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Abstract 

While large language models (LLMs) have 

shown strong capabilities across diverse 

domains, their application to code 

vulnerability detection holds great potential 

for identifying security flaws and 

improving software safety. In this paper, we 

propose a sequential multi-stage approach 

via confidence- and collaboration-based 

decision making (ConColl). The system 

adopts a three-stage sequential 

classification framework, proceeding 

through a single agent, retrieval-augmented 

generation (RAG) with external examples, 

and multi-agent reasoning enhanced with 

RAG. The decision process selects among 

these strategies to balance performance and 

cost, with the process terminating at any 

stage where a high-certainty prediction is 

achieved. Experiments on a benchmark 

dataset and a low-resource language 

demonstrate the effectiveness of our 

framework in enhancing code vulnerability 

detection performance.  

1 Introduction 

As AI technologies continue to grow in popularity, 

with many projects developed in open-source 

environments, ensuring software quality and 

effectively identifying vulnerabilities has become 

increasingly important (Harzevili et al., 2024; 

Islam et al., 2024). To tackle vulnerability 

detection, researchers have applied machine 

learning and deep learning to identify security 

flaws in source code. While these approaches 

have achieved promising performance, most of 

them depend on either fine-tuning pre-trained 

models or training neural networks from scratch 

(Zhou et al., 2024). Large language models (LLMs) 

have recently achieved remarkable success across 

 
* Corresponding author 

a wide spectrum of tasks. Building on this 

progress, LLMs have emerged as a powerful tool 

for vulnerability detection and present a more 

promising alternative to traditional learning-based 

approaches (Shestov et al., 2025). However, 

despite their effectiveness, deploying LLMs for 

vulnerability detection in a practical setting raises 

significant concerns regarding efficiency, 

scalability and cost (Liu et al., 2025). 

In the context of LLM-based vulnerability 

detection, a cost-effective detection framework 

should aim to make accurate predictions with 

minimal computational and contextual overhead. 

Prior works have focused on optimizing static 

prompts (Zhang et al., 2023) or leveraging multiple 

LLMs of varying sizes to reduce computational 

cost (Chen et al., 2023). Nevertheless, these 

approaches may be impractical due to deployment 

complexity, model compatibility, and resource 

constraints. In this paper, we explore a cost-

effective alternative using a single LLM, where 

inference pathways are adaptively chosen based on 

internal confidence and collaborative signals. By 

progressively increasing reasoning complexity—

from direct single agent prediction, to retrieval-

augmented generation (RAG) with few samples, 

and finally to multi-agent collaboration—we 

enable efficient vulnerability detection while 

maintaining strong performance. This design 

avoids multi-LLM overhead and ensures consistent 

representations, while remaining generalizable to 

existing LLM-based detection pipelines. 

The main contributions of this paper can be 

outlined as follows. 

• We propose a single-LLM architecture that 

dynamically selects among direct 

classification by a single agent, retrieval-

augmented prediction, and multi-agent 

collaboration. The selection is guided by the 
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model’s internal confidence and 

collaborative signals. This adaptive pipeline 

improves cost-efficiency by applying simple 

reasoning to easy cases and reserving more 

complex methods for harder ones. 

• Experiments on the TreeVul_Ext benchmark 

dataset suggest that our method can achieve 

competitive detection performance while 

reducing computational overhead (Zhou et 

al., 2024). The framework also shows 

potential in handling low-resource languages 

and indicating its practicality in real-world 

applications (Le et al., 2024).  

2 Related Work 

In current machine learning applications for code 

vulnerability detection, deep learning architectures 

have become the dominant paradigm. For example, 

VulDeePecker employs a BiLSTM architecture to 

automatically learn vulnerability patterns from 

code gadgets without relying on manually crafted 

features (Li et al., 2018). Some approaches adopt 

hybrid architectures, such as CNN combined with 

Random Forest (Russell et al., 2018) and CNN-

BiLSTM (Gu et al., 2025), to leverage both 

syntactic and semantic feature extraction 

capabilities. Transformer architecture, originally 

designed for natural language processing, has 

proven highly effective in modeling context 

semantics (Vaswani et al., 2017). This architecture 

has been widely adopted in software vulnerability 

detection tasks. Notable Transformer-based models 

used in this domain include CodeBERT (Feng et al., 

2020), GraphCodeBERT (Guo et al., 2020), and 

CodeBERTa (Karmakar et al., 2021). CodeBERT 

and CodeBERTa learn joint representations of 

source code and natural language, while 

GraphCodeBERT extends this approach by 

incorporating data-flow information derived from 

abstract syntax trees. 

LLMs have achieved remarkable success across 

a wide range of domains. Examples include 

OpenAI’s ChatGPT and Meta’s LLaMA, 

illustrating rapid LLM progress. To further 

enhance performance, techniques such as RAG and 

prompt engineering are commonly adopted. With 

no exception to their demonstrated success in 

various fields, LLMs have also been applied to 

software vulnerability detection. Existing methods 

include both single-model and mixture-of-LLMs 

approaches, often leveraging RAG for few-shot 

context and prompt engineering to elicit stronger 

reasoning from models (Widyasari et al., 2024). 

Role-based simulation in LLMs has emerged as a 

widely adopted technique to enhance task-specific 

performance and decision-making (White et al., 

2023). MuCoLD assigns developers and security 

testers roles to LLMs, so that they can 

collaboratively identify software vulnerabilities 

through multi-round discussions (Mao et al., 2024). 

3 Methodology 

3.1 Problem Description 

This paper focuses on function-level binary 

classification (Kluban et al., 2022; Fu et al., 2024), 

where the goal is to determine whether a given 

function contains security vulnerabilities. We 

formulate the detection task as a mapping f : (X,Z;θ) 

→ Y, where X represents the input source code, Z 

denotes optional auxiliary information that may be 

required by the model, 𝜃 indicates the model 

parameters and Y is the binary label with 1 for 

vulnerable cases and 0 for non-vulnerable ones. In 

this study, we investigate vulnerability detection 

using a single LLM with fixed parameters 𝜃, while 

optionally incorporating additional information Z, 

such as crafted prompts from prompt engineering 

and retrieved evidence from RAG. 

3.2 Proposed Framework 

In this section, we present the sequential multi-

stage approach where the system architecture is 

described in the Figure 1. Our main confidence- 

and collaboration-based decision module (ConColl) 

is composed of three stages, each progressively 

incorporating more reasoning capability to handle 

increasingly ambiguous cases. 

Stage 1: Direct Prediction with Single LLM. At 

this stage, we employ a single LLM with a task-

specific prompt (shown below) to perform binary 

classification on the input source code. The model 

is prompted to analyze the code and respond with 

either “Yes” or “No” as the first generated token. 

We define the confidence score (C.S.) as the 

difference in predicted probabilities between the 

top-1 and top-2 tokens at this initial position. If the 

score exceeds a predefined threshold (th1) and the 

top-1 token is either "Yes" or "No", the prediction 

is accepted. Otherwise, the decision is deferred to a 

more elaborate subsequent stage. 

Promptsingle: Is the following code vulnerable? 

Respond with only 'Yes' or 'No'. \n\n {Source_code} 
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Figure 1: The system architecture. 

 

Stage 2: Retrieval-Augmented Prediction. If the 

model fails to make a confident prediction in the 

first stage, the system proceeds to a second stage 

for further reasoning. In this stage, we retrieve 

several semantically relevant positive and negative 

examples from the training dataset based on the 

input source code. These examples, along with the 

original input, are then provided to the language 

model to support its inference. The prompt used at 

this stage is shown below. Similar to the first stage, 

we compute the C.S. based on the probability 

distribution over the model’s predicted tokens. If 

the score exceeds a second predefined threshold 

(th2) and the top-1 prediction corresponds to a 

valid class label ("Yes" or "No"), the model's 

decision is approved. Otherwise, the system is 

routed to Stage 3 for further analysis. 

PromptRAG: Your task is to assess whether the 

provided code contains any security vulnerabilities. 

\n\n Here are some examples: \n\n {examples} \n\n 

Is the following code vulnerable? Respond with 

only 'Yes' or 'No'. \n\n {Source_code} 

Stage 3: Multi-Agent Collaboration. If the model 

still lacks sufficient confidence after Stage 2, the 

system proceeds to Stage 3, which employs a 

multi-agent decision mechanism. In this stage, 

multiple instances of the language model are 

activated, each operating under slightly different 

reasoning roles. These agents are provided with the 

retrieved reference samples from Stage 2 as 

contextual support. Each agent generates a 

prediction based on its role-specific prompt. The 

final decision is made through majority voting 

across all agent outputs. We adopt three role 

settings (security analyst, penetration tester and 
software security engineer) and use the following 

prompts. 

Promptagent: You are a {role} and your task is to 

assess whether the provided code contains any 

security vulnerabilities. \n\n Here are some 

examples: \n\n {examples} \n\n Is the following 

code vulnerable? Respond with only 'Yes' or 'No'. 

\n\n {Source_code} 

The complete process of our method is displayed 

in Appendix A. Our LLM treats the test code, the 

prompt, and relevant examples (if needed) as the 

input for testing. The RetrieveRel function takes the 

test code along with the training data to extract 

relevant examples. The Voting function aggregates 

the predictions from three agents and produces the 

final result through majority voting. 

4 Experiments 

4.1 Dataset and Evaluation Metrics 

We conduct our experiments using the publicly 

available TreeVul_Ext dataset, which comprises 20 

open-source C/C++ software repositories (Zhou et 

al., 2024). The dataset is composed of 7,683 

training functions, 853 validation functions, and 

386 test functions. Notably, we do not perform any 

training or fine-tuning on the model. Instead, we 

only adopt the RAG approach that retrieves 
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semantically similar samples from the training set 

to the target function under analysis. 

We compare our model against several baseline 

models using standard evaluation metrics, 

including precision (Pre), recall (Rec), F1-score 

(F1), and accuracy (Acc). These metrics provide a 

rigorous basis for comparing the predictive 

performance across models. 

4.2 Performance Evaluation 

 In this section, we compare our proposed model 

with two categories of baseline methods on the 

TreeVul_Ext. The first category includes LLM-

based approaches, such as GPT-3.5, LLaMA-3-8B, 

Gemma-7B, Mixtral-8x7B, GPT-4o, and an 

ensemble voting method that aggregates their 

predictions (Widyasari et al., 2024). The second 

category consists of training-based models, 

including CodeBERT, CodeBERTa, and 

GraphCodeBERT. The implementation details are 

reported in Appendix B. 

Table 1:  Experimental results of different models (%). 

As shown in Table 1, our model outperforms all 

compared baselines in terms of F1-score. Among 

the LLM-based approaches, GPT-4o achieves the 

best performance, while CodeBERTa leads among 

training-based methods. Our model surpasses 

GPT-4o by 6.5% and CodeBERTa by 4.5% in F1-

score. Our model demonstrates a strong recall-

oriented behavior and achieves a recall as high as 

96.8%. This suggests that the model is highly 

sensitive to potential vulnerabilities, which makes 

it particularly effective in minimizing false 

negatives. In contrast, GPT-3.5 achieves the 

highest precision among all methods (76.3%). 

However, it also suffers from the lowest recall, 

indicating a tendency to produce more 

conservative predictions while missing a larger 

number of actual vulnerabilities. Meanwhile, the 

ensemble voting approach obtains the highest 

accuracy among all methods (68.4%), although its 

F1-score remains lower than that of certain 

individual LLMs (i.e., Gemma-7B and GPT-4o). 

Compared to single-pass inference using a 

standalone LLM, our sequential framework 

introduces additional latency due to its multi-stage 

decision process. Specifically, the later stages, such 

as retrieval-based reference sample generation and 

multi-agent collaboration, involve multiple API 

calls, which result in longer inference times. While 

training-based methods may require significant 

upfront computational costs, they often benefit 

from faster runtime predictions, highlighting a 

trade-off between adaptability and efficiency. 

Several representative prediction cases are 

presented Appendix C. 

Model F1 Time Cost 

Our Model 72.3% 6:15 $0.66 

Stage1 70.4% 3:28 $0.15 

Stage2 71.3% 4:20 $0.40 

Stage3 72.5% 10:56 $1.13 

Table 2:  Performance of each stage vs. full model. 

To evaluate the effectiveness and efficiency of 

our proposed method, we conduct a study 

comparing the individual stages with the complete 

sequential model. The comparison includes 

performance metrics as well as time and cost 

expenditures. As shown in Table 2, while Stage 3 

individually achieves the highest F1-score (72.5%), 

it also requires the longest runtime (10:56) and the 

highest computational cost ($1.13). This suggests 

that although Stage 3 is the most effective in 

isolation, it may not be practical in resource-

constrained scenarios. In comparison, our 

sequential model integrates all stages and achieves 

a near-optimal F1-score (72.3%) while keeping 

time and cost at moderate levels (6:15 and $0.66). 

This indicates that the sequential design effectively 

balances performance and efficiency.  

Model Pre Rec F1 

GPT Fine-Tuning 0.37 0.32 0.34 

GPT Few-Shot 0.43 0.44 0.43 

CodeBERT 0.24 0.47 0.32 

Our Model 0.31 0.73 0.44 

Table 3: Evaluation results on the Kotlin dataset. 

To test the applicability, we apply the model to a 

low-resource programming language where Kotlin 

serves as the test case. The dataset consists of 20 

vulnerable functions and 98 non-vulnerable 

functions (Le et al., 2024). Given the small data 

size and class imbalance, we adopt a 10-round 

evaluation strategy. In each round, the data is 

randomly split into 60% for training, 20% for 

validation, and 20% for testing. Final metrics are 

Model Acc Pre Rec F1 

GPT-3.5 62.7 76.3 36.8 49.7 

LLaMA-3-8B 60.9 63.5 51.3 56.7 

Gemma-7B 67.6 71.8 58.0 64.2 

Mixtral-8x7B 63.2 73.4 41.5 53.0 

GPT-4o 67.4 66.8 68.9 67.9 

Ensemble Voting 68.4 75.2 54.9 63.5 

CodeBERT 60.3 62.3 53.3 57.3 

CodeBERTa 61.7 57.8 86.0 69.2 

GraphCodeBERT 59.0 56.9 74.6 64.5 

Our Model 62.9 57.7 96.8 72.3 
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averaged over all rounds to ensure evaluation 

reliability (shown in Table 3). Consistent with the 

results on the TreeVul_Ext dataset, our model 

achieves the best F1-score among all compared 

methods, with recall remaining the most 

outstanding. These results indicate the potential of 

our sequential framework to generalize effectively, 

even under low-resource conditions. 

5 Conclusion and Future Work 

This paper presents a preliminary exploration of a 

sequential decision framework for cost-effective 

software vulnerability detection using LLMs. Our 

framework incrementally increases reasoning 

complexity through three stages—direct prediction, 

retrieval-augmented prediction, and multi-agent 

collaboration—based on model confidence to 

balance quality and cost. The results on both 

benchmark datasets suggest that our method is a 

potential alternative to existing models. 

Although our model achieves promising results, 

there remain several avenues for further 

improvement. First, an adaptive confidence 

thresholding mechanism can be explored to 

improve the efficiency and flexibility of stage 

transitions. Second, adding static analysis or 

program semantics may improve detection of 

certain vulnerabilities Lastly, the proposed 

framework can be generalized to support cross-

language and cross-task applicability. 

Limitations 

This study has several limitations. First, our 

approach has not been evaluated on large-scale 

datasets, and future work is needed to assess its 

scalability. Second, we used manually constructed 

prompts without applying systematic optimization, 

potentially leaving room for performance 

improvements through prompt engineering. Third, 

all experiments were conducted using ChatGPT, 

and the effectiveness of the proposed method with 

other large language models remains to be explored. 

AI Assistants in Research or Writing 

We used ChatGPT to correct grammatical errors 

and polish the language. 
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A Algorithm 

Algorithm 1: Confidence- and Collaboration-based 

Decision  

Input: Training data {Xtrain, Ytrain }, Testing data 

{Xtest, Ytest}, Language model LLM, thresholds th1, 

th2. 

Output: Predicted labels {ŷtest}. 

1: for each xi
test in Xtest do 

2:   //Stage 1: Direct Prediction 

3:   pred1, cs1=LLM(xi
test, [Promptsingle, None]) 

4:   if cs1>=th1: 

5:     ŷi
test=pred1 

6:     continue 

7:   end if 

8:   //Stage 2: Retrieval-Augmented Prediction 

9:   RAGi=RetrieveRel(xi
test, Xtrain, Ytrain) 

10:   pred2, cs2=LLM(xi
test, [PromptRAG, RAGi]) 

11:   if cs2>=th2: 

12:     ŷi
test=pred2 

13:     continue 

14:   end if 

15:   //Stage 3: Multi-Agent Collaboration 

16:   predA, _=LLM(xi
test, [Promptagent

A , RAGi]) 

17:   predB, _=LLM(xi
test, [Promptagent

B , RAGi]) 

18:   predC, _=LLM(xi
test, [Promptagent

C , RAGi]) 

19:   ŷi
test = Voting(predA, predB, predC ) 

20: end for 

21: return ŷtest 

B Implementation Details 

All experiments are conducted on a Windows 10 

operating system with an Intel Core i9 processor, 

128 GB of RAM, and an NVIDIA GeForce RTX 

3090 GPU with 24 GB of memory. For our 

approach, we employ OpenAI's gpt-3.5-turbo as 

the underlying LLM, whereas the training-based 

baseline models are implemented using the 

Hugging Face library. 
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C Examples 

Table 4 presents three representative examples where the final predictions are correct. These examples 

respectively require one, two, and three stages of processing. For cases involving more than two stages, 

we additionally report the intermediate predictions at each stage. However, the associated confidence 

scores at these intermediate steps are not sufficiently reliable and should be interpreted with caution. For 

clarity, in the table, 1 denotes a vulnerable case and 0 denotes a non-vulnerable case in both the Target and 

Prediction columns.  
 

Code snippet Stage Prediction Target 

  LOG_DEBUG(5, 'Extracting: ' << path); 

 

  return extract(*SystemUtilities::oopen(path)); 

1 1 1 

    if(flow->http.user_agent[0] != '\0') 

      fprintf(out, '[UserAgent: %s]', flow->http.user_agent); 

  } 

1 1 
1 

2 1 

static PyObject* ast2obj_object(void *o) 

{ 

    if (!o) 

        o = Py_None; 

    Py_INCREF((PyObject*)o); 

    return (PyObject*)o; 

} 

1 1 

0 2 1 

3 0 

Table 4:  Representative prediction examples. 
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