. A BIRD IN THE HAND
D. BIRD IN THE BOSOM

A. BIG FISH IN A SMALL POND
B. OTHER FISH IN THE SEA
C. A FISH OUT OF WATER
D. FISH IN TROUBLED WATERS

A. ACCOUNT FOR
B. ON ACCOUNT OF
C. CALL TO ACCOUNT
D. GOOD ACCOUNT OF

Figure B.1: Visual comparison between prior work datasets and our probe dataset (REBUS, COLUMBUS,
Ours). COLUMBUS is automatically generated, and uses a limited set of figures and puzzle types. REBUS is
hand-generated, but visually inconsistent, and requires a significant amount of world knowledge. Our dataset strikes
a balance between the two - requiring challenging lateral thinking and visual understanding skills, but retaining a
consistent style and simplified structure.

infrequent occurrence in the source data, resulting
in imbalance across the benchmark and possibly bi-
asing models to overfit more common puzzle types.
In addition, the distractor choices, generated based
on lexical and semantic similarity, may not always
be as challenging or as plausible as hand-crafted
distractors, sometimes making puzzles either too
easy or, conversely, ambiguously difficult. The
automated generation also risks producing puzzles
with unnatural phrasings or edge cases not typically
encountered in real-world lateral thinking scenarios.
Finally, the visual presentation is highly controlled,
with clean fonts, icons, and spatial arrangements
that lack the noise, complexity, and subtlety of
real images or handwritten puzzles. This limits the
benchmark’s ability to assess a model’s robustness
to visual ambiguity and real-world variation.

Figure B.1 shows a visual comparison between
the kinds of REBUS puzzles in COLUMBUS,
REBUS, and our probe dataset, highlighting some
of the details from above.

C In-Context Learning

To investigate whether providing models with
in-context examples improves their puzzle-solving
performance, we augmented our base prompt
with a representative example of a rebus puzzle,
including its correct answer and detailed reasoning.
We selected an example from cases where models
correctly solved the puzzle. The prompt we used
for in-context learning is shown below:

Ü ICL Prompt

You will be given one example: <Image> Response
(json): "answer": "For once in my life",
"reasoning": "The text ’M1Y L1I1F1E’ places
the digit ’1’ between each letter of ’MY LIFE’,
resulting in four ’1’s embedded in the phrase.
This visually represents ’four 1s in my life’,
which sounds like ’for once in my life.’",
Please solve the rebus puzzle represented by
the image. Respond with ONLY a valid JSON
object containing two keys:
1. ’answer’: the string value of your solution.
2. ’reasoning’: a detailed explanation of

how you arrived at this answer, including
interpretations of visual elements
described and their relationships.

D Skill-Guided Prompting

To systematically analyze whether explicit cog-
nitive skill cues can aid models in solving rebus
puzzles, we categorize each puzzle in our dataset
according to 11 distinct cognitive skill types, as
listed in Table D.1. These skills represent various
forms of reasoning required to correctly interpret
and solve rebus puzzles.

We use a skill-guided prompting strategy, explic-
itly injecting these annotated cognitive skills into the
prompt provided to the model. For each puzzle, we
specify the exact skills required, directly informing
the model about the cognitive skills it should apply.
This is done through the following prompt format:
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Table D.1: Cognitive skill annotation categories used
for labeling each rebus puzzle in our data set.

Category (Abbreviation)

Image Recognition (IR)
Identifying objects, people, actions, or
symbols.

Text Recognition (OCR + Typography/Lay-
out) (TR)

Detecting words, fonts, capitalization, or
stylized text.

Font Style/Size (FS)
Recognizing different font styles, sizes, or
colors.

Text Orientation (TO)
Understanding text direction (e.g., upside
down, rotated) and how it affects meaning.

Spatial and Positional Reasoning (SPR)
Understanding (multi-)object layout or rela-
tionships (e.g., above/below, inside/outside)
and how that changes meaning (“man in the
moon”).

Phonetics and Wordplay (PW)
Homophones, puns, mondegreens (“10 issues”
→ “tennis shoes”).

Symbolic Substitution (SS)
Replacing with numbers, letters, or emojis
(e.g., “4” → “for”).

Visual Metaphors and Cultural References
(VMCR)

Idioms, memes, or visual sayings (“water”
shaped like a “waterfall”).

Letter and Word Manipulation (LWM)
Overlapping/hiding/repeating letters to form
meanings.

Absence or Negation (AN)
Missing elements or crossed-out text (e.g., a
gap = “invisible”).

Quantitative or Mathematical Reasoning
(QMR)

Math symbols, object counting (e.g., “1 2 3”
+ foot = “three feet”).

Table D.2: Distribution of Skill Categories in the Dataset.

Skill Category Percentage

Absence or Negation 1.17%
Font Style/Size 4.20%
Image Recognition 29.42%
Letter and Word Manipulation 6.06%
Phonetics and Wordplay 7.62%
Quantitative/Mathematical Reasoning 1.76%
Spatial and Positional Reasoning 9.48%
Symbolic Substitution 3.42%
Text Orientation 1.37%
Text Recognition (OCR/Layout) 33.24%
Visual Metaphors and Cultural References 2.25%

Ü Skill Guided Prompt

<IMAGE>
Please solve the rebus puzzle represented by
the image. The skills you need to apply are:
{skill_names_str}. Respond with ONLY a valid
JSON object containing two keys:
1. ’answer’: the string value of your solution.
2. ’reasoning’: a detailed explanation of

how you arrived at this answer, including
interpretations of visual elements
described and their relationships.

By injecting these skill annotations into the
prompt, we aim to assess whether models can
effectively leverage explicit reasoning instructions
to improve puzzle-solving performance.

E Iterative Refinement

To probe the model for its performance in multiple
attempts, we run a first initial attempt using the
prompt given below:

ÜVLM Iterative Refinement Initial Prompt

<IMAGE>
This rebus puzzle is a play on words based
on images, and may contain text, logical
operators, addition/subtraction of letters,
and other forms of creative thinking to solve.
Can you figure out what it is? Take a deep
breath, and let’s begin. You can think for as
long as you want, until you get a correct answer.
When you’re done reasoning and thinking, output
your final answer as ONLY a valid JSON dict
containing the key ’answer’ and the string
value of your answer. DO NOT include any other
text or explanation, such as ’the rebus puzzle
represents’ or ’the answer is’. Make sure that
the JSON dict uses ïnstead of ’ for the key and
value.

If the model answers the prompt correctly under
the naive matching scheme, we terminate the run. If
the model does not answer correctly, we provide the
full output of the previous input as context, along
with the further user message:

Ü VLM Iterative Refinement Followup
Prompt

That was incorrect. Your previous answer was
’$previous_answer’. Please re-examine the
image and our conversation history. Take your
time, think step by step, and provide a new
answer as a JSON dict with the key ’answer’.

This iterative process is run for five iterations
following the initial prompt (six iterations total),
and the overall naive matching accuracy is presented
in Figure 2. We found overall that compliance
accuracy was relatively high. With OpenAI, we
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used the structured decoding API to force the
model to provide valid JSON output. For Claude
models, we perform significant filtering to isolate
JSON outputs, and we found that models failed to
provide valid answers in only a maximum of 2/432
examples (where both were refused for safety: “I
apologize, but I do not feel comfortable attempting
to solve or interpret that type of puzzle. Perhaps we
could have a thoughtful discussion about a different
topic that does not involve potentially offensive
language or imagery. I’m happy to continue our
conversation in a more constructive direction.”).

F Caption-Only Performance

To assess whether the models can accurately solve
rebus puzzles without direct visual input, we first
generate detailed captions for each puzzle image
using GPT-4o, prompted as follows:

Ü Caption Generation Prompt

Provide a detailed caption for each image. Do
not guess the words or expressions.

We then provide only the generated captions
and the original prompt to the models, challenging
them to solve each rebus puzzle using the following
prompt:

Ü Caption-Only Prompt

Please solve the rebus puzzle represented by the
following caption: {caption text}. Respond with
ONLY a valid JSON object containing two keys:
1. ’answer’: the string value of your solution.
2. ’reasoning’: a detailed explanation of

how you arrived at this answer, including
interpretations of visual elements
described and their relationships.

This method enables us to understand the model’s
textual reasoning ability, to analyze the impact of
visual perception on its overall problem-solving
performance.

G Image Retrieval

In section 3, we evaluate the performance of
CLIP-style VLMs on the probe dataset. Each image
xi is associated with a corresponding answer yi,
forming a dataset D={(xi,yi)}Ni=1. The evaluation
protocol is as follows:

Feature Extraction All images are processed
using a pretrained VLM, which encodes each
image xi into a normalized feature vector vi∈Rd.
Similarly, all ground-truth answers {yj}Nj=1 are

tokenized and encoded into normalized text feature
vectors {tj}Nj=1.

Similarity Computation For each image xi, we
compute the similarity between its feature vector
vi and all text feature vectors {tj} using the scaled
dot product:

sij=softmax
(
α·v⊤

i tj

)

where α is a scaling factor (set to 100.0 in our
experiments), and the softmax is applied over all
j for each i.

Ranking and Metrics For each image, the
ground-truth answer yi is ranked among all
candidate answers according to the computed
similarities. Let ri denote the rank of the correct
answer for image i (with ri = 0 indicating top-1
retrieval). We report the following metrics:

Recall@K: The proportion of queries for which
the ground-truth answer is ranked within the top K
predictions:

Recall@K=
1

N

N∑

i=1

I[ri<K]

Precision@1: The fraction of queries where the
ground-truth answer is ranked first:

Precision@1=
1

N

N∑

i=1

I[ri=0]

Mean Reciprocal Rank (MRR):

MRR=
1

N

N∑

i=1

1

ri+1

Normalized Discounted Cumulative Gain
(NDCG):

NDCG=
1

N

N∑

i=1

1

log2(ri+2)

All metrics are computed over the entire
evaluation set. The evaluation is performed in a
zero-shot manner, with no fine-tuning on the target
dataset. Results are reported as aggregate statistics.
Full results are given in

H Evaluation Method

The evaluation pipeline proceeds in result evalua-
tion then performance estimation via bootstrapping.
We conduct two ways for result evaluation.

Naive Matching Evaluation In Naive Matching
Evaluation, the correctness is determined by directly
comparing the predicted answer to the ground truth
using exact string matching after normalization
(lower casing and stripping whitespace). If the
ground truth contains multiple acceptable answers
separated by slashes (e.g., apple/orange), the
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Table G.1: Contrastive VLM retrieval performance
on our probe dataset.

Model/Size/Resolution R@1 R@5 P@1 MRR NDCG

OpenAI CLIP/B32/224 21.1 35.4 21.1 28.4 40.1
OpenCLIP/B16/224 25.9 40.3 25.9 33.0 44.0
CoCa/L14/224 29.2 43.3 29.2 36.2 46.8
MetaCLIP/L14/224 26.6 39.6 26.6 33.3 44.1
MobileCLIP/S2/224 31.7 49.8 31.7 40.0 50.3
SigLIP/So400m/224 28.0 43.3 28.0 35.8 46.4
SigLIP 2/B16/256 26.9 37.5 26.9 32.5 43.4
SigLIP 2/B16/384 25.9 36.6 25.9 32.0 43.0
SigLIP 2/B16/512 25.0 36.8 25.0 31.3 42.3
SigLIP 2/L16/256 30.3 43.1 30.3 36.8 47.2
SigLIP 2/L16/384 30.1 43.1 30.1 36.7 47.1
SigLIP 2/L16/512 29.6 43.1 29.6 36.5 47.0
SigLIP 2/So400m-16/256 29.2 43.5 29.2 36.1 46.6
SigLIP 2/So400m-16/384 28.9 43.3 28.9 36.1 46.6
SigLIP 2/So400m-16/512 28.5 41.9 28.5 35.4 46.0
SigLIP 2/GOPT16/256 32.2 44.0 32.2 38.6 48.6
SigLIP 2/GOPT16/384 31.2 44.9 31.2 37.9 48.0
Tulip/B16/224 28.7 42.1 28.7 35.0 45.6
Tulip/So400m-14/384 31.7 47.0 31.7 39.0 49.1
Tulip/GOPT16/384 30.1 45.8 30.1 37.7 48.1

prediction is considered correct if it matches any
of the possible normalized answers. Formally, for a
predicted answer p and a set of ground truth answers
G={g1,g2,. . . ,gn}, correctness is evaluated as:

Correct=

{
1 if p∈G

0 otherwise

LLM-Based Semantic Evaluation To address
limitations of naive matching (e.g., minor spelling
errors or paraphrasing), we use an LLM model
(GPT-4o) as a judge. The following prompt is
provided to the model:

Ü Default Evaluation

Determine whether the
predicted answer is semantically equivalent
to the ground truth. Ignore differences
in case and spacing, as well as minor errors in
spelling. If there’s a / in the ground truth,
it means that either answer is acceptable.
Ground Truth: {{gt}}
Prediction: {{pred}}
Reasoning: {{reasoning}}
Respond with only ’yes’ or ’no’.

The model’s response determines correctness,
‘yes’ as a correct prediction and ‘no’ as an
incorrect prediction. These evaluation results are
recorded in a single JSON log file.

Consistency check for LLM as a judge To study
potential evaluation bias in our LLM-as-a-judge
setup, we additionally evaluate with a different
LLM (Qwen3-8B with thinking enabled) as a judge.
The results are shown in Table H.1. The results are
comparable to those from GPT-4o, with no change
in ranking, indicating that cross model validation
is consistent.

Bootstrapped Confidence Estimation Using the
JSON evaluation log created, we perform repeated

Table H.1: Evaluating LLM-Judge Evaluation
Consistency Qwen3-8B was additionally used as a LLM
judge for consistency check.

Model GPT-4o LLM-Judge Qwen3-8B LLM-Judge

o4-mini 55.62[0.509,0.599] 56.60[0.523,0.613]
gemini-2.5-pro 47.27[0.424,0.519] 49.54[0.449,0.542]
gpt-4o 26.52[0.225,0.308] 27.51[0.231,0.322]
Claude-3.7-Sonnet 16.31[0.127,0.199] 19.91[0.162,0.241]

sampling with replacement to simulate multiple
evaluation scenarios. Specifically, we draw N
bootstrap samples of size |S| (equal to the number
of total examples), calculate the accuracy for each
sample, and estimate the distribution of accuracies.
Formally, for each bootstrap sample S with size |S|,
the accuracy is computed as:

AccuracyS=
1

|S|

|S|∑

i=1

I(Correcti)

where I(Correcti) is the indicator function,
which returns 1 if the i-th prediction is correct, and
0 otherwise.

After generating N bootstrap samples, the 95%
confidence interval is computed.

Details on Human Evaluation Method We
provide details on the set up of human evaluation
experiments. The purpose of these evaluations
are (1) highlight the gap between VLMs and
expert solvers, and (2) provide a detailed error
analysis of the failures in VLMs. We recruited
several volunteers from our lab - one “expert” (a
native English speaker who regularly solves rebus
puzzles) and four “non-experts” (one native and
three non-native English speakers with little or no
prior exposure). Each participant attempted several
puzzles (between 25 and 200) that were randomly
drawn from the same evaluation set used for the
models. The goal with this experiment was not to
perform a rigorous comparison between human and
model performance, but to give a general idea of
how a small subset of humans perform on this task.

I Prompting

The prompt used to calculate the overall accuracy
in Table 1 is provided below:

Ü Default Evaluation Prompt

Please solve the rebus puzzle represented by
the image. Respond with ONLY a valid JSON
object containing two keys:
1. ’answer’: the string value of your solution.
2. ’reasoning’: a detailed explanation of

how you arrived at this answer, including
interpretations of visual elements
described and their relationships.

21747



To evaluate the robustness of the prompts,
excluding variations such as in-context learning,
caption-based prompting, and skill annotation
prompts, we tested multiple formulations. Addi-
tional evaluated prompts and their corresponding
results are listed below.

Ü REBUS Prompt

This rebus puzzle is a play on words based
on images, and may contain text, logical
operators, addition/subtraction of letters,
and other forms of creative thinking to solve.
Take a deep breath, and let’s begin. You can
think for as long as you want, until you get a
correct answer in the category $category. When
you’re done reasoning and thinking, output
your final answer with ONLY a valid JSON object
containing two keys:
1. ’answer’: the string value of your solution.
2. ’reasoning’: a detailed explanation of

how you arrived at this answer, including
interpretations of visual elements
described and their relationships.

This prompt is primarily based on the work
from Gritsevskiy et al. (2024). We also tested
this alternative prompt that provides the general
strategies commonly needed to solve rebus puzzles:

Ü Alternative Prompt

This rebus puzzle is a play on words based on
images and may contain text, logical operators,
addition/subtraction of letters, and other
forms of creative thinking to solve.
Here are some tips to solve rebus puzzles:
1. Position: Take note of the position of the

words and images.
• Consider prepositions such as in, on,
above, below, over, and under.

2. Size:
• The size of words and images can provide
clues to the answer.

3. Direction:
• Pay attention to the direction of words.
• Vertical words often include up and down
in the answer.

• Backwards words often include back in the
answer.

4. Style:
• The style of words and images can also
provide important clues.

When you’re done reasoning and thinking, output
your final answer with ONLY a valid JSON object
containing two keys:
1. ’answer’: the string value of your solution
2. ’reasoning’: a detailed explanation of how

you arrived at this answer, including the
meaning of each visual element and how they
combine

The naive matching performance for the three
prompts is given in Table I.1, for the GPT-4o model,
where we see there is some variance, but it lies well
within the 95% CI for the model given in Table 1.

Table I.1: Impact of changing the base prompt on the
overall model accuracy (% success).

Prompt Accuracy

Default 18.75
REBUS 19.21
Default 2 19.68

J Models

We detail all models used in this project below.

Non-reasoning models These include models
that do not natively support multi-step reasoning
with intermediate thoughts or “thinking tokens.”
GPT-4o and GPT-4o-mini (Hurst et al., 2024)
are widely-used non-reasoning VLMs released
by OpenAI in 2024. Gemini 2.0-flash (Google
DeepMind, 2024) is a similar model released by
Google. Claude-3.7-sonnet and Claude-3.5-haiku
(Anthropic, 2024) are non-reasoning variants from
Anthropic. Qwen2.5-VL (7B) (Bai et al., 2025)
and Phi-4 (Abdin et al., 2024) are open-weight,
non-reasoning models developed by Qwen and Mi-
crosoft, respectively. While the latest Qwen3 (Yang
et al., 2025) and Phi-4 have reasoning-enabled
language-only variants, they are excluded here as
they lack multimodal capabilities.

Reasoning models These models are capable
of multi-round chain-of-thought reasoning using
special "thinking" tokens, such as OpenAI o3 and
o4-mini (OpenAI, 2025) models. Gemini-2.5-flash
and Gemini-2.5-pro (Kavukcuoglu, 2025), both
from Google, also support this functionality.
Notably, Gemini 2.5-flash has both reasoning
and non-reasoning variants and we use the
reasoning-enabled version in our experiments.

Decoding configuration For all models, we
set the maximum number of output tokens to a
high enough value to avoid truncation and use a
temperature of 0 to ensure deterministic decoding.
All other settings are left as default.

K Qualitative Examples

In this section, Figure K.1 shows several qualitative
examples from two models (GPT-O3, Phi-4, and
Qwen 2.5-VL)and Figure K.2 between models (o4-
mini, Claude-3-5-haiku, Phi-4) in our probe dataset.

L Disclosure of AI Usage

The authors acknowledge the use of artificial
intelligence (AI) tools in the preparation of this
manuscript. Specifically, Microsoft Copilot, Ope-
nAI ChatGPT, and Google Gemini Pro were utilized
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Figure K.1: This figure shows qualitative examples for
both successful (GPT-O3) and failed (Bottom: Qwen
2.5-VL (7B)/Top: Phi-4) cases of model prediction.
Green indicates the correct cases, Red is the failure case.

Figure K.2: This figure shows qualitative examples
for both successful (o4-mini) and failed (Claude-3-5-
haiku/Last: Phi-4) cases of model prediction.

for general editing and code generation / completion
purposes. All generated code and text was verified
for correctness by one or more of the authors.
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