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Abstract

While large language models (LLMs) have
shown strong capabilities across diverse
domains, their application to code
vulnerability detection holds great potential
for identifying security flaws and
improving software safety. In this paper, we
propose a sequential multi-stage approach
via confidence- and collaboration-based
decision making (ConColl). The system
adopts a three-stage sequential
classification  framework, proceeding
through a single agent, retrieval-augmented
generation (RAG) with external examples,
and multi-agent reasoning enhanced with
RAG. The decision process selects among
these strategies to balance performance and
cost, with the process terminating at any
stage where a high-certainty prediction is
achieved. Experiments on a benchmark
dataset and a low-resource language
demonstrate the effectiveness of our
framework in enhancing code vulnerability
detection performance.

1 Introduction

As Al technologies continue to grow in popularity,
with many projects developed in open-source
environments, ensuring software quality and
effectively identifying vulnerabilities has become
increasingly important (Harzevili et al., 2024
Islam et al., 2024). To tackle vulnerability
detection, researchers have applied machine
learning and deep learning to identify security
flaws in source code. While these approaches
have achieved promising performance, most of
them depend on either fine-tuning pre-trained
models or training neural networks from scratch
(Zhou et al., 2024). Large language models (LLMs)
have recently achieved remarkable success across
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a wide spectrum of tasks. Building on this
progress, LLMs have emerged as a powerful tool
for vulnerability detection and present a more
promising alternative to traditional learning-based
approaches (Shestov et al., 2025). However,
despite their effectiveness, deploying LLMs for
vulnerability detection in a practical setting raises
significant  concerns regarding efficiency,
scalability and cost (Liu et al., 2025).

In the context of LLM-based vulnerability
detection, a cost-effective detection framework
should aim to make accurate predictions with
minimal computational and contextual overhead.
Prior works have focused on optimizing static
prompts (Zhang et al., 2023) or leveraging multiple
LLMs of varying sizes to reduce computational
cost (Chen et al, 2023). Nevertheless, these
approaches may be impractical due to deployment
complexity, model compatibility, and resource
constraints. In this paper, we explore a cost-
effective alternative using a single LLM, where
inference pathways are adaptively chosen based on
internal confidence and collaborative signals. By
progressively increasing reasoning complexity—
from direct single agent prediction, to retrieval-
augmented generation (RAG) with few samples,
and finally to multi-agent collaboration—we
enable efficient vulnerability detection while
maintaining strong performance. This design
avoids multi-LLM overhead and ensures consistent
representations, while remaining generalizable to
existing LLM-based detection pipelines.

The main contributions of this paper can be
outlined as follows.

e We propose a single-LLM architecture that
dynamically  selects among  direct
classification by a single agent, retrieval-
augmented prediction, and multi-agent
collaboration. The selection is guided by the
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model’s internal confidence and
collaborative signals. This adaptive pipeline
improves cost-efficiency by applying simple
reasoning to easy cases and reserving more
complex methods for harder ones.

e Experiments on the TreeVul Ext benchmark
dataset suggest that our method can achieve
competitive detection performance while
reducing computational overhead (Zhou et
al., 2024). The framework also shows
potential in handling low-resource languages
and indicating its practicality in real-world
applications (Le et al., 2024).

2 Related Work

In current machine learning applications for code
vulnerability detection, deep learning architectures
have become the dominant paradigm. For example,
VulDeePecker employs a BILSTM architecture to
automatically learn vulnerability patterns from
code gadgets without relying on manually crafted
features (Li et al., 2018). Some approaches adopt
hybrid architectures, such as CNN combined with
Random Forest (Russell et al., 2018) and CNN-
BiLSTM (Gu et al.,, 2025), to leverage both
syntactic and semantic feature extraction
capabilities. Transformer architecture, originally
designed for natural language processing, has
proven highly effective in modeling context
semantics (Vaswani et al., 2017). This architecture
has been widely adopted in software vulnerability
detection tasks. Notable Transformer-based models
used in this domain include CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2020), and
CodeBERTa (Karmakar et al., 2021). CodeBERT
and CodeBERTa learn joint representations of
source code and natural language, while
GraphCodeBERT extends this approach by
incorporating data-flow information derived from
abstract syntax trees.

LLMs have achieved remarkable success across
a wide range of domains. Examples include
OpenAl’'s ChatGPT and Meta’s LLaMA,
illustrating rapid LLM progress. To further
enhance performance, techniques such as RAG and
prompt engineering are commonly adopted. With
no exception to their demonstrated success in
various fields, LLMs have also been applied to
software vulnerability detection. Existing methods
include both single-model and mixture-of-LLMs
approaches, often leveraging RAG for few-shot

context and prompt engineering to elicit stronger
reasoning from models (Widyasari et al., 2024).
Role-based simulation in LLMs has emerged as a
widely adopted technique to enhance task-specific
performance and decision-making (White et al.,
2023). MuCoLD assigns developers and security
testers roles to LLMs, so that they can
collaboratively identify software vulnerabilities
through multi-round discussions (Mao et al., 2024).

3 Methodology

3.1 Problem Description

This paper focuses on function-level binary
classification (Kluban et al., 2022; Fu et al., 2024),
where the goal is to determine whether a given
function contains security vulnerabilities. We
formulate the detection task as a mapping f': (X,Z;0)
— Y, where X represents the input source code, Z

denotes optional auxiliary information that may be
required by the model, 6 indicates the model
parameters and Y is the binary label with 1 for
vulnerable cases and 0 for non-vulnerable ones. In
this study, we investigate vulnerability detection
using a single LLM with fixed parameters 6, while
optionally incorporating additional information Z,
such as crafted prompts from prompt engineering
and retrieved evidence from RAG.

3.2 Proposed Framework

In this section, we present the sequential multi-
stage approach where the system architecture is
described in the Figure 1. Our main confidence-
and collaboration-based decision module (ConColl)
is composed of three stages, each progressively
incorporating more reasoning capability to handle
increasingly ambiguous cases.

Stage 1: Direct Prediction with Single LLM. At
this stage, we employ a single LLM with a task-
specific prompt (shown below) to perform binary
classification on the input source code. The model
is prompted to analyze the code and respond with
either “Yes” or “No” as the first generated token.
We define the confidence score (C.S.) as the
difference in predicted probabilities between the
top-1 and top-2 tokens at this initial position. If the
score exceeds a predefined threshold (th1) and the
top-1 token is either "Yes" or "No", the prediction
is accepted. Otherwise, the decision is deferred to a
more elaborate subsequent stage.

Promptnge: Is the following code vulnerable?
Respond with only 'Yes' or 'No'. \n\n {Source code}
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Question
Code Snippet
LO6_DEBUG(S, 'Extracting: '
<< path);
return
extract(*SystemUtilities: :oop
en(path));

Confidence and collaboration-based decision module (ConColl)

Is the following
code vulnerable?
Respond with only
"No'.

'Yes' or
{code_snippet}

Your task is to
assess whether the
provided code
contains any security
vulnerabilities.Here
are some examples:
{examples}

Is the following code
vulnerable? Respond
with only 'Yes' or
'No'. {code_snippet}

Figure 1: The system architecture.
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Is the following code
vulnerable? Respond
with only 'Yes' or
'No'. {code_snippet}

Stage 2: Retrieval-Augmented Prediction. If the
model fails to make a confident prediction in the
first stage, the system proceeds to a second stage
for further reasoning. In this stage, we retrieve
several semantically relevant positive and negative
examples from the training dataset based on the
input source code. These examples, along with the
original input, are then provided to the language
model to support its inference. The prompt used at
this stage is shown below. Similar to the first stage,
we compute the C.S. based on the probability
distribution over the model’s predicted tokens. If
the score exceeds a second predefined threshold
(th2) and the top-1 prediction corresponds to a
valid class label ("Yes" or "No"), the model's
decision is approved. Otherwise, the system is
routed to Stage 3 for further analysis.

Promptrac: Your task is to assess whether the
provided code contains any security vulnerabilities.
\n\n Here are some examples: \n\n {examples} \n\n
Is the following code vulnerable? Respond with
only "Yes' or 'No'. \n\n {Source_code}

Stage 3: Multi-Agent Collaboration. If the model
still lacks sufficient confidence after Stage 2, the
system proceeds to Stage 3, which employs a
multi-agent decision mechanism. In this stage,
multiple instances of the language model are
activated, each operating under slightly different
reasoning roles. These agents are provided with the
retrieved reference samples from Stage 2 as
contextual support. Each agent generates a
prediction based on its role-specific prompt. The

final decision is made through majority voting
across all agent outputs. We adopt three role
settings (security analyst, penetration tester and
software security engineer) and use the following
prompts.

Promptagen: You are a {role} and your task is to
assess whether the provided code contains any
security vulnerabilities. \n\n Here are some
examples: \n\n {examples} \n\n Is the following
code vulnerable? Respond with only "Yes' or 'No'.
\n\n {Source _code}

The complete process of our method is displayed
in Appendix A. Our LLM treats the test code, the
prompt, and relevant examples (if needed) as the
input for testing. The RetrieveRel function takes the
test code along with the training data to extract
relevant examples. The Joting function aggregates
the predictions from three agents and produces the
final result through majority voting.

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct our experiments using the publicly
available TreeVul Ext dataset, which comprises 20
open-source C/C++ software repositories (Zhou et
al.,, 2024). The dataset is composed of 7,683
training functions, 853 validation functions, and
386 test functions. Notably, we do not perform any
training or fine-tuning on the model. Instead, we
only adopt the RAG approach that retrieves
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semantically similar samples from the training set
to the target function under analysis.

We compare our model against several baseline
models using standard evaluation metrics,
including precision (Pre), recall (Rec), Fl-score
(F1), and accuracy (Acc). These metrics provide a
rigorous basis for comparing the predictive
performance across models.

4.2 Performance Evaluation

In this section, we compare our proposed model
with two categories of baseline methods on the
TreeVul_Ext. The first category includes LLM-
based approaches, such as GPT-3.5, LLaMA-3-8B,
Gemma-7B, Mixtral-8x7B, GPT-40, and an
ensemble voting method that aggregates their
predictions (Widyasari et al., 2024). The second
category consists of training-based models,
including  CodeBERT, CodeBERTa, and
GraphCodeBERT. The implementation details are
reported in Appendix B.

Model Acc Pre Rec Fi
GPT-3.5 62.7 | 76.3 | 36.8 | 49.7
LLaMA-3-8B 60.9 | 635 | 51.3 | 56.7
Gemma-7B 676 | 71.8 | 58.0 | 64.2
Mixtral-8x7B 63.2 | 73.4 | 415 | 53.0
GPT-40 674 | 668 | 689 | 67.9
Ensemble Voting | 68.4 | 75.2 | 54.9 | 63.5
CodeBERT 60.3 | 62.3 | 53.3 | 57.3
CodeBERTa 61.7 | 57.8 | 86.0 | 69.2
GraphCodeBERT | 59.0 | 56.9 | 74.6 | 64.5
Our Model 629 | 57.7 | 96.8 | 72.3
Table 1: Experimental results of different models (%).
As shown in Table 1, our model outperforms all
compared baselines in terms of F1-score. Among
the LLM-based approaches, GPT-40 achieves the
best performance, while CodeBERTa leads among
training-based methods. Our model surpasses
GPT-40 by 6.5% and CodeBERTa by 4.5% in F1-
score. Our model demonstrates a strong recall-
oriented behavior and achieves a recall as high as
96.8%. This suggests that the model is highly
sensitive to potential vulnerabilities, which makes
it particularly effective in minimizing false
negatives. In contrast, GPT-3.5 achieves the
highest precision among all methods (76.3%).
However, it also suffers from the lowest recall,
indicating a tendency to produce more
conservative predictions while missing a larger
number of actual vulnerabilities. Meanwhile, the
ensemble voting approach obtains the highest
accuracy among all methods (68.4%), although its

Fl-score remains lower than that of certain
individual LLMs (i.e., Gemma-7B and GPT-40).
Compared to single-pass inference using a
standalone LLM, our sequential framework
introduces additional latency due to its multi-stage
decision process. Specifically, the later stages, such
as retrieval-based reference sample generation and
multi-agent collaboration, involve multiple API
calls, which result in longer inference times. While
training-based methods may require significant
upfront computational costs, they often benefit
from faster runtime predictions, highlighting a
trade-off between adaptability and efficiency.

Several representative prediction cases are
presented Appendix C.
Model F1 Time Cost
Our Model 72.3% 6:15 $0.66
Stagel 70.4% 3:28 $0.15
Stage? 71.3% 4:20 $0.40
Stage3 72.5% 10:56 $1.13

Table 2: Performance of each stage vs. full model.

To evaluate the effectiveness and efficiency of
our proposed method, we conduct a study
comparing the individual stages with the complete
sequential model. The comparison includes
performance metrics as well as time and cost
expenditures. As shown in Table 2, while Stage 3
individually achieves the highest F1-score (72.5%),
it also requires the longest runtime (10:56) and the
highest computational cost ($1.13). This suggests
that although Stage 3 is the most effective in
isolation, it may not be practical in resource-
constrained scenarios. In comparison, our
sequential model integrates all stages and achieves
a near-optimal Fl-score (72.3%) while keeping
time and cost at moderate levels (6:15 and $0.66).
This indicates that the sequential design effectively
balances performance and efficiency.

Model Pre Rec F1
GPT Fine-Tuning| 0.37 0.32 0.34
GPT Few-Shot 0.43 0.44 0.43
CodeBERT 0.24 0.47 0.32
Our Model 0.31 0.73 0.44

Table 3: Evaluation results on the Kotlin dataset.

To test the applicability, we apply the model to a
low-resource programming language where Kotlin
serves as the test case. The dataset consists of 20
vulnerable functions and 98 non-vulnerable
functions (Le et al., 2024). Given the small data
size and class imbalance, we adopt a 10-round
evaluation strategy. In each round, the data is
randomly split into 60% for training, 20% for
validation, and 20% for testing. Final metrics are
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averaged over all rounds to ensure evaluation
reliability (shown in Table 3). Consistent with the
results on the TreeVul Ext dataset, our model
achieves the best Fl-score among all compared
methods, with recall remaining the most
outstanding. These results indicate the potential of
our sequential framework to generalize effectively,
even under low-resource conditions.

5 Conclusion and Future Work

This paper presents a preliminary exploration of a
sequential decision framework for cost-effective
software vulnerability detection using LLMs. Our
framework incrementally increases reasoning
complexity through three stages—direct prediction,
retrieval-augmented prediction, and multi-agent
collaboration—based on model confidence to
balance quality and cost. The results on both
benchmark datasets suggest that our method is a
potential alternative to existing models.

Although our model achieves promising results,
there remain several avenues for further
improvement. First, an adaptive confidence
thresholding mechanism can be explored to
improve the efficiency and flexibility of stage
transitions. Second, adding static analysis or
program semantics may improve detection of
certain vulnerabilities Lastly, the proposed
framework can be generalized to support cross-
language and cross-task applicability.

Limitations

This study has several limitations. First, our
approach has not been evaluated on large-scale
datasets, and future work is needed to assess its
scalability. Second, we used manually constructed
prompts without applying systematic optimization,
potentially leaving room for performance
improvements through prompt engineering. Third,
all experiments were conducted using ChatGPT,
and the effectiveness of the proposed method with
other large language models remains to be explored.

Al Assistants in Research or Writing
We used ChatGPT to correct grammatical errors
and polish the language.
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A Algorithm

Algorithm 1: Confidence- and Collaboration-based
Decision
Input: Training data {X%a",ytrain} Testing data
{Xtest ytest1 | anguage model LLM, thresholds thl,
th2.
Output: Predicted labels {ytest}.

1:  for each xfs* in X*s do

//Stage 1: Direct Prediction
predl, cs1=LLM(x}St, [Promptsingle, NONE])
if cs1>=th1;

yrest=pred1l

continue

-~

end if

8:  /IStage 2: Retrieval-Augmented Prediction
9:  RAG;i=RetrieveRel(x st xtrain ytrain)

10:  pred2, cs2=LLM(x}®st, [Promptrac, RAGI])
11 if cs2>=th2:

12:  grest=pred2

13:  continue

14: end if

15: //Stage 3: Multi-Agent Collaboration

16: predA, =LLM(x{**", [Promptagent, RAGI])
17: predB, _=LLM(x{**", [Promptggen, RAG])
18:  predC, _=LLM(x{**", [PromptSgen:, RAGH])
19:  §fest = Voting(predA, predB, predC )

20: end for

21: return ytest

B Implementation Details

All experiments are conducted on a Windows 10
operating system with an Intel Core 19 processor,
128 GB of RAM, and an NVIDIA GeForce RTX
3090 GPU with 24 GB of memory. For our
approach, we employ OpenAl's gpt-3.5-turbo as
the underlying LLM, whereas the training-based
baseline models are implemented using the
Hugging Face library.
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C Examples

Table 4 presents three representative examples where the final predictions are correct. These examples
respectively require one, two, and three stages of processing. For cases involving more than two stages,
we additionally report the intermediate predictions at each stage. However, the associated confidence
scores at these intermediate steps are not sufficiently reliable and should be interpreted with caution. For
clarity, in the table, 1 denotes a vulnerable case and 0 denotes a non-vulnerable case in both the Target and
Prediction columns.

Code snippet Stage |Prediction| Target
LOG_DEBUG(5, 'Extracting: ' << path);
1 1 1
return extract(*SystemUtilities::oopen(path));
if(flow->http.user_agent[0] !="0") 1 1
fprintf(out, [UserAgent: %s]', flow->http.user_agent); 1
} 2 1
static PyObject™ ast2obj_object(void *o) . .
{
if (lo)
o =Py None; 2 1 0
Py INCREF((PyObject*)o);
return (PyObject*)o; 3 0
j

Table 4: Representative prediction examples.
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