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Abstract

Large Vision-Language Models (LVLMs) gen-
erate contextually relevant responses by jointly
interpreting visual and textual inputs. However,
our finding reveals they often mistakenly per-
ceive text inputs lacking visual evidence as be-
ing part of the image, leading to erroneous
responses. In light of this finding, we probe
whether LVLMs possess an internal capability
to determine if textual concepts are grounded
in the image, and discover a specific subset of
Feed-Forward Network (FFN) neurons, termed
Visual Absence-aware (VA) neurons, that con-
sistently signal the visual absence through a
distinctive activation pattern. Leveraging these
patterns, we develop a detection module that
systematically classifies whether an input token
is visually grounded. Guided by its prediction,
we propose a method to refine the outputs by
reinterpreting question prompts or replacing
the detected absent tokens during generation.
Extensive experiments show that our method
effectively mitigates the models’ tendency to
falsely presume the visual presence of text in-
put and its generality across various LVLMs.

1 Introduction

Large Vision Language Models (LVLMs) (Liu
et al., 2024b; Wang et al., 2024; Zhu et al., 2023)
have received considerable attention for their abil-
ity to comprehend and reason over visual and tex-
tual information while generating contextually rel-
evant natural language responses. This capability
arises from integrating a pre-trained visual encoder
(e.g., CLIP (Radford et al., 2021)) with a large
language model (LLM) (e.g., LLaMA 2 (Touvron
et al., 2023)) and bridging their alignment through
a visual projection layer via instruction tuning (Dai
et al., 2023; Liu et al., 2023). Despite their strong
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Visually absent token

(a) Question w/ visually absent token

(b) Question w/o visually absent token

Q. Is the woman in the image standing
outside?

Q. What is the woman in the image 
doing?

A. Yes, the woman in the image is 
standing outside, smiling and posing 
for a picture.

A. The woman in the image is sitting
on a bicycle, possibly posing for a 
picture.

Figure 1: LVLM’s Vulnerability to Visually Absent
Tokens. (a) When the input prompt contains visually
absent tokens (e.g., standing), LVLM becomes confused
and generates a response accordingly. (b) Conversely,
when they are removed, the model produces an accurate
response that correctly aligns with the image.

performance in visual understanding and reason-
ing, LVLMs often suffer from hallucination, where
they describe or reference elements that are not
present in the given image (Li et al., 2023b; Liu
et al., 2024a; Rohrbach et al., 2018). Recent works
(Huang et al., 2024; Leng et al., 2024; Liu et al.,
2024c) have focused on mitigating hallucination by
preventing the model from generating misaligned
tokens. However, less attention has been given to
cases where the model receives misaligned tokens
as part of its input.

We discover that LVLMs are particularly suscep-
tible to the presence of input tokens that lack visual
grounding, which we refer to as visually absent to-
kens. As illustrated in Figure 1a, when such a token
(e.g., standing) appears in a question, the model in-
correctly generates a response as if the token were
present in the image. In contrast, when the question
does not contain such tokens (Figure 1b), the model
correctly describes the image. Notably, despite both
questions inquiring about the same content, which
is the woman’s action, the presence of the visually
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absent token misleads the model, highlighting its
vulnerability to non-grounded input.

Given that the aforementioned issue does not
occur when LLMs handle purely language-based
question-answering tasks, we hypothesize that the
transition from LLM to LVLM – where the model
newly learns to interpret image tokens in conjunc-
tion with textual inputs – induces this problem. As
the model acquires this new capability, we antic-
ipate that the underlying architecture will adapt
accordingly. In particular, Feed-Forward Networks
(FFNs), known in LLMs for storing internal knowl-
edge and retrieving relevant concepts based on
alignment with the input text (Dai et al., 2021; Geva
et al., 2020), are likely to retain a similar function
in LVLMs while extending their role to determine
the correspondence between the given image and
textual concepts.

Inspired by this, we carefully observe the behav-
ior of FFNs and are the first to identify a group
of FFN neurons, which we term Visual Absence-
aware (VA) neurons, that can discern whether an in-
put text token lacks corresponding visual evidence.
Specifically, when comparing FFN activations for
visually present and absent tokens, we find that cer-
tain neurons exhibit significantly altered activation
in response to the latter. To selectively identify such
neurons, we introduce a scoring system that quan-
tifies each neuron’s sensitivity to visual absence.
Our analysis reveals that FFN neurons with high
sensitivity scores serve as an indicator of visual
absence, regardless of the specific content of the
input text.

Building on the visual absence-aware neurons
pinpointed via our scoring system, we propose a
dedicated detection module – the Visual Absence
(VA) detector – that systematically determines
whether an input text token is visually grounded in
the image. To this end, we train a linear classifier
that utilizes the activation values of VA neurons to
identify tokens that lack visual support. This detec-
tor is then used to revise the outputs of LVLMs. In
question answering tasks, we adjust the model’s re-
sponse based on the predicted presence of visually
absent tokens in the question. In generation tasks,
detected visually unsupported tokens are replaced
with alternative candidates.

In summary, our contribution is three-fold:

• We uncover that a specific subset of FFN neu-
rons in LVLMs can identify whether a given
textual concept is visually present in the im-

age, offering a key stepping stone toward miti-
gating the model’s susceptibility to misaligned
input tokens.

• We use the unique neuron activations to
build a tailored Visual Absence (VA) detector,
whose predictions are used to refine model
outputs by adjusting responses to questions or
replacing absent tokens in generation.

• Experimental results demonstrate the effec-
tiveness of our method in leveraging internal
signals of visual absence to guide generation
across diverse LVLMs.

2 Related Work

Hallucination of LVLMs LVLMs often exhibit
hallucination, generating responses that do not
align with the given image (Li et al., 2023b;
Rohrbach et al., 2018; Zhou et al., 2023). Extensive
research has focused on mitigating object hallu-
cination (Huang et al., 2024; Jiang et al., 2024;
Leng et al., 2024; Zhu et al., 2024), which in-
volves inaccuracies related to objects’ existence
or attributes within the image. More recently, some
studies have specifically addressed relationship hal-
lucination (Wu et al., 2024; Zheng et al., 2024),
which refers to inter-object relationships, such as
action or positional relations. Existing approaches
to hallucination mitigation aim to prevent the gen-
eration of misaligned tokens through contrastive
decoding (Leng et al., 2024; Zhu et al., 2024) or
additional fine-tuning (Sun et al., 2023; Jiang et al.,
2024). However, limited research has explored the
internal mechanisms of LVLMs when visually in-
consistent tokens are introduced as input. Our work
identifies specific model components that respond
to visually absent tokens and proposes a detec-
tor that determines whether a token is visually
grounded using these components.

Feed-Forward Network’s Role in LLMs Large
Language Models (LLMs) (Bai et al., 2023; Tou-
vron et al., 2023) are built upon the Transformer ar-
chitecture, which stacks Multi-Head Self-Attention
(MHSA) and Feed-Forward Network (FFN) lay-
ers (Vaswani et al., 2017). While MHSAs aggre-
gate information through interaction between to-
kens, FFNs operate independently on each token
via non-linear transformations. Geva et al. (2020)
noted that FFNs function as key-value memory sys-
tems: the first linear layer acts as keys that detect
input patterns, and the second linear layer serves
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as values that encode distribution over the output
vocabulary. Furthermore, Dai et al. (2021) iden-
tifies knowledge neurons that store and retrieve
factual knowledge conditioned on input relevance.
Inspired by these findings, we explore whether FFN
neurons in LVLMs know cross-modal alignment.

3 Empirical Study: Impact of Visually
Absent Tokens on LVLMs

While Large Vision Language Models (LVLMs)
effectively integrate visual and textual inputs, they
are still influenced by textual information that lacks
corresponding visual evidence. In this section, we
analyze how the model responses differ depending
on the presence of text tokens that misalign with the
image (Section. 3.1), and explore whether it is capa-
ble of recognizing such tokens (Section. 3.2). More-
over, we introduce a scoring system that quantifies
the sensitivity of Feed-Forward Network (FFN)
neurons to image-text mismatches, enabling sys-
tematic identification of neurons responsible for de-
tecting visually ungrounded tokens (Section. 3.3).
All analyses and experiments are conducted on the
LLaVA-v1.5 model (Liu et al., 2024b), as it is one
of the foundational LVLMs.

3.1 LVLM is Vulnerable to Visually Absent
Tokens.

To analyze how LVLMs respond to tokens that are
not visually supported in the input text prompt, we
construct a dataset comprising contrastive image-
text pairs, named the Visual Absence Question An-
swering (VA-QA) dataset. This dataset is based
on the SVO-Probes dataset (Hendricks and Ne-
matzadeh, 2021), which provides images along
with their corresponding 〈subject, verb, object〉
triplets. We manually create contrastive image pairs
where only one element – subject, verb, or object –
differs between two images.1 For example, as illus-
trated in Figure 2, Image A and Image B vary only
in object: Image A depicts “meadow”, while Image
B shows “bed”. We then generate a yes-or-no ques-
tion related to each image using the corresponding
triplet. The question tied to the image would not
contain any visually absent tokens, whereas the
question derived from the contrasting image does.

To assess the impact of visually unsupported

1The SVO-Probes dataset provides such image pairs. But,
in many cases, the differing element is visually indistinguish-
able, making it difficult to analyze visual absence. To address
this, we create a new set of 600 pairs with more distinct differ-
ences.

＜dog, lie, meadow＞

Image A

＜dog, lie, bed＞

Image B

Is the dog lying on the meadow?
Question A

Is the dog lying on the bed?
Question B

Answer = “Yes”
Answer = “No”

What is the dog lying on?
General Question

Figure 2: VA-QA Dataset Construction. For each im-
age pair differing by a single element in the 〈subject,
verb, object〉, we generate yes-or-no questions. Counter-
part question includes a visually absent token, making
the correct answer “No.” Additionally, we create a gen-
eral question, which does not contain visually present
or absent tokens, so the model responds without bias.

inputs on the LVLM’s response, we generate a gen-
eral short-answer question that conveys the same
meaning as the corresponding yes-or-no question
but excludes any tokens irrelevant to the image.
For example, in the case of Figure 2, the general
question would be: “What is the dog lying on?”.
This question asks about the place where the dog
is lying, but does not explicitly imply an answer,
unlike a yes-or-no question. The model achieves
an accuracy of 88.6% on short-answer questions 2

that contain no visually absent tokens, whereas its
accuracy drops significantly to 71.5% on yes-or-no
questions that include such tokens. This indicates
that while the LVLM can comprehend image infor-
mation related to the question, it is highly suscepti-
ble to being misled by visually absent tokens when
they appear in the question.

3.2 Does LVLM Recognize Visually Absent
Tokens?

As shown in the previous section, LVLMs are vul-
nerable to text tokens that lack visual grounding,
often leading the model to generate incorrect re-
sponses. In this section, we investigate whether
the model is capable of recognizing such tokens.
Considering that Feed-Forward Networks (FFNs)
store internal knowledge within their pre-trained
weights and activate specific knowledge based on
the alignment with the input, we hypothesize that,
if the model recognizes image-text alignment, this
ability would be reflected in the activation patterns

2We performed manual verification by human annotators
to ascertain its accuracy.
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Figure 3: Observation on FFN Activation Patterns in Response to Visual Absence. (a) Using the VA-QA dataset,
we extract FFN activations a from all L layers for visually present and absent tokens by inputting each image with
its corresponding and counterpart questions. (b) Visual absence-aware neurons (i) exhibit a significant difference in
activation values between visually present and absent tokens, while other neurons (ii) show minimal variation.

of the FFNs.
Before delving into further details, we first out-

line the FFN computation process. Since the LLM
backbone of most LVLMs adopts a gated FFN ar-
chitecture (Shazeer, 2020; Dauphin et al., 2017),
our explanation is based on this variant. Given an
input hidden state x ∈ Rdmodel and internal memory
Wmem ∈ Rdmodel×dffn , the FFN operates as follows:

s = σ(xWT
gate), a = s⊙ (xWT

up),

FFN(x) = aWT
mem,

(1)

where s,a ∈ Rdffn denote gating scores and FFN
activations, and σ and ⊙ denote activation func-
tion and element-wise multiplication, respectively.
Wgate,Wup ∈ Rdffn×dmodel are learnable weights,
along with the internal memory Wmem.

To compare FFN activations for visually present
versus absent input tokens, we use contrastive
image-question pairs in the VA-QA dataset. Specif-
ically, each image is paired with two yes-or-no
questions: one containing a visually absent token
and the other without it. We then extract FFN acti-
vations of all L layers for both types of tokens (e.g.,
“meadow” and “bed” in Figure 2) across all pairs as
illustrated in Figure 3a:

A
pre
l,i = {atl,i | t ∈ Tpre},

Aabs
l,i = {atl,i | t ∈ Tabs},

(2)

where atl,i represents the activation value of i-th
neuron in l-th layer when processing token t, and
Tpre and Tabs refer to the sets of visually present
and absent tokens, respectively.3 To ensure precise
analysis, we restrict our examination to questions

3For words comprising multiple tokens, we only use the
last token, as it embodies the meaning of the entire word.
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Figure 4: Top-100 SVA across layers. The figure depicts
the SVA of top-100 neurons for each layer, with scores
greater than 0.4 set as 0.4 for better interpretability.

for which the model generates the correct answer,
as this suggests that the model has accurately un-
derstood the image within the given context.

Our observation reveals that there is a specific
group of FFN neurons that respond selectively to
visually absent tokens, which we refer to as Vi-
sual Absence-aware (VA) neurons. As shown in
Figure 3b, these neurons exhibit clear variation in
activation depending on whether a text token is
visually grounded, responding differently to visu-
ally present and absent tokens. In contrast, other
FFN neurons show minimal activation differences,
indicating that VA neurons play a unique role in
recognizing visual absence.

3.3 Scoring System for Identifying Visual
Absence-aware Neurons

Visual Absence-aware (VA) neurons exhibit dis-
tinct activation patterns: The activation values of
visually absent tokens deviate significantly from
those of visually present tokens. To quantify a neu-
ron’s sensitivity to visual absence, we measure the
degree of disentanglement between two sets of acti-
vation values, Apre

l,i and Aabs
l,i . Specifically, we treat

the activation values as discrete distributions by bin-
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Figure 5: Activation Patterns of High SVA Neurons Across Varying Textual Contexts. (a) Given that middle-layer
neurons exhibit high SVA, we show their activation levels for present and absent tokens. The activation level is
computed by normalizing the actual activation value based on the range of Al,i. (b) Activation values of these
neurons show similar patterns in cases with the same visual absence status but differ in cases where only contextual
information is shared.

ning them into K bins. We then compute the Bhat-
tacharyya Coefficient (BC) (Bhattacharyya, 1946),
a widely used statistical metric that measures the
amount of overlap between two distributions. The
sensitivity score SVA

l,i of the i-th neuron in the l-th
layer is then calculated as follows:

SVA
l,i = 1− BC(Apre

l,i ,A
abs
l,i )

= 1−
∑

k

√
A

pre
l,i (k) ·Aabs

l,i (k),
(3)

where Al,i(k) denotes the density of k-th bin. The
larger the SVA

l,i , the more the neuron’s activation
pattern differs between the two distributions, indi-
cating higher sensitivity to visual absence.

As demonstrated in Figure 4, VA neurons are
most prevalent in the middle layers of the LVLM.
Based on this observation, we hypothesize that the
LVLM processes image and text context in the early
layers and assesses their alignment in the subse-
quent layers. To further understand the functional
role of these VA neurons, we examine whether neu-
rons with high SVA play a role in recognizing visual
absence in a way that is invariant to lexical context.
To this end, we conduct two simple experiments:

Experiment 1: Do high SVA neurons contribute
to visual absence recognition? To validate the
role of neurons with high SVA scores, we neutralize
or emphasize their effect by setting their activations
to zero or to twice the original values. Specifically,
we modify activations of neurons with high SVA

across middle layers for text tokens that possess
semantic information, excluding punctuation marks

Table 1: Effect of Suppressing and Emphasizing Neu-
rons with High SVA. Accuracy of answering questions
with and without visually absent tokens for the VA-QA
dataset. GT is an abbreviation of ground truth answer.

Accyes
(GT=Yes)

Accno
(GT=No)

Acc
(Total)

Baseline 95.167 48.000 71.583

Zeroing random neurons 95.167 48.500 71.833
Zeroing high SVA neurons 96.000 41.500 68.750

Enhancing random neurons 95.167 47.667 71.417
Enhancing high SVA neurons 95.167 50.500 72.833

or generic template phrases, as these elements are
not related to visual content processing.4

As shown in Table 1, suppressing neurons with
high SVA weakens the model’s ability to recognize
visual absence. The accuracy on questions contain-
ing visually absent tokens (GT=No) decreases from
48.0% to 41.5%, while the accuracy of questions
with only visually present tokens (GT=Yes) slightly
increases. In contrast, enhancing these neurons im-
proves the model’s recognition of visual absence,
showing an increase in accuracy of GT=No ques-
tions from 48.0% to 50.5%. Meanwhile, attenuat-
ing or amplifying an equal number of randomly
selected neurons merely affects the model’s perfor-
mance. These results indicate that adjusting such a
limited number of neurons naturally has minimal
impact on the model’s performance, but high SVA

neurons play a key role in the model’s identification
4We modified activations of each top-100 neurons for 8th

to 16th layers, a total of 900, representing only about 0.255%
of a total of 352256 neurons.
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Q. Is the woman wearing a denim overall?
Nothing detected!A. Yes

Binary QA

Q. Describe this image.
A. The image shows a person wearing a white t-shirt and denim dress

Open-ended Generation

overalls over a white
shirt …. In addition, there are several people

books in various colors and sizes in the ….

Q. Is the woman wearing a denim dress?
Visually Absent!A. No

Figure 6: VA Detector-based Refinement. For each task, visually absent tokens are identified and used to guide
response refinement. The strategy is tailored to the task format: answer overriding for binary QA and correction of
visually unsupported content during generation.

of visual absence, leading to improved accuracy on
GT=No questions.

Experiment 2: Are neurons with high SVA invari-
ant to input context? To assess whether high
SVA neurons are driven primarily by visual absence
rather than lexical context, we examine activation
patterns of tokens with the same semantic meaning
but contrastive visual grounding – one present in
the image, the other absent. As illustrated in Fig-
ure 5a, ‘absent’ tokens exhibit intense activation in
neurons with high SVA, regardless of their seman-
tic content (e.g., woman or boy), whereas ‘present’
tokens show comparatively weaker activation. This
consistent activation pattern suggests that high SVA

neurons are not sensitive to semantic context, but
instead reflect alignment with the visual modality.

To systematically analyze whether these neu-
rons reflect visual absence while remaining insen-
sitive to input context, we measure the similarity
of their activation values across three scenarios: (1)
between absent tokens, (2) between present tokens,
and (3) between tokens with identical context (i.e.,
same word) where one is visually absent and the
other is present. As shown in Figure 5b, the simi-
larity in case (3) is significantly lower than in the
other two, suggesting that these neurons encode
visual absence rather than contextual information.

4 Method

Building upon our findings in Section. 3 that Vi-
sual Absence-aware (VA) neurons are particularly
responsive to text tokens without visual correspon-
dence, we develop a two-stage approach to en-
hance visual grounding in model responses. First,
we introduce the Visual Absence (VA) Detector, a
lightweight module that utilizes VA neuron acti-

vations to systematically identify visually unsup-
ported tokens (Section. 4.1). Then, guided by the
VA detector’s predictions, we propose a refinement
strategy that intervenes in the model’s generation
process to produce responses that are more faith-
fully grounded in the visual input (Section. 4.2).

4.1 Visual Absence (VA) Detector

Upon finding that VA neurons exhibit clear acti-
vation shifts in response to the visual absence of
a given token, we construct feature vectors based
on their activations. Using the previously defined
sensitivity score SVA to identify VA neurons, we
define the feature vector for a token t as:

vt =
[
atl,i | SVA

l,i > β
]
, (4)

where β is a threshold hyperparameter applied to
the sensitivity score.

Using the VA-QA dataset, we extract feature vec-
tors for visually present and absent tokens to con-
struct training data for the VA detector. Specifically,
since the dataset comprises image pairs differing by
a single element in a 〈subject, verb, object〉 triplet
(Figure 2), the differing element in the correspond-
ing question serves as either a visually present or
absent token, depending on the image. This yields
two sets of feature vectors:

Vpre = {vt | t ∈ Tpre},
Vabs = {vt | t ∈ Tabs}.

(5)

A lightweight linear classifier is then trained on
these sets to distinguish visually present (label 0)
and absent (label 1) tokens. Once trained, this de-
tector is applied across various downstream tasks
to improve model reliability by refining responses
based on detected visual absence.
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Table 2: Results on Binary Question Answering. Accyes and Accno denote accuracies of questions with ground-
truth answers ‘yes’ and ‘no’, respectively, and Acc represents the overall accuracy.

Model

In-domain Out-of-domain

VA-QA R-Bench POPE

Random Popular Adversarial

Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc

LLaVA-v1.5 (7B)
Baseline 95.2 48.0 71.6 95.7 39.3 67.6 90.7 88.6 89.7 90.7 81.7 86.2 90.7 68.8 79.8
Ours 89.5 77.5 83.5 89.8 51.7 70.8 78.7 97.5 88.1 78.7 95.7 87.2 78.2 91.5 84.8

LLaVA-v1.6 (13B)
Baseline 85.5 75.0 80.2 94.2 53.3 73.8 89.4 95.6 92.5 89.3 89.6 89.5 88.8 81.9 85.3
Ours 89.5 80.8 85.2 92.1 52.9 72.6 78.0 98.9 88.5 78.0 96.3 87.2 77.5 94.0 85.7

mPLUG-Owl2 (7B)
Baseline 92.0 57.3 74.7 93.9 50.3 72.2 92.9 73.8 83.4 92.9 62.0 77.5 92.9 54.8 73.8
Ours 83.0 83.0 83.0 83.3 66.4 74.9 74.1 96.9 85.5 74.1 93.9 84.0 73.7 92.5 83.1

InstructBLIP (7B)
Baseline 82.7 71.2 76.9 85.6 56.2 71.0 84.7 83.1 83.9 84.8 70.0 77.4 84.7 65.2 74.9
Ours 89.8 85.2 87.5 82.8 66.2 74.5 72.7 98.9 85.8 72.7 93.7 83.2 72.4 92.3 82.4

Qwen2-VL (7B)
Baseline 87.3 72.7 80.0 87.9 62.5 75.3 84.6 97.5 90.9 84.6 92.9 88.8 84.6 89.1 86.8
Ours 87.6 86.7 87.1 87.0 65.8 76.5 76.5 98.3 87.1 76.5 97.4 87.0 76.5 94.5 85.5

Gemma3 (12B)
Baseline 80.3 86.7 83.5 84.5 70.9 77.8 85.1 89.3 87.1 85.1 82.5 83.8 85.1 79.3 82.2
Ours 82.5 86.7 84.6 84.0 67.1 75.6 78.0 96.8 87.1 78.0 92.3 85.1 78.0 89.9 84.0

4.2 VA Detector-based Refinement

Leveraging the trained VA detector, tokens lacking
visual evidence in the input questions or generated
outputs are identified and used to guide response
refinement. Given that different tasks involve dis-
tinct question formats and solution strategies, task-
specific refinement methods are adopted, as illus-
trated in Figure 6 and described in detail below.

Binary Question Answering In this task, the
model is required to determine whether a given
question is consistent with the visual content, re-
sponding with either “Yes” or “No”. If the question
contains any token that does not correlate with the
image, the correct answer should be “No.” Accord-
ingly, the model’s original response is overridden
based on the prediction of the VA detector: “No”
when such a visually absent token is detected, and
“Yes” otherwise.

Open-ended Generation Unlike the structured
formats above, open-ended prompts (e.g., Describe
this image in detail.) do not explicitly contain pre-
defined candidate tokens. Nevertheless, LVLMs
often generate hallucinatory words that lack visual
grounding. Our VA detector enables the detection
of such visually unsupported tokens during gen-
eration. Specifically, after the model generates a
token at iteration t, that token is subsequently fed
back into the model as input at iteration t+ 1. The
VA detector then leverages the FFN activations at
iteration t+ 1 to determine if the previously gen-
erated token is visually absent. When the token is
identified as visually absent, the generation process
reverts back to the previous iteration, and the logit

of the unsupported token is set to negative infin-
ity, ensuring that the next most probable token is
selected instead. This iterative rollback process con-
tinues at every decoding step, helping to suppress
hallucination in free-form outputs.

5 Experiments

5.1 Experimental Settings

Implementation Details We evaluate the effec-
tiveness of our method on widely used LVLMs,
including LLaVA variants (LLaVA-v1.5 (7B),
LLaVA-v1.6 (7B), LLaVA-v1.6 (13B)) (Liu et al.,
2024b), mPlug-Owl2 (Ye et al., 2024), Instruct-
BLIP (Dai et al., 2023), and recent models such
as Qwen2-VL (Wang et al., 2024) and Gemma3
(Team et al., 2025). For each model, we train a
detector using the VA-QA dataset and determine
the optimal SVA threshold β.

Benchmark Datasets To verify the visual ab-
sence detection capability of our method, we use
various hallucination evaluation benchmarks that
assess whether models can correctly determine the
presence or absence of specific objects or relations
in an image. For binary question answering, we
adopt our proposed VA-QA dataset, which is an
in-domain dataset, as we trained the VA detector
using the train split of the VA-QA dataset. For out-
of-domain datasets, we evaluate our method on the
widely used object and relation hallucination bench-
marks, POPE (Li et al., 2023b) and R-Bench (Wu
et al., 2024). To assess performance on a more gen-
eral Visual Question Answering (VQA) setting, we
employ SEED-Bench (Li et al., 2023a). Since our
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Table 3: Results on SEED-Bench. All multiple-choice questions are converted to multiple binary questions. Accyes
and Accno denote accuracies of questions with ground-truth answers ‘yes’ and ‘no’, respectively, and Acc represents
the overall accuracy.

Model Instances Counting Instance Attributes Scene Understanding Instance Identity Instance Interaction

Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc

LLaVA-v1.5 (7B)
Baseline 95.6 31.3 47.5 96.4 37.5 52.2 96.1 46.2 58.6 90.7 36.3 49.9 94.8 29.2 45.5
Ours 68.1 52.5 56.5 86.0 54.8 62.6 80.7 63.1 67.5 71.4 59.9 62.7 88.5 40.6 52.5

mPLUG-Owl2 (7B)
Baseline 90.1 37.8 51.0 87.4 57.9 65.3 92.5 60.7 68.6 84.9 48.2 57.4 90.6 47.4 58.1
Ours 65.9 59.4 61.1 56.2 78.9 73.2 67.5 77.4 74.9 58.0 76.4 71.8 68.8 67.4 67.7

InstructBLIP (7B)
Baseline 87.7 27.0 42.3 62.7 79.8 75.5 85.4 64.9 70.0 73.6 60.7 63.9 71.9 65.6 67.2
Ours 63.6 57.4 58.9 33.7 90.1 76.0 57.8 82.8 76.5 46.7 83.3 74.2 62.5 74.9 71.8

Qwen2-VL (7B)
Baseline 87.9 48.6 58.5 89.6 71.1 75.7 91.5 66.8 72.9 79.5 64.3 68.1 85.4 54.3 62.0
Ours 80.9 47.6 55.2 82.4 77.1 78.4 86.7 69.8 74.0 73.0 69.7 70.5 87.5 54.0 62.3

Model Visual Reasoning Instance Location Spatial Relation Text Understanding

Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc

LLaVA-v1.5 (7B)
Baseline 93.4 45.5 57.5 97.8 18.2 38.1 95.3 14.0 34.3 97.6 22.3 41.2
Ours 68.3 70.9 70.2 89.3 28.5 43.7 90.4 16.1 34.6 84.5 41.8 52.5

mPLUG-Owl2 (7B)
Baseline 90.6 62.9 69.9 90.5 35.8 49.5 90.4 25.1 41.4 85.7 49.8 58.8
Ours 63.1 83.8 78.6 65.1 59.4 60.8 66.1 46.5 51.4 31.0 80.9 68.4

InstructBLIP (7B)
Baseline 77.0 70.6 72.2 69.2 51.8 56.2 74.5 37.7 46.9 19.0 91.2 73.1
Ours 44.1 87.8 76.9 44.9 74.7 67.2 55.6 57.5 57.0 3.6 97.6 74.0

Qwen2-VL (7B)
Baseline 82.5 71.5 74.2 89.9 47.0 57.7 90.4 33.1 47.4 85.7 65.9 70.8
Ours 71.6 78.7 76.9 83.1 54.2 61.4 88.7 27.6 42.8 75.0 80.9 79.2

VA detector is particularly suitable for binary ques-
tions, we convert each multiple-choice question
into multiple binary ones. For instance, a question
such as “Question: What is the color of the man’s
suit? Options: A. Black B. White” would be trans-
formed into binary forms like “Is the man’s suit
black?” and “Is the man’s suit white?”. Finally,
for open-ended generation, we use the CHAIR
(Rohrbach et al., 2018).

5.2 Experimental Results

5.2.1 Binary Question Answering
Our method leverages the internal recognition ca-
pability of VA neurons to correct model outputs
by ensuring that questions with unsupported visual
concepts are answered with “No”. As shown in
Table 2, our approach consistently shows a signifi-
cant improvement in Accno across all models and
datasets. For example, on the VA-QA dataset, it
rises from 48.0% to 77.5% for LLaVA-v1.5, and
also on R-Bench, it improves from 39.3% to 51.7%
for the same model. These gains confirm that our
refinement effectively enhances the models’ abil-
ity to correctly identify and reject misaligned in-
puts. While there is a slight trade-off with reduced
Accyes in some cases due to the model being more
conservative, the overall accuracy (Acc) generally
improves or remains comparable to the baseline.

Furthermore, we evaluate our method on di-
verse question types in SEED-Bench, which serves

as a more general VQA benchmark beyond
hallucination-specific settings. Table 3 provides de-
tailed evaluation results comparing the baseline
and our method across each category. All mod-
els consistently outperform their baselines across
every category, with Qwen-VL2 also showing im-
provements in all but two categories. These results
demonstrate that our proposed method is robust and
generalizable, even beyond the object- and relation-
centric questions that were present in the training
dataset.

5.2.2 Open-ended Generation

Our approach replaces detected visually absent to-
kens with more visually faithful alternatives dur-
ing generation. To evaluate the extent of halluci-
nation in model outputs, we employ CHAIR met-
rics. Specifically, for 500 randomly selected images
from the MSCOCO dataset (Lin et al., 2014), we
prompt LVLMs with “Please describe this image
in detail’’ to generate visual captions. CHAIR then
quantifies hallucination by measuring the propor-
tion of objects mentioned in the captions that are
not present in the ground-truth object list, at both
sentence-level (Cs) and instance-level (Ci):

Cs =
# of hallucinated objects

# of all objects mentioned
, (6)

Ci =
# of sentences w/ hallucinative object

# of all sentences
. (7)
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[Description of banana(s) omitted] In addition to the bananas, there are also a few apples 
on the table, adding a touch of color and variety to the scene. The apples are located 
towards the right side of the table, with one near the top and another towards the bottom. 

[Description of banana(s) omitted] In addition to the bananas, there are also a few bunches 
of plantains on the table, which are a type of banana that is typically larger and firmer. 
The plantains are located towards the right side of the table, with some of them being 
closer to the front and others further back.

The truck appears to be a semi-truck, and it is driving down a rural road surrounded by trees.
There are several people visible in the scene, with one person standing near the truck 
and others scattered around the area. 

The truck appears to be a semi-truck, and it is driving down a rural road surrounded by trees. 
There are several trees on both sides of the road, with some closer to the truck and 
others further away.
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Figure 7: Qualitative Results. Comparison between a caption generated using LLaVA-1.5 and the refined version
using our method.

Table 4: Results on Open-ended Generation. ‘Length’
indicates the generation length, and all results are ex-
tracted with max_tokens = 300.

Model Cs ↓ Ci ↓ Length GPT-score ↓

LLaVA-v1.5 (7B)
Baseline 60.0 29.0 100.3 111.6
Ours 58.6 28.1 100.2 111.3

LLaVA-v1.6 (13B)
Baseline 42.8 23.5 182.1 123.1
Ours 42.2 23.0 178.7 115.2

mPLUG-Owl2 (7B)
Baseline 66.8 30.6 105.1 130.7
Ours 57.2 27.9 104.2 116.6

InstructBLIP (7B)
Baseline 65.2 37.3 108.4 201.5
Ours 49.4 30.8 106.4 206.0

Qwen2-VL (7B)
Baseline 49.2 22.6 252.5 84.4
Ours 47.2 23.7 228.2 83.8

Gemma3 (12B)
Baseline 51.8 23.5 294.5 71.7
Ours 43.6 22.2 293.3 62.6

As presented in Table 4, our method consis-
tently reduces both Cs and Ci across most models,
demonstrating its effectiveness in suppressing hal-
lucinated content during generation. For instance,
on LLaVA-v1.6, Cs drops from 42.8 to 42.2 and
Ci from 23.5 to 23.0, and more pronounced im-
provements are seen in Gemma3, as Cs reduced
from 51.8 to 43.6 and Ci from 23.5 to 22.2. In
Qwen2-VL, a slight increase in Ci occurs as the
refinement shortens captions – lowering the denom-
inator – despite a decrease in the absolute number
of hallucinative objects.

Additionally, we conduct a GPT-based evalua-
tion to assess the severity and frequency of hallu-
cinated elements.5 The GPT-score also decreases

5The prompt used for GPT-based evaluation is provided in
the appendix.

across most of the models, confirming that our re-
finement strategy enhances factual grounding. No-
tably, these improvements are achieved with min-
imal impact on caption length, preserving the in-
formativeness of the generated outputs. Also, as
shown in Figure 7, our method effectively removes
hallucinative tokens and guides the model to gener-
ate more visually grounded responses.

6 Conclusion

We revealed that Large Vision-Language Models
(LVLMs) often incorrectly interpret text inputs
lacking visual grounding as visually supported,
leading to erroneous responses. Through system-
atic analysis, we uncovered a specific subset of
feed-forward network neurons – Visual Absence-
aware (VA) neurons – that consistently exhibit dis-
tinct activation patterns in response to visually ab-
sent tokens. Building on this observation, we intro-
duced a lightweight Visual Absence (VA) Detector
capable of classifying such tokens based on VA
neuron activations. We employed the VA detector
to refine model responses by reevaluating question
prompts and replacing detected tokens during gen-
eration, thereby aligning model outputs with its
internal signals of visual absence. Experimental
results across multiple models confirmed that our
refinement strategy effectively mitigates hallucina-
tions in both binary question answering and open-
ended generation. Overall, our approach offered a
promising avenue for improving factual grounding
and reliability of LVLMs.
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Limitations

While our method demonstrates promising results
and broad applicability, a few limitations remain.
First, it relies on internal neuron activations, which
may not be directly accessible in closed-source
LVLMs. Additionally, as the method does not in-
corporate external knowledge, it can only lever-
age information encoded during pre-training. How-
ever, its independence from model-specific fine-
tuning makes it lightweight and broadly transfer-
able across open-source models.

Second, the Visual Absence (VA) detector is
trained on the VA-QA dataset, which primarily
focuses on object- and relation-level grounding.
Consequently, it is currently optimized to identify
hallucinations at this level. Expanding the train-
ing data to include a wider variety of reasoning
types – such as attribute recognition or temporal
understanding – could enhance the detector’s abil-
ity to identify and mitigate more diverse forms of
hallucinations.
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indian journal of statistics, pages 401–406.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James Glass, and Pengcheng He. 2023. Dola:
Decoding by contrasting layers improves factu-
ality in large language models. arXiv preprint
arXiv:2309.03883.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi.
2023. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Preprint,
arXiv:2305.06500.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933–941. PMLR.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Lisa Anne Hendricks and Aida Nematzadeh. 2021.
Probing image-language transformers for verb un-
derstanding. arXiv preprint arXiv:2106.09141.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,
Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang,
and Nenghai Yu. 2024. Opera: Alleviating hallucina-
tion in multi-modal large language models via over-
trust penalty and retrospection-allocation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13418–13427.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing
Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,
Fei Huang, and Shikun Zhang. 2024. Hallucination
augmented contrastive learning for multimodal large
language model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 27036–27046.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
2024. Mitigating object hallucinations in large vision-
language models through visual contrastive decod-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13872–13882.

21556

https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500


Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023a. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Evalu-
ating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco: Com-
mon objects in context. In Computer vision–ECCV
2014: 13th European conference, zurich, Switzerland,
September 6-12, 2014, proceedings, part v 13, pages
740–755. Springer.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen,
Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. 2024a. A survey on hallucination
in large vision-language models. arXiv preprint
arXiv:2402.00253.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024b. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 26296–26306.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–
34916.

Shi Liu, Kecheng Zheng, and Wei Chen. 2024c. Pay-
ing more attention to image: A training-free method
for alleviating hallucination in lvlms. In European
Conference on Computer Vision, pages 125–140.
Springer.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PmLR.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object
hallucination in image captioning. arXiv preprint
arXiv:1809.02156.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-
Yan Gui, Yu-Xiong Wang, Yiming Yang, and 1
others. 2023. Aligning large multimodal mod-
els with factually augmented rlhf. arXiv preprint
arXiv:2309.14525.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, and 1 others. 2025. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet
Singh, Adina Williams, Douwe Kiela, and Candace
Ross. 2022. Winoground: Probing vision and lan-
guage models for visio-linguistic compositionality.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5238–
5248.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-
vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Mingrui Wu, Jiayi Ji, Oucheng Huang, Jiale Li, Yuhang
Wu, Xiaoshuai Sun, and Rongrong Ji. 2024. Eval-
uating and analyzing relationship hallucinations
in large vision-language models. arXiv preprint
arXiv:2406.16449.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, An-
wen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
Huang. 2024. mplug-owl2: Revolutionizing multi-
modal large language model with modality collab-
oration. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, pages
13040–13051.

Kening Zheng, Junkai Chen, Yibo Yan, Xin Zou, and
Xuming Hu. 2024. Reefknot: A comprehensive
benchmark for relation hallucination evaluation, anal-
ysis and mitigation in multimodal large language
models. arXiv preprint arXiv:2408.09429.

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and
Huaxiu Yao. 2023. Analyzing and mitigating object

21557



hallucination in large vision-language models. arXiv
preprint arXiv:2310.00754.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping
Ye, and Jun Liu. 2024. Ibd: Alleviating hallucinations
in large vision-language models via image-biased
decoding. arXiv preprint arXiv:2402.18476.

21558



A Additional Analysis of Visual
Absence-aware Neurons in Various
Models

To assess the generality of our findings beyond
LLaVA-v1.5, we extend the experiments from Sec-
tion. 3 to additional LVLMs which were examined
in Section. 5. The results, shown in Figure 8 and 9,
demonstrate that the existence of Visual Absence-
aware (VA) neurons is not confined to a single
model.

Figure 9 shows the activation distributions of
FFN neurons in response to visually present and
absent tokens. Across all models, we observe that
specific neurons exhibit distinct activation shifts
between the two conditions, highlighting their sen-
sitivity to the absence of visual grounding.

Additionally, to investigate where these VA neu-
rons are located within each model, we compute
SVA for all FFN neurons and visualize the top
100 values across layers in Figure 8. The result-
ing heatmaps reveal that VA neurons are primarily
concentrated in middle layers, consistent with the
pattern observed in LLaVA-v1.5 (Figure 4).
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Figure 8: Top-100 SVA across layers.
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Figure 9: FFN Activation Patterns in Response to Visual Absence. This figure shows the distinct activation
pattern of Visual Absence-aware neurons in response to visual absence. It demonstrates that all models possess a
specific set of neurons that respond to visually absent tokens.
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Figure 10: VA Neuron Activation and No Probability. For the VA-QA dataset, we visualize VA neuron activations
for visually absent tokens in yes-or-no questions alongside the model’s probability of predicting “No.” Ideally, the
model should answer “No” due to the absence of relevant visual information, though it often fails. Nonetheless,
regardless of whether the prediction is correct or wrong, VA neurons constantly exhibit high activation values.

B Discrepancy between Visual
Absence-aware Neuron Activations and
Model Responses

Figure 10 presents the activation of Visual Absence
(VA) neurons and the corresponding probability
assigned to the answer “No” for questions in the
VA-QA dataset across various LVLMs. We observe
that VA neurons consistently exhibit high activation
values when the input question contains visually
absent tokens, indicating that the models are inter-
nally responsive to the absence of relevant visual
information. However, the predicted probabilities
for “No” remain low, indicating a disconnect be-
tween internal detection and output behavior. This
discrepancy highlights the necessity for our pro-
posed refinement method using the VA detector,
which aims to align the model’s response with its
internal recognition of visual absence.
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Figure 11: Effect of Score Threshold β Selection. This figure shows the accuracy of binary question answering
benchmarks across various models depending on the threshold β used to select VA neurons.

C Effect of Score Threshold Selection for
VA Neuron Identification

To examine the impact of the threshold hyperpa-
rameter β used to identify Visual Absence-aware
(VA) neurons, we conduct an ablation study across
multiple LVLMs. As described in Section. 4.1, β
controls which neurons are selected based on their
sensitivity score SVA, thereby determining the fea-
ture set used to train the VA detector.

Figure 11 illustrates the performance of the VA
detector across different values of β, evaluated on
various binary question answering datasets. We ob-
serve a consistent pattern across all models: accu-
racy peaks within a specific range of β, indicating
that the neurons selected at an optimal threshold
are most effectively reflecting the model’s inherent
capability to recognize visual absence. When β is
too low, the inclusion of less informative or noisy
neurons dilutes the signal. Conversely, overly high
thresholds result in too few neurons, weakening
the feature representation. The detector trained us-
ing the optimal threshold demonstrates stable and
high accuracy across all models, demonstrating that
a well-chosen subset of VA neurons captures the
model’s capacity for visual grounding most effec-
tively.
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Table 5: Results on SEED-Bench with VA Detector Trained with Diverse Data.

Model Instance Attributes Visual Reasoning

Accyes Accno Acc Accyes Accno Acc

LLaVA-v1.5 (7B)
Baseline 97.3 36.5 51.7 94.0 46.3 58.2
Ours 87.5 53.8 62.3 67.2 68.2 67.9
Ours w/ diverse data 87.2 60.1 66.9 73.1 71.1 71.6

mPLUG-Owl2 (7B)
Baseline 89.4 58.4 66.2 92.6 60.2 68.3
Ours 67.8 73.6 72.1 62.7 85.1 79.5
Ours w/ diverse data 56.9 79.7 74.0 65.7 86.1 81.0

Qwen2-VL (7B)
Baseline 90.4 71.8 76.5 80.6 69.2 72.0
Ours 84.1 78.0 79.6 77.6 76.6 76.9
Ours w/ diverse data 74.4 83.6 81.3 73.1 78.6 77.2

Table 6: Results on Binary Question Answering with VA Detector Trained with Diverse Data.

In-domain Out-of-domain

VA-QA R-Bench POPE

Random Popular Adversarial

Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc Accyes Accno Acc

Qwen2-VL (7B) 87.3 72.7 80.0 87.9 62.5 75.3 84.6 97.5 90.9 84.6 92.9 88.8 84.6 89.1 86.8
+ Ours 87.6 86.7 87.1 87.0 65.8 76.5 76.5 98.3 87.1 76.5 97.4 87.0 76.5 94.5 85.5
+ Ours w/ diverse data 92.2 80.8 86.5 92.7 58.6 75.8 81.3 97.2 89.0 81.3 94.9 88.1 81.3 91.9 86.6

D Additional Results

D.1 Results on Additional Benchmark Dataset

Table 7: Results on Winoground.

Model Accyes Accno Acc

LLaVA-v1.5 (7B)
Baseline 90.39 14.00 54.88
Ours 76.92 48.08 62.50

mPLUG-Owl2 (7B)
Baseline 92.31 26.92 59.62
Ours 55.77 78.85 67.31

InstructBLIP (7B)
Baseline 73.08 48.08 60.58
Ours 44.23 78.85 61.54

Qwen2-VL (7B)
Baseline 76.92 51.92 64.42
Ours 75.00 55.77 65.38

We evaluate our method on the Winoground
dataset (Thrush et al., 2022), which contains paired
images and captions. Similar to our constructed
VA-QA dataset (Section. 3.1), each pair of captions
in Winoground consists of identical words arranged
in different orders. To apply our approach, we con-
vert each caption into a binary question, resulting
in two “yes” questions and two “no” questions per
pair. We focus on the Both split of Winoground, as
it contains captions with visually absent words, pro-
viding a challenging setting to assess our method.
As shown in Table 7, our approach achieves consis-
tent improvements under these conditions.

D.2 Training VA detector with Diverse Data

As we acknowledged in the Limitations section, our
VA detector primarily targets object- and relation-
level grounding, and we anticipated potential weak-
nesses when applied to a wider variety of question
types. To examine this aspect empirically, we con-
ducted evaluations using two specific categories
from SEED-Bench (Li et al., 2023a): “Instance
Attributes” for attribute-based hallucinations and
“Visual Reasoning” for assessing visual reason-
ing capabilities. Since SEED-Bench questions are
multiple-choice-based, and our method is applica-
ble to binary (yes-or-no) questions, we transformed
each multiple-choice question into a series of bi-
nary questions as explained in Section. 5.

Interestingly, as illustrated in Table 5, our
method effectively handles both attribute-based hal-
lucinations and reasoning-based questions, thereby
demonstrating that its generalizability extends be-
yond the scope we initially expected. Moreover,
as mentioned in our Limitations section, we as-
sumed that further training the VA detector on data
covering diverse hallucination types would lead to
even greater effectiveness. To support this claim
experimentally, we train our VA detector on data
from each SEED-Bench category mentioned above
(with an 8:2 train-test split). The improved results
on the test split confirm the benefit of incorporat-
ing a wider variety of hallucination types into the
training set.
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Additionally, a VA detector trained on diverse
data also enhances performance on binary bench-
mark datasets shown in Table 2. Since Qwen2-VL
exhibited the most unstable performance, weevalu-
atede its performance. As shown in Table 6, enrich-
ing the training data improved the performance of
the VA detector compared to our previous results.
Given the clear improvement from adding even
a single category of questions, we anticipate that
training with a broader and more diverse dataset
would yield a more robust and generalizable VA
detector across various scenarios.

D.3 Generation with Various Decoding
Strategies

Table 8: Results on Open-ended Generation with
Beam Search Decoding.

Model Cs ↓ Ci ↓ Length GPT-score ↓

LLaVA-v1.5 (7B)
Baseline 63.8 30.0 104.5 118.1
Ours 62.8 29.5 105.4 91.8

mPLUG-Owl2 (7B)
Baseline 67.2 31.8 105.8 135.2
Ours 60.8 29.1 110.8 124.7

InstructBLIP (7B)
Baseline 57.4 28.7 99.3 124.6
Ours 36.6 22.4 116.6 104.0

Qwen2-VL (7B)
Baseline 52.0 23.1 253.2 75.6
Ours 51.4 23.0 254.9 73.6

Our refinement method is independent of decod-
ing strategies as it solely adjusts logit probabilities.
It is thus compatible with diverse decoding strate-
gies beyond greedy decoding, including sampling
strategies (e.g., setting temperature, top-p, top-k)
as well as beam search.

Specifically, in beam search decoding, our
method can be directly applied by evaluating each
candidate beam individually through the VA de-
tector. When visually absent tokens are detected,
the process rolls back to previous tokens within
each candidate beam and applies a scoring penalty
accordingly. Table 8 demonstrates consistent per-
formance improvements obtained by applying our
method in combination with beam search. These
results confirm that our approach is robust and de-
coding strategy-agnostic.

D.4 Combination with Existing
Hallucination-Mitigation Strategies

Our method specifically aims at maximizing the
utility of internally pre-trained knowledge within
LVLMs, without relying on external sources or
post-training techniques. Our experimental com-
parisons thus focused primarily on demonstrat-

Table 9: Results on Open-ended Generation with Ex-
isting Hallucination-Mitigation Strategies.

Model Cs ↓ Ci ↓ Length GPT-score ↓

LLaVA-v1.5 (7B)

Greedy 60.0 29.0 100.3 111.6
Greedy + Ours 58.6 28.1 100.2 111.3
VCD 58.2 28.9 100.6 113.8
VCD + Ours 57.6 28.6 100.4 110.7
DoLA 59.0 28.9 99.0 116.9
DoLA + Ours 57.0 28.4 98.4 115.9

mPLUG-Owl2 (7B)

Greedy 66.8 30.6 105.1 130.7
Greedy + Ours 57.2 27.9 104.2 116.6
VCD 68.0 31.7 105.6 134.3
VCD + Ours 50.4 27.2 106.9 111.3
DoLA 67.4 30.8 104.6 136.1
DoLA + Ours 48.1 29.9 91.6 82.0

Qwen2-VL (7B)

Greedy 49.2 22.6 252.5 84.4
Greedy + Ours 47.2 23.7 228.2 83.8
VCD 54.2 24.1 257.4 84.3
VCD + Ours 50.4 24.4 233.6 79.7
DoLA 43.2 22.0 230.0 79.1
DoLA + Ours 42.6 23.1 209.5 73.1

ing improvements in performance relative to their
raw outputs, quantifying how much better we can
utilize the model’s internal knowledge through
our approach. Because our method identifies vi-
sually absent tokens based on FFN activations of
generated tokens during the decoding phase, it
can be combined seamlessly with various other
hallucination-mitigation strategies, as long as the
underlying model terminology remains consistent.
To illustrate this point, we present results combin-
ing our approach with two representative decoding-
based methods, VCD (Leng et al., 2024) and DoLA
(Chuang et al., 2023).

For example, when integrated with VCD, we
maintain VCD’s logit probability calculation pro-
cedure; however, when a generated token re-enters
as input and is detected as visually absent by our
VA detector, the decoding process rolls back one
iteration and adjusts the logit probabilities accord-
ingly, prompting the model to generate an alter-
native token. A detailed description of our open-
ended generation refinement method is provided in
Section. 4.2 and Appendix F.1.

Table 9 demonstrates consistent improvements
achieved when integrating our method with VCD
and DoLA, confirming its compatibility and effec-
tiveness with existing training-free hallucination
mitigation strategies.

D.5 Evaluation on High-Capacity LVLMs

Table 10 shows clear performance improvements
on Qwen2.5-VL (Bai et al., 2025) for both model
sizes (7B and 32B), reaffirming the effectiveness
of our method on powerful, high-capacity LVLMs
and demonstrating the continued relevance of ad-
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Table 10: Results on Open-ended Generation of
Qwen2.5-VL

Model Cs ↓ Ci ↓ Length GPT-score ↓

Qwen2.5-VL (7B)
Baseline 44.8 23.7 176.1 60.0
Ours 35.0 23.2 136.0 59.8

Qwen2.5-VL (32B)
Baseline 56.8 24.9 298.9 78.8
Ours 47.2 24.1 244.3 62.0

dressing vulnerabilities to visually absent tokens.
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E Open-ended Generation Qualitative
Results

We show the qualitative results of our generation
refinement method across various models in Fig-
ure 12, excluding the LLaVA-1.5 already presented
in the main text. The red colored texts are visu-
ally ungrounded words, and the blue colored texts
are the words that were revised by our method.
As shown in these figures, our method effectively
detects visually absent tokens and refines them to
words that align with the given image.

Above them, the sky is a clear blue, devoid of any clouds. The sun shines brightly, casting a 
warm glow on the scene and highlighting the details of the animals and their surroundings.

The image is taken from a distance, allowing the viewer to appreciate the vastness of 
their surroundings. The perspective also allows for a clear view of the animals’ actions, 
adding a sense of realism to the scene.
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In the background, there is another woman standing in the rain, also holding an umbrella. 
The scene is set in a city, with a few cars visible in the background. 

In the background, the same scene of the girl with the umbrella is repeated, but this time, 
she is depicted in a different pose. 
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Person: He's wearing a long-sleeved dark t-shirt with a graphic print (possibly a cat or animal 
design) and dark pants. 
Pose: He's striking a playful pose, as if about to throw something.

Pose: He's standing with his legs spread wide, almost like a martial arts pose. He's holding 
a bright orange frisbee in his left hand.
Clothing: He's wearing a long-sleeved dark t-shirt with a graphic on the front and dark 
pants.
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The boy, on the right, has short dark hair and is smiling broadly, showing his teeth. He is 
leaning forward, resting his chin on his hand, and appears to be enjoying the moment.

The boy, on the right side of the image, is wearing a blue sweater and has short dark hair. He 
is smiling and looking at the girl, seemingly engaged in a conversation or activity.
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She is wearing an orange sweatshirt and has dark hair that covers most of one side of her 
face while she works at her computer with another cat nearby lying down next to or nearer 
than other objects in view such as books scattered around them both.

She appears to be engrossed in what she's doing as evidenced by how focused and absorbed 
into it she is while working with an open computer screen before herself.  A cat can also 
been seen resting comfortably.
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Figure 12: Open-ended Generation Qualitative Results.
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F Experimental Details

F.1 Details of VA Detector-based Refinement
for Open-ended Generation

We observe that VA neuron activations tend to
weaken as the length of generated output increases,
which can degrade the model’s ability to detect vi-
sual absence in open-ended generation tasks. To
address this, we mask previously generated sen-
tences except the most recent one when extracting
activations. Additionally, if the model repeatedly
generates a visually absent token at the same po-
sition, we gradually roll back towards earlier to-
kens until it produces a more accurate and visually
grounded response. Specifically, we progressively
deepen the rollback by an additional step each time
two rollbacks occur within a 5-token window. All
experiments presented in the paper employ greedy
text decoding to ensure determinism and eliminate
randomness.

F.2 Implementation Details and Fit Quality of
VA Detector

To construct the Visual Absence-aware Detector,
we utilized sklearn (Pedregosa et al., 2011) pack-
ages to train an MLPClassifier with a single hidden
layer of 128 units. This detector was trained on fea-
tures derived from VA neurons. From the original
VA-QA dataset of 2400 samples, we first curated a
subset consisting exclusively of instances answered
correctly by each model individually. This curated
subset was then partitioned into training and valida-
tion sets using a 9:1 ratio. To identify the optimal
threshold hyperparameter β, which is used to se-
lect VA neurons, we search values from 0.3 to 0.8
in increments of 0.05, selecting β that maximizes
the accuracy on the validation set. For all evalua-
tions on downstream tasks, we employed greedy
decoding to ensure deterministic outputs.

To quantitatively assess the performance of our
VA detector, Table 11 illustrates the fit quality of
our VA detector for each LVLM, including met-
rics such as precision, recall, and accuracy. De-
spite being trained on a small amount of data with
a lightweight 2-layer MLP classifier, the results
demonstrate strong fitting quality across all met-
rics. This confirms that the activation patterns of VA
neurons exhibit consistency and robustness across
different models.

Table 11: Fit Quality of VA detector.

Model Precision Recall Accuracy

LLaVA-v1.5 (7B) 0.965 0.943 97.6
LLaVA-v1.6 (13B) 0.940 0.979 97.6
mPLUG-Owl2 (7B) 0.938 0.958 97.0
InstructBLIP (7B) 0.980 0.978 98.8
Qwen2-VL (7B) 0.951 0.934 97.2
Gemma3 (12B) 0.993 0.929 97.4

Table 12: Accuracy on Role-based Questions.

Model Acc

LLaVA-v1.5 (7B) 90.0
mPLUG-Owl2 (7B) 98.0
Qwen2-VL (7B) 96.0

F.3 Robustness of VA Detector

When constructing the dataset used to train our VA
detector, we explicitly excluded ambiguous cases,
selecting only clearly and definitively visually ab-
sent concepts (Figure 2). Thus, our VA detector is
specifically tuned to detect only tokens that are un-
ambiguously absent from the visual content, avoid-
ing detection of ambiguous or partially grounded
tokens.

Furthermore, there might be cases where the
questions contain visually absent tokens yet re-
quire a “Yes” answer, so we constructed an ad-
ditional evaluation dataset specifically designed for
these cases. This dataset covers role-based ques-
tions: these questions inquire about the role or pur-
pose of objects in the image. For instance, if an
image shows a hanger without any clothes and
the question asks, “Is this object used for hang-
ing clothes?”—though “clothes” is visually absent,
the correct answer remains “Yes.”

As demonstrated in Table 12, our method
achieves strong performance in these scenarios as
well, highlighting its robustness to such nuanced
cases.

F.4 Details of Evaluation Datasets

VA-QA (our constructed dataset) Based on
SVO-probe, we construct a set of yes-or-no ques-
tions for each image using the corresponding 〈sub-
ject, verb, object〉 triplet. As detailed in Section. 3.1
: (1) Positive questions (answer=Yes) directly uti-
lize the provided triplet, accurately describing the
image. (2) Negative questions (answer=No) are
formed by altering one element of the original
triplet to create a mismatch with the image, thereby
differing only in that single modification from the
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“Yes” question.

R-bench (Wu et al., 2024) Unlike POPE, which
only targets object hallucination, R-bench is a
dataset for assessing hallucinations related to inter-
object relationships. Based on MSCOCO (Lin et al.,
2014) captions, they extract relationship triplets by
applying a scene graph parser and convert them
into a yes-or-no question. The negative question
(answer = No) is constructed by varying one ele-
ment from the triplet. We only use the balanced
subset, which has an equal number of positive and
negative questions, for unbiased evaluation.

POPE (Li et al., 2023b) The Polling-based Ob-
ject Probing Evaluation (POPE) dataset is designed
to assess ’object’ hallucination in LVLMs. It evalu-
ates the model’s ability to answer yes-or-no ques-
tions in the form: “Is there a 〈object〉in the im-
age?”. For objects detected in the image, questions
are constructed with the answer “Yes”. Conversely,
questions with the answer “No” are divided into 3
variants-Random, Popular, and Adversarial- based
on the frequency and co-occurrence of the absent
objects.

CHAIR (Rohrbach et al., 2018) The Caption
Hallucination Assessment with Image Relevance
(CHAIR) metric is designed to quantify object hal-
lucination in generated image captions. It operates
by comparing object words mentioned in a caption
against the ground truth object annotations of the
corresponding image. Specifically, CHAIR mea-
sures the proportion of hallucinated object words,
which are defined as object words in the caption
that do not appear in the image’s ground truth anno-
tation list. A lower CHAIR score indicates less hal-
lucination and thus better caption quality in terms
of object grounding.

F.5 GPT-4o assisted Open-ended Generation
Evaluation

Even though CHAIR is the most widely used met-
ric for evaluating object existence, it has limita-
tions: it does not cover all objects in the image and
fails to address other types of hallucination, such
as those related to attributes or relations. Therefore,
we employ GPT-4o (Hurst et al., 2024), a leading
multi-modal model, to assist in our generation eval-
uation. As shown in Table 13, we design a prompt
that mimics the CHAIR evaluation process. This
prompt guides the model to identify both visually
grounded and hallucinative elements within the

generated captions, while also scaling the severity
of each identified hallucination. For each data, we
extract a list of severity scores for the hallucinative
elements, and calculate an individual hallucination
score shall for each data by summing the generated
list of severity scores. Then we determine the final
reported metric by taking the mean of these values
across all data and multiplying it by 10.
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<ASSISTANT> {caption generated by the model}

<INSTRUCTION> We would like to request your feedback on the performance of the AI
assistantino image caption generation of the given image.

Please evaluate the <ASSISTANT>’s caption against the image by listing the elements
in two bullet-point categories:

Correct Elements: a list of phrases in the caption that are directly and objectively
grounded in the image.

Hallucinated Elements: a list of phrases that describe visual content that does not
appear in the image. For each hallucinated phrase, add a severity score from 1 to 5
in parentheses.

Use the following scale:
- 1 (Minimal): Slight over-description or plausible extrapolation; not directly

visible but weakly implied.
- 2 (Low): Mild misstatement; plausible but not quite accurate.
- 3 (Moderate): Clearly ungrounded; some viewers may misinterpret presence based

on image context.
- 4 (High): Definitely not in the image, and no contextual cues suggest it.
- 5 (Severe): Fabricated object or scene element with strong visual contradiction

— impossible or clearly absent.

Output correct and hallucinated elements in a **flat list format**([]), separately
(do not output in bullets). Do not add additional explanation.

Table 13: Prompt template for GPT-4o for generation evaluation. We use the GPT-4o’s ability to evaluate the
quality of the generation, by instructing it to generate correct elements and hallucinated elements in the caption
generated by the model. We further use this result to make a hallucination score.
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