
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 21163–21169
November 4-9, 2025 ©2025 Association for Computational Linguistics

Abstract

While large language models (LLMs) have

shown strong capabilities across diverse

domains, their application to code

vulnerability detection holds great potential

for identifying security flaws and

improving software safety. In this paper, we

propose a sequential multi-stage approach

via confidence- and collaboration-based

decision making (ConColl). The system

adopts a three-stage sequential

classification framework, proceeding

through a single agent, retrieval-augmented

generation (RAG) with external examples,

and multi-agent reasoning enhanced with

RAG. The decision process selects among

these strategies to balance performance and

cost, with the process terminating at any

stage where a high-certainty prediction is

achieved. Experiments on a benchmark

dataset and a low-resource language

demonstrate the effectiveness of our

framework in enhancing code vulnerability

detection performance.

1 Introduction

As AI technologies continue to grow in popularity,

with many projects developed in open-source

environments, ensuring software quality and

effectively identifying vulnerabilities has become

increasingly important (Harzevili et al., 2024;

Islam et al., 2024). To tackle vulnerability

detection, researchers have applied machine

learning and deep learning to identify security

flaws in source code. While these approaches

have achieved promising performance, most of

them depend on either fine-tuning pre-trained

models or training neural networks from scratch

(Zhou et al., 2024). Large language models (LLMs)

have recently achieved remarkable success across

* Corresponding author

a wide spectrum of tasks. Building on this

progress, LLMs have emerged as a powerful tool

for vulnerability detection and present a more

promising alternative to traditional learning-based

approaches (Shestov et al., 2025). However,

despite their effectiveness, deploying LLMs for

vulnerability detection in a practical setting raises

significant concerns regarding efficiency,

scalability and cost (Liu et al., 2025).

In the context of LLM-based vulnerability

detection, a cost-effective detection framework

should aim to make accurate predictions with

minimal computational and contextual overhead.

Prior works have focused on optimizing static

prompts (Zhang et al., 2023) or leveraging multiple

LLMs of varying sizes to reduce computational

cost (Chen et al., 2023). Nevertheless, these

approaches may be impractical due to deployment

complexity, model compatibility, and resource

constraints. In this paper, we explore a cost-

effective alternative using a single LLM, where

inference pathways are adaptively chosen based on

internal confidence and collaborative signals. By

progressively increasing reasoning complexity—

from direct single agent prediction, to retrieval-

augmented generation (RAG) with few samples,

and finally to multi-agent collaboration—we

enable efficient vulnerability detection while

maintaining strong performance. This design

avoids multi-LLM overhead and ensures consistent

representations, while remaining generalizable to

existing LLM-based detection pipelines.

The main contributions of this paper can be

outlined as follows.

• We propose a single-LLM architecture that

dynamically selects among direct

classification by a single agent, retrieval-

augmented prediction, and multi-agent

collaboration. The selection is guided by the

A Sequential Multi-Stage Approach for Code Vulnerability Detection

via Confidence- and Collaboration-based Decision Making

Chung-Nan Tsai1, Xin Wang2, Cheng-Hsiung Lee3 and Ching-Sheng Lin3,*

1Lam Research Japan GK, Japan
2College of Integrated Health Sciences and the AI Plus Institute, University at Albany, USA

3Master Program of Digital Innovation, Tunghai University, Taiwan

chung-nan.tsai@lamresearch.com, xwang56@albany.edu, {hsiung, cslin612}@thu.edu.tw

21163

mailto:chung-nan.tsai@lamresearch.com
mailto:xwang56@albany.edu
mailto:@thu.edu.tw

model’s internal confidence and

collaborative signals. This adaptive pipeline

improves cost-efficiency by applying simple

reasoning to easy cases and reserving more

complex methods for harder ones.

• Experiments on the TreeVul_Ext benchmark

dataset suggest that our method can achieve

competitive detection performance while

reducing computational overhead (Zhou et

al., 2024). The framework also shows

potential in handling low-resource languages

and indicating its practicality in real-world

applications (Le et al., 2024).

2 Related Work

In current machine learning applications for code

vulnerability detection, deep learning architectures

have become the dominant paradigm. For example,

VulDeePecker employs a BiLSTM architecture to

automatically learn vulnerability patterns from

code gadgets without relying on manually crafted

features (Li et al., 2018). Some approaches adopt

hybrid architectures, such as CNN combined with

Random Forest (Russell et al., 2018) and CNN-

BiLSTM (Gu et al., 2025), to leverage both

syntactic and semantic feature extraction

capabilities. Transformer architecture, originally

designed for natural language processing, has

proven highly effective in modeling context

semantics (Vaswani et al., 2017). This architecture

has been widely adopted in software vulnerability

detection tasks. Notable Transformer-based models

used in this domain include CodeBERT (Feng et al.,

2020), GraphCodeBERT (Guo et al., 2020), and

CodeBERTa (Karmakar et al., 2021). CodeBERT

and CodeBERTa learn joint representations of

source code and natural language, while

GraphCodeBERT extends this approach by

incorporating data-flow information derived from

abstract syntax trees.

LLMs have achieved remarkable success across

a wide range of domains. Examples include

OpenAI’s ChatGPT and Meta’s LLaMA,

illustrating rapid LLM progress. To further

enhance performance, techniques such as RAG and

prompt engineering are commonly adopted. With

no exception to their demonstrated success in

various fields, LLMs have also been applied to

software vulnerability detection. Existing methods

include both single-model and mixture-of-LLMs

approaches, often leveraging RAG for few-shot

context and prompt engineering to elicit stronger

reasoning from models (Widyasari et al., 2024).

Role-based simulation in LLMs has emerged as a

widely adopted technique to enhance task-specific

performance and decision-making (White et al.,

2023). MuCoLD assigns developers and security

testers roles to LLMs, so that they can

collaboratively identify software vulnerabilities

through multi-round discussions (Mao et al., 2024).

3 Methodology

3.1 Problem Description

This paper focuses on function-level binary

classification (Kluban et al., 2022; Fu et al., 2024),

where the goal is to determine whether a given

function contains security vulnerabilities. We

formulate the detection task as a mapping f : (X,Z;θ)

→ Y, where X represents the input source code, Z

denotes optional auxiliary information that may be

required by the model, 𝜃 indicates the model

parameters and Y is the binary label with 1 for

vulnerable cases and 0 for non-vulnerable ones. In

this study, we investigate vulnerability detection

using a single LLM with fixed parameters 𝜃, while

optionally incorporating additional information Z,

such as crafted prompts from prompt engineering

and retrieved evidence from RAG.

3.2 Proposed Framework

In this section, we present the sequential multi-

stage approach where the system architecture is

described in the Figure 1. Our main confidence-

and collaboration-based decision module (ConColl)

is composed of three stages, each progressively

incorporating more reasoning capability to handle

increasingly ambiguous cases.

Stage 1: Direct Prediction with Single LLM. At

this stage, we employ a single LLM with a task-

specific prompt (shown below) to perform binary

classification on the input source code. The model

is prompted to analyze the code and respond with

either “Yes” or “No” as the first generated token.

We define the confidence score (C.S.) as the

difference in predicted probabilities between the

top-1 and top-2 tokens at this initial position. If the

score exceeds a predefined threshold (th1) and the

top-1 token is either "Yes" or "No", the prediction

is accepted. Otherwise, the decision is deferred to a

more elaborate subsequent stage.

Promptsingle: Is the following code vulnerable?

Respond with only 'Yes' or 'No'. \n\n {Source_code}

21164

Figure 1: The system architecture.

Stage 2: Retrieval-Augmented Prediction. If the

model fails to make a confident prediction in the

first stage, the system proceeds to a second stage

for further reasoning. In this stage, we retrieve

several semantically relevant positive and negative

examples from the training dataset based on the

input source code. These examples, along with the

original input, are then provided to the language

model to support its inference. The prompt used at

this stage is shown below. Similar to the first stage,

we compute the C.S. based on the probability

distribution over the model’s predicted tokens. If

the score exceeds a second predefined threshold

(th2) and the top-1 prediction corresponds to a

valid class label ("Yes" or "No"), the model's

decision is approved. Otherwise, the system is

routed to Stage 3 for further analysis.

PromptRAG: Your task is to assess whether the

provided code contains any security vulnerabilities.

\n\n Here are some examples: \n\n {examples} \n\n

Is the following code vulnerable? Respond with

only 'Yes' or 'No'. \n\n {Source_code}

Stage 3: Multi-Agent Collaboration. If the model

still lacks sufficient confidence after Stage 2, the

system proceeds to Stage 3, which employs a

multi-agent decision mechanism. In this stage,

multiple instances of the language model are

activated, each operating under slightly different

reasoning roles. These agents are provided with the

retrieved reference samples from Stage 2 as

contextual support. Each agent generates a

prediction based on its role-specific prompt. The

final decision is made through majority voting

across all agent outputs. We adopt three role

settings (security analyst, penetration tester and
software security engineer) and use the following

prompts.

Promptagent: You are a {role} and your task is to

assess whether the provided code contains any

security vulnerabilities. \n\n Here are some

examples: \n\n {examples} \n\n Is the following

code vulnerable? Respond with only 'Yes' or 'No'.

\n\n {Source_code}

The complete process of our method is displayed

in Appendix A. Our LLM treats the test code, the

prompt, and relevant examples (if needed) as the

input for testing. The RetrieveRel function takes the

test code along with the training data to extract

relevant examples. The Voting function aggregates

the predictions from three agents and produces the

final result through majority voting.

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct our experiments using the publicly

available TreeVul_Ext dataset, which comprises 20

open-source C/C++ software repositories (Zhou et

al., 2024). The dataset is composed of 7,683

training functions, 853 validation functions, and

386 test functions. Notably, we do not perform any

training or fine-tuning on the model. Instead, we

only adopt the RAG approach that retrieves

21165

semantically similar samples from the training set

to the target function under analysis.

We compare our model against several baseline

models using standard evaluation metrics,

including precision (Pre), recall (Rec), F1-score

(F1), and accuracy (Acc). These metrics provide a

rigorous basis for comparing the predictive

performance across models.

4.2 Performance Evaluation

 In this section, we compare our proposed model

with two categories of baseline methods on the

TreeVul_Ext. The first category includes LLM-

based approaches, such as GPT-3.5, LLaMA-3-8B,

Gemma-7B, Mixtral-8x7B, GPT-4o, and an

ensemble voting method that aggregates their

predictions (Widyasari et al., 2024). The second

category consists of training-based models,

including CodeBERT, CodeBERTa, and

GraphCodeBERT. The implementation details are

reported in Appendix B.

Table 1: Experimental results of different models (%).

As shown in Table 1, our model outperforms all

compared baselines in terms of F1-score. Among

the LLM-based approaches, GPT-4o achieves the

best performance, while CodeBERTa leads among

training-based methods. Our model surpasses

GPT-4o by 6.5% and CodeBERTa by 4.5% in F1-

score. Our model demonstrates a strong recall-

oriented behavior and achieves a recall as high as

96.8%. This suggests that the model is highly

sensitive to potential vulnerabilities, which makes

it particularly effective in minimizing false

negatives. In contrast, GPT-3.5 achieves the

highest precision among all methods (76.3%).

However, it also suffers from the lowest recall,

indicating a tendency to produce more

conservative predictions while missing a larger

number of actual vulnerabilities. Meanwhile, the

ensemble voting approach obtains the highest

accuracy among all methods (68.4%), although its

F1-score remains lower than that of certain

individual LLMs (i.e., Gemma-7B and GPT-4o).

Compared to single-pass inference using a

standalone LLM, our sequential framework

introduces additional latency due to its multi-stage

decision process. Specifically, the later stages, such

as retrieval-based reference sample generation and

multi-agent collaboration, involve multiple API

calls, which result in longer inference times. While

training-based methods may require significant

upfront computational costs, they often benefit

from faster runtime predictions, highlighting a

trade-off between adaptability and efficiency.

Several representative prediction cases are

presented Appendix C.

Model F1 Time Cost

Our Model 72.3% 6:15 $0.66

Stage1 70.4% 3:28 $0.15

Stage2 71.3% 4:20 $0.40

Stage3 72.5% 10:56 $1.13

Table 2: Performance of each stage vs. full model.

To evaluate the effectiveness and efficiency of

our proposed method, we conduct a study

comparing the individual stages with the complete

sequential model. The comparison includes

performance metrics as well as time and cost

expenditures. As shown in Table 2, while Stage 3

individually achieves the highest F1-score (72.5%),

it also requires the longest runtime (10:56) and the

highest computational cost ($1.13). This suggests

that although Stage 3 is the most effective in

isolation, it may not be practical in resource-

constrained scenarios. In comparison, our

sequential model integrates all stages and achieves

a near-optimal F1-score (72.3%) while keeping

time and cost at moderate levels (6:15 and $0.66).

This indicates that the sequential design effectively

balances performance and efficiency.

Model Pre Rec F1

GPT Fine-Tuning 0.37 0.32 0.34

GPT Few-Shot 0.43 0.44 0.43

CodeBERT 0.24 0.47 0.32

Our Model 0.31 0.73 0.44

Table 3: Evaluation results on the Kotlin dataset.

To test the applicability, we apply the model to a

low-resource programming language where Kotlin

serves as the test case. The dataset consists of 20

vulnerable functions and 98 non-vulnerable

functions (Le et al., 2024). Given the small data

size and class imbalance, we adopt a 10-round

evaluation strategy. In each round, the data is

randomly split into 60% for training, 20% for

validation, and 20% for testing. Final metrics are

Model Acc Pre Rec F1

GPT-3.5 62.7 76.3 36.8 49.7

LLaMA-3-8B 60.9 63.5 51.3 56.7

Gemma-7B 67.6 71.8 58.0 64.2

Mixtral-8x7B 63.2 73.4 41.5 53.0

GPT-4o 67.4 66.8 68.9 67.9

Ensemble Voting 68.4 75.2 54.9 63.5

CodeBERT 60.3 62.3 53.3 57.3

CodeBERTa 61.7 57.8 86.0 69.2

GraphCodeBERT 59.0 56.9 74.6 64.5

Our Model 62.9 57.7 96.8 72.3

21166

averaged over all rounds to ensure evaluation

reliability (shown in Table 3). Consistent with the

results on the TreeVul_Ext dataset, our model

achieves the best F1-score among all compared

methods, with recall remaining the most

outstanding. These results indicate the potential of

our sequential framework to generalize effectively,

even under low-resource conditions.

5 Conclusion and Future Work

This paper presents a preliminary exploration of a

sequential decision framework for cost-effective

software vulnerability detection using LLMs. Our

framework incrementally increases reasoning

complexity through three stages—direct prediction,

retrieval-augmented prediction, and multi-agent

collaboration—based on model confidence to

balance quality and cost. The results on both

benchmark datasets suggest that our method is a

potential alternative to existing models.

Although our model achieves promising results,

there remain several avenues for further

improvement. First, an adaptive confidence

thresholding mechanism can be explored to

improve the efficiency and flexibility of stage

transitions. Second, adding static analysis or

program semantics may improve detection of

certain vulnerabilities Lastly, the proposed

framework can be generalized to support cross-

language and cross-task applicability.

Limitations

This study has several limitations. First, our

approach has not been evaluated on large-scale

datasets, and future work is needed to assess its

scalability. Second, we used manually constructed

prompts without applying systematic optimization,

potentially leaving room for performance

improvements through prompt engineering. Third,

all experiments were conducted using ChatGPT,

and the effectiveness of the proposed method with

other large language models remains to be explored.

AI Assistants in Research or Writing

We used ChatGPT to correct grammatical errors

and polish the language.

References

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.

Frugalgpt: How to use large language models while

reducing cost and improving performance. arXiv

preprint arXiv:2305.05176.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,

Xiaocheng Feng, Ming Gong, Linjun Shou, Bing

Qin, Ting Liu, Daxin Jiang, and others. 2020.

Codebert: A pre-trained model for programming and

natural languages. arXiv preprint arXiv:2002.08155.

Michael Fu, Chakkrit Tantithamthavorn, Trung Le,

Yuki Kume, Van Nguyen, Dinh Phung, and John

Grundy. 2024. AIBugHunter: A Practical tool for

predicting, classifying and repairing software

vulnerabilities. Empirical Software Engineering 29,

1, 4.

Wanyi Gu, Guojun Wang, Peiqiang Li, Guangxin Zhai,

and Xubin Li. 2025. Detecting unknown

vulnerabilities in smart contracts with the CNN-

BiLSTM model. International Journal of

Information Security 24, 33.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu

Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey

Svyatkovskiy, Shengyu Fu, and others. 2020.

Graphcodebert: Pre-training code representations

with data flow. arXiv preprint arXiv:2009.08366.

Nima Shiri Harzevili, Alvine Boaye Belle, Junjie Wang,

Song Wang, Zhen Ming Jiang, and Nachiappan

Nagappan. 2024. A systematic literature review on

automated software vulnerability detection using

machine learning. ACM Computing Surveys 57, 3,

1–36.

Nafis Tanveer Islam, Gonzalo De La Torre Parra,

Dylan Manual, Murtuza Jadliwala, and Peyman

Najafirad. 2024. Causative Insights into Open

Source Software Security using Large Language

Code Embeddings and Semantic Vulnerability

Graph. arXiv preprint arXiv:2401.07035.

Anjan Karmakar and Romain Robbes. 2021. What do

pre-trained code models know about code? In 2021

36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE,

1332–1336.

Maryna Kluban, Mohammad Mannan, and Amr

Youssef. 2022. On measuring vulnerable javascript

functions in the wild. In Proceedings of the 2022

ACM on Asia conference on computer and

communications security, 917–930.

Triet Huynh Minh Le, M Ali Babar, and Tung Hoang

Thai. 2024. Software vulnerability prediction in

low-resource languages: An empirical study of

codebert and chatgpt. In Proceedings of the 28th

International Conference on Evaluation and

Assessment in Software Engineering, 679–685.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,

Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018.

Vuldeepecker: A deep learning-based system for

vulnerability detection. arXiv preprint

arXiv:1801.01681.

21167

Jianing Liu, Guanjun Lin, Huan Mei, Fan Yang, and

Yonghang Tai. 2025. Enhancing vulnerability

detection efficiency: An exploration of light-weight

LLMs with hybrid code features. Journal of

Information Security and Applications 88, 103925.

Zhenyy Mao, Jialong Li, Dongming Jin, Munan Li, and

Kenji Tei. 2024. Multi-role consensus through llms

discussions for vulnerability detection. In 2024

IEEE 24th International Conference on Software

Quality, Reliability, and Security Companion (QRS-

C), IEEE, 1318–1319.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo

Lazovich, Jacob Harer, Onur Ozdemir, Paul

Ellingwood, and Marc McConley. 2018. Automated

vulnerability detection in source code using deep

representation learning. In 2018 17th IEEE

international conference on machine learning and

applications (ICMLA), IEEE, 757–762.

Aleksei Shestov, Rodion Levichev, Ravil Mussabayev,

Evgeny Maslov, Pavel Zadorozhny, Anton

Cheshkov, Rustam Mussabayev, Alymzhan Toleu,

Gulmira Tolegen, and Alexander Krassovitskiy.

2025. Finetuning large language models for

vulnerability detection. IEEE Access.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information

processing systems 30.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,

Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse

Spencer-Smith, and Douglas C Schmidt. 2023. A

prompt pattern catalog to enhance prompt

engineering with chatgpt. arXiv preprint

arXiv:2302.11382.

Ratnadira Widyasari, David Lo, and Lizi Liao. 2024.

Beyond ChatGPT: Enhancing Software Quality

Assurance Tasks with Diverse LLMs and Validation

Techniques. arXiv preprint arXiv:2409.01001.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong

Fang, Bowen Yu, Weisong Sun, and Zhenyu Chen.

2023. A critical review of large language model on

software engineering: An example from chatgpt and

automated program repair. arXiv preprint

arXiv:2310.08879.

Xin Zhou, Ting Zhang, and David Lo. 2024. Large

language model for vulnerability detection:

Emerging results and future directions.

In Proceedings of the 2024 ACM/IEEE 44th

International Conference on Software Engineering:

New Ideas and Emerging Results, 47–51.

A Algorithm

Algorithm 1: Confidence- and Collaboration-based

Decision

Input: Training data {Xtrain, Ytrain }, Testing data

{Xtest, Ytest}, Language model LLM, thresholds th1,

th2.

Output: Predicted labels {ŷtest}.

1: for each xi
test in Xtest do

2: //Stage 1: Direct Prediction

3: pred1, cs1=LLM(xi
test, [Promptsingle, None])

4: if cs1>=th1:

5: ŷi
test=pred1

6: continue

7: end if

8: //Stage 2: Retrieval-Augmented Prediction

9: RAGi=RetrieveRel(xi
test, Xtrain, Ytrain)

10: pred2, cs2=LLM(xi
test, [PromptRAG, RAGi])

11: if cs2>=th2:

12: ŷi
test=pred2

13: continue

14: end if

15: //Stage 3: Multi-Agent Collaboration

16: predA, _=LLM(xi
test, [Promptagent

A , RAGi])

17: predB, _=LLM(xi
test, [Promptagent

B , RAGi])

18: predC, _=LLM(xi
test, [Promptagent

C , RAGi])

19: ŷi
test = Voting(predA, predB, predC)

20: end for

21: return ŷtest

B Implementation Details

All experiments are conducted on a Windows 10

operating system with an Intel Core i9 processor,

128 GB of RAM, and an NVIDIA GeForce RTX

3090 GPU with 24 GB of memory. For our

approach, we employ OpenAI's gpt-3.5-turbo as

the underlying LLM, whereas the training-based

baseline models are implemented using the

Hugging Face library.

21168

C Examples

Table 4 presents three representative examples where the final predictions are correct. These examples

respectively require one, two, and three stages of processing. For cases involving more than two stages,

we additionally report the intermediate predictions at each stage. However, the associated confidence

scores at these intermediate steps are not sufficiently reliable and should be interpreted with caution. For

clarity, in the table, 1 denotes a vulnerable case and 0 denotes a non-vulnerable case in both the Target and

Prediction columns.

Code snippet Stage Prediction Target

 LOG_DEBUG(5, 'Extracting: ' << path);

 return extract(*SystemUtilities::oopen(path));

1 1 1

 if(flow->http.user_agent[0] != '\0')

 fprintf(out, '[UserAgent: %s]', flow->http.user_agent);

 }

1 1
1

2 1

static PyObject* ast2obj_object(void *o)

{

 if (!o)

 o = Py_None;

 Py_INCREF((PyObject*)o);

 return (PyObject*)o;

}

1 1

0 2 1

3 0

Table 4: Representative prediction examples.

21169

