@inproceedings{qin-etal-2025-reinforced,
title = "Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks",
author = "Qin, Xubo and
Bai, Jun and
Li, Jiaqi and
Jia, Zixia and
Zheng, Zilong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.1078/",
pages = "21261--21274",
ISBN = "979-8-89176-332-6",
abstract = "Traditional information retrieval (IR) methods excel at textual and semantic matching but struggle in reasoning-intensive retrieval tasks that require multi-hop inference or complex semantic understanding between queries and documents. One promising solution is to explicitly rewrite or augment queries using large language models (LLMs) to elicit reasoning-relevant content prior to retrieval. However, the widespread use of large-scale LLMs like GPT-4 or LLaMA3-70B remains impractical due to their high inference cost and limited deployability in real-world systems. In this work, we introduce Reinforced Query Reasoner (RQR), a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval. Our approach frames query reformulation as a reinforcement learning problem and employs a novel semi-rule-based reward function. This enables smaller language models, e.g., Qwen2.5-7B-Instruct and Qwen2.5-1.5B-Instruct, to achieve reasoning performance rivaling large-scale LLMs without their prohibitive inference costs. Experiment results on BRIGHT benchmark show that, with BM25 as retrievers, both RQR-7B and RQR-1.5B models significantly outperform existing baselines, including prompt-based query reasoners and some latest dense retrievers trained for reasoning-intensive retrieval tasks, offering superior adaptability for real-world deployment. All code and dataset will be publicly released."
}Markdown (Informal)
[Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks](https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.1078/) (Qin et al., EMNLP 2025)
ACL