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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across diverse
domains, but developing high-performing mod-
els for specialized applications often requires
substantial human annotation — a process that
is time-consuming, labor-intensive, and ex-
pensive. In this paper, we address the label-
efficient learning problem for supervised fine-
tuning (SFT) by leveraging task-diversity as a
fundamental principle for effective data selec-
tion. This is markedly different from existing
methods based on the prompt-diversity. Our
approach is based on two key observations: 1)
task labels for different prompts are often read-
ily available; 2) pre-trained models have sig-
nificantly varying levels of confidence across
tasks. We combine these facts to devise a sim-
ple yet effective sampling strategy: we select
examples across tasks using an inverse confi-
dence weighting strategy. This produces mod-
els comparable to or better than those trained
with more complex sampling procedures, while
being significantly easier to implement and less
computationally intensive. Notably, our exper-
imental results demonstrate that this method
can achieve better accuracy than training on
the complete dataset (a 4% increase in MMLU
score). Across various annotation budgets and
two instruction finetuning datasets, our algo-
rithm performs at or above the level of the best
existing methods, while reducing annotation
costs by up to 80%.

1 Introduction

Large Language Models have demonstrated re-
markable capabilities across a diverse range of
tasks and domains. However, for challenging tasks
where LLMs still struggle, finetuning often re-
quires a large number of human annotations and
demonstrations to guide models toward correct be-
havior (Qin et al., 2024; Zhou et al., 2025; Chen

*Equal contribution.

et al., 2025). This annotation process is typically
time-consuming, labor-intensive, and expensive,
creating a significant barrier to developing high-
performing models for specialized applications.

In this work, we address the label-efficient learn-
ing problem, where ground-truth responses are ini-
tially unknown. The goal is to develop methods
that reduce annotation requirements while improv-
ing model performance. Our approach leverages
task-level information as a fundamental organizing
principle for effective data selection in instruction
tuning.

The label-efficient SFT (Bhatt et al., 2024) and
data selection literature (Yang et al., 2024; Wang
et al., 2024) have introduced various diversity-
based methods based on facility location, cluster-
ing, optimal design, and determinantal point pro-
cess methods to ensure comprehensive data cover-
age. Despite their improved performances, these
approaches face several practical challenges: (1)
they typically rely on pre-computed embeddings
that inadequately capture task-specific semantics;
(2) their computational complexity scales poorly
with dataset size, limiting applicability to large-
scale problems; and (3) achieving optimal perfor-
mance often requires careful hyperparameter tun-
ing, adding complexity to implementation.

Our study introduces a novel approach that com-
bines task-diversity principles with uncertainty
quantification. Unlike existing methods that fo-
cus primarily on prompt-diversity in the embed-
ding space, we leverage the inherent task catego-
rizations (Kung et al., 2023; Ivison et al., 2022;
Wang et al., 2022; Wei et al., 2022) widely avail-
able in modern LLM development datasets. Prompt
here refers to individual input examples to an
LLM. We define tasks according to their original
data curation sources, such as various domains
(e.g., medical knowledge, mathematics) and de-
sired skills (e.g., summarization, translation). For
instance, the FLAN dataset (Longpre et al., 2023)
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combines instruction tuning data from over a hun-
dred sources across 1,691 tasks, while the Dolly
dataset (Conover et al., 2023) covers eight distinct
tasks, such as brainstorming, closed QA, informa-
tion extraction and others.

Our approach is straightforward yet effective:
we allocate a minimum amount of allocation bud-
get across all tasks to ensure diversity, while al-
locating more budget to uncertain tasks, using an
inverse confidence weighting strategy. The confi-
dence is derived from the base model’s confidence
in answering the questions. This method achieves
high diversity in data selection while prioritizing
tasks where the model exhibits greater uncertainty,
producing models that outperform those trained
with existing sampling procedures, while being sig-
nificantly more accessible and easier to implement.

Experimental results demonstrate that by priori-
tizing the labeling of a strategic subset of examples,
our method achieves better accuracy than training
on the complete dataset (a 4% increase in MMLU
score). Across various annotation budgets and two
instruction finetuning datasets, our algorithm con-
sistently performs at or above the level of the best
existing methods, while reducing annotation costs
by up to 80%. These findings highlight the effec-
tiveness of combining task diversity with uncer-
tainty quantification as a guiding principle for data
selection in instruction tuning and provide a practi-
cal approach for optimizing the annotation process
without sacrificing model performance.

2 Related Work

2.1 LLM Supervised Finetuning

Supervised finetuning (SFT) has become a pivotal
technique for aligning Large Language Models
(LLMs) with human preferences and specific tasks
(Ouyang et al., 2022; Wei et al., 2022; Touvron
et al., 2023). This approach enhances pre-trained
language models by training them on carefully cu-
rated prompt-response pairs, enabling more accu-
rate instruction following and appropriate response
generation. However, traditional SFT methods
typically demand extensive human-annotated ex-
amples, creating resource-intensive processes that
potentially limit scalability. This constraint has
spurred research into more efficient finetuning ap-
proaches that can achieve comparable performance
with significantly fewer labeled examples.

2.2 Label-Efficient Learning for LLMs
The pursuit of label-efficient learning for LLMs
has garnered substantial attention as researchers
strive to reduce annotation burdens while maintain-
ing model performance. Various methodologies
have emerged, including active learning and exper-
imental design (i.e., one-batch active learning). In
this paper, we focus on the one-batch active learn-
ing problem, similar to Bhatt et al. (2024), where
the algorithm selects a single set of informative
examples for annotation. This approach offers dis-
tinct advantages: it reduces logistical complexities
compared to iterative active learning and provides
computational benefits by eliminating expensive
retraining cycles for LLMs.
Distinction from Data Selection. It is essen-
tial to distinguish label-efficient learning from
data selection. While data selection operates with
prior knowledge of ground truth responses, label-
efficient learning functions without access to these
annotations. Numerous data selection methods
(Chen et al., 2023; Bukharin and Zhao, 2023; Du
et al., 2023; Yang et al., 2024; Wang et al., 2024) in-
corporate ground truth responses as integral compo-
nents of their selection procedures, rendering them
unsuitable for scenarios where annotations have
not yet been collected. Our approach addresses this
limitation by focusing on task characteristics that
can be evaluated prior to annotation.
Unifying Principles. Although data selection
methods cannot be directly applied to label-
efficient settings, certain algorithmic principles are
shared between these problem domains. Existing
methods in active learning aim to either enhance di-
versity among selected examples or reduce model
uncertainty by prioritizing the most uncertain or
incorrectly predicted examples (Lewis, 1995; Tong
and Koller, 2001; Settles, 2009; Kremer et al.,
2014; Ash et al., 2019, 2021; Citovsky et al., 2021;
Mohamadi et al., 2022; Zhang et al., 2022; Nugge-
halli et al., 2023; Zhang et al., 2023; Xie et al.,
2024). Below, we provide a concise overview of
key algorithms in this space for LLMs.

2.2.1 Diversity-Based Methods
Diversity-based data selection aims to construct
representative subsets that ensure broad cover-
age of the input space by prioritizing diversity
among the prompts selected for annotation. Be-
low, we review three prominent diversity-based
selection strategies: K-Center, Facility Location,
and Determinantal Point Processes (DPPs). We use

21571



Data points
Selected points

(a) K-Center selection

Data points
Selected points

(b) Facility Location selection

Data points
Selected points

(c) DPP selection

Figure 1: Comparison of three diversity-based data selection baseline algorithms. In contrast to task diversity in
Figure 2, these methods primarily rely on prompt diversity in the embedding space. All of these methods aim to
cover the space of examples based on different criterions.

Z = z1, ..., zm to denote the set of data examples
in some embedding space, and the goal is to se-
lect the subset S ⊂ Z to ensure good coverage of
examples.

K-Center (Sener and Savarese, 2018) selects
k data points to serve as centers of equal-radius
balls in the representation space. The objective is
to cover all data points using the smallest possible
radius, ensuring that each example lies within the
ball of at least one selected center (see Figure 1a).
This approach encourages the selection of a subset
that minimizes the maximum distance between any
data point and its closest selected center. Formally,
the objective function is:

S = arg min
S′⊂X
|S′|=k

max
zi∈Z

min
zj∈S′

∥zi − zj∥

As illustrated in Figure 1a, this coreset sampling
method is vulnerable to outliers, as remote singular
examples are often selected.

Facility Location (FL) (Mirchandani and Fran-
cis, 1990; Wei et al., 2015; Mirzasoleiman et al.,
2020; Bilmes, 2022; Bukharin and Zhao, 2023;
Bhatt et al., 2024) addresses the outlier issue by
considering the average distance of examples to
their corresponding centers rather than the worst
case distance. This strategy utilizes a similarity
kernel measure as a proxy for distance metrics,
denoted by K(·, ·), which quantifies the similarity
between features zi and zj . The facility location
objective is formulated as:

S = argmax
S′⊂X
|S′|=k

∑

zi∈X
max
zj∈S′

K(zi, zj)

In this formulation, each data point zi ∈ X (con-
sidered a "client") is assigned to its most similar

center zj ∈ S′ (the "facility"), and the objective
maximizes the cumulative similarity across all such
assignments. The kernel function can be an l2 dis-
tance as in k-center selection, or alternatively an
RBF kernel with hyperparameter γ (Bhatt et al.,
2024).

Determinantal Point Processes (DPP) provide
a probabilistic framework for subset selection that
maximizes data coverage (Kulesza et al., 2012;
Wang et al., 2024). A DPP is inherently a stochastic
process where the probability of selecting subset S
is proportional to:

det(K(S)) := det([z]⊤z∈S [z]z∈S)

where K(S)i,j = ⟨zi, zj⟩ for the i-th and j-th ele-
ments in S. This determinant quantifies the volume
of the parallelotope formed by the embeddings in
S when the selection budget k is no larger than
the feature dimensionality d. Beyond inner prod-
ucts, the kernel map can be replaced with other ker-
nels K(S)i,j = K(zi, zj) similar to FL. In Wang
et al. (2024), the authors employ a deterministic
version of DPP, equivalent to D-optimal design:
argmaxS log det(K(S)). As shown in Figure 1c,
this method tends to select examples along the
boundary of the prompt distribution. For data selec-
tion, Wang et al. (2024) also incorporates quality
scores based on ground-truth answers. Since we
lack access to such information in label-efficient
SFT, we instead integrate confidence scores as pro-
posed by Bhatt et al. (2024) throughout our experi-
ments.

2.2.2 Uncertainty-Based Methods
Uncertainty-based selection strategies identify ex-
amples where the model exhibits low confidence,
utilizing metrics such as entropy, token probabil-
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ity, and margin-based measures to quantify pre-
diction uncertainty (Settles, 2009; Lewis, 1995).
Recent research has explored more sophisticated
approaches specifically tailored for large language
models, advancing beyond simple uncertainty es-
timates. Bhatt et al. (2024) extended entropy-,
confidence-, and margin-based scores to SFT of
LLMs. Similar to us, Kung et al. (2023) also uti-
lizes the task definitions from existing datasets, and
developed methods that prioritize labeling tasks
with the highest uncertainties. However, their algo-
rithm would spend all of their budgets on the most
difficulty tasks, thus reducing the data coverage
and diversity in selected prompts. Our work draws
inspiration from these techniques while introducing
a simpler and more practical approach that focuses
on task diversity and model confidence. This pro-
vides an effective method for optimizing annotation
resources without requiring complex embeddings
or algorithms.

3 Problem Formulation

We adopt the label-efficient SFT framework intro-
duced by Bhatt et al. (2024). In this framework, the
learner is provided with an initial set of N prompts
X = {x1, x2, . . . , xN}, where each prompt xi con-
sists of l tokens, i.e., xi = {xi,1, . . . , xi,l}. Let g
represent the pretrained language model. Given a
limited annotation budget k < N , our goal is to
develop effective selection strategies that identify
a subset S ⊂ X of the most informative prompts,
such that |S| = k.

After selecting subset S, high-quality responses
are collected for each prompt x ∈ S from annota-
tors (such as human experts or advanced LLMs).
These annotated prompt-response pairs are then
used to finetune model g. Let g′ denote the result-
ing model after SFT on these annotated pairs. Our
objective is to maximize the performance improve-
ment of g′ while minimizing the required annota-
tion budget.

Throughout this paper, we use feature embed-
dings extracted from prompts using the base model.
Let f : X → Rd denote the feature mapping be-
tween prompts to embedding, all of the diversity
based methods in Section 2.2.1 can be viewed as
using zi := f(xi). Concretely, we extract these
feature embeddings from the penultimate layer’s
hidden state of the pretrained model g during infer-
ence on the prompt.

4 Methods

4.1 Task Definition

Instruction tuning datasets today are often con-
sisted of carefully curated prompt/response pairs
across numerous domain and tasks. In this paper
we predominantly experiment with a 90K subset of
the FLAN V2 data (Longpre et al., 2023) and the
entire Dolly dataset (Conover et al., 2023) (with
responses initially masked to simulate the label-
efficient learning scenario).

The FLAN V2 dataset provides a broad and di-
verse collection of examples across 1,691 tasks,
including classification (e.g., amazon polarity user
satisfied), summarization (e.g., news editorial sum-
mary), translation (e.g., translate/french-english),
question answering (e.g., trivia qa), and many oth-
ers. Similarly, the Dolly Dataset consists of multi-
ple instruction-following tasks across 8 categories,
including question answering, classification, brain-
storming, information extraction, summarization,
and creative writing. In our experiments, we define
tasks as the original subtasks or categories anno-
tated in the dataset, and distribute the annotation
budget across these predefined subtasks.

In modern LLM development, task and domain
categorizations are widely available. When build-
ing SFT datasets, practitioners need to curate spe-
cialized prompts for each domain or application
need. For example, both enterprise and academic
efforts now emphasize domain-aligned SFT to im-
prove performance in specialized settings such as
legal reasoning, biomedical QA, customer support,
and other specific use cases.

In this paper, we utilize these task categoriza-
tions to demonstrate that task-diverse annotation–
where specific budgets are allocated to each indi-
vidual task category–is as powerful as, if not more
powerful than, the diversity methods mentioned
previously. With a reweighting scheme based on
model confidences, our method yields comparable
or superior results to previous approaches. Addi-
tionally, our approach validates the current practice
of curating task-specific subsets of SFT data in
LLM development.

As illustrated in Figure 2, our method explicitly
incorporates task information to guide selection,
ensuring that all tasks are represented in the an-
notated subset. Previous diversity-based selection
methods, which rely on embedding space cover-
age, often overlook task-level imbalances—leading
to underrepresentation of tasks with fewer exam-
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Task 1
Task 3
Task 2
Task 4
Task 5

Task 1 (conft = 0.79)
Task 3 (conft = 0.55)
Task 2 (conft = 0.48)
Task 4 (conft = 0.44)
Task 5 (conft = 0.20)

Figure 2: (a) Task diversity: Fixed number of examples are selected in a round-robin manner across tasks, without
considering the model’s confidence of the task. (b) Weighted Task Diversity: Examples are allocated across tasks
in proportion to the inverse of the average model confidence on each task (denoted by conft for task t). Tasks for
which the model exhibits lower confidence receive more samples. Despite Task 5 being less represented in the
original distribution, we collect more samples because the pre-trained model is generally less confident about the
task. When comparing to Figure 1, our method leverages the additional task information for selection.

ples or lower model confidence. In contrast, the
Weighted Task Diversity strategy adapts allocation
based on model confidence, assigning more exam-
ples to lower-confidence tasks, such as Task 5.

4.2 Task Diversity
As a novel baseline method that leverages task-
diversity, we optimize for task-level diversity in
the selected subset under a fixed annotation budget.
Our objective is simple: allocate roughly equal
number of examples to each task subject to the
availability of prompts available in each task. We
propose a two-step sampling algorithm that first
allocates the budget across tasks and then samples
examples from each task. This approach is denoted
as Task Diversity in our results.

Formally, under a fixed annotation budget B,
we formulate the allocation problem as minimiz-
ing the maximum number of examples per task
while ensuring complete budget utilization and
task-specific availability constraints. Formally, let
there be T tasks with their corresponding prompt
partitions X1, ..., XT ⊂ X . Here, Xt represents
the prompts belonging to task t. We also let vari-
ables α = [α1, α2, . . . , αT ] ∈ RT denote the vari-
able of allocated examples per task. The goal is to
solve the following min-max problem:

αDiv = argmin
α

(
max

t∈{1,...,T}
αt

)

s.t.
T∑

t=1

αt = B and ∀t ∈ [T ], αt ≤ |Xt|.

Here, αDiv ∈ [0, 1]T denotes the budget allocations.
The optimal solution would saturate the tasks with
fewer amount of examples, while allocating equal
amount of budget to the rest of the tasks. As el-
ements in αDiv may not be integers, we adopt a
round robin algorithm for selection as will be de-
scribed in Section 4.4.

4.3 Weighted Task Diversity

In the second method, our goal is to prioritize sam-
pling from tasks where the model exhibits lower
confidence, while still maintaining task-level cover-
age under a fixed annotation budget. We propose a
two-step sampling algorithm that first allocates the
budget across tasks based on their average model
confidence and then samples examples from each
task. This approach is denoted as Weighted Task
Diversity in our results.

Under a fixed annotation budget B, we first com-
pute the average confidence score conft for each
task t ∈ {1, . . . , T}. We define the average task-
level confidence conft as the mean model confi-
dence over all unlabeled examples within task t,
where confidence for an individual example is com-
puted as the product of token-level probabilities in
the generated sequence (Settles, 2009; Bhatt et al.,
2024). Formally, for a given prompt x, let the
auto-regressive base model g generate a response
y = (y1, y2, . . . , ym), where yj is the j-th token
in the sequence. The model’s confidence for this
example is defined as: conf(x) =

∏m
j=1 g(yj |

y<j , x). Then, the task-level average confidence
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Algorithm 1 Round-Robin Sampling

1: Input: Budget k and allocation α.
2: Input: Pool of prompts X = X1, ..., XT

partitioned based on tasks 1, .., T and sorted
based on allocation budget so that α1 ≤ α2 ≤
· · · ≤ αT .

3: Initialize: Selected examples: S ← ∅; coun-
ters for each task t: ct ← 0, ∀t ∈ [T ].

4: while True do
5: for t = 1,..., T do
6: if ct < ⌈αt⌉ and ct < |Xt| then
7: Randomly select example x from Xt

that is not in S yet.
8: Update selected set: S ← S ∪ {x} and

ct ← ct + 1
9: if |S| = B then break

10: end if
11: end for
12: end while
13: return Selection set S.

can be computed as an average over all prompts:
conft = 1

|Xt|
∑

x∈Xt
conf(x) for task t.

During our selection, each task is initially al-
located a small base budget (e.g., 5 examples) to
ensure minimum task coverage. The remaining
budget is then distributed across tasks with more
than five available examples in proportion to the
inverse of their confidence scores, thus favoring
tasks where the model is more uncertain. Recall
that X1, X2, . . . , XT denote the set of prompt cor-
responding to each task, and α = [α1, α2, . . . , αT ]
denotes the final allocated samples per task. The
allocation rule can be formally written as solving
for C ∈ R+,

αt =

[
C · 1

conft

]|Xt|

5

and
T∑

t=1

αt = k.

Where C is a normalization constant used to pro-
portionally distribute the remaining annotation bud-
get among eligible tasks. In addition,

[
z
]b
a

:=
min(max(z, a), b) denotes the clamping operation,
ensuring the number of selected examples per task
remains within valid bounds. We use αWeighted
to denote the allocation. Overall, if all tasks have
sufficient number of examples and the budget is suf-
ficiently large, the number of examples allocated
to each task is exactly proportional to its inverse
confidence score.

4.4 Round Robin

As we noted before, both αDiv and αWeighted may
yield non-integer allocations. In practice, we round
up the values ⌈αDiv⌉ and ⌈αWeighted⌉, where the
rounding operation is computed elementwise. To
ensure we only select k examples in total, as shown
in Algorithm 1, we adopt a round-robin allocation
scheme that iteratively distributes the budget across
tasks. We initialize all tasks as eligible for alloca-
tion and sequentially assign one example to each
task in turn. This process is repeated in a loop,
until either the task-specific budget is exhausted
or all prompts in a task have all been selected.
This procedure continues until the entire budget
is fully allocated. During this process, we ensure
the smaller budget tasks are prioritized in receiv-
ing examples. Within each task, we simply choose
prompts uniformly without replacement.

5 Experiments

5.1 Experiment Setup

Dataset. We utilize a curated 90K subset of
the FLAN V2 dataset (Longpre et al., 2023), as
processed by Wang et al. (2023). FLAN V2 is
an instruction finetuning dataset that integrates
data from multiple sources, including FLAN 2021,
P3++, Super-Natural Instructions, and a range
of additional datasets focused on reasoning, dia-
logue, and program synthesis. In addition, we use
the Databricks Dolly 15K dataset (Conover et al.,
2023), which comprises 15,000 human-generated
instruction-following examples. The dataset was
crowd-sourced from thousands of Databricks em-
ployees, who authored prompt-response pairs
across eight instruction categories
Models and Training Procedure. We conduct
our experiments using the 7B parameter version
of the LLaMA-2 language model (Touvron et al.,
2023), considering various annotation budgets. Be-
fore finetuning, we select a subset of prompts for
annotation using the baseline algorithms described
below and our Task Diversity, Weighted Task
Diversity algorithms. These strategies are com-
puted based on the original, pre-trained model only.
After selection, we finetune the model on the anno-
tated prompt-response pairs using Low-rank Adap-
tation (Hu et al., 2021). We finetune each model for
3 epochs using the Adam optimizer with a learning
rate of 10−4.
Baseline Algorithms. We evaluate a diverse set
of baseline algorithms for prompt selection mostly
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MMLU Score BBH Score
Strategy k = 20K k = 30K k = 45K k = 90K k = 20K k = 30K k = 45K k = 90K

Random 45.67±0.04 46.28±0.48 47.85±0.10 48.94±0.17 38.42±0.20 39.99±0.40 38.14±1.17 40.02±0.24

Mean Entropy 43.79±0.33 45.49±0.25 46.82±0.27 48.94±0.17 38.45±0.26 38.27±0.65 40.14±0.27 40.02±0.24

Confidence 45.24±0.24 45.70±0.25 47.20±0.24 48.94±0.17 39.50±0.69 38.68±0.82 39.55±0.20 40.02±0.24

Mean Margin 44.99±0.03 46.18±0.08 47.22±0.18 48.94±0.17 39.40±0.06 39.65±0.45 39.86±0.47 40.02±0.24

Min Margin 46.09±0.11 46.51±0.06 47.65±0.24 48.94±0.17 40.44±0.48 40.42±0.42 38.68±0.48 40.02±0.24

k-Center 45.83±0.16 46.47±0.14 47.74±0.14 48.94±0.17 38.65±0.29 38.94±0.53 38.32±0.77 40.02±0.24

FL(γ=0.1) 44.01±0.23 45.31±0.92 46.47±0.17 48.94±0.17 37.40±0.13 38.17±0.68 40.09±0.83 40.02±0.24

FL(γ=0.002) 44.73±0.21 46.92±0.43 47.71±0.20 48.94±0.17 38.91±0.40 40.70±0.46 41.68±0.34 40.02±0.24

FL(cosine) 44.49±0.09 45.18±0.27 46.51±0.24 48.94±0.17 39.53±0.35 39.27±1.02 40.40±0.22 40.02±0.24

ActiveIT 47.50±0.15 47.56±0.25 47.66±0.24 48.94±0.17 39.52±0.11 39.88±0.08 40.78±0.59 40.02±0.24

DPP 45.58±0.15 46.87±0.10 47.84±0.26 48.94±0.17 40.68±0.50 40.99±0.47 40.07±0.41 40.02±0.24

Task Diversity 45.83±0.57 46.25±0.12 48.63±0.18 48.94±0.17 39.02±0.64 39.63±0.36 41.10±0.53 40.02±0.24

Weighted Task
Diversity 47.88±0.19 48.34±0.16 48.46±0.15 48.94±0.17 39.96±0.52 41.04±0.33 40.86±0.15 40.02±0.24

Table 1: Comparison of model performance on MMLU (left) and BBH (right) benchmarks using different data
selection strategies and annotation budgets. Each result is averaged over 3 random seeds where the randomness
mainly comes from the training. The confidence intervals are based on standard error. The best results for each k
are in bold, and the second-best results are underlined.

adopted from Kung et al. (2023), Bhatt et al. (2024)
and Wang et al. (2024). Random represents the ran-
dom sampling baseline. We also include Mean En-
tropy, which measures the average tokenwise neg-
ative entropy of the softmax probability scores in
the generated sequence; Least Confidence, which
selects prompts with the lowest overall sequence
probability, computed as the product of the token
probabilities; Mean Margin, which captures uncer-
tainty as the average difference between the highest
and second-highest token probabilities at each po-
sition in the sequence; and Min Margin, a more
targeted variant that considers the smallest such
margin across all tokens, rather than the average.
Furthermore, the task-wise allocation method Ac-
tiveIT (Kung et al., 2023) is also included. In this
method, algorithm selects tasks where the model
exhibits the lowest average confidence and anno-
tates all examples from these tasks.

Lastly, we also include diversity-based selection
methods such as K-Center, Facility Location and
DPP (detailed in Section 2.2.1).

Evaluation Metrics. We evaluate our finetuned
model’s zero-shot capabilities using three bench-
marks: MMLU (Massive Multitask Language Un-
derstanding, Hendrycks et al. (2020)), BBH (Big-
Bench Hard, Suzgun et al. (2022)), and AlpacaE-
val (Li et al., 2023). Following FLAN V2’s method-
ology, MMLU tests factual knowledge and reason-
ing across 57 subjects via multiple-choice ques-
tions spanning elementary to professional levels,
while BBH evaluates general reasoning capabilites
of the model through 23 generation-based. Al-

pacaEval is an evaluation framework designed to
automatically measure the quality of responses gen-
erated by large language models in instruction-
following tasks. It compares outputs from two
models to determine which response better follows
the given instruction. In our study, we used Al-
pacaEval 2.0 with the GPT-4 Turbo model as the
annotator, which ranks the outputs from our fine-
tuned model (trained on a subset of data) against
those from a reference model (trained on the full
dataset). For our results, we report the length con-
trolled win rates, accounting for potential biases of
long answer preferences by GPT-4 Turbo.

5.2 Evaluation on MMLU and BBH

In Table 1, when experimenting with the FLAN
V2 dataset, we observe that Weighted Task Diver-
sity substantially outperform traditional sampling
methods on the MMLU benchmark under differ-
ent annotation budgets. At 45K budget, models
trained based on Weighted Task Diversity selection
achieves similar performance to the model trained
on all 90K examples in the dataset, effectively
saving 50% annotation budget when compared to
random sampling. Overall, this demonstrates that
task-aware sampling, particularly when informed
by model uncertainty, can achieve near-optimal per-
formance even under low budgets. On the BBH
benchmark, however, performance varies more sig-
nificantly across strategies and budgets, with no sin-
gle method consistently dominating. However, at
30K budget, our strategy achieves the best overall
performance with a score surpassing the accuracy
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Figure 3: Evaluation of 30K prompt selection strategies on the FLAN
V2 dataset using AlpacaEval. The win rate represents the proportion of
times each model’s response was preferred by GPT-4 Turbo over the 90K
random baseline. ”WTD Task Div" here indicates Weighted Task Diversity
and ”Conf" indicates Confidence

Strategy k = 3K k = 6K k = 13.5K

Random 33.33±0.49 34.65±0.84 35.33±1.03

Mean Entropy 34.35±0.31 33.74±0.76 35.33±1.03

Confidence 34.29±1.71 37.51±0.60 35.33±1.03

Mean Margin 32.61±1.96 33.01±0.74 35.33±1.03

Min Margin 29.43±0.35 33.85±1.22 35.33±1.03

k-Center 33.61±0.85 32.90±1.17 35.33±1.03

FL(γ = 0.1) 33.19±2.38 33.11±0.15 35.33±1.03

FL(γ = 0.002) 31.70±1.73 33.22±1.76 35.33±1.03

FL(cosine) 34.03±1.97 35.52±0.66 35.33±1.03

DPP 31.02±1.49 32.70±1.29 35.33±1.03

Task diversity 33.62±0.34 32.65±0.42 35.33±1.03
Weighted Task
Diversity 39.74±0.54 38.93±0.34 35.33±1.03

Table 2: MMLU evaluation of models
trained on subsets selected from a pool of
13.5K examples from the Dolly dataset.
Each result is averaged over 3 trials.

when labeling all 90K examples.
In Table 2, we also include the performance of

Weighted Task Diversity on the Dolly dataset. Our
method achieves the highest MMLU scores at both
3K and 6K budgets, reaching 39.74% and 38.93%
accuracies, respectively. Notably, as we are se-
lecting a more informative set and balanced set
of examples, the MMLU score even outperforms
training on all examples by more than 4% and sav-
ing 80% in annotation budget. We also include
the BBH result for the Dolly dataset in Table 3
of Appendix A. However, even with random sam-
pling, we see the model performance consistently
dropping as more examples are being labeled and
trained on. This potentially suggests the ineffec-
tiveness of the Dolly dataset in improving the tasks
covered by BBH, suggesting us to downweight the
significance of this benchmark.

5.3 Evaluation by GPT-4
To further investigate the effectiveness of various
data selection strategies under constrained anno-
tation budgets, we use the finetuned models on
30K prompts for all strategies and compare them
against a baseline model trained on 90K randomly
selected prompts. Evaluation is conducted using
GPT-4 Turbo as the judge following the AlpacaE-
val framework (Li et al., 2023), having over 805
prompts. As shown in Figure 3, several strategies
surpass the Random (90K) baseline, despite using
significantly fewer examples.

Among all strategies, Weighted Task Diversity
20K and 30K budget achieve the highest win rates
of 54.32% and 53.68% for FLAN Datset. Even on
the Dolly Dataset as shown in Figure 5, Weighted
Task Diversity with 3K and 6K budgets achieves

the highest win rates of 52.28% and 51.17%, re-
spectively, outperforming all other strategies.

Overall, these evidences suggest that the simple
method of Weighted Task Diversity is comparable
if not better than the existing baseline methods.

5.4 Qualitative Analysis
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Figure 4: Number of allocated samples per task in
the Dolly dataset under the Weighted Task Diversity
strategy. “BRNSTRM" indicates Brainstorming Tasks,
“CLS" indicates Classification Tasks, “Cld qa" indicates
Closed QA and “Summ" indicates Summarization.

In Figure 4, we plot the task-wise allocation bud-
get of the Weighted Task Diversity strategy for
the Dolly dataset. As we can observe, a majority
of samples are allocated to open QA, brainstorm-
ing, and general QA tasks. This distribution aligns
with intuitive expectations: tasks like open QA
typically present greater challenges for pre-trained
language models due to their open-ended nature
and broad variability in possible responses. The rel-
atively lower model confidence on QA-like tasks
leads to greater sampling from these categories,
consistent with the inverse-confidence weighting
mechanism. In contrast, tasks such as classifica-
tion, summarization, and information extraction
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receive far fewer samples, likely because they are
structurally simpler and the model exhibits higher
confidence on them. However, unlike the method
proposed by Kung et al. (2023), these tasks still
receive a few annotations, ensuring our dataset has
a broad coverage over them. See Appendix B for
more information on the FLAN dataset.

6 Conclusion

In this paper, we present a simple yet effective
approach to label-efficient supervised finetuning
by leveraging task-level diversity and model con-
fidence. We introduce two algorithms–Task Di-
versity and Weighted Task Diversity–that allocate
annotation budgets across tasks based on either
uniform distribution or inverse model confidence
scores. Our methods consistently outperform or
match more complex diversity- and uncertainty-
based baselines across MMLU and GPT-4-based
AlpacaEval benchmarks, all while using signifi-
cantly fewer labeled examples. These results high-
light the value of leveraging task structure and
model uncertainty for cost-effective and scalable
instruction tuning of large language models.

Limitations

Our approach demonstrates strong performance
in label-efficient learning scenarios, though we
acknowledge several areas for future exploration.
While task information is widely available in mod-
ern instruction-tuning datasets as we’ve shown,
there may be specific domains where such cate-
gorizations are less defined. In these cases, auto-
mated methods for identifying task definitions and
categorizations could be beneficial.

The confidence assessment by the base model
may sometimes reflect its pre-training exposure
rather than inherent task difficulty. However, our
experimental results suggest this concern is largely
mitigated by our round-robin sampling strategy that
ensures minimum coverage across all tasks.

Our experiments primarily focus on the LLaMA-
2 7B architecture, and extending these findings to
other model architectures represents a promising
direction for future work. Additionally, while our
method is significantly more computationally effi-
cient than existing diversity-based approaches, cal-
culating confidence scores does require inference
on the unlabeled dataset.
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A Additional Results

Random
(6K)

Mean
Entropy

(6K)

Conf
(6K)

Mean
Margin

(6K)

Min
Margin

(6K)

K-Center
(6K)

FL
(0.1)
(6K)

FL
(0.002)

(6K)

FL
(cosine)

(6K)

DPP
(6K)

Task
Diversity

(6K)

WTD
Task
Div
(6K)

WTD
Task
Div
(3K)

Strategies

48

49

50

51

52

53

W
in

 R
at

e 
(%

)

50.99

49.70 49.56

48.53

51.75

50.94

49.27
49.65

49.42

51.19

48.31

52.28

51.17

Random 13.5K

Figure 5: Evaluation of 6K prompt selection strategies on the Dolly dataset using AlpacaEval. The win rate
represents the proportion of times each model’s response was preferred by GPT-4 Turbo over the 13.5K random
baseline. ”WTD Task Div" here indicates Weighted Task Diversity and ”Conf" indicates Confidence

Strategy k = 3K k = 6K k = 13.5K

Random 36.43±0.11 35.60±0.72 34.02±0.84

Mean Entropy 35.48±0.79 34.07±0.36 34.02±0.84

Confidence 36.63±0.40 35.68±0.55 34.02±0.84

Mean Margin 35.79±0.71 35.99±0.37 34.02±0.84

Min Margin 36.32±0.28 33.89±1.02 34.02±0.84

k-Center 38.99±0.45 35.43±0.65 34.02±0.84

FL(γ = 0.1) 35.76±0.28 37.12±0.24 34.02±0.84

FL(γ = 0.002) 35.84±0.20 35.89±0.62 34.02±0.84

FL(cosine) 34.84±0.90 35.48±0.02 34.02±0.84

DPP 37.27±0.27 36.38±0.30 34.02±0.84

Task diversity 34.96±0.54 35.60±0.38 34.02±0.84

Weighted task diversity 37.07±0.30 35.63±0.45 34.02±0.84

Table 3: Big Bench Hard (BBH) evaluation of models trained on subsets selected by strategies from a pool of 13.5K
under different annotation budgets on the Dolly dataset. Each result is averaged over 3 random seeds.

B Qualitative Analysis

In Figure 6, we visualize the task-wise allocation under the Weighted Task Diversity strategy for the
FLAN dataset. A significant portion of the annotation budget is allocated to math-related tasks such
as math dataset algebra, where pre-trained language models tend to exhibit high uncertainty. Moderate
allocation is also seen for paraphrase detection tasks (e.g., Quora Question Pairs(QQP) and MNLI(Multi-
Genre Natural Language Inference), which often require nuanced semantic understanding. In contrast,
although we set a base allocation of 5 examples per task, some tasks such as prachathai67k sentiment
classification and low-resource translation contain only a single available example and are selected
accordingly. This behavior reflects the influence of task size constraints rather than model confidence.

21581



math
dataset
algebra

linear
1d

1.0.0

glue
qqp

2.0.0

glue
mnli
2.0.0

... task974
prachathai67k

sentiment
classification

task975
prachathai67k

same
genre

classification

task980
pib

translation
oriya

malayalam

Task

0
250
500
750

1000
1250
1500
1750
2000

Nu
m

be
r o

f A
llo

ca
te

d 
Sa

m
pl

es

1922

319 315

1 1 1

Figure 6: Task-wise sample allocation in the FLAN V2 dataset using the Weighted Task Diversity strategy. Tasks
where the model exhibits greater uncertainty receive a larger portion of the annotation budget.

Nevertheless, such tasks still receive limited annotations, helping to preserve broad task-level coverage
and ensuring that all tasks are represented in the final training set.

C Additional Experiment Details

Licenses for Models and Datasets

The following licenses apply to the models and datasets used in this work:
• Llama-2 7B: Released by Meta under a custom non-commercial license.1

• FLAN V2 Dataset: Released by Google under the Apache License 2.0.2

• Dolly Dataset: Released by Databricks under the Creative Commons Attribution-ShareAlike 3.0 (CC
BY-SA 3.0) license.3

Computational Complexity

We primarily used L40 GPUs. We precompute the embeddings which takes 12 hours. For FLAN Dataset
using L40, each trial takes roughly 35 GPU hours including the evaluation for 90K budget, 23 GPU hours
for 45K, 18 hours for 30K and 15 GPU hours for 20K respectively. For Dolly Dataset using L40, each
trial takes roughly 10 GPU hours including the evaluation for 13.5K budget, 9 GPU hours for 6K, 8 GPU
hours for 3K respectively.

1https://ai.meta.com/resources/models-and-libraries/llama-downloads/
2https://github.com/google-research/FLAN/tree/main/flan/v2
3https://github.com/databrickslabs/dolly
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