ActionStudio: A Lightweight Framework for Data and Training of Large
Action Models

Jianguo Zhang", Thai Hoang*, Ming Zhu*, Zuxin Liu’, Shiyu Wang,
Tulika Awalgaonkar, Akshara Prabhakar, Haolin Chen, Weiran Yao, Zhiwei Liu, Juntao Tan,
Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong

Salesforce AI Research
https://github.com/SalesforceAIResearch/xLAM

Abstract

Large Action models are essential for enabling
autonomous agents to perform complex tasks.
However, training such models remains chal-
lenging due to the diversity of agent environ-
ments and the complexity of noisy agentic
data. Existing infrastructure offers limited sup-
port for scalable, agent-specific fine-tuning and
standardized agent data processing. We in-
troduce ActionStudio, a lightweight and ex-
tensible data and training framework designed
for large action models. ActionStudio unifies
diverse agent trajectories using our proposed
Unified Format 2.0, supports a range of train-
ing workflows with optimized multi-node dis-
tributed setup, and integrates robust preprocess-
ing and real-time verification tools. ActionStu-
dio demonstrates up to 9x higher throughput
compared to existing agentic training frame-
works, and our trained models yield top perfor-
mances across public and realistic agent bench-
marks. To support the broader research commu-
nity, we open-source the ActionStudio frame-
work and release actionstudio-98k, a curated
dataset of 98k high-quality trajectories.

1 Introduction

Action models are becoming increasingly critical
for enabling autonomous agents to operate effec-
tively across complex, multi-step tasks in diverse
environments-from personal productivity assistants
to real-world industrial automation systems. While
recent open-source initiatives have advanced the
action models development (Zeng et al., 2023; Xu
et al., 2023; Zhang et al., 2024a; Ma et al., 2024;
Zhang et al., 2024b; Liu et al., 2024c), infrastruc-
ture for efficient agentic data processing and model
training remains underdeveloped.

A central challenge lies in the nature of agentic
training data, which often comprises long-horizon
trajectories with tool interactions, observations,

* Co-first Authors.
¥ Core Contributor.

and user feedback originating from varied environ-
ments. While prior work has attempted to address
data standardization (Zhang et al., 2024a,b), exist-
ing solutions usually rely on instruction-following
templates that abstract away tool use (Yin et al.,
2023; Xi et al., 2024) or adopt fixed rigid formats
that may not generalize across tasks. Moreover,
the data conversion and quality control processes
required to turn raw agent trajectories into training-
ready datasets are seldom open-sourced, which lim-
its reproducibility and cross-task transfer.

On the training side, general-purpose frame-
works such as Transformers (Wolf et al., 2020) and
LLAMA-Factory (Zheng et al., 2024) have played
an important role in Large language model (LLM)
development. However, these frameworks are pri-
marily designed and optimized for standard LLM
workflows, requiring substantial customization and
heavy modifications to support agent-specific data
and training. Even high-performing open-source
models (Xu et al., 2023; Zhang et al., 2024b) have
not fully released their implementation code. This
creates barriers for researchers and developers aim-
ing effectively to build agentic systems in real-
world settings.

To address these challenges, we introduce Ac-
tionStudio, an end-to-end, open-source framework
for data processing and training of large action mod-
els. Designed for production-scale use, ActionStu-
dio integrates a novel critique-and-filter pipeline,
deterministic rule-based checks, and a real-time
verifier for filtering and visualizing agent trajecto-
ries. The resulting dataset, ACTIONSTUDIO-98K,
comprises 98,000 high-quality trajectories format-
ted using our proposed Unified Format 2.0. The
framework features an extensible backend support-
ing supervised fine-tuning (SFT) and preference-
based learning (e.g., DPO), with flexible config-
urations including LoRA, quantization, and near-
linear multi-node scalability. Models trained with
ActionStudio achieve new state-of-the-art results

21500

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21500-21514
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/SalesforceAIResearch/xLAM

on NexusRaven and the CRM Agent Benchmark,
outperforming both open-source agent models and
commercial systems.

The key contributions of our work are:

* We present an open-source, lightweight, and effi-
cient agentic training framework, supporting flex-
ible workflows such as LoRA, full fine-tuning,
and multi-node distributed training. Our frame-
work achieves up to 9 x higher throughput com-
pared to popular agentic training frameworks.

* We propose a critique-and-filter pipeline and a
real-time data verifier that automate the inges-
tion, filtering, and conversion of diverse agent
trajectories. We also release actionstudio-98k, a
high-quality dataset of 97,755 trajectories span-
ning over 30,000 APIs and 300 domains, struc-
tured using our designed Unified Format 2.0 to
facilitate agent research.

* We demonstrate ActionStudio’s effectiveness
across public and realistic industry agent bench-
marks, showing its utility and practical value for
real-world agent applications.

2 Related Work
2.1 Agent Data

While proprietary models often restrict data acces-
sibility, the research community has significantly
advanced open-source initiatives by releasing ex-
tensive agentic datasets (Zeng et al., 2023; Liu
et al., 2023a; Li et al., 2023; Zhang et al., 2023; Xi
et al., 2024; Song et al., 2024; Liu et al., 2024a; Ma
et al., 2024). However, due to the inherent com-
plexity and heterogeneous nature of agent trajecto-
ries across different environments, datasets often
vary widely in format, creating substantial hurdles
for industrial-scale model development. Recent
efforts such as Lumos (Yin et al., 2023), Agen-
tOhana (Zhang et al., 2024a), and xLAM (Zhang
et al., 2024b) have aimed to standardize datasets
into unified formats to reduce errors and simplify
training. Nonetheless, these initiatives have not
fully open-sourced the data conversion and automa-
tion pipelines, limiting widespread adoption and
scalability.

2.2 Large Action Models

Beyond proprietary model APIs, significant
progress has been made toward developing open-
source large action models, specifically tailored

for complex agent-oriented tasks (Xu et al., 2023;
Qin et al., 2024; Liu et al., 2023b; Zhang et al.,
2024a; Ma et al., 2024; Zhang et al., 2024b; Liu
et al., 2024d,b; Hoang et al., 2025). These models
have achieved impressive performance on bench-
marks, showing the growing capability of open-
source initiatives. While established frameworks
like Transformers (Wolf et al., 2020) and LLAMA-
Factory (Zheng et al., 2024) facilitate general lan-
guage model training, specialized frameworks de-
signed explicitly for fine-tuning LAMSs remain lim-
ited. Our work contributes directly to addressing
this gap by providing an efficient, lightweight train-
ing pipeline within ActionStudio, significantly re-
ducing the complexity and resource requirements
associated with training high-performing LAMs.

3 Framework

To support the development of high-performing
large action models (LAMs), we present Action-
Studio, a comprehensive framework for agentic
data constructing and model training under a sin-
gle, modular system. ActionStudio is composed of
two core pipelines: a data pipeline for standardiz-
ing and preparing diverse agentic data sources, and
a training pipeline for fine-tuning large language
models on agent tasks at various scales.

3.1 Data Pipeline

The data pipeline in ActionStudio is designed to
process diverse agentic data sources into standard-
ized, training-ready formats. It includes four major
components: data collection, format unification,
quality filtering, and format conversion. This mod-
ular structure ensures the framework is extensible,
scalable and compatible with a wide range of agent
environments and models.

3.1.1 Data Collection

To support agentic model training, we compile
a diverse set of high-quality datasets from mul-
tiple agent environments and domains, including
but not limited to function calling, tool-use, and
robotic agent trajectories. The datasets vary in
structure and components, which poses significant
challenges for LAM training.

3.1.2 Format Unification 2.0

Previous work (Zhang et al., 2024a,b) proposed
a modular schema (Unified Format 1.0) to stan-
dardize agentic interaction data, with fields such
as task_instruction, query, tools, and a list of

21501

EEEREEEE

Data Collection

Data Handler

Universal Data Parser

Training Pipeline

Training Handler

Diverse Training Setups

[Element-wise Parser]

[Quantized, Mixed Precision]

[Function-calling
[Tool-use
[Robotics

[Element-wise Encoder]

[LoRA, Full-training |

[Element-wise Loss Masking]

[SFT, Preference Learning]

Format Unification

X
©
G
ie]
S
=]
=]
@
=
kel
S
<

[Unified Format 2.0

Real-time Data Verifier [

Optimized Distributed Training

Partitioning]

Quality Filtering

[Format Checker]

ActionStudio Trained Models

(Communication Optimization)

[In-context Critique

[Chat Template Checker]

Dynamic Profiling

[Data Samples Visualization] [

Training Profile Router]

[Rule-based

Figure 1: Framework of ActionStudio.

steps capturing tool calls, intermediate thoughts,
user feedback, and observations. While partially
effective for general-purpose processing and aug-
mentation, Unified Format 1.0 was not natively
compatible with message-based interfaces expected
by most open-source LL.Ms, resulting in non-trivial
conversion and error fixing overhead for training
and deployment. Examples of Unified Format 1.0
and its corresponding training prompt are shown in
Figures 5 and 6 in the Appendix.

To address these limitations, we introduce Uni-
fied Format 2.0, a redesigned schema that natively
aligns with modern chat-based LLM APIs and
HuggingFace-style chat templates. Unlike prior
work, Unified Format 2.0 is designed to support
both training, inference and evaluation workflows-
including Alpaca-style (Taori et al., 2023) (input,
output) pairs, ShareGPT-style (Zhang et al., 2023)
multi-turn dialogues, and general chat-based inter-
action formats. Its structure minimizes data trans-
formation overhead, enabling direct use in common
fine-tuning pipelines and runtime LLM interfaces.

Unified Format 2.0 introduces new abstractions
that modularize agent trajectories into semantically
grounded and model-compatible components, such
as task instructions, available tools, and user-agent
exchanges (including tool calls and execution re-
sults). This simplifies downstream formatting, pro-
motes consistency across various data sources, and
enables plug-and-play integration into both training
and deployment systems. An example in Unified
Format 2.0 and its converted chat format are shown
in Figures 3 and 4 in the Appendix.

3.1.3 Data Quality Filtering

Prior work (Chen et al., 2023; Zhang et al., 2024b)
has explored leveraging LLMs-like GPT-4-class
models-for automatically evaluating and filtering
trajectory quality, thereby reducing the reliance on
manual annotation. These approaches typically
score trajectories along dimensions such as cor-
rectness, hallucination, tool-use appropriateness,
and overall response quality. However, we observe
that off-the-shelf LLM evaluators tend to produce
overly confident or median-biased scores and often
fail to detect subtle or context-dependent hallucina-
tions, and the issues are also noted in prior studies.

To address these limitations, we design a novel
agent trajectory quality filtering method based on
In-Context Critique Filtering. We augment the
LLM evaluator with a small set of curated exem-
plars illustrating common failure cases and pre-
ferred critique behaviors. This simple yet effec-
tive in-context guidance leads to more fine-grained,
human-aligned evaluations, particularly for am-
biguous or borderline trajectories. In addition, we
fine-tune open-source models using agent critique
data to reduce reliance on commercial LLMs and
further improve performance, making quality filter-
ing more cost-effective and accessible. The critique
pipeline is complemented by rule-based filtering
pipeline that catch systematic errors (e.g., missing
function calls, wrong function names or arguments,
hallucinated agent actions).

Together, these components provide a scalable,
high-precision pipeline for selecting training trajec-
tories. Human verification in Section 4.6 demon-

21502

strates the effectiveness of the approach.

3.1.4 ActionStudio-98k

To facilitate open-source agent research, we release
actionstudio-98k, a curated collection of 97,755
high-quality agent trajectories spanning diverse en-
vironments and task domains. The dataset includes
69,271 single-turn and 28,484 multi-turn trajecto-
ries, with multi-turn examples averaging 9 steps
per trajectory. Filtered, critiqued, and corrected
through the ActionStudio data pipeline, the trajec-
tories are sourced from public agent datasets such
as (Liu et al., 2023a; Zhang et al., 2023, 2024b; Liu
et al., 2024a; Xi et al., 2024; Guo et al., 2024b) and
cover over 30,000 APIs across more than 300 do-
mains. The dataset includes programmatic tool-use
sequences, embodied agent interactions, and both
single- and multi-turn tasks, all represented in our
unified format 2.0.

3.2 Training Pipeline

Our framework is designed to deliver unparalleled
versatility and efficiency in agentic training, en-
suring it addresses diverse needs while optimizing
scalability and performance. The following out-
lines how these are achieved.

3.2.1 Data Handler

Universal Data Parser. Training agentic models
often involves working with highly diverse data
structures, ranging from single-step responses to
multi-step reasoning processes, multi-turn conver-
sations, and various role configurations among
users and agents (or groups of agents). To man-
age this complexity and maximize flexibility, our
framework uses element-wise parsing and encod-
ing. Each part of the conversation history is parsed
as independently as possible, while still following
the chat template. This approach simplifies the
process of applying fine-grained loss masking and
supports different training objectives. As a result,
researchers have full control over these processes,
making it easy to fine-tune agentic models for spe-
cific tasks. Ultimately, this design accelerates ex-
perimentation and speeds up model development.

Real-Time Data Verifier. Given the wide range
of configurations and processing capabilities possi-
ble with our framework, it is critical to have robust
mechanisms to validate data integrity throughout
the training pipeline. The Real-Time Data Verifier
keeps training pipeline under-control by dynami-
cally running three checks: the Format Checker

instantly flags data instances with missing fields or
wrong structures, the Chat Template Checker en-
sures every conversation fits the provided Chat tem-
plate, and the Data Samples Visualization presents
“before-and-after" views of each data entry at every
stage - before and after preprocessing, applying
conversational templates, and encoding. By offer-
ing visibility into the transformations applied at
each step, the verifier enables users to validate that
their data complies with the expected format. This
minimizes the risk of unexpected behaviors during
training, ensuring a smoother development process
and more reliable model performance.

3.2.2 Training Handler.

Comprehensive Support for Diverse Training
Setups We provide an extensive range of func-
tionalities to accommodate virtually any training
pipeline for agentic models. From Supervised In-
struction Fine-tuning to Human Preference Align-
ment, from lightweight approaches like quantized
training and LoRA (Low-Rank Adaptation) (Hu
et al., 2021) to full-scale training in mixed preci-
sion, our framework has it covered. This flexibility
allows researchers and practitioners to seamlessly
adapt to varying training requirements and compu-
tational resource constraints.

Highly Optimized Distributed Training at Scale.
Our framework is purpose-built for highly efficient
training of large-scale agentic models. To this end,
heavy effort has been invested in optimizing per-
formance for distributed settings. We have studied
communication patterns in common Transformer
architectures (Wolf et al., 2020), focusing on reduc-
ing inefficiencies in layer-to-layer interactions and
communications between experts under Mixture of
Experts settings. Additionally, we have optimized
GPU-to-GPU communication within a single node
as well as cross-node communication, reducing
bottlenecks and enabling seamless scalability to
industrial-scale training clusters. Users can also
benefit from widely adopted parallelization and
sharding strategies, such as those offered by Deep-
Speed (Rasley et al., 2020), ensuring compatibility
with industry-standard training practices. These en-
hancements ensure that our framework consistently
delivers top-tier performance and efficiency, even
in demanding distributed environments.

Dynamic Profiling for Model-Specific Optimiza-
tions. Recognizing the variety of architectures
and model sizes in the agentic training space, we

21503

have implemented an initial dynamic profiling sys-
tem to enhance efficiency and improve ease-of-
use. When provided with a model checkpoint,
our framework dynamically routes it to an opti-
mized configuration tailored for that architecture
and model size under the current resource situa-
tion. This automation eliminates the need for labor-
intensive tuning, allowing researchers to achieve
higher efficiency with less manual effort.

4 Experiments

4.1 Model Training

Utilizing the ActionStudio framework, we con-
ducted supervised fine-tuning on selected open-
source models including Mistral series (Jiang et al.,
2023, 2024) and Llama 3 series (Gratt. et al., 2024).
To showcase ActionStudio’s effectiveness across
various sizes, we fine-tune from smaller-scale mod-
els such as Mistral variants to larger-scale models
like Llama-3.1-70b-inst and Mixtral-8x22b-inst.

We set the sequence length between 8k and 16k,
the batch size between 32 and 96 and the learning
rate between 2e-6 and 2e-4, employing a cosine
learning rate scheduler with 5% warm-up steps.
Smaller models were fine-tuned on single NVIDIA
H200 pod, while larger models were fine-tuned on
both single and more H200 pods for comparison.
Each H200 pod is equipped with 8§ NVIDIA H200
GPUs, each having 141GB of memory.

4.2 Benchmarks

To demonstrate the effectiveness of ActionStudio,
we selected NexusRaven and CRM Agent Bench.

NexusRaven (Srinivasan et al., 2023) provides a
diverse benchmark for function calling, comprising
318 test examples across 65 distinct APIs. The
dataset is curated through a structured pipeline that
mines function definitions, docstrings, and execu-
tion contexts from open-source corpora. LLMs are
then prompted to generate natural language queries,
Chain-of-Thought (CoT) traces, and hard-negative
function candidates to enhance evaluation difficulty.
NexusRaven specifically evaluates model perfor-
mance using precision, recall, and F1-score metrics
for both function retrieval and argument inference
tasks, offering a comprehensive assessment frame-
work for function calling capabilities.

The CRM Agent Benchmark ! is a proprietary
evaluation developed by Salesforce. It assesses pro-

1https://www.salesforceairesearch.com/
crm-benchmark

ficiency of Al models across critical and real CRM
agent scenarios, focusing on accuracy in agent
topic identification, accurate generation of func-
tion calls, and creation of contextually appropriate
free-text responses. This benchmark emphasizes
realistic business use cases by incorporating sev-
eral hundred real CRM data points with expert
assessments, providing valuable insights into the
practical utility and reliability of language mod-
els for commercial deployment. Importantly, for
all experiments, we fine-tune models exclusively
on public datasets, ensuring that no customer data
from any companies is utilized during training.
We set the model temperature to 0 during evalua-
tions to ensure deterministic and replicable results.

4.3 NexusRaven

Table 1 shows the comparative performance
of various models evaluated on NexusRaven.
ActionStudio-trained models consistently outper-
form baseline and prominent commercial models.
In particular, our fine-tuned ActionStudio-Mixtral-
8x22b-inst-exp model achieves the highest overall
F1-score (0.969), reflecting strong precision and
recall, significantly surpassing commercial alterna-
tives such as GPT-4 and GPT-4o. It also surpasses
recently released large-scale models such as GPT-
4.1 and Llama-4, both of which highlight strong
agentic capabilities. Similarly, other fine-tuned
models also exhibit robust performance. These
results show the effectiveness of ActionStudio’s
pipeline in enhancing function-calling capabilities.

4.4 CRM Agent Bench

Table 2 illustrates our performance on the realis-
tic industry Agent Benchmark. Our ActionStudio-
Llama-3.3-70b-inst-exp model achieves the high-
est overall performance with an average accuracy
of 0.87, surpassing the base Llama-3.3-70b-inst
model (0.84). This reflects balanced capabilities
across all three dimensions.

Furthermore, ActionStudio-Mixtral-8x22b-inst-
exp significantly outperforms its base, Mixtral-
8x22b-inst, by 11%. Models such as ActionStudio-
Mistral-7b-inst-exp also exhibit marked improve-
ments of 13% compared to their instruct baselines,
confirming that the pipeline benefits both large and
small checkpoints. Additionally, our models are
also ahead of strong agentic models such as ol-
preview (0.85) and AgentOhana-8x22b-inst (0.80).
These show ActionStudio’s capability to train ver-
satile and reliable models for agent scenarios.

21504

https://www.salesforceairesearch.com/crm-benchmark
https://www.salesforceairesearch.com/crm-benchmark

Model Papi Ruapi Flapi
ActionStudio-Llama-3.3-70b-inst-exp 0.950 0.953 0.951
ActionStudio-Llama-3.1-70b-inst-exp 0.940 0.943 0.942
" ActionStudio-Mixtral-8x22b-inst-exp 0969 0969 ~ 0.969
ActionStudio-Mistral-latest-12b-inst-exp 0.953 0.956 0.954
ActionStudio-Mistral-7b-inst-exp 0.884 0.884 0.884
Llama-3.3-70b-inst (Gratt. et al., 2024) 0.917 0.934 0.925
Mistral-latest-12b-inst (Jiang et al., 2024) 0.906 0.940 0.923
Llama-3.1-70b-inst (Gratt. et al., 2024) 0.907 0.915 0.911
GPT-40-2024-11-20 (Hurst et al., 2024) 0.943 0.840 0.889
GPT-4.1-2025-04-14 (OpenAl, 2025) 0.841 0.846 0.843
DeepSeek-r1-671b (Guo et al., 2024a) 0.837 0.840 0.838
Mistral-7b-inst (Jiang et al., 2023) 0.814 0.827 0.821
Llama-4-Maverick-400b-inst (Meta, 2025) 0.796 0.796 0.796
Llama-4-Scout-109b-inst (Meta, 2025) 0.787 0.789 0.788
Mixtral-8x22b-inst (Jiang et al., 2024) 0.758 0.786 0.772
GPT-4 (Achiam et al., 2023) 0.894 0.635 0.743

Table 1: Performance comparison on NexusRaven. The best-performing result is indicated in bold, while the

second and third-best results are marked with underline.

Topic Acc Function Call Acc Free Text Acc Average Acc
ActionStudio-Llama-3.3-70b-inst-exp 0.98 0.79 0.83 0.87
ActionStudio-Llama-3.1-70b-inst-exp 0.96 0.77 0.86 0.86
* ActionStudio-Mixtral-8x22b-inst-exp 098 075 082 085
ActionStudio-Mistral-latest-12b-inst-exp 0.98 0.64 0.78 0.80
ActionStudio-Mistral-7b-inst-exp 0.95 0.49 0.74 0.73
DeepSeek-r1-671b (Guo et al., 2025) 0.82 0.83 0.94 0.86
ol-preview (Jaech et al., 2024) 0.98 0.75 0.81 0.85
Llama-3.3-70b-inst (Gratt. et al., 2024) 0.99 0.72 0.80 0.84
GPT-4-turbo (Achiam et al., 2023) 0.99 0.60 0.92 0.83
Llama-3.1-70b-inst (Gratt. et al., 2024) 1.0 0.62 0.82 0.81
AgentOhana-8x22b-inst (Zhang et al., 2024a) 0.90 0.66 0.84 0.80
Mixtral-8x22b-inst (Jiang et al., 2024) 0.98 0.65 0.60 0.74
GPT-40-mini (Hurst et al., 2024) 0.94 0.42 0.81 0.72
Mistral-latest-12b-inst (Jiang et al., 2024) 0.96 0.18 0.70 0.61
Mistral-7b-inst (Jiang et al., 2023) 0.99 0.19 0.63 0.60

Table 2: Accuracy on the CRM Agent Benchmark. The best-performing result is indicated in bold, while the

second and third-best results are marked with underline.

4.5 Training Efficiency

Table 3 benchmarks raw training throughput (to-
kens / s) for three model sizes, LLlama-3.1-8b,
Mixtral-8x7b, and Mixtral-8x22b, under the four
most commonly used fine-tuning regimes: (i) NF4-
quantized LoRA (Q+LoRA), (ii) BF16 LoRA, (iii)
full BF16 fine-tuning (FT) on a single pod (FT-1),
and (iv) full FT on multiple pods (FT-2/FT-4). For
the LoRA setting, we update the q_proj, k_proj,
v_proj, and o_proj layers, with lora_r set to 32
and lora_a to 64. To contextualize these results, we
replicated all configurations on the same cluster and
GPU infrastructure for two competing systems that
support agentic model trainings, AGENTOHANA
(Zhang et al., 2024a) and LuMOS (Yin et al., 2023).
The results from the comparison highlight the effi-

ciency and capability of our framework.

Quantised LoRA. First, we can look at
the throughput for quantized-based trainings
(Q+LoRA). For the Llama-3.1-8B model, Action-
Studio achieves a throughput of 79k tokens/s under
Q+LoRA, outperforming AgentOhana (27.9k; 2.8x
slower) and Lumos (8.4k; 9.4x slower). On the
medium-sized Mixtral-8x7b, ActionStudio reaches
46k tokens/s, outpacing AgentOhana (25k; 1.9x
slower) and Lumos (5k; 9.0x slower). For the
larger configuration, Mixtral-8x22b, ActionStudio
sustains 14.7k tokens/s, 1.8x and 8.9x faster than
AgentOhana and Lumos, respectively.

BF16 LoRA. Under BF16-LoRA setting, Action-
Studio also demonstrates a clear advantage. For

21505

Training Setup Framework Q+LoRA LoRA FT 1 pod FT 2 pods FT 4 pods
ActionStudio (Ours) 79,306 76,766 64,179 125,097 224,192
Llama-3.1 8b (BS/GPU=6, Seq=8k) AgentOhana 27,868 (-65%) 53,718 (-30%) 38,550 (-40%) Not Sup. Not Sup
Lumos (Ai2) 8,399 (-89%) 59,578 (-22%) 52,852 (-18%) NotSup. Not Sup
ActionStudio (Ours) 46,193 47,404 33,661 71,858 137,146
Mixtral-8x7b (BS/GPU=8, Seq=4k) AgentOhana 24,966 (-46%) OOM OOM Not Sup. Not Sup
Lumos (Ai2) 5,115 (-89%) 33,608 (-29%) 8,151 (-76%) Not Sup. ~ Not Sup
ActionStudio (Ours) 14,703 14,654 OOM OOM 44,438
Mixtral-8x22b (BS/GPU=8, Seq=4k) ~ AgentOhana 8,375 (-43%) OOM OOM Not Sup. ~ Not Sup
Lumos (Ai2) 1,660 (-89%) 5,072 (-65%) OOM Not Sup. Not Sup
Mixtral-8x22b (BS/GPU=1, Seq=32k) ActionStudio (Ours) 15,236 15,430 OOM OOM 46,861

Table 3: Training throughput (tokens/s) for each setup under our ActionStudio, the AgentOhana and Lumos
(Ai2) frameworks. "OOM" indicates an out-of-memory error. "Not Sup." denotes that the feature configuration is

unsupported by the current version of the framework.

Llama-3.1-8B, we obtain 76.8k tokens/s compared
to AgentOhana (53.7k; 1.4x slower) and Lumos
(59.6k; 1.3x slower). For Mixtral-8x7b, our system
reaches 47.4k tokens/s, while AgentOhana encoun-
ters out-of-memory (OOM) errors; Lumos man-
ages 33.6k tokens/s (1.4x slower). For Mixtral-
8x22b, ActionStudio delivers a throughput of 14.7k
tokens/s, while AgentOhana fails to complete train-
ing under this regime due to OOM and Lumos gets
5.1k tokens/s, which is 2.9x slower than us.

Full-model tuning. Next, for full model training,
where much more parameters needed to be updated,
and a more efficient usage of resources needed to
be done in order to enable this. As we can see
from the table, ActionStudio is the only framework
able to fully update all model parameters across all
three model sizes, with full fine-tuning on a single
pod is only 16-30% slower than LoRA. For smaller
models like Llama-3.1-8b and Mixtral-8x7b, Agen-
tOhana and Lumos can also support training, but at
noticeable slower performance than ActionStudio.

Multi-pod scalability. Finally, both AgentOhana
and Lumos do not support multi-pods trainings,
while in ActionStudio, the throughput remains to
be linearly scaled for both 2 and 4 pods: Llama-8B
throughput rises from 64 k (1 pod) to 125 k (2 pods)
and 224 k (4 pods); similar scaling appears for both
Mixtral variants. This not only demonstrate our
capability to support larger model trainings with
ActionStudio, but also at a very efficient speed.

Long-context support. We stress-tested Action-
Studio on an extreme setting, Mixtral-8x22b with
BS/GPU=1, Seq=32k, and observed no throughput
loss. In fact, throughput increased slightly com-
pared with the standard BS/GPU=8, Seq=4k: 15.2
k vs. 14.7 k tokens/s for Q+LoRA (+4 %), 15.4 k vs.

14.7 k for BF16-LoRA (+5 %), and 46.9 k vs. 44.4
k for FT-4 (+5 %). These results confirm that Ac-
tionStudio’s memory scheduler scales seamlessly
to much long token contexts, enabling efficient
long-horizon agent training without manual tuning.

In summarization, across the three model sizes
and four tuning regimes, ActionStudio is consis-
tently the fastest-up to 9x quicker than AGENTO-
HANA and LUMOS-and the only framework that
(i) completes every LoRA configuration without
out-of-memory (OOM) failures, (ii) supports full-
model tuning on multiple pods with linear speed
scaling, and (iii) in our tests under ActionStudio
framework, it remains similar throughput when
Mixtral-8x22b is trained with a 32k-token context.

4.6 Ablation Study

Human Verifications. We applied the ActionStu-
dio pipeline to several public agent datasets. As
shown in Figure 2, ActionStudio consistently re-
moves low-quality trajectories across datasets. To
further quantify the effect, we commissioned an in-
dependent third-party annotation provider to audit a
uniformly random sample of 150 trajectories, strat-
ified across datasets. Annotators followed the four
rubric items defined in §3.1.3-correctness, hallu-
cination, tool-use appropriateness, and overall re-
sponse quality-and then indicated whether Action-
Studio’s keep/remove decision was correct. Agree-
ment between ActionStudio and human judges
reached 85%, roughly 15% over previous LLM-
based agent data critiquing baseline. This shows
the effectivenes of ActionStudio on handling com-
plex trajectories. Besides, through detailed anal-
ysis, the residual 15% disagreement highlights
future scopes such as integrating multi-turn self-
consistency checks, domain-specific hallucination
detectors, or adaptive thresholds that evolve with

21506

Model / Data Topic Acc Function Call Ac Free Text Acc Average Acc
_ Mixtral-8x22binst 098 06s 060 074
FT on ActionStudio (processed) 0.98 0.75 0.82 0.85
FT on Raw data 0.98 0.44 0.75 0.72
FT on AgentOhana (processed) 0.90 0.66 0.84 0.80

Table 4: Accuracy on the CRM Agent Benchmark. FT denotes full-tuning; ActionStudio and AgentOhana are
two different training frameworks (each with its own data processing pipeline). Best score per column is bold.

Comparison of Steps Across Datasets (Log Scale)

5] Q7 A%
10 @ ’} I Original Steps
After Filtered Steps
,,v’,t"%\@ B Removed Steps
A A%
& St
> o 2 e A
> R NN
o
— 10%4 o 3+ 3
3 Sy P Ny
S o 9 RO
« ™ 2
") N
o Q2 <
o M
~ S N
" N N I ol
o W2 2 & k% NS
o N >
9 104 < PR
S il
—
5 ©
£
S
=2
1024 S
S & >
o o
>
NS N] N & e 2> 0 N © 2 4 L @ >
& @% O & & & Y & 2 &z & & K &0 &
& 3 R O o o N Q0 <& <) 2 & &
© & & Q AN <9 2 o g X S N 2
S & 4 SO NI CHRS
A o @ & Q N N
N & N

Figure 2: ActionStudio’s critique—and-filter pipeline o

n each dataset. Original shows the total number of agent

steps, Removed the steps discarded by filtering, and Retained the remaining steps after filtering.

new agent behaviors-to push reliability even closer
to human parity.

Ablation on Data Pipelines. Table 4 examines
how data quality influences full-tuning (FT) of
the Mixtral-8x22b-inst backbone. We compare
four settings that differ only in the data process-
ing pipeline during FT: the untuned baseline, FT
on ActionStudio-processed trajectories, FT on raw
agent data trajectories, and FT on AgentOhana-
processed trajectories.

ActionStudio preprocessing yields the largest
gains. Applying ActionStudio’s critique-and-filter
pipeline lifts function-call accuracy from 0.65 to
0.75 (+10), free-text accuracy from 0.60 to 0.82
(+22), and the overall score from 0.74 to 0.85.

Raw data degrades performance. Naively fine-
tuning on unfiltered logs drives function-call accu-
racy down to 0.44 and reduces the aggregate metric
to 0.72-worse than baseline-illustrating noisy agent

trajectories can overwhelm the learning signal.

AgentOhana preprocessing is helpful but less
effective. Cleaning the same corpus with AgentO-
hana’s agent data pipeline partially recovers per-
formance (0.66 / 0.84 / 0.80) yet still lags behind
ActionStudio on every metric, implying that Ac-
tionStudio data pipeline could better target the error
modes of complicated agent trajectories.

5 Conclusion

We introduced ActionStudio, a lightweight and flex-
ible framework for training large action models. By
integrating structured data preprocessing, advanced
fine-tuning, and distributed training, ActionStudio
simplifies agentic model development. Evaluations
on NexusRaven and the CRM Agent Benchmark,
which specifically reflects realistic industry agent
scenarios, demonstrated its effectiveness and prac-
tical value for robust agentic model solutions.

21507

6 Limitations

While ActionStudio provides a practical and exten-
sible framework for developing robust large action
models for complex agent scenarios, a few limi-
tations remain. The current implementation pri-
marily focuses on text-based and function-calling
scenarios, with future support planned for multi-
modal and embodied environments. Additionally,
although the framework includes standardized for-
mats and a robust data processing pipeline, model
effectiveness still depends on the quality and di-
versity of input datasets, which can vary across
use cases. Despite these challenges, ActionStudio
significantly lowers the barrier to LAM develop-
ment and offers a scalable foundation for further
innovation in industry and research.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Aaron Gratt., Abhimanyu Dubey, Abhinav Jauhri, Ab-
hinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024b. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. Preprint, arXiv:2403.07714.

Thai Hoang, Kung-Hsiang Huang, Shirley Kokane, Jian-
guo Zhang, Zuxin Liu, Ming Zhu, Jake Grigsby, Tian
Lan, Michael S Ryoo, Chien-Sheng Wu, et al. 2025.
Lam simulator: Advancing data generation for large

action model training via online exploration and tra-
jectory feedback. arXiv preprint arXiv:2506.02298.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024a. Toolace:
Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Rithesh
Murthy, Liangwei Yang, Zuxin Liu, Tian Lan, Ming
Zhu, Juntao Tan, Shirley Kokane, et al. 2024b. Pract:
Optimizing principled reasoning and acting of 1lm
agent. arXiv preprint arXiv:2410.18528.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
et al. 2023b. Bolaa: Benchmarking and orchestrating
Ilm-augmented autonomous agents. arXiv preprint
arXiv:2308.05960.

21508

https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei
Yang, Zuxin Liu, Juntao Tan, Prafulla K Choubey,
Tian Lan, Jason Wu, Huan Wang, et al. 2024c.
Agentlite: A lightweight library for building and
advancing task-oriented llm agent system. arXiv
preprint arXiv:2402.15538.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024d.
Apigen: Automated pipeline for generating verifiable
and diverse function-calling datasets. arXiv preprint.

Zixian Ma, Jianguo Zhang, Zhiwei Liu, Jieyu Zhang,
Juntao Tan, Manli Shu, Juan Carlos Niebles, Shelby
Heinecke, Huan Wang, Caiming Xiong, et al. 2024.
Taco: Learning multi-modal action models with syn-
thetic chains-of-thought-and-action. arXiv preprint
arXiv:2412.05479.

Meta. 2025. https://ai.meta.com/blog/llama-4-
multimodal-intelligence/.

OpenAl. 2025. https://openai.com/index/gpt-4-1/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ICLR.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 3505-3506.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu,
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and
Sujian Li. 2024. Agentbank: Towards generalized
Ilm agents via fine-tuning on 50000+ interaction tra-
jectories. arXiv preprint arXiv:2410.07706.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:
a commercially-permissive language model for func-
tion calling. In NeurIPS 2023 Foundation Models for
Decision Making Workshop.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural

language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, et al. 2024.
Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint
arXiv:2406.04151.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, et al. 2023. Lemur: Harmonizing nat-
ural language and code for language agents. arXiv
preprint arXiv:2310.06830.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning Agents
with Unified Data, Modular Design, and Open-
Source LLMs. arXiv preprint arXiv:2311.05657.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024a. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, et al. 2024b. xlam:
A family of large action models to empower ai agent
systems. arXiv preprint arXiv:2409.03215.

Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Hei-
necke, Rui Meng, Ye Liu, Zhou Yu, Silvio Savarese,
and Caiming Xiong. 2023. Dialogstudio: Towards
richest and most diverse unified dataset collection for
conversational ai. arXiv preprint arXiv:2307.10172.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

21509

A Appendix
A.1 Unified Format 2.0

To support diverse agentic tasks in a model-friendly
way, we introduce Unified Format 2.0, an upgraded
version of the format used in prior work. While
Unified Format 1.0 was designed to modularize
agentic trajectories for general-purpose processing,
it lacked alignment with the message-passing for-
mat expected by modern LLLM APIs. Unified For-
mat 2.0 is designed to be natively compatible with
modern chat-based LLM APIs and HuggingFace-
style chat templates, significantly reducing the ef-
fort required to convert raw data into model-ready
training samples. An example of a trajectory in
Unified Format 2.0 is shown in Figure 3.

Unified Format 1.0 (Zhang et al., 2024b) intro-
duced a modular schema for representing agen-
tic interaction data, including fields such as
task_instruction, query, tools, and a list of
steps that capture tool calls, intermediate thoughts,
user follow-ups, and observations. While effective
for general processing and augmentation, this for-
mat was not directly aligned with the message-
based structure expected by most open-source
LLMs, requiring non-trivial conversion logic to
adapt the data for training. An example showcas-
ing Unified Format 1.0 is presented in Figure 5.

In contrast, Unified Format 2.0 structure is based
on the conversational schema commonly used in
APIs like OpenAl and HuggingFace. It replaces the
steps field with a conversation list, where each
entry is a message with a specific role (e.g., system,
user, assistant, or tool). Tool calls are now ex-
plicitly represented inside assistant messages using
a tool_calls field, and tool responses are mapped
to messages with the role tool, linking back via a
tool_call_id. This structure is more compatible
with LLM APIs and chat templates, which removes
the need for custom scripts to flatten or restructure
training samples. Figure 4 demonstrates that with
Unified Format 2.0, the training format can be flex-
ibly changed by applying the corresponding chat
template from the tokenizer. In contrary, Figure 6
shows the fixed training format from Unified For-
mat 1.0, which remains unchanged across different
models, requiring substantial effort in data format
conversion for both training and deployment phase.

A.2 Evaluation Details for NexusRaven

To evaluate function-calling performance on the
NexusRaven benchmark, we follow a two-step pro-

cess: (1) parsing tool calls from the model’s output,
and (2) computing precision, recall, and F1 scores
by comparing the parsed predictions to ground-
truth annotations.

Tool Call Parsing. NexusRaven includes a cus-
tom parser designed to extract structured tool call
information from raw model outputs. Since dif-
ferent models may follow varying output formats
(e.g., enclosing tool calls in special tags, including
JSON blocks with markdown fencing, or append-
ing irrelevant tokens), the parser applies a series of
heuristics to sanitize the output and isolate the tool
call content. It then parses the cleaned text into a
structured format containing: 1) the function/tool
name, 2) the arguments as a dictionary of key-value
pairs, and 3) an optional tool call ID. The parser
handles edge cases such as missing fields, extrane-
ous formatting tags (e.g., <think>, <tool_call>),
and malformed JSON.

Metric Computation. After extracting the pre-
dicted and ground-truth tool calls, we compute
evaluation metrics at the API level, which includes
the Precision (P_api), Recall (R_api), and F1 Score
(F1_api). P_api and R_api calculate the propor-
tion of predicted tool calls whose function name
matches one in the ground-truth, and the proportion
of ground-truth tool calls that were successfully
predicted, respectively. The F1_api is the harmonic
mean of API precision and recall. This enables con-
sistent and scalable comparison of function-calling
capabilities across models, while maintaining toler-
ance to minor formatting differences.

21510

"unique_trajectory_id"”: "id",
" "

"task_instruction”: N

"tools": [
{
"type": "function”,
"function": {
"name": "get_sleep_stats”,
"description”:
"parameters”: {
"type": "object”,
"properties”: {
"user_id": {
"type": "string",
"description”:
retrieved.”,
},
3,
"required”: [
"user_id",
]
3
}
},
i
"conversation”: [
{
"role": "user”,
"content”: "I would like to get my sleep
},
{
"role": "assistant",
"content”: "",
"tool_calls”: [
{
"type": "function",
"function”: {
"name"”: "get_sleep_stats”,
"arguments”: {
"user_id": "1234",
}
3,
"id": "808380806"
3
]
},
{
"role”: "tool",
"name": "get_sleep_stats”,
"content": {
"data": {
"message”: "..."
3}
1,
"tool_call_id": "808380806"
1,
{
"role": "assistant",
"content”:
}

"Unique identifier of the

statistics from

"Get the user's sleep statistics for a specified time period."”,

user whose sleep statistics will be

last night.”

"Your sleep statistics from last night has been retrived successfully.”

Figure 3: Unified format 2.0 for function calling data.

21511

Prompt:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the following functions, please respond with a JSON for a function call
with its proper arguments that best answers the given prompt.

Respond in the format

{"name": function name,

"arguments"”: dictionary of argument name and its value}.
Do not use variables.

{

"type": "function”,

"function”: {
"name"”: "get_sleep_stats”,
"description”: "Get the user's sleep statistics
for a specified time period.”,
"parameters”: {

"type": "object”,

"properties”: {
"user_id": {
"type": "string"”,
"description”: "Unique identifier of the user whose sleep
statistics will be retrieved.”
3
}!
"required”: [
"user_id"

]

3

I would like to get my sleep statistics from last night.<|eot_id|>
Output:

[{"name": "get_sleep_stats”, "arguments”: {"user_id": "1234"}}]

Figure 4: Example prompt and output for function-calling from unified format 2.0, by applying Llama-3.1-70B-Instruct chat
template.

21512

"unique_trajectory_id": "id",
"task_instruction”: "..."
"few_shot_examples”: [],

)

"query": "The task or the question that the user provides.”,
"tools”: [
{
"name": "api_namel",
"description”: "description of this api”,
"parameters”: {
"paraml1": {
"type": "string"”,
"description”: ""
3,
}
}
ip
"steps”: [
{
"thought”: "thinking and/or planning process”,
"tool_calls”: [
{
"name"”: "api_namel”,
"arguments”: {
"argument1”: "xxx.",
"argument2”: "xxx"
3
3
e
"step_id": 1,
"next_observation”: "observations or feedbacks from the
function.”
"user_input": "User follow up input at this turn if any.
},
ip

environment/APIs after

execution

Figure 5: Unified format 1.0 for function calling data.

21513

Prompt:

[BEGIN OF TASK INSTRUCTION]

Based on the previous context and API request history, generate an API
request or a response as an Al assistant.

[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]

L
{
"name”: "get_fire_info",
"description”: "Query the latest wildfire information”,
"parameters”: {
"location"”: {
"type": "string"”,
"description”: "Location of the wildfire.”,
"required”: true,
}!
"radius”: {
"type": "number”,
"description”: "The radius (in miles) around the location.”,
3
}!
3, ...
]

[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]

Your output should be in the JSON format, which specifies a list of
function calls. The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed, please make
tool_calls an empty list "[]".

{"thought": "the thought process, or an empty string”, "tool_calls”:
[{"name": "api_namel”, "arguments"”: {"argument1”: "valuel”, "argument2":
"value2"3}3}1%}

[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
Can you give me the latest information on the wildfires occurring in California?
[END OF QUERY]

[BEGIN OF HISTORY STEPS]

L
{
"thought"”: "Sure, what is the radius (in miles) around the location of
the wildfire?”,
"tool_calls”: [],
"step_id": 1,
"next_observation”: ""
"user_input”: "User: Let me think... 50 miles.”
} ’
]
[END OF HISTORY STEPS]
Output:
{"thought": "", "tool_calls”": [{"name": "get_fire_info",
"arguments”: {"location”: "California”, "radius": 50}}1}

Figure 6: Example prompt and output for function-calling from unified format 1.0.

21514

