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Abstract

Large language models (LLMs) often strug-
gle with context fidelity, producing inconsis-
tent answers when responding to questions
based on provided information. Existing ap-
proaches either rely on expensive supervised
fine-tuning to generate evidence post-answer
or train models to perform web searches with-
out necessarily improving utilization of the
given context. We propose CARE, a novel na-
tive retrieval-augmented reasoning framework
that teaches LLMs to explicitly integrate in-
context evidence within their reasoning pro-
cess with the model’s own retrieval capabil-
ities. Our method requires limited labeled
evidence data while significantly enhancing
both retrieval accuracy and answer generation
performance through strategically retrieved in-
context tokens in the reasoning chain. Exten-
sive experiments on multiple real-world and
counterfactual QA benchmarks demonstrate
that our approach substantially outperforms
supervised fine-tuning, traditional retrieval-
augmented generation methods, and external
retrieval solutions. This work represents a fun-
damental advancement in making LLMs more
accurate, reliable, and efficient for knowledge-
intensive tasks.1

1 Introduction

Large language models (LLMs) have demonstrated
impressive performance in a wide range of natu-
ral language tasks (Minaee et al., 2024; Liu et al.,
2025a), yet continue to struggle with a fundamen-
tal challenge: maintaining fidelity to the context
provided when answering questions (Talukdar and
Biswas, 2024). This context hallucination prob-
lem (Chang et al., 2024; Hu et al., 2024; Liu et al.,
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CARE.

Was the ticket price John’s mom
paid for the movie reasonable?

John went to the movies with his mom last week. They watched
the latest superhero movie, which was quite popular. ...         The
ticket price was $15. ... According to the local cinema's website,
ticket prices vary depending on the time of day and the type of
movie. ...     Generally, ticket prices range from $10 to $12 for
regular screenings. ...        Ticket prices range from $13 to $16 for
special releases. ... Some customers have complained about rising
prices, while others feel the new movies are worth the premium. ...

No, it's too
expensive. ...

<think>
The ticket price was
$15. In general ...
movie tickets
often fall into a
$12-$14
price range ... 

Therefore, It is not
reasonable.
</think>

+Native Retrieval-
Augmentation

<think>
The context states John
watched ... <R> The ticket
price paid was $15. </R> The
context provides price
ranges <R> ticket prices range
from $10 to $12 ...</R> and
... <R> from $13 to $16 for
special releases </R> ... 
Therefore, the price
is reasonable.
</think>

+Reasoning

No
Reasoning

No
Context Fidelity Context FidelityReasoning

Figure 1: The Comparison among direct generation,
reasoning-based generation, and reasoning with inte-
grated in-context facts.

2025b) is particularly pronounced in knowledge-
intensive tasks where precise information retrieval
and accurate reasoning are paramount. When
LLMs generate answers that contradict or fabricate
information relative to the input context, user trust
declines, and the practical utility of these systems
decreases considerably.

Current approaches to addressing this challenge
fall into two broad categories, each with significant
limitations. The first category employs retrieval-
augmented generation (RAG) for evidence re-
trieval (Variengien and Winsor, 2023; Wang et al.,
2024). Although this approach can improve ex-
plainability, it usually requires extensive labeled
datasets with ground-truth evidence spans, making
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it prohibitively expensive to scale across diverse
domains and languages. In addition, the extra re-
triever module and the vector database create ex-
cessiveness to the model architecture.

The second category leverages external retrieval
mechanisms, allowing models to search for rele-
vant information beyond their parametric knowl-
edge (Hsu et al., 2024; Nguyen et al., 2024). Al-
though effective in accessing up-to-date or spe-
cialized information, these approaches frequently
underutilize the rich context already provided by
users, which often contains the most relevant in-
formation for their specific scenarios. Further-
more, external retrieval introduces additional la-
tency, complexity, and potential inconsistencies
between the retrieved content and the original con-
text.

In this paper, we introduce a fundamentally dif-
ferent approach: native retrieval-augmented rea-
soning. Rather than treating retrieval and reasoning
as separate processes, our method teaches LLMs to
dynamically identify and incorporate relevant evi-
dence from the input context directly within their
reasoning chain. This approach leverages the in-
herent native language understanding capabilities
of LLMs to perform in-context retrieval without
additional indexing or embedding systems, while
simultaneously enhancing the reasoning process
through explicit evidence integration.

Based on the aforementioned approach, we intro-
duce the Context-Aware Retrieval-Enhanced rea-
soning (CARE) framework. The CARE framework
requires limited labeled evidence data and operates
through a two-phase training process: an initial su-
pervised fine-tuning (SFT) phase that establishes
the evidence integration pattern, followed by a re-
inforcement learning (RL) phase that refines the
self-retrieval mechanism through retrieval-aware
rewards. Crucially, we implement a curriculum
learning strategy that enables the model to pro-
gressively adapt from simple to complex reasoning
tasks, extending beyond the initial training distri-
bution without requiring additional labeled data.

Our main contributions are as follows.

• We introduce native retrieval-augmented
reasoning, a novel paradigm that organically
combines in-context retrieval with structured
reasoning to improve context fidelity and re-
duce hallucinations.

• We present a curated dataset for training mod-
els to perform evidence-integrated reasoning,

which we have open sourced to facilitate fur-
ther research in this area.

• We propose CARE, a comprehensive imple-
mentation that combines native retrieval-
augmented reasoning with curriculum learn-
ing to handle diverse question-answering sce-
narios without additional labeled data.

• Through extensive experiments across multi-
ple real-world and counterfactual QA bench-
marks, we demonstrate that our approach sub-
stantially outperforms vanilla SFT, traditional
RAG methods, and comparable models lack-
ing in-context retrieval mechanisms in both
evidence retrieval and answer accuracy.

Our work represents a significant advancement
in making LLMs more accurate, reliable, and ef-
ficient for knowledge-intensive tasks, particularly
when relevant information is already present in the
input context. By teaching models to explicitly
retrieve and reason with contextual evidence, we
establish a stronger foundation for context-faithful
language generation.

2 Related Work

2.1 LLM Reasoning on Question-Answering
Tasks

Large language models (LLMs) have demonstrated
impressive capabilities in complex reasoning tasks
(Wei et al., 2022; Cobbe et al., 2021; Ouyang
et al., 2022). Recent work has explored vari-
ous prompting strategies to improve reasoning, in-
cluding chain of thought prompting (Wei et al.,
2022), which guides models to generate interme-
diate reasoning steps before producing final an-
swers, and its variants such as zero-shot-CoT (Ko-
jima et al., 2022) and self-consistency (Wang et al.,
2022). More structured approaches include tree-
of-thought (Yao et al., 2023a), graph-of-thought
(Besta et al., 2024), ReAct (Yao et al., 2023b), and
least-to-most prompting (Zhou et al., 2022). De-
spite these advances, LLMs still struggle to main-
tain context coherence when reasoning about long
or noisy inputs (Xu et al., 2023; Li et al., 2024; Fei
et al., 2024).

2.2 Retrieval-Augmented Generation

Traditional retrieval-augmented generation (RAG)
methods (Guu et al., 2020; Lewis et al., 2020) en-
hance LLM by retrieving relevant passages from
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external corpora, alleviating the limitations of
fixed parametric memory. This framework has
been widely adopted for knowledge-intensive tasks
(Xiong et al., 2024; Wang et al., 2025). Recent
work has improved retrieval quality through tech-
niques such as query expansion (Wang et al., 2023),
re-ranking (Vu et al., 2024), and filtering (Asai
et al., 2024), while others focus on robustness to
noisy retrievals (Yoran et al., 2024). In-context re-
trieval methods aim to reuse relevant spans from the
input sequence itself (Variengien and Winsor, 2023;
Wang et al., 2024). However, both external and in-
context RAG fundamentally rely on indexing and
embedding-based retrieval pipelines, limiting their
adaptability to complex or evolving contexts.

2.3 RL-Enhanced LLM Retrieval

Reinforcement learning (RL) has emerged as a
powerful paradigm for optimizing LLM retrieval
strategies (Humphreys et al., 2022; Tu et al., 2024;
Hsu et al., 2024). Unlike traditional retrieval meth-
ods, RL-based approaches can learn adaptive re-
trieval policies that optimize for task-specific re-
wards (Kulkarni et al., 2024; Zhuang et al., 2025;
Jin et al., 2025). Recent work has explored the
use of RL to train retrieval policies that maxi-
mize answer accuracy (Hsu et al., 2024; Nguyen
et al., 2024), combining the strengths of parametric
knowledge and non-parametric retrieval (Mallen
et al., 2022; Humphreys et al., 2022; Farahani and
Johansson, 2024). Several approaches have used
feedback mechanisms to improve retrieval quality,
including relevance feedback (Zhou et al., 2023)
and iterative refinement (Chen et al., 2024). How-
ever, most existing approaches still maintain a sep-
aration between the retrieval mechanism and the
core reasoning process, potentially limiting the
model’s ability to integrate retrieved information
in a context-aware manner.

3 The CARE Method

3.1 Overview

We present the CARE Method, a reasoning frame-
work that enables LLMs to autonomously conduct
native retrieval from the input context without rely-
ing on any external retrieval modules or tools, and
integrate evidence retrieved by LLM’s native ca-
pabilities into the reasoning process. By allowing
the model to perform native retrieval, CARE better
utilizes the language understanding capability of
LLMs and user input while reducing the reliance on

potentially expensive tool calling, while introduc-
ing native retrieval results in the reasoning can both
improve the model’s context loyalty and improve
the reasoning process by utilizing curated evidence.
Figure 1 illustrates the comparison between direct
generation, reasoning-based inference, and CARE.

Labeling supporting facts for QA datasets is ex-
pensive, and thus CARE’s design aims at reducing
the reliance on such labels. Thus, the framework
is designed to consist of two training phases: a
supervised fine-tuning (SFT) phase followed by a
reinforcement learning (RL) phase.

The first SFT phase is designed to improve the
efficiency of RL training by familiarizing the model
with the target output format with retrieved facts
in the reasoning process. In this phase, the model
is fine-tuned on a self-curated dataset comprising
reasoning chain enriched with golden in-context
retrieval snippets, guiding the model to align rea-
soning with context-derived evidence (Section 3.3).

The RL phase refines the self-retrieval mecha-
nism through retrieval-aware rewards, reinforcing
evidence consistency and logical coherence with
the help of native retrieval results from the input
context throughout the reasoning process (Section
3.4). This phase further develops the model’s abil-
ity to identify and integrate supporting facts within
the context, ensuring alignment across multi-hop
reasoning steps using only question-answer pairs
without golden supporting facts.

Together, these two phases form a structured
framework that integrates retrieval within reason-
ing, improving context loyalty, retrieval accuracy,
and answer correctness in QA tasks.

3.2 Problem Formulation
We formally define our target problem as
(Q,C) → A, where Q is a user query, C is a long
context containing sparse information relevant to
answering Q, and A is the generated answer. This
formulation specifically targets scenarios where
the identification of key information within lengthy
contexts and the utilization of sparse key informa-
tion are the primary bottlenecks.

3.3 The Supervised Fine-Tuning Phase
The SFT phase establishes evidence integration by
injecting retrieval tokens within structured reason-
ing steps. This phase uses an existing QA dataset
with labeled supporting facts to ease the “cold-start”
problem of the RL training phase, familiarizing the
model with the targeted output format, the native re-
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<think>
The ticket price was $15. In
general ... that movie tickets
often fall into a $12-$15
price range... Therefore, It
is reasonable.
</think>

<think>
The context states John watched the
latest superhero movie... This
description aligns with the
characteristics of a "special release."
...  The ticket price paid was $15.
 The context provides price ranges:
...ticket prices range from $10 to
$12 ... and ... rom $13 to $16 for
special releases. ...Therefore, the
price is reasonable.</think>
Answer: Reasonable.

<think>
... Therefore, It is not
reasonable.
</think>

Fact Injection
Model

F3 F4

Step 2

Supporting FactsJohn went to the movies with his mom last week. They watched
the latest superhero movie, which was quite popular. ...The
ticket price was $15. ... According to the local cinema's website,
ticket prices vary depending on the time of day and the type of
movie. ... Generally, ticket prices range from $10 to $12 for
regular screenings. ... Ticket prices range from $13 to $16 for
special releases. ... Some customers have complained about
rising prices...

Was the ticket price John’s mom paid for the movie reasonable?

Insert '<retrieval>' and
'</retrieval>' Token

<think>
The context states John watched
<retrieval>...</retrieval> This
description aligns with the
... <retrieval>...</retrieval> ...
<retrieval>...</retrieval> ...
<retrieval>...</retrieval> ... the
price is reasonable.</think>
Answer: Reasonable.

Reasoning
Model

F1 F2

Step 1 Step 3

LLM

Accuracy Reward Format Reward Retrieval Reward

Total Reward

SFT Phase

Reasoning and 
Retrieval Dataset 

Easy Dataset

Hard Dataset

Reinforcement Learning

<think> 
The context states <retrieval> ...(correct
retrieved context from original
context) </retrieval> This description aligns
with the characteristics of a <retrieval> ...
(correct retrieved context from original
context) </retrieval> ... Moreover, the
context provides <retrieval> (correct
retrieved context from original
context) </retrieval> indicates ... Therefore,
given ... The answer is ...
 </think>

Format

Accuracy

Retrieval 

Training Pipeline

Supervised Fine-Tuning Data Generation

Figure 2: Illustration of the training data creation and two-phase training process of CARE. The upper part depicts
the SFT data generation pipeline including fact injection and special tokens insertion within the reasoning content.
The lower part shows the SFT training process and the reinforcement learning (RL) training with multiple rewards.

trieval process, and the chain-of-thought reasoning
with retrieved facts as support.

Specifically, based on a given QA dataset with
context and supporting facts from the context, we
introduce a pipeline to generate reasoning chains
interleaved with evidence. The data generation
pipeline operates sequentially through three stages:
reasoning step generation, evidence integration,
and retrieval token insertion, which is illustrated in
the upper part of Figure 2.

The data generation pipeline processes the input
(C,Q), where C is the context and Q is the query,
through three stages:

Reasoning Step Generation. The SFT dataset
generation is based on an existing training dataset
Doriginal = {(Qi, Ci, Ai, Si)}Noriginal

i=1 , where the i-
th instance contains a query Qi, a context Ci, a
ground truth answer Ai and a series of labeled sup-
porting facts from Ci: Si = {s1i , s2i , ..., smi

i }. For
each instance, a reasoning model MR generates an
initial reasoning response Ri,A based on (Ci, Qi):

Ri,A = MR(Ci, Qi) (1)

For each output, we examine whether the gen-
erated answer matches the ground truth, and only
responses that correctly answer the query Q are
retained to ensure logical consistency. However,
some correct responses might be derived from the
internal knowledge of the model rather than from
the input context. This disloyalty to the context
potentially increases the risk of hallucinations. To
better align the reasoning process with the input

context, while RA establishes a structured reason-
ing format, it may not align with the evidence of
the context, necessitating further integration of the
evidence in the next stage. For the i-th selected in-
stance, we extract the reasoning process within the
<THINK> </THINK> tokens to form the reasoning
chain Ni.

Evidence Integration. To ensure that the reason-
ing aligns with the input context and to mitigate
potential hallucinations from RA, this stage inte-
grates supporting facts Si into the reasoning chain
Ni. A fact injection model MI then refines the ini-
tial reasoning RA by incorporating these specific
facts F . The output of the evidence integration
process is conditioned on the query Qi, the initial
reasoning chain Ni, and the ground truth support-
ing facts Si:

Ri,I = MI(Qi, Ni, Si) (2)

In this formulation, MI focuses on weaving the sup-
porting facts Si into the existing reasoning struc-
ture of Ni to produce Ri,I . This step explicitly
grounds the reasoning process in the supplied evi-
dence, reducing the reliance on the model’s internal
knowledge when abundant context is given. After
generation, we only keep the instances where Ri,I

contains all the supporting facts provided. For the
i-th kept instance, we retrieve the output reason-
ing chain with evidence integration as Ei, which is
more robustly supported by factual statements in
the context than Ni.
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Retrieval Token Insertion. Lastly, a pair of
structural marker tokens is introduced to explic-
itly denote the supporting fact spans in the reason-
ing chain to assist the further training process. The
newly added tokens <RETRIEVAL> </RETRIEVAL>
is inserted around key evidence segments in RI ,
forming the final structured response E∗

I .
Ultimately, we obtain our SFT training set

DSFT = {(Qi, Ci, Ai, E
∗
i )}NSFT

i=1 , establishing a
consistent format for the subsequent RL phase.

3.4 Reinforcement Learning Phase
The reinforcement learning phase refines the self-
retrieval mechanism established in the SFT phase
by aligning the model’s outputs with contextual evi-
dence through Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). This phase leverages a
curriculum learning strategy to gradually transition
the model from basic to advanced reasoning tasks
while applying retrieval-aware rewards to promote
evidence consistency and logical coherence.

The detailed implementation of the reinforce-
ment learning phase, including curriculum adjust-
ment, reward computation, and policy updates, is
described in Algorithm 1.

The GRPO Algorithm. GRPO optimizes the
policy by evaluating multiple sampled outputs
at the group level rather than individual actions.
Given a query q, a set of outputs {o1, . . . , oG} is
sampled from the old policy πθold . The objective
function is defined as:

JGRPO(θ) = Eq∼D,{oi}Gi=1∼πθold(·|q)

[[ 1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

min
[
wi,tÂi,t, clip (ri,t, 1− ϵ, 1 + ϵ) Âi,t

]

− βDKL (πθ ∥ πref)
]

(3)

where the importance ratio wi,t is defined as:

wi,t =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
(4)

and the advantage function Âi,t is defined as:

Âi,t =
r(q, oi)− mean

(
{r(q, oi)}Gi=1

)

std
(
{r(q, oi)}Gi=1

) (5)

The clip function constrains the importance ratio
to be within [1− ϵ, 1 + ϵ] to avoid overconfidence.
The KL divergence DKL(πθ ∥ πref) serves as a reg-
ularization term, preventing excessive divergence
from the reference policy. Group-level evaluation
in GRPO effectively promotes evidence alignment
across multiple outputs, reinforcing the retrieval
consistency within the reasoning process.

Algorithm 1 Curriculum RL with CARE Rewards.
Require: Datasets Deasy, Dhard, policy πθ , reference policy

πref, clip range ϵ, KL coefficient β, initial ratio α = 1.0,
total steps T

Ensure: Updated policy parameters θ
1: for each training step t do
2: Sample query q with probability α fromDeasy and 1−α

from Dhard
3: Sample outputs {oi}Gi=1 from πθold(q)
4: for each output oi do
5: Extract retrieval spans S from oi
6: Compute rewards with Eq. 6
7: for each token t in oi do
8: Compute importance ratio ri,t =

πθ(oi,t)

πθold
(oi,t)

9: Update objective with Eq. 3
10: end for
11: end for
12: Apply KL penalty:
13: JGRPO ← JGRPO − β

∑
t πθ(ot) log

πθ(ot)
πref(ot)

14: Update parameters θ ← θ + η∇θJGRPO
15: Adjust curriculum ratio α← max(0, 1− ηt/T )
16: end for
17: return θ

Reward Design. To encourage the model to re-
trieve relevant information from the context and dy-
namically integrate them into the reasoning chain,
we propose the retrieval reward for CARE train-
ing. More specifically, the retrieval reward en-
courages the model when it outputs the expected
<RETRIEVAL> </RETRIEVAL> pair, and all text
within these pairs exists in the context. Although
a rather loose constraint, the retrieval reward al-
lows the model to make better use of the context in
reasoning without ground-truth retrieval data.

Furthermore, since we introduce a new pair of to-
kens in the reasoning process, we slightly changed
the format reward proposed in DeepSeek-AI et al.
(2025), which now pushes the model to reason
with pairs <THINK> </THINK> and <RETRIEVAL>
</RETRIEVAL>. Similarly, the accuracy reward
quantifies the correctness of the generated response
by calculating the token F1 score between the ex-
tracted generated answer and the ground truth an-
swer for the QA tasks.

In general, the reward function in the RL phase is
formulated as a weighted sum of three components,
each aimed at a distinct aspect of the retrieval and
alignment of the reasoning.

Rtotal = λ1Racc + λ2Rfmt + λ3Rret (6)

The weighting coefficients λ1, λ2, λ3 control the
relative emphasis on factual accuracy, structural
consistency, and context fidelity.

Curriculum Learning Strategy. QA datasets ex-
hibit significant variation in context and answer
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Model Method MFQA HotpotQA 2WikiMQA MuSiQue Average

LLaMA-3.1 8B

Original 45.57 54.64 45.87 32.08 44.54
ReSearch / / / / /
R1-Searcher 28.44 53.71 67.10 41.41 47.67
CRAG 44.04 37.88 25.95 24.10 32.99
CARE 49.94 63.09 75.29 51.00 59.83

Qwen2.5 7B

Original 46.94 58.47 46.96 30.78 45.79
ReSearch 32.45 54.24 55.78 47.61 47.52
R1-Searcher 28.36 55.43 65.79 47.09 49.17
CRAG 47.90 43.97 33.00 28.44 38.33
CARE 48.11 63.45 70.11 45.57 56.81

Qwen2.5 14B

Original 47.58 61.94 59.05 37.99 51.64
ReSearch / / / / /
R1-Searcher / / / / /
CRAG 50.89 44.74 34.68 28.17 39.62
CARE 48.81 67.75 78.68 51.27 61.63

Table 1: Evaluation on the real-world QA datasets. The results are grouped by the base LLM used. The best
and second-best results for each base model and dataset are labeled in bold and underline, respectively. Slash (/)
indicates that the model does not have an official checkpoint or support for this model.

lengths. To gradually adapt our model to diverse
dataset characteristics other than the one used for
SFT, we implement a curriculum learning strategy
transitioning from short-context / short-answer QA
to long-context / multihop long-answer QA. This
structured progression mitigates catastrophic for-
getting while enhancing retrieval capabilities in
increasing complexity.

We train with two QA datasets:
Deasy = {(Qi, Ci, Ai)}Neasy

i=1 and Dhard =

{(Qi, Ci, Ai)}Nhard
i=1 , where Dhard contains longer

contexts, longer answers, and requires more
complex reasoning than Deasy. Training begins
exclusively with Deasy, then gradually incorporates
instances from Dhard.

At each training step t, we sample instances us-
ing a Bernoulli trial with a time-varying probability.
The mixing ratio αt decreases linearly according to
αt = max(0, 1−η · t

T ), where η is a scaling factor
that controls the speed of transition. The sampling
probabilities are peasy = αt and phard = 1 − αt,
ensuring that the model maintains short-context
retrieval capabilities while learning to aggregate
evidence in multiple paragraphs.

4 Experiment Settings

We evaluate our proposed CARE method through
comprehensive experiments across multiple LLM
families and sizes in two distinct QA categories:
real-world long-context QA and counterfactual

multihop QA.

4.1 Datasets, Benchmarks and Metrics

Training Datasets. We generate the SFT data
mentioned in Section 3.3 based on the HotpotQA
training set (Yang et al., 2018) owing to its anno-
tations of supporting facts. During SFT data gen-
eration, DeepSeek-R1 (DeepSeek-AI et al., 2025)
and DeepSeek-V3 (DeepSeek-AI et al., 2024) are
used as the reasoning model MR and the fact in-
jection model MI , respectively. The resulting SFT
dataset contains 7,739 instances with the retrieval-
augmented reasoning chain labeled. For RL train-
ing, we select DROP (Dua et al., 2019) as Deasy
and MS MARCO (Nguyen et al., 2016) as Dhard.

Evaluation Datasets. We evaluate in-context
retrieval accuracy and whether learned retrieval-
augmented reasoning improves answer quality
using single-passage and multi-passage datasets
from LongBench (Bai et al., 2024), includ-
ing MultiFieldQA-En (Bai et al., 2024), Hot-
potQA (Yang et al., 2018), 2WikiMQA (Ho et al.,
2020), and MuSiQue (Trivedi et al., 2022). Fol-
lowing LongBench’s protocol, we report F1 scores
for all datasets.

Furthermore, to evaluate context fidelity
when presented with information contradicting
the model’s parametric knowledge, we utilize
CofCA (Wu et al., 2025), a benchmark contain-
ing modified counterfactual Wikipedia snippets.
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Model Method CofCA

LLaMA-3.1 8B
Original 48.14
R1-Searcher 45.25
CARE 61.83

Qwen2.5 7B

Original 58.38
ReSearch 47.32
R1-Searcher 43.61
CRAG 56.01
CARE 64.56

Qwen2.5 14B
Original 64.40
CRAG 51.99
CARE 67.75

Table 2: Evaluation on the counterfactual QA task. The
results are grouped by the base LLM used. The best and
second-best results for each base model and dataset are
labeled in bold and underline, respectively.

This directly tests whether our native retrieval-
augmented reasoning improves adherence to pro-
vided context regardless of pre-trained biases. We
report F1 performance consistent with the original
CofCA evaluation metrics.

4.2 Models and Baselines

We compare CARE with a series of learned reason-
ing strategies and RAG methods based on three
commonly used public LLMs: Qwen-2.5 Instruct
7B and 14B (Qwen et al., 2024), and LLaMA-3.1
8B (Grattafiori et al., 2024), which covers different
model families and sizes.

Original Model. For each dataset, we test the
performance of the original LLM with their corre-
sponding default system prompt and chat template.

RL-Based Online Retrieval. Existing dynamic
retrieval approaches typically leverage reinforce-
ment learning to train models to autonomously
conduct web searches rather than directly extract
from the provided context. We compare our
method against two recent RL-based online search
methods: ReSearch (Chen et al., 2025) and R1-
Searcher (Song et al., 2025), both of which enable
models to strategically access external knowledge
during reasoning. Note that in our model selection,
ReSearch only provides a checkpoint for Qwen2.5
7B, and R1-Searcher only provides a checkpoint
for LLaMA-3.1 8B and Qwen2.5 7B.

RAG Methods. We also compare with
CRAG (Yan et al., 2024), a corrective RAG
method that uses a lightweight evaluator to
improve in-context retrieval with online search.

Note that in our model selection, CRAG only
provides a checkpoint for Qwen2.5 7B and 14B.

4.3 Experiment Settings

For all three models, the SFT training process fol-
lows LLaMA-Factory (Zheng et al., 2024)’s default
LoRA SFT setting2, and the RL training process
follows verl (Sheng et al., 2024)’s default GRPO
setting3. For the Curriculum RL training, we use
the hyperparameters λ1 = 0.7, λ2 = 0.1, λ3 = 0.2,
and η = 1. All experiments are done with either
8×A800-SXM4-80GB or 8×H100 80GB. Detailed
experiment settings are included in Appendix B.

5 Results and Analysis

5.1 Question-Answering Performance

Table 1 shows that CARE consistently outperforms
baselines in all model sizes. With LLaMA-3.1
8B, our method achieves +15.29% average F1
improvement over the original model, with the
strongest gains in multi-hop tasks (2WikiMQA
+29.42%, MuSiQue +18.92%). Similar patterns
appear with the Qwen2.5 models. Even when not
highest (Qwen2.5 7B on MuSiQue and Qwen2.5
14B on MFQA), CARE remain competitive with
the best baseline. These results demonstrate that
native retrieval-augmented reasoning significantly
enhances performance by effectively integrating in-
context evidence during reasoning, especially for
complex multi-hop questions. We also include a
token cost analysis in Appendix A. While CARE gen-
erates longer outputs due to the reasoning chains,
which is a common characteristic of GRPO-trained
models, it eliminates the overhead of external API
calls and database retrievals required by baseline
methods.

5.2 Counterfactual QA Performance

In Table 2, we report the results on the CofCA
counterfactural QA task. CARE consistently de-
livers the strongest performance, with significant
gains on LLaMA-3.1 8B (+13.69%). In particular,
traditional online search methods underperform
compared to original models in this task, suggest-
ing that external retrieval can be counterproductive
when context contradicts parametric knowledge.

2https://github.com/hiyouga/LLaMA-Factory/
blob/main/examples/train_lora/llama3_lora_sft.
yaml

3https://github.com/volcengine/verl/blob/main/
examples/grpo_trainer/run_qwen2-7b.sh
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Settings SFT RL Ret. Cur. MFQA HotpotQA 2WikiMQA MuSiQue CofCA Average

Baseline ✗ ✗ ✗ ✗ 46.64 58.47 46.96 30.78 58.38 48.25
SFT Only ✓ ✗ ✗ ✗ 42.24 47.08 61.51 33.82 59.21 48.77
No Ret. ✓ ✓ ✗ ✗ 37.66 62.59 70.57 43.85 57.26 54.39
No Cur. ✓ ✓ ✓ ✗ 38.33 64.10 70.69 47.49 60.60 56.24
CARE ✓ ✓ ✓ ✓ 48.11 63.45 70.11 45.57 64.56 58.36

Table 3: Ablation studies on the QA tasks based on Qwen2.5 7B. The best and second-best results for each base
model and dataset are labeled in bold and underline, respectively. “Ret.” stands for retrieval reward in Equation 6,
and “Cur.” stands for curriculum learning in Algorithm 1.
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Figure 3: Comparison of model performance across different settings for BLEU and ROUGE-L metrics. Our
proposed methods, CARE, demonstrate improved scores.

CARE demonstrates superior context fidelity by ex-
plicitly integrating natively extracted in-context ev-
idence in the reasoning process, and can make even
greater gains compared to the baselines when en-
countering unseen information in the context.

5.3 Ablation Studies

We provide results based on Qwen2.5 7B in Ta-
ble 3. In this table, we include three additional
settings: (1) SFT only, where the model is only
trained with the first SFT phase without RL train-
ing; (2) No retrieval reward, where after the SFT
phase, the model undergoes GRPO training with
the same reasoning-encouraging reward used in
DeepSeek-R1 (DeepSeek-AI et al., 2025); and (3)
No curriculum learning, where the RL training
phase uses only Deasy.

SFT alone only offers marginal benefits, while
adding RL training substantially improves perfor-
mance, highlighting the importance of reinforce-
ment learning for QA reasoning. Both methods
with native in-context reasoning (“No Cur.” and
CARE) consistently outperform the vanilla R1-like
GRPO approach (“No Ret.”), showing that retrieval-
augmented reasoning enhances performance by
grounding reasoning in contextual evidence. While
“No Cur.” performs well on multi-hop datasets,

curriculum learning provides better balance across
diverse types of QA, particularly improving perfor-
mance on long-form answering (MFQA) and coun-
terfactual scenarios (CofCA). This shows that cur-
riculum learning successfully adapts the model to
various types of question while maintaining strong
performance on complex reasoning tasks, all with-
out requiring additional labeled data beyond the
initial SFT phase.

5.4 Evidence Retrieval Evaluation

In this section, we evaluate CARE’s ability to ac-
curately retrieve and incorporate supporting evi-
dence for question-answering. Due to the lack of
ground-truth supporting fact annotations in stan-
dard QA datasets, we focus our evaluation on the
LongBench HotpotQA benchmark. For this anal-
ysis, we align each instance in LongBench’s Hot-
potQA test set with its corresponding entry in the
original HotpotQA dataset, using the original sup-
porting fact annotations as ground truth for eval-
uation. We report SacreBLEU (Post, 2018) and
ROUGE-L F1 (Lin, 2004). Figure 3 presents our
comparative results in different model configura-
tions. In all settings, CARE consistently achieves the
highest BLEU and ROUGE-L scores. We observe
that performance scales with model size across all
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methods, with Qwen2.5 14B showing the strongest
results. However, the relative improvement from
CARE remains consistent regardless of the scale and
family of the model, suggesting that our approach
effectively enhances the context fidelity regardless
of the underlying model architecture.

6 Conclusion

We introduce CARE, a native retrieval-augmented
reasoning framework that improves context fidelity
in LLM by teaching models to dynamically iden-
tify and integrate evidence within their reasoning
process. This approach improves how LLMs inter-
act with context, while requiring limited labeled
evidence. Experiments on multiple general and
counterfactual QA benchmarks demonstrated that
CARE consistently outperforms existing approaches,
including the vanilla SFT method and traditional
RAG methods in both answer generation and evi-
dence extraction. This work represents an impor-
tant step toward more reliable AI systems that make
better use of available context without requiring ex-
pensive retrieval infrastructure.

Limitations

Although CARE shows significant improvements
in context fidelity and question answering per-
formance, several important limitations should
be acknowledged. First, the native retrieval-
augmented reasoning mechanism, while effective
for in-context information, cannot access external
knowledge beyond the provided context. For sce-
narios requiring information not present in the in-
put, our approach would need to be combined with
external retrieval systems like RAG, potentially
complicating the overall architecture.

Second, while we evaluate comprehensively
across multiple QA benchmarks, the evaluation pri-
marily focuses on multi-hop general-domain rea-
soning questions. The effectiveness of CARE for
more abstract reasoning, numerical computation,
creative generation tasks, or domain-specific tasks
remains to be thoroughly investigated.

Finally, although our method improves context
fidelity, it does not completely eliminate the possi-
bility of hallucinations, especially when the input
contains ambiguous or contradictory information.
Future work should address these challenges while
expanding the approach to a broader range of lan-
guage understanding and generation tasks.

Ethical Considerations

Our research improves context fidelity in language
models, potentially reducing hallucinations in criti-
cal applications like education and healthcare. The
supervised fine-tuning dataset we developed, built
upon HotpotQA (which follows the CC BY-SA
4.0 license), will be shared under the same CC
BY-SA 4.0 license to promote transparency and
reproducibility. Although our method improves
fidelity to the provided context, it cannot guaran-
tee complete factual accuracy, especially when the
input itself contains inaccuracies or contradictions.
We acknowledge both the environmental impact
of the computational resources used in training
and the possibility that models may inherit biases
from training data despite improved context fidelity.
Researchers who implement our approach should
perform appropriate fairness evaluations before de-
ployment in sensitive applications.
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A Token Cost Efficiency Analysis

In this section, we provide a detailed token cost
analysis for the real-world QA experiments (Sec-
tion 5.1) in Table 4. While CARE generates longer
outputs due to the reasoning chains, which is a
common characteristic of GRPO-trained models, it
eliminates the overhead of external API calls and
database retrievals required by baseline methods.

Model Method MFQA HotpotQA 2Wiki MuSiQue

LLaMA 8B
Original 19.5 8.5 7.5 7.4
R1-S. 296+2012 278+2058 293+2125 313+2436
CARE 564 656 608 848

Qwen 7B

Original 24.8 6.0 6.1 9.3
CRAG 24+212 7+411 9+201 8+470
ReSearch 276+2054 275+2271 308+2814 290+2492
CARE 566 633 560 942

Table 4: Average output tokens per query on each real-
world QA dataset. Numbers in format x+y indicate
model output + retrieval overhead. R1-S. stands for
R1-Searcher.

B Experiment Details

B.1 Implementation Details

All models are implemented based on pre-trained
checkpoints provided by the Huggingface Trans-
formers library (Wolf et al., 2019). We use LLaMA-
Factory (Zheng et al., 2024) for the SFT phase. In
this phase, we train each model on our curated
SFT dataset for 3 epochs with the AdamW opti-
mizer (Loshchilov and Hutter, 2019). The training
progress adopts a warmup cosine scheduler with a
maximum learning rate 0.0001 and a warmup ratio
of 0.1. The effective batch size is 64. LoRA (Hu
et al., 2022) is applied with r = 8 and α = 16. The
training process uses the ZeRO-2 optimizer (Rajb-
handari et al., 2019). For the RL phase, we adopt
the verl framework (Sheng et al., 2024) for GRPO
training. We used a training batch size of 1024.
The Adam optimizer was employed with a learn-
ing rate of 1e-6. For policy optimization, we use
GRPO as the advantage estimator and incorporated
KL divergence regularization with a coefficient of
0.001 using the low-variance KL estimator. We
set the mini-batch size to 256. The model was
trained for 350 steps with 5 response samples per
prompt. For distributed training, we deployed Fully
Sharded Data Parallel (FSDP) (Zhao et al., 2023)
across 8 GPUs on a single node with tensor par-
allelism of size 2. All experiments are done with
either 8×A800-SXM4-80GB or 8×H100 80GB.

C System Prompts

We provide the system prompts used in the dataset
creation process and the CARE in the following.

Prompt used for MR’s generation of reasoning chains
for SFT data creation.
You’re an expert reader. Your goal is to read a context to
answer a question. Note that during your thinking process,
before you make *any reasoning step that requires retrieving
information from the context*, summarize what information
you would need to complete this reasoning step, such as
"I need to know X for this" or similar phrases before you
reason about the context. This will help you to be more
systematic in your reasoning process. Put your final answer
as a minimum phrase or word at the end after “Answer:”.
Context: {context}
Question: {question}

Prompt used for MI ’s evidence integration for SFT data
creation.
I’ll provide you with a question, a reasoning process to solve
this question, and several evidence sentences. Insert *all*
evidence sentences into the reasoning process at appropriate
locations and give me the updated reasoning process. Each
evidence sentence usually should be placed just before any
conclusions or deductions that depend on it. The evidence
sentences may need to be distributed throughout different
parts of the reasoning and may appear more than once. *Do
not modify any evidence sentences* - insert them exactly
as provided. Return only the completed reasoning process
without explanations or additional text scaffolds.
Question: {question}
Reasoning process: {reasoning_content}
Evidence sentences (One sentence per line): {evi-
dence_sentence_string}
The rewritten reasoning process:

System prompt for CARE. The actual system prompt for
each model prepends the corresponding model’s original
system prompt before this prompt.
You FIRST think about the reasoning process as an internal
monologue and then provide the final answer. The reason-
ing process MUST BE enclosed within <think> </think>
tags. WITHIN the thinking process, make reference to the
relevant texts in the prompt that provide critical information
to move the reasoning process forward. The referenced
texts MUST BE enclosed within <retrieval> </retrieval>
tags, and MUST BE placed within the reasoning process
only. The final answer MUST BE put at the end of the
response after “Answer:”.

D Case Study

We select two samples from LongBench’s Hot-
potQA dataset and provide the complete question,
answer, supporting facts, prediction, and whether
the generated answer is correct.
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Question Answer Supporting Facts Prediction Correct

The song
that came
out ahead
of The
Wanted’s
“Light-
ning” on
the UK
Singles
Chart
was
featured
on which
album?

Talk
That
Talk

["“We Found Love”
is a song recorded by
Barbadian singer Rihanna
from her sixth studio
album, “Talk That Talk”
(2011).", "It was written
and produced by, and
features Scottish DJ
Calvin Harris; the song
was also featured on his
third album “18 Months”
(2012).", "“We Found
Love” premiered on
September 22, 2011, on
the Capital FM radio
station in the United
Kingdom, and was made
available to download on
the same day as the lead
single from “Talk That
Talk”.", "“We Found
Love” is an uptempo
electro house song, with
elements of techno and
Europop.", "The song’s
lyrics speak of a couple
who “found love in a
hopeless place”."]

<think>\nOkay, let’s try to figure out the answer to this question. The
question is asking which album featured the song that came out ahead of
The Wanted’s “Lightning” on the UK Singles Chart.\n\nFirst, I need to find
out the details about The Wanted’s “Lightning” from the passages provided.
Looking at the passage for The Wanted’s discography, it mentions that
their third single from the second album “Battleground” was “Lightning,”
released in October 2011. <retrieval>The song debuted at number two on
the UK Singles Chart, behind Rihanna’s “We Found Love”.</retrieval>
So, that means the song that was number one before “Lightning” was “We
Found Love” by Rihanna.\n\nNow, the question is about the album that
features “We Found Love.” I need to check where “We Found Love” is
mentioned. In the passages, there’s a section about Rihanna’s “We Found
Love” from her album “Talk That Talk (2011.” The album is listed as her
sixth studio album. The song itself is part of that album. <retrieval>“We
Found Love” is a song by Barbadian singer Rihanna from her sixth studio
album, Talk That Talk (2011.</retrieval> So the answer should be “Talk
That Talk.”\n\nWait, but let me confirm. The relevant information from
the third passage (The Rihanna section for “We Found Love” clearly states
that it’s from “Talk That Talk (2011),” and that’s her sixth studio album.
The song’s debut was with Rihanna’s album. Therefore, the answer is “Talk
That Talk.”\n</think>\n\nAnswer: Talk That Talk

Yes

Yau
Ma Tei
North is
a district
of a city
with how
many
citizens?

7.2 mil-
lion

["Hong Kong, officially
the Hong Kong Special
Administrative Region of
the People’s Republic of
China, is an autonomous
territory south to Main-
land China and east to
Macao in East Asia.", "
With around 7.2 million
Hong Kongers of various
nationalities in a territory
of 1,104 km, Hong Kong
is the world’s fourth most
densely populated coun-
try or territory."]

<think>\nOkay, let’s tackle this question. The question is asking how many
citizens Yau Ma Tei North is a district of. First, I need to figure out which
city Yau Ma Tei North is a district of. From the context, the term “Yau Ma
Tei North” is mentioned in several passages. Let me check.\n\nLooking
at the passages, the one titled “Yau Ma Tei North (constituency)” states
that Yau Ma Tei North is one of the 19 constituencies in the Yau Tsim
Mong District of Hong Kong. \n<retrieval>Yau Ma Tei North is one of
the 19 constituencies in the Yau Tsim Mong District of Hong Kong which
was first created in 1982 and recreated in 2015.</retrieval>\nThat’s in the
context of Hong Kong’s administrative divisions. The next step would
be to find out the population of Hong Kong. \n\nI recall that there’s a
detailed section in the “Hong Kong” passages about the population. Let
me check that part. The Hong Kong entry mentions that the Census and
Statistics Department estimated Hong Kong’s population at 7,413,070 in
2021.\n<retrieval>The Census and Statistics Department estimated Hong
Kong’s population at 7,413,070 in 2021. The overwhelming majority
(91.6%) is Han Chinese, most of whom are Taishanese, Teochew, Hakka,
and other Cantonese peoples.</retrieval>\n\nWait, but the question is
about Yau Ma Tei North, which is a district within Hong Kong. The
population of Hong Kong as a whole is 7.4 million, but the key point here
is whether Yau Ma Tei North itself has a population figure. The Yau Ma Tei
North constituency’s entry says it covers Yau Ma Tei and has an estimated
population of 12,817. \n<retrieval>The constituency loosely covers Yau
Ma Tei with the estimated population of 12,817.</retrieval>\nSo that’s
12,817 people. But the question is phrased as “Yau Ma Tei North is a district
of a city with how many citizens?” So the target is the parent city of Yau Ma
Tei North. Since Yau Ma Tei North is a district in Hong Kong, Hong Kong
is the city. Therefore, the population of Hong Kong is the answer, which is
7,413,070 as per the latest data provided.\n</think>\n\nTo determine the
population of the city (Hong Kong) containing Yau Ma Tei North, I need
to know the administrative level of Yau Ma Tei North. The “Yau Ma Tei
North (constituency)” section states it belongs to Yau Tsim Mong District.
Next, the “Hong Kong” passages mention the district is part of the Yau
Tsim Mong District and its population. The main Hong Kong entry (under
“Demographics”) gives the 2021 population as 7,413,070. However, Yau
Ma Tei North is a specific constituency (the 19th out of 19) within Yau
Tsim Mong District, with an estimated population of 12,817. The question
likely refers to the broader city of Hong Kong’s population, not the smaller
constituency. \nAnswer: 7413070

No

Table 5: Case study examples from LongBench’s HotpotQA test set showing CARE’s reasoning process. The
table presents the original questions, ground-truth answers and supporting facts, along with the complete model
predictions including the reasoning chains within <think> tags and integrated retrieval spans within <retrieval>
tags. The "Correct" column indicates whether the model’s final answer matches the ground truth using F1 score
evaluation.
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