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Abstract

In this work, we present sequence-driven struc-
tural causal models (SD-SCMs), a framework
for specifying causal models with user-defined
structure and language-model-defined mecha-
nisms. We characterize how an SD-SCM en-
ables sampling from observational, interven-
tional, and counterfactual distributions accord-
ing to the desired causal structure. We then
leverage this procedure to propose a new type
of benchmark for causal inference methods,
generating individual-level counterfactual data
to test treatment effect estimation. We create an
example benchmark consisting of thousands of
datasets, and test a suite of popular estimation
methods for average, conditional average, and
individual treatment effect estimation. We find
under this benchmark that (1) causal methods
outperform non-causal methods and that (2)
even state-of-the-art methods struggle with in-
dividualized effect estimation, suggesting this
benchmark captures some inherent difficulties
in causal estimation. Apart from generating
data, this same technique can underpin the au-
diting of language models for (un)desirable
causal effects, such as misinformation or dis-
crimination. We believe SD-SCMs can serve
as a useful tool in any application that would
benefit from sequential data with controllable
causal structure.

1 Introduction

Reasoning about counterfactuals plays a fundamen-
tal role in understanding cause and effect, both in
theory and in practice. Unfortunately, counterfactu-
als are also fundamentally unobservable (Holland,
1985) and must always be simulated. In this work,
we leverage language models (LMs) to help simu-
late counterfactual data in a user-controlled manner.
To achieve this, we borrow the conditional distribu-
tions of a pre-trained LM in order to parameterize a
structural causal model, based on an input directed
acyclic graph (DAG) over variables expressed in

Figure 1: Illustration of a sequence-driven structural
causal model (SD-SCM), which uses a language model
to sample data according to a user-specified DAG. Any
variables whose values are sampled from the language
model will potentially share the language model as a
common cause (dashed arrows), unless sampled manu-
ally, e.g., uniformly.

natural language. This procedure allows us to sim-
ulate true counterfactual data — to observe both
potential outcomes — but, crucially, without man-
ually specifying functional relationships between
variables. Instead, the specification of structural
equations becomes data-driven. We explore how
this data-driven approach can enable the specifi-
cation of causal models for complex settings with
less reliance on human expertise or creativity to
manually specify relationships between variables.

Many use-cases are possible for sequential data
(like text) with controllable causal structure. The
main use-case we explore in this work is the devel-
opment of a new type of benchmark for causal infer-
ence — a benchmark for conditional average and in-
dividual treatment effect estimation, where neither
the counterfactual outcomes ỹ nor the treatment
assignments t̃ are manually generated. This stands
in contrast to existing causal inference benchmarks
that must always manually generate ỹ or t̃, even if
covariates are based on real data (see, e.g., Louizos
et al. (2017)). We find that data generated using our
procedure is indeed useful for this task and chal-
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Figure 2: Toy example showing SD-SCMs that use GPT-2 (Radford et al., 2019) to generate observational and
counterfactual data corresponding to user-specified DAGs. In one case, the red node (weather, w̃) is a confounder.
In the other case, w̃ is a collider. Plots on the right show that despite possible effects from dashed arrows, and DAGs
that may contradict what we expect to happen in the real world, the generated data are indeed consistent with w̃ as a
confounder or a collider.

lenges state-of-the-art estimation methods across
both conditional average treatment effect (CATE)
and individual treatment effect (ITE)1 estimation.

1.1 Contribution.
1. We define a procedure for turning any lan-

guage model and DAG into a sequence-
driven structural causal model (SD-SCM).
Section 3 characterizes how an SD-SCM pro-
vides access to observational, interventional,
and counterfactual distributions over sequen-
tial data according to the desired DAG.

2. In Section 4, we use SD-SCMs to create an
example benchmark for causal effect es-
timation and test a suite of popular estima-
tion methods across CATE and ITE estimation.
We find that our benchmark challenges state-
of-the-art estimation methods. All benchmark
datasets as well as code for SD-SCM-based
data generation is available on GitHub.2

3. Section 5 demonstrates how this same tech-
nique can underpin auditing language mod-
els for (un)desirable causal effects.

Before describing our framework formally, we pro-
vide a toy example that illustrates the main points.

Example 1 (Improving your marathon time at the
gym). In this toy example, we use a language
model to sample observational and counterfac-
tual data corresponding to two imagined scenar-
ios, each represented by a DAG. The variables we

1It is common to draw no distinction between ITEs and
CATEs (Vegetabile, 2021), but we emphasize these two quan-
tities as distinct: the CATE is the conditional expectation of
the ITE, which typically will not explain all ITE variation (Lei
and Candès, 2020).

2https://github.com/lbynum/
sequence-driven-scms

consider will be represented via sets of sequences,
where each set can be viewed as a sample space:

• ũ1 sample space: “My name is x.” for all x P
{John, Jane, Alice, Bob, Charlie}

• ũ2 sample space: “I have a friend named x.”
for all x P {John, Jane, Alice, Bob, Charlie}

• weather (w̃) sample space: “The weather
outside is x.” for all x P {sunny, rainy, snowy,
cold, hot}

• gymOrRun (g̃) sample space: “I owe it to my-
self to go x.” for x P {to the gym, for a run
outside}

• marathonTime (m̃) sample space: “After this,
my marathon time will x." for x P {improve,
worsen}

The difference between the two scenarios is what
we choose to do with the weather variable w̃. In
the first case, we choose DAG G1 where w is a
confounder (ũ1 Ñ g̃ Ð w̃ Ñ m̃ Ð ũ2). In the
second case, we choose DAG G2 where w̃ is instead
a collider (ũ1 Ñ g̃ Ñ w̃ Ð m̃ Ð ũ2). Notice
we have full control over the DAG we choose,
regardless of what we might expect to happen in the
real world or be encoded by the language model
(where, for example, we would not expect going
to the gym to have any impact on the weather).
Each of these DAGs, by definition, induces a cor-
responding factorization of the joint distribution
across the 5 variables. The factorization for G1

is P pg̃|w̃, ũ1qP pm̃|w̃, ũ2qP pw̃qP pũ1qP pũ2q
and the factorization for G2 is
P pw̃|g̃, m̃qP pg̃|ũ1qP pm̃|ũ2qP pũ1qP pũ2q.

Simulating an observational study: Our proce-
dure will use a language model to define each of
these conditional distributions, instead of defining
them manually. In order to observe data that fol-
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lows the correct structure, we iteratively sample
each variable in ancestral order according to the
desired DAG, allowing each variable to see only
the text of its parents as input. Doing this allows
us to use whatever correlations the language model
has encoded to define structural equations. For ex-
ample, to sample a single observation correspond-
ing to G1, the following five phrases (one for each
covariate) are sampled using the language model,
where [bracketed text] is filled in by querying the
model across the corresponding sample space:

• ũ1 sample: “My name is [Charlie].”
• ũ2 sample: “I have a friend named [Alice].”
• w̃ sample: “The weather outside is [cold].”
• g̃|ũ1, w̃ sample: “My name is Charlie. The

weather outside is cold. I owe it to myself to
go [to the gym].”

• m̃|ũ2, w̃ sample: “I have a friend named Al-
ice. The weather outside is cold. After this,
my marathon time will [improve].”

These five text completions correspond to a single
observation, where possible values in each sam-
ple space are represented by their index. In other
words, we have just observed the data point (ũ1, ũ2,
w̃, g̃, m̃) = (4, 2, 3, 0, 0) sampled using DAG G1.
Figure 2 shows the result of repeating this process
for 1000 observations with G1 and 1000 observa-
tions with G2 using GPT-2 (Radford et al., 2019)
as the language model. For G1, we would expect
the magnitude of correlation ρ between P pg̃ “ 1q
and P pm̃ “ 1q to decrease if we condition on con-
founder w̃. By contrast, for G2, where w̃ is instead
a collider, we would expect the magnitude of ρ to
instead increase if we condition on w̃. Figure 2
shows that this is indeed the case — our sampled
data reflects the desired causal structure.

Simulating counterfactual data: We can use a
similar procedure to simulate interventions instead
of observations: we intervene by manually setting
an action (in this case, the value of covariate g̃),
and we create a counterfactual outcome by ad-
ditionally setting exogenous variables ũ1, ũ2 and
any observed non-descendants of g̃ — tw̃u for G1

and H for G2. In Section 3, we formally define the
correspondence of this process to counterfactual
versus interventional distributions. This allows us
to directly simulate a counterfactual outcome for
each of the observed units, choosing g̃ “ 1 or
g̃ “ 0 during sampling to generate each unit’s po-
tential outcomes. We can then, for example, test
how well a treatment effect estimation method will
perform if the estimation method is given only the

observational data, i.e., data without any interven-
tion. The right side of Figure 2 shows prediction
error in standard deviation units when using a ran-
dom forest to predict the sample average treatment
effect (SATE) with P pm̃ “ 1q as the outcome, ei-
ther using treatment g̃ as the only covariate, or
using both g̃ and w̃. As we would expect, including
a confounder leads to more accurate effect esti-
mation, while including a collider does not. This
demonstrates in a simple way the utility of con-
trolled causal data generation — we can bench-
mark effect estimation approaches in different set-
tings of interest.

Benchmarking CATE and ITE estimation:
Many realistic datasets exist for benchmarking es-
timation of average treatment effects (ATEs), be-
cause ATEs are often feasible to isolate with proper
study design. However, there is a lack of such data
for benchmarking CATE and ITE estimation, where
either the outcomes or treatment assignments must
always be manually generated. The key benefit of
simulating data this way is that individual-level
counterfactual data are observable and control-
lable. This allows us to not only test ATE estimation
methods like in Figure 2, but more importantly to
benchmark individual-level effect estimation.

In the remaining sections, we formalize our pro-
cedure beyond this toy example and demonstrate
how it can be used to generate more complex data
that challenges state-of-the-art causal inference
methods across both CATE and ITE estimation.

2 Related work

Causal inference benchmarks and evaluation.
Curth et al. (2021) lay out four categories of
commonly-used methods for semi-synthetic data
generation with known causal effects: (1) sim-
ulating treatment effects using real baseline out-
comes (Knaus et al., 2021); (2) using real covari-
ates but simulating response surfaces (Wendling
et al., 2018; Franklin et al., 2014; Hill, 2011);
(3) performing biased sampling of randomized
data (Gentzel et al., 2021; Dehejia and Wahba,
1999); and (4) constructing (proxies of) counter-
factuals and interventions from real or empirical
data (Louizos et al., 2017; Gentzel et al., 2019).
The paradigm of fitting models to real data and
then sampling synthetic data from the fit models
is common in many works (Schuler et al., 2017;
Neal et al., 2020). In this area, the most closely
related works to ours in spirit are those that fit
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generative models to real datasets such that treat-
ments, outcomes, and covariates — in effect, en-
tirely new datasets — can be sampled, such as
Athey et al. (2024) and Neal et al. (2020). While
such methods are similar in that they rely on gen-
erative models, they are fundamentally different
from ours, as they are based on individual datasets
that already exist (and already have a fixed causal
structure), rather than allowing for arbitrary causal
structures to be imagined by a user and then param-
eterized by a generative model. Our setup is akin
to a high-fidelity simulation environment (McDuff
et al., 2022) that provides empirical counterfactual
data (Gentzel et al., 2019), but without needing
to manually design all aspects of the simulation,
and in a manner that is instead based on natural
language. This work is also loosely related to
methods that parameterize structural causal models
(SCMs) with generative models or other deep learn-
ing components, such as Pawlowski et al. (2020);
Sanchez and Tsaftaris (2022), but such methods are
geared towards counterfactual inference and learn-
ing causal relationships from existing data, rather
than flexible data generation.

Language models and causal inference. Our
work is not the first to suggest that language mod-
els can generate outputs that have casual structure.
Many works aim to augment language models with
the ability to generate counterfactual data (Chatzi
et al., 2024; Li et al., 2023; Betti et al., 2023; Hao
et al., 2021; Gat et al., 2023). Counterfactuals and
causal reasoning are useful across various natu-
ral language processing (NLP) tasks, making this
capability of particular interest for ongoing LM
research (Wang et al., 2024), and language models
with causal reasoning capabilities have a wide va-
riety of applications both within and beyond NLP
(Vashishtha et al., 2023; Jin et al., 2023a; Zecevic
et al., 2023; Liu et al., 2024; Feder et al., 2021;
Kıcıman et al., 2023; Jin et al., 2023b; Gat et al.,
2023). We are also not the first to point out that
counterfactual data generation with language mod-
els is useful for understanding the internal ‘world
model’ constructed by an LM and auditing for bias
(Fryer et al., 2022). The most similar works to ours
that we know of are the contemporaneous works
Chatzi et al. (2024) and Ravfogel et al. (2024),
which also model counterfactuals in LMs using
SCMs. These works focus on how to generate
counterfactual strings after network interventions
within the LM itself. To achieve this, they leverage

the Gumbel-Max trick to infer the noise respon-
sible for generating an input and reuse the same
noise (or an inferred noise distribution) to gener-
ate a corresponding counterfactual output. Our
work is fundamentally different in two key ways.
First, we consider semantic interventions rather
than network interventions, i.e., modeling causal
relationships and counterfactuals all within a se-
mantically meaningful simulation based on a fixed
LM. Second, we control the causal structure of the
data generation process, taking a DAG as input and
generating data according to that DAG.

In more general terms, we focus on how to gen-
erate data given a desired causal structure. This
capability has important use-cases for downstream
tasks like the ones we demonstrate here — gen-
erating treatment effects to benchmark effect es-
timation methods and testing for encoded effects.
But more broadly, we provide a generalization of
how sequence data and structural causal models
can be combined in order to flexibly generate ob-
servational, interventional, and counterfactual data
for whatever purpose it might be useful.

3 Controlled causal data generation via
language model

In this section, we briefly describe how SD-SCMs
enable sampling from observational, interventional,
and counterfactual distributions according to the
desired causal structure. The full set of definitions,
notation, and algorithms for SD-SCMs using struc-
tural causal models can be found in Appendix A.

We define a sequence variable x̃ as a random
variable whose sample space Ωx̃ is a set of se-
quences. We then define an SD-SCM as a 5-
tuple B “ pV,U,G,P, τq, where V is a set
of finite-domain endogenous/observed sequence
variables and U a set of finite-domain exoge-
nous/unobserved sequence variables; G is a DAG
over the variables x̃i in V Y U where PAi Ď
pV Y Uq ztx̃iu; P is a language model trained on
prior inputs C whose vocabulary V contains all
tokens used in ΩV,ΩU; and τ is an arbitrary fixed
topological ordering of V Y U consistent with G.

The general procedure for sampling data from an
SD-SCM relies on two simple ideas: (1) creating
concatenated prior inputs for each variable using
only the sequences of its parents, which we term
parent-only concatenation, and (2) restricting the
domain of the LM over the current variable’s sam-
ple space, termed domain-restricted sampling.
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Sampling proceeds in topological order according
to τ , which is required in order to break ties be-
tween parents, since LMs can be sensitive to even
small changes in phrasing. The key difference be-
tween an SCM and an SD-SCM is that all variables
have at least one common ancestor — the prior in-
puts C that were used to train the language model.3

Observational samples. Observational data are
sampled using parent-only concatenation and
domain-restricted sampling for each variable ac-
cording to τ (Appendix A.2).

Interventional samples. The sequence-driven in-
terventional distribution, given dopṽi “ vq as the
intervention, samples data in the same manner as
observational sampling, but now with variable ṽi re-
placed by value v during sampling (Definition A.8).

Algorithm 1 A single SD-SCM sample from the
counterfactual distribution given observation sobs

Inputs: sobs “ `
u1, . . . , u|U|, v1, . . . , v|V|

˘

dopṽi “ vq,B “ pV,U,G,Pp¨q, τq
Returns: s˚ “

´
u1, . . . , u|U|, v1̊ , . . . , v˚

|V|
¯

s˚ Ð pu1, . . . , u|U|q
NDi Ð non-descendants of ṽi in G
for x̃t P τzU do

if x̃t ” ṽi then
xt Ð v

end
else if x̃t P NDi then

xt Ð sobsrts
end
else

PAτ Ð tt1 : x̃t1 P PAx̃tu ordered by τ

xPAτ Ð À
xPs˚rPAτ s x

px̃t Ð rs
for k P 1, . . . , |Ωx̃t | do

x Ð Ωx̃trks
px̃trks Ð P pxPAτ ‘ xq

end
Ptot Ð ř

k px̃trks
j „ Multinomialppx̃t{Ptotq
xt Ð Ωx̃trjs

end
appendps˚, xtq

end
return s˚

3It would also be possible to train an LM to induce distri-
butions over the desired variables given this setup, which we
leave to future work.

Counterfactual samples. Counterfactual sam-
ples require some additional steps. In order to
admit unique answers to counterfactual queries, we
define abduction for an SD-SCM given evidence
Z “ z as the setting of values U “ u as well as
any evidence in Z upstream of the intervention. In
order to obtain such values u, one needs access
to more than just the endogenous variables V and
language model P — obtaining u requires per-
forming bookkeeping during the data generation
process.4 Because our primary application of SD-
SCMs in this work is data generation, such book-
keeping is possible in all our use cases. Algorithm 1
shows our procedure for sampling a counterfactual
for intervention dopṽi “ vq given observed unit
sobs “ `

u1, . . . , u|U|, v1, . . . , v|V|
˘

(see also Defi-
nition A.9 for additional discussion).

4 Generating a benchmark for causal
effect estimation

To design an SD-SCM-generated benchmark, we
focus on the fully sequential DAG structure shown
in Figure 3a. Exogenous variables U precede co-
variates X, which in turn precede treatment t̃. All
variables precede outcome ỹ. Recall that the pres-
ence of an edge in a DAG allows for the possibil-
ity of a relationship, but it is the structural equa-
tions that determine whether or not a given rela-
tionship is meaningful. The strongest assumptions
encoded by a DAG, then, are those edges that are
not present. Our goal here is to have a language
model P make as many ‘decisions’ about the data
generating process as possible. We thus choose this
fully-connected structure as a means of letting P
define whichever structural equations are meaning-
ful or not given a topological order, and focus on
the edge t̃ Ñ ỹ as the target for effect estimation.
The key criterion we consider for a useful bench-
mark is that the datasets we generate require the use
of causal reasoning (e.g., controlling for confound-
ing) to recover the effect of t̃ on ỹ. Specifically, we
aim to generate data for which the observational
and interventional distributions are different, i.e.,
PB
ỹ|t̃“t

‰ P
B;dopt̃“tq
ỹ . This criterion is not directly

in our control given a fixed language model P .5

However, even with fixed P and a fixed DAG, we
4This is a restatement of the fact that computing point coun-

terfactuals in SCMs requires causal mechanisms that are in-
vertible with respect to the noise variables in order to uniquely
reconstruct the noise that produced a given observation.

5We discuss applications of this same idea to training a
model in Section 6.
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(a) (b)

Figure 3: (a) A useful DAG structure for an SD-SCM-generated estimation benchmark. (b) Visual depiction of the
structure in (a) used to create the breast cancer SD-SCM in Section 4.1.

find we are able to achieve it through our choice of
sample spaces ΩU, ΩX, Ωt̃, Ωỹ.

4.1 Breast cancer SD-SCM

We define an SD-SCM over 14 variables in order
to explore the effect of a tumor’s PD-L1 expression
levels on different breast cancer therapy plans. Our
goal with this SD-SCM is to induce causal structure
that can challenge estimation algorithms. Covari-
ates in the breast cancer SD-SCMs are defined in
full detail in Appendix B and correspond to the
DAG in Figure 3b. For each covariate, 10 differ-
ent phrasings are considered, resulting in a sample
space of 1014 possible sequences.6 We consider
50 different SD-SCM variations, where the sample
space for a given SD-SCM is defined by choosing
a randomly sampled phrasing from among the pos-
sible phrasings for each of the 14 covariates. Then,
for each of the 50 SD-SCMs, 20 datasets of size
1,000 are sampled, for a total of 1,000 datasets per
language model. We show results for GPT-2 (Rad-
ford et al., 2019) and Llama-3-8b (Dubey et al.,
2024), but we emphasize that the language model
is a fully modular component, and thus other lan-
guage models can be used. For the results shown
here, we use logPpỹ “ 0q as the outcome, as there
are frequently individual-level effects in probabil-
ity space. See Appendix B for example plots of
features, propensity scores, and ITE distributions
of the generated data using different possible out-
comes. We find that how similar PB;dopt̃“tq

ỹ is to
PB
ỹ|t̃“t

varies across SD-SCMs, which we explore
further by comparing the performance of observa-
tional versus casual estimation approaches.

4.2 Effect estimation results

We compare the performance of several effect es-
timation algorithms. As a naive baseline, ordinary

6Language models are also used to generate the phrasings,
but we leave full automation of this process to future work.

least squares using only the treatment t̃ is consid-
ered (T-Only OLS). Against this baseline, we con-
sider several causal inference methods of differ-
ent types, including the causal forest (Wager and
Athey, 2018; Athey et al., 2019) (CausalForest)
and two double machine learning methods for
CATE estimation, one linear (LinearDML) and
one non-parametric (ForestDML) (Chetverikov
et al., 2016; Athey et al., 2019; Nie and Wa-
ger, 2021; Chernozhukov et al., 2017; Foster and
Syrgkanis, 2023; Mackey et al., 2018; Battocchi
et al., 2019). We also include two doubly robust
meta-learning methods (Künzel et al., 2019), again,
one linear (LinearDR) and one non-parametric
(ForestDR), and add Bayesian additive regression
trees (BART) (Hill, 2011; Chipman et al., 2008) as
a widely-used Bayesian non-parametric example.
To represent simpler methods we include linear and
non-parametric S- and T-learners (LinearS, Lin-
earT, ForestS, ForestT). As points of reference
for NN-based CATE estimation methods, we in-
clude an NN-based T-learner (TNet), and the NN-
based TARNet (Shalit et al., 2017). Additional
baselines include a random forest baseline (RF)
that fits a single response surface and directly pre-
dicts treatment effects for each unit, and a linear
regression baseline (LinReg) that takes the con-
ditional mean difference (the fit coefficient on t̃)
to be the effect. Finally, we include two meth-
ods that target ITEs specifically. One method uses
BART posterior draws specifically for ITEs instead
of CATEs (BART-ITE), and the other is confor-
malized counterfactual quantile regression (CQR)
(Lei and Candès, 2020), which provides conformal
inference-based interval estimates of ITEs.

All methods are fit using the default settings of
their publicly-available implementations.7 While

7The causal forest, DML, and DR implementations are pro-
vided by (Battocchi et al., 2019), the BART methods by (Dorie
and Hill, 2020), the NN-based methods by (Curth et al., 2021;
Curth and van der Schaar, 2021b,a) and CQR by (Lei and Can-
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(a) (b)

Figure 4: CATE and ITE estimation on SD-SCM datasets of size 10,000 generated using Llama-3-8b. (a) R2 values
across all methods that provide point estimates. (b) Empirical coverage (α “ 0.05) and interval width (in outcome
standard deviation units) for methods that provide intervals. Nominal coverage of 95% is indicated by the red line.

Figure 5: Interval estimates of CATEs/ITEs from BART
versus BART-ITE on an example SD-SCM dataset.

additional hyperparameter tuning, etc. could be
performed for several methods on a case-by-case
basis, this section demonstrates what estimation
results we get off-the-shelf.

A note on identification. Estimation algorithms
are designed to work when identification assump-
tions are met, many of which are untestable. In
this section, we demonstrate how SD-SCMs can
provide a playground to empirically test how algo-
rithms perform not only in ideal conditions but also
when untestable assumptions are not met. This is
particularly relevant for CATEs and ITEs, where,
for example, we might not expect to measure all rel-
evant covariates for each individual unit. In other
words, in practice we might not expect to satisfy ig-
norability. We consider two settings to explore this
question empirically. In the ‘All Covariates’ set-
ting, all 14 covariates are observed. In ‘Hidden U,’
U “ tũ1, ũ2, ũ3, ũ4u “ {age, medical conditions,
medication, menopausal status} is hidden.

dès, 2020). All code to reproduce this benchmark is available
at https://github.com/lbynum/sequence-driven-scms.

4.2.1 Average treatment effects
Though we focus on CATE and ITE estimation, we
first confirm in Appendix C.1 that methods can re-
cover the ATE. We find that (1) there is a meaning-
ful gap between casual and observational methods
and that (2) estimation performance does indeed
drop significantly when U is hidden.

4.2.2 CATE and ITE estimation
To lessen the impact of finite-sample issues, we test
on datasets of size 10,000, aggregated within each
SD-SCM variation. We show results for Llama-3-
8b-generated data in this section, but find similar
trends with GPT-2 as well as with dataset size 1,000
in Appendix C. Figure 4a shows R2 values clipped
at zero across all methods that provide point es-
timates for CATEs. When all covariates are ob-
served, BART explains the most CATE variation,
while DML and DR methods do as well at times
but with a much lower average. However, CATE
estimation becomes much more challenging for all
methods with hidden U, where no methods per-
form well. Figures 11 and 12 in Appendix C show
the same results in terms of PEHE (Precision in
Estimating Heterogeneous Effects) (Hill, 2011),
revealing that with no clipping, BART-ITE shows
large outliers with hidden U and NN methods show
large outliers in both settings.

When the ITE varies due to covariates not condi-
tioned on in the CATE, as in the hidden U setting,
the two quantities are distinct. In such cases, uncer-
tainty is especially important. Figure 4b shows em-
pirical coverage results for all estimators that pro-
vide intervals. With all covariates, empirical cov-
erage is under nominal for all methods that target
CATE, except BART. Hidden U increases uncer-
tainty, but also brings coverage closer to nominal
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Figure 6: SATEs across all breast cancer SD-SCMs for
outcome P ptherapy “ 2q.

for several methods, like LinearDML and both DR
methods. CQR remains at or above nominal cover-
age, but with much wider intervals, as does BART-
ITE in the ITE setting. Figure 5 demonstrates this
further, comparing intervals for BART targeting
CATE versus BART-ITE on an example dataset.
With all covariates (top row), intervals from either
method are informative about individual-level ef-
fects. However, under hidden U (bottom row),
the tighter intervals of BART targeting the CATE
are overconfident with variable coverage, and the
wider intervals of BART-ITE are so wide as to be
vacuous, even if we want just a ranking of the ITEs.

Takeaways. We summarize a few takeaways for
off-the-shelf estimation performance in this exam-
ple. The first is that linear and tree-based meth-
ods are often able to perform well. Second, in
a real-world setting, where a method might often
be used with its default parameters, stability can
be important (e.g., the NN method performance
suffers often due to lack of stability). The third
takeaway is that hidden confounding has a big
impact, across all methods. Even methods that
perform particularly well with all covariates (like
BART) suffer significantly under hidden U. Fi-
nally, ITE intervals can be unstable and/or vac-
uous for decision making, especially with hidden
variables, and should thus be used carefully.

5 Auditing language models for
(un)desirable causal effects

The same framework we use to generate causal
effects and benchmark effect estimation methods
can allow us to inspect what causal information has
been encoded semantically in an LM. For example,
we can ask, “Given a world-view described by an
input DAG, what causal conclusion is implied by
the language model?” Our collection of breast
cancer SD-SCMs is already set up to explore the
effect of PD-L1 on chosen therapy plans, while
allowing us to marginalize out an important source

of variability: phrasing. Essentially, this amounts
to reverse engineering the decision-making process
of clinicians, as learned from whatever data the
language model was trained on.

Figure 6 shows one example where the two lan-
guage models strongly disagree on what the causal
effect is. The effect in this case is the change in
probability of choosing the second therapy plan,
“start a regimen of trastuzumab and pertuzumab”
(shown in standard deviation units). GPT-2 has
encoded that on average, an increase in PD-L1 ex-
pression levels has neither a positive nor negative
impact on choosing this therapy plan. However,
Llama-3-8b has encoded instead that an increase
in PD-L1 always increases the likelihood of this
therapy plan. This discrepancy indicates that these
two language models have encoded two mean-
ingfully different causal effects. We believe the
same procedure can underpin more thorough audit-
ing of LMs for misinformation or discrimination,
enabling, e.g., path-specific counterfactual fairness
analysis (Kusner et al., 2017; Chiappa, 2018).

6 Conclusion and Future Work

In this work, we have introduced sequence-driven
structural causal models (SD-SCMs) as a frame-
work for specifying SCMs with user-defined struc-
ture and LM-defined mechanisms. We demonstrate
an important use-case for SD-SCMs by creating
a benchmark for causal effect estimation. In this
proof of concept, we focused on estimation in the
presence of confounding, but there are many other
settings to explore for effect estimation, such as in-
strumental variables (Angrist et al., 1993; Hernán
and Robins, 2006). Using SD-SCMs to addition-
ally test causal discovery is of immediate interest,
for example, allowing us to test whether a struc-
ture learning method can identify whether one vari-
able is causally upstream or downstream of an-
other (Krämer et al., 2013). Another significant
area of future work is to use SD-SCMs or simi-
lar as a means of specifying causal structure over
sequential data during learning (Im et al., 2024);
rather than use pre-trained LMs to generate effects,
a model can be trained or fine-tuned to handle tasks
that require causal reasoning, including complex
confounding and sequential decision making.

In short, we believe SD-SCMs can serve as a
stepping stone for any application that would ben-
efit from sequential data with controllable causal
structure.
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7 Limitations

A key difficulty in generating data via SD-SCM
for a use-case like benchmarking causal inference
methods is to ensure the data have meaningful struc-
ture (e.g., significant non-trivial relationships be-
tween variables). The reason for this challenge
is, in part, by design: the user does not directly
specify structural equations. Instead, the structural
equations are determined by whatever the language
model P has already encoded. This reliance on
what has been previously encoded by a pre-trained
language model can sometimes be limiting, moti-
vating a direction of future extensions of SD-SCMs
focused on training LMs to induce relationships
between variables while following an input causal
structure, rather than using pre-trained LMs.

A related limitation in the current work is the
need to manually account for the sensitivity of gen-
erated data to input variable phrasings. For exam-
ple, in the breast cancer SD-SCMs, we manually
create many different phrasings of each sequence
variable in order to account for this source of vari-
ability. This can be a tedious process as the number
of variables grows and could be automated end-to-
end in future work.

Risks and societal consequences. There are
many potential societal consequences of our work,
which are essentially those shared by any model-
agnostic application of language models. Pre-
trained language models often come with inher-
ent biases and inaccuracies. Generated data may
still include such biases or inaccuracies, whether
intentional or not. Any future work that builds on
this work for the purposes of auditing language
models will also inherit the limitations of all tools
for model explainability: model explanations al-
ways have the potential to be misleading or over-
simplified.
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A Formal definition of sequence-driven
structural causal models

We first introduce notation preliminaries in Ap-
pendix A.1 before formally defining our procedure
in Appendix A.2.

A.1 Preliminaries
Let lowercase letter with tilde ṽ denote a random
variable, where ṽ “ v denotes the value it obtains.
Let boldface capital letter V “ tṽ1, . . . , ṽnu de-
note a set of variables with value V “ v, capital
Pṽ denote the cumulative distribution function of ṽ,
and lowercase pṽ denote the density (or mass) func-
tion. Let Pṽ|x̃“x denote the conditional distribution
of ṽ given x̃ “ x and Pṽ|x̃ denote the collection
of Pṽ|x̃“x for all x. A sequence, or string, is an or-
dered collection of tokens. We represent this either
as a tuple (e.g., sequence v “ pw1, . . . , wT q has
tokens wt), or interchangeably as a single string
(e.g., v “ w1:T ” ÀT

t“1wt, where ‘ represents
string concatenation).

Definition A.1 (Language model). Given a vocab-
ulary V of possible tokens, we define a language
model P as a joint distribution over any sequence
of tokens v “ pw1, . . . , wT q P ŚT

t“1V, where
Ppvq “ śT

t“1 Ppwt | w1:pt´1qq.
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Definition A.2 (Structural causal model). We de-
fine a structural causal model (SCM) as a 4-tuple
C “ pV,U,F, PUq. In this tuple, V is a set of
observed variables, U a set of unobserved (exoge-
nous) variables, F a set of functions tfiu|V|

i“1 for
each ṽi P V such that ṽi “ fipPAi,Uiq where
PAi Ď Vztṽiu represents the causal parents of ṽi
and Ui Ď U, and PU a distribution over U. A
causal model can be represented visually as a di-
rected acyclic graph (DAG) with nodes for U,V
and directed edges for F. SCMs entail an observa-
tional distribution P C across variables V Y U.

Definition A.3 (Interventional distribution). An
SCM C also entails the distribution of any subset of
variables in V Y U following atomic intervention
I “ do pṽi :“ vq, which replaces the structural
mechanism fi with fixed value v. Interventions can
also be extended to general modifications of fi. We
denote an SCM after intervention I as CdopIq and
the resulting distribution as P C;dopIq.8

Counterfactual distributions are computed in a
similar fashion, but first conditioning PU on a par-
ticular context before performing an intervention.
Where ambiguous, we use an asterisk to denote
counterfactual versions V˚ of factual variables V
(Balke and Pearl, 1994).

Definition A.4 (Counterfactual distribution).
Counterfactual variable Y˚ given a factual obser-
vation z and intervention dopIq (where Y,Z Ď V)
can be computed via a three-step procedure often
referred to as ‘abduction, action, prediction.’ Ab-
duction uses observed evidence to obtain PU|Z“z

from PU. Action performs intervention dopIq to
obtain modified SCM CdopIq. Prediction computes
the probability of Y˚ from CdopIq and PU|Z“z. For
general intervention I and observed assignment
Z “ z, we denote the counterfactual distribution
P C|Z“z;dopIq.

A.2 Sequence-driven structural causal models
Consider a collection of ordered random variables
pṽ1, ṽ2, ṽ3, . . .q, whose sample spaces Ωṽi each
consist of sets of sequences. We define ṽ1:m ”Àm

t“1 ṽt as the concatenation of the sequences
themselves. The sample space for the concatena-
tion of sequences is the cartesian product of the
constituent sample spaces

Śm
t“1Ωṽt . For brevity,

we will use the term sequence variable to refer to
a random variable whose sample space is a set of

8Our notational conventions for interventional and coun-
terfactual distributions follow (Peters et al., 2017).

Algorithm 2 A single SD-SCM sample from the
observational distribution
Inputs: B “ pV,U,G,Pp¨q, τq
Returns: s “ `

u1, . . . , u|U|, v1, . . . , v|V|
˘

s Ð pq
for x̃t P τ do

PAτ Ð tt1 : x̃t1 P PAx̃tu ordered by τ

xPAτ Ð À
xPsrPAτ s x

px̃t Ð rs
for k P 1, . . . , |Ωx̃t | do

x Ð Ωx̃trks
px̃trks Ð P pxPAτ ‘ xq

end
Ptot Ð ř

k px̃trks
j „ Multinomialppx̃t{Ptotq
xt Ð Ωx̃trjs
appendps, xtq

end
return s

sequences. Two straightforward abstractions allow
us to define SD-SCMs: domain-restricted sampling
and parent-only concatenation.
Definition A.5 (Domain-restricted sampling).
Given language model P , some prior inputs C,
and a sequence variable ṽi with sample space Ωṽi ,
domain-restricted sampling defines a distribution
Pṽi|C over sample space Ωṽi simply by tabulating
and subsequently normalizing the output probabili-
ties for each possible v P Ωṽi conditional on prior
inputs C: Pṽi|Cpvq ” Ppv|Cqř

v1PΩṽi
Ppv1|Cq .

Definition A.6 (Parent-only concatenation). Given
DAG G over m sequence variables pṽ1, . . . , ṽmq
and a topological ordering τ consistent with G,
parent-only concatenation defines pṽi | PAiq ”`À

tPPAi
ṽt

˘ ‘ ṽi, where PAi are the parents of
ṽi in G ordered according to τ .
Given a DAG G and a language model P , a corre-
sponding sequence-driven SCM defines a sample
space of sequences for each variable in G and pro-
vides access to observational, interventional, and
counterfactual distributions as follows.
Definition A.7 (Sequence-driven structural causal
model (SD-SCM)). We define a sequence-driven
structural causal model as a 5-tuple B “
pV,U,G,P, τq, where

• V is a set of finite-domain endoge-
nous/observed sequence variables and U a
set of finite-domain exogenous/unobserved se-
quence variables;
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• G is a DAG over the variables x̃i in V Y U
where PAi Ď pV Y Uq ztx̃iu;

• P is a language model trained on prior inputs
C whose vocabulary V contains all tokens
used in ΩV,ΩU; and

• τ is an arbitrary fixed topological ordering of
V Y U consistent with G.

An SD-SCM uses P to define an observational
distribution over the variables in V Y U that fac-
torizes according to G via domain-restricted ances-
tral sampling and parent-only concatenation with τ :
PB ” ś

x̃tPτ Px̃t|C,PAt
. This procedure is shown

in Algorithm 2.

The key difference between an SCM and an SD-
SCM is that all variables have at least one common
ancestor — the prior inputs C that were used to
train the language model, if any. It is however pos-
sible to train the LM to induce distributions over
the desired variables given this setup. As with the
observational distribution, domain-restricted ances-
tral sampling and parent-only concatenation also
allow us to define interventional and counterfactual
distributions.

Definition A.8 (Sequence-driven interventional dis-
tribution). An SD-SCM B entails the distribution
of any subset of variables in V Y U following
intervention I “ do pṽi “ vq by replacing vari-
able ṽi with value v, and otherwise sampling in
the same manner. As with an SCM, we denote an
SD-SCM after intervention I as BdopIq and the re-
sulting interventional distribution as PB;dopIq. This
is computed for intervention dopṽi “ vq as fol-
lows: PB;dopṽi“vq ” ś

x̃tPτ Px̃t|C,ṽi“v,PA1
t
, where

PA1
t “ PAtztṽiu. This procedure is shown in

Algorithm 3.

In order to admit unique answers to counterfac-
tual queries, we define abduction for an SD-SCM
given evidence Z “ z as the setting of values
U “ u and any evidence upstream of the inter-
vention, rather than a distribution PU|Z“z.9 In
order to obtain such values u, one needs access
to more than just the observed data and language
model P — obtaining u requires performing book-
keeping during the data generation process. This
is a restatement of the fact that computing point
counterfactuals in SCMs requires causal mecha-
nisms that are invertible with respect to the noise
variables in order to uniquely reconstruct the noise

9Other choices can be explored here, which we leave to
future extensions of SD-SCMs.

Algorithm 3 A single SD-SCM sample from the
interventional distribution for dopṽi “ vq
Inputs: dopṽi “ vq,B “ pV,U,G,Pp¨q, τq
Returns: s “ `

u1, . . . , u|U|, v1, . . . , v|V|
˘

s Ð pq
for x̃t P τ do

if x̃t ” ṽi then
xt Ð v

end
else

PAτ Ð tt1 : x̃t1 P PAx̃tu ordered by τ

xPAτ Ð À
xPsrPAτ s x

px̃t Ð rs
for k P 1, . . . , |Ωx̃t | do

x Ð Ωx̃trks
px̃trks Ð P pxPAτ ‘ xq

end
Ptot Ð ř

k px̃trks
j „ Multinomialppx̃t{Ptotq
xt Ð Ωx̃trjs

end
appendps, xtq

end
return s

that produced a given observation. Because our
primary application of SD-SCMs in this work is
data generation, such bookkeeping is possible in
all our use cases.

Definition A.9 (Sequence-driven counterfactual
distribution). Counterfactual sequence variable Y˚
given factual evidence z and intervention dopX “
xq (where X,Y,Z Ď V) can be computed for
an SD-SCM B whenever the exogenous setting
u “ tu1, u2, . . . , u|U|u that generated evidence z
is known. As with an SCM, for intervention I
and observed Z “ z, we denote the counterfac-
tual distribution PB|Z“z;dopIq. This is computed
for evidence z, exogenous conditions u, and inter-
vention dopṽi “ vq as follows: PB|Z“z;dopṽi“vq ”ś

x̃tPτ Px̃t|C,U“u,Z1“z1,ṽi“v,PA2
t
, where Z1 Ď Z

contains all non-descendants of ṽi present in Z,
and PA2

t “ PAtz pU Y Z1 Y tṽiuq. This proce-
dure is shown in Algorithm 4.

In plain terms, counterfactual sampling sets not
only an intervention dopṽi “ vq but also exogenous
variables U “ u and upstream evidence in order to
sample a hypothetical alternative that corresponds
to the particular unit in question.

In summary, data can be generated from an
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Algorithm 4 A single SD-SCM sample from the
counterfactual distribution given observation sobs

Inputs: sobs “ `
u1, . . . , u|U|, v1, . . . , v|V|

˘

dopṽi “ vq,B “ pV,U,G,Pp¨q, τq
Returns: s˚ “

´
u1, . . . , u|U|, v1̊ , . . . , v˚

|V|
¯

s˚ Ð pu1, . . . , u|U|q
NDi Ð non-descendants of ṽi in G
for x̃t P τzU do

if x̃t ” ṽi then
xt Ð v

end
else if x̃t P NDi then

xt Ð sobsrts
end
else

PAτ Ð tt1 : x̃t1 P PAx̃tu ordered by τ

xPAτ Ð À
xPs˚rPAτ s x

px̃t Ð rs
for k P 1, . . . , |Ωx̃t | do

x Ð Ωx̃trks
px̃trks Ð P pxPAτ ‘ xq

end
Ptot Ð ř

k px̃trks
j „ Multinomialppx̃t{Ptotq
xt Ð Ωx̃trjs

end
appendps˚, xtq

end
return s˚

SD-SCM by domain-restricted forward sampling
variables in topological order, and, with adequate
bookkeeping, both interventional and counterfac-
tual samples can also be drawn. The key difficulty
in generating data this way that is also useful for
benchmarking causal inference methods is to en-
sure it has meaningful structure. In short, it is easy
to generate data, but more difficult to generate use-
ful data. The reason for this challenge is that we do
not directly specify the structural equations; rather,
the structural equations are determined by what-
ever the language model P has already encoded.

B Full description of the breast cancer
SD-SCMs

The 14 covariates in the breast cancer SD-SCMs
are defined generally below. For each covariate,
10 different phrasings are considered, resulting in
a sample space of 1014 possible sequences. For
example, for the covariate ũ1 that represents ‘age,’

with Ωũ1 “ p25, 35, 45, 55, 65, 75, 85q, two possi-
ble phrasings are:

1. A ũ1-year-old woman seeks consultation at
the oncology clinic after being recently diag-
nosed with invasive breast cancer.

2. At the oncology clinic, a ũ1-year-old woman
is evaluated following a recent diagnosis of
invasive breast carcinoma.

We consider 50 different variations of this SD-
SCM, where the sample space for a given SD-SCM
is defined by choosing a randomly sampled phras-
ing from among the possible phrasings for each of
the covariates. For each of the 50 SD-SCMs, 20
datasets (each of size 1000) are sampled. Each co-
variate and corresponding (ordered) sample space
is defined as follows.

1. ũ1: age, Ωũ1 “ (25, 35, 45, 55, 65, 75, 85)
2. ũ2: medical condition, Ωũ2 “ (hypertension,

type 2 diabetes mellitus, hyperlipidemia, os-
teoporosis)

3. ũ3: medications, Ωũ3 “ (lisinopril, met-
formin, atorvastatin, calcium carbonate)

4. ũ4: menopausal status, Ωũ4 “ (pre-
menopausal, post-menopausal)

5. x̃1: type of carcinoma, Ωx̃1 “ (invasive ductal
carcinoma (IDC), invasive lobular carcinoma,
medullary carcinoma, tubular carcinoma)

6. x̃2: histology grade, Ωx̃2 “ (grade 1, grade 2,
grade 3)

7. x̃3: genetic mutation 1, Ωx̃3 “ (TP53,
PIK3CA, BRCA1, BRCA2)

8. x̃4: genetic mutation 2, Ωx̃4 “ (TP53,
PIK3CA, BRCA1, BRCA2)

9. x̃5: level of hormone receptor expression,
Ωx̃5 “ (low, moderate, high)

10. x̃6: genomic instability score, Ωx̃6 “ (low,
high)

11. x̃7: chromosomal aberration strength, Ωx̃7 “
(significant, minor)

12. x̃8: HER2 status, Ωx̃8 “ (positive, negative)
13. t̃: PD-L1 expression levels, Ωt̃ “ (low, high)
14. ỹ: therapy plan, Ωỹ “ (initiate an aromatase

inhibitor therapy, administer a combination
of a PARP inhibitor and chemotherapy, start
a regimen of trastuzumab and pertuzumab,
begin treatment with a checkpoint inhibitor
such as pembrolizumab)

The following is an example sequence randomly
sampled from one possible choice of phrasings:
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(a)

(b) (c) (d)

Figure 7: An example dataset generated by the breast cancer SD-SCM using Llama-3-8b, showing (a) features, (b)
propensity scores, (c) categorical outcome ITEs, and (d) continuous outcome ITEs.

A 65-year-old woman comes to the oncology department with a recent
diagnosis of invasive breast carcinoma. Her prior medical history in-
cludes hyperlipidemia. This has been managed with lisinopril. This
post-menopausal woman has no prior history of breast surgeries or hor-
mone replacement therapy. Following a detailed assessment with imaging
and biopsy, the results from the biopsy were analyzed and disclosed the
following. The pathology report indicates the tumor is tubular carcinoma.
The tumor’s histology is rated as grade 3. The tumor shows an elevated
mutation burden, with particular mutations detected in the BRCA2 gene
in addition to the TP53 gene. The immunohistochemistry results display
robust positive staining for estrogen receptor (ER) and progesterone re-
ceptor (PR), indicating high levels of expression. The level of genomic
instability in the tumor is described as low. This implies that chromosomal
aberrations are minor. Immunohistochemistry reveals HER2 as negative
while FISH confirms that HER2 amplification is not present. Programmed
death-ligand 1 (PD-L1) expression in the tumor is low with no distant
metastases found in the imaging studies. Considering the comprehensive
findings and the patient’s health and treatment history, which treatment
strategies are most suitable for this patient? The best option is to begin
treatment with a checkpoint inhibitor such as pembrolizumab.

With each sample space indexed according to the
order of their values above (with indexes starting at
zero), the above text sequence corresponds to the
observation

pũ1, . . . , ũ4, x̃1, . . . , x̃8, t̃, ỹq “
p4, 2, 0, 1, 3, 2, 3, 0, 2, 0, 1, 1, 0, 3q.

The full set of possible examples and code to gen-
erate this SD-SCM and corresponding data (in our
case generated using V100 and RTX8000 GPUs)
is available in our repository at https://github.
com/lbynum/sequence-driven-scms.

Figure 7 shows plots of the features (7a), propen-
sity scores (7b), categorical ITEs (7c), and continu-
ous ITEs (7d) for a single generated dataset using
Llama-3-8b. Because the outcome ỹ has |Ωỹ| “ 4
possible values, we can consider several possible
outcomes, including the observed outcome (cate-
gorical), log probabilities for each outcome value
(continuous), or probabilities for each outcome

value (continuous). This creates, in effect, nine
possible targets for each dataset. For benchmark-
ing purposes, we find using probabilities and/or log
probabilities as the outcome to be the most useful
— there is frequently an effect (even at the individ-
ual level) in probability space, even if the sampled
outcomes do not change. Comparing Figure 7c to
Figure 7d demonstrates this, where for the 400 or
so observations where the categorical ITE is zero,
the continuous ITE is instead nonzero.

Figure 7d also demonstrates that we are able to
satisfy our main criterion for meaningful bench-
mark: the observational distribution PB

ỹ|t̃“t
and in-

terventional distribution P
B;dopt̃“tq
ỹ are different

enough that the SATE and the observed mean dif-
ference in outcomes between the treatment and con-
trol group are not only different in value, but they
also disagree in sign. This is particularly meaning-
ful in a causal inference setting — the treatment
appears to lower the outcome, when in fact, its
effect is to increase the outcome.

C Additional estimation results

C.1 ATE results

For all implementations that directly support ATE
estimation, we report the R2 and root-mean-
squared-error (RMSE) across the 1000 datasets
for each language model in two settings, using
logPpỹ “ 0q as the outcome. The first setting is
with estimation using all 14 covariates (all 12 con-
founders, the treatment, and the outcome). This is
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Table 1: SATE prediction results for methods that directly target ATEs.

Method
P “ GPT-2 P “ Llama-3-8b

R2 RMSE R2 RMSE
All Cov. Hidden All Cov. Hidden All Cov. Hidden All Cov. Hidden

T-Only OLS 0.6047 0.6047 0.0172 0.0172 0.5082 0.5082 0.0091 0.0091

BART 0.9999 0.8794 0.0003 0.0095 0.9967 0.8476 0.0007 0.0051
ForestDML 0.9941 0.8686 0.0021 0.0099 0.9608 0.8129 0.0026 0.0056
ForestDR ď 0 ď 0 6.4268 29.0210 0.9581 0.8179 0.0027 0.0055
ForestS 0.9771 0.8777 0.0041 0.0096 0.8243 0.8286 0.0054 0.0054
ForestT 0.9793 0.8588 0.0039 0.0103 0.9454 0.8126 0.0030 0.0056
LinReg 0.9146 0.8646 0.0080 0.0101 0.6538 0.5599 0.0076 0.0086
LinearDML 0.979 0.8655 0.0040 0.0100 0.9608 0.8216 0.0026 0.0055
LinearDR ď 0 ď 0 11.0736 29.5414 0.9589 0.8176 0.0026 0.0055
LinearS 0.9146 0.8632 0.0080 0.0101 0.6538 0.4869 0.0076 0.0093
LinearT 0.9181 0.8688 0.0078 0.0099 0.6395 0.5385 0.0078 0.0088
RF 0.976 0.8766 0.0042 0.0096 0.8122 0.8295 0.0056 0.0054

Table 2: Mean R2 of methods estimating CATEs/ITEs, comparing estimation with datasets of size 1,000 versus
10,000.

Method
All Covariates Hidden U

P “ GPT-2 P “ Llama-3-8b P “ GPT-2 P “ Llama-3-8b
1,000 10,000 1,000 10,000 1,000 10,000 1,000 10,000

T-Only OLS ď0 ď0 ď0 ď0 ď0 ď0 ď0 ď0

BART 0.7162 0.9691 0.5221 0.9214 ď0 ď0 ď0 ď0
BART-ITE 0.7102 0.9344 0.5183 0.8823 0.0054 0.0185 0.0011 0.0169
CausalForest ď0 ď0 ď0 ď0 ď0 0.0313 ď0 0.1399
ForestDML ď0 0.6605 ď0 0.5551 ď0 0.0608 ď0 0.1850
ForestDR ď0 0.7220 ď0 0.5968 ď0 0.0503 ď0 0.1931
ForestS ď0 0.0661 ď0 0.1263 0.0026 0.0371 0.0063 0.0936
ForestT 0.1031 0.3202 ď0 0.1319 0.0076 0.0366 0.0054 0.0719
LinReg ď0 ď0 ď0 ď0 ď0 ď0 ď0 ď0
LinearDML 0.2381 0.5309 0.1491 0.5404 ď0 ď0 ď0 0.1483
LinearDR 0.2329 0.5900 0.1562 0.5293 ď0 ď0 ď0 0.1734
LinearS ď0 ď0 ď0 ď0 ď0 ď0 ď0 ď0
LinearT 0.0116 0.1470 ď0 0.1355 ď0 ď0 ď0 ď0
RF ď0 0.0327 ď0 0.1038 0.0024 0.0373 0.0060 0.0940
TARNet ď0 ď0 ď0 ď0 ď0 ď0 ď0 ď0
TNet ď0 ď0 ď0 ď0 ď0 ď0 ď0 ď0

Figure 8: Change in mean R2 (if above 0) of methods estimating CATEs and ITEs after a tenfold increase in dataset
size from 1, 000 to 10, 000.
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Figure 9: R2 values across all methods that provide point estimates of CATEs/ITEs for datasets of size 10,000
generated by GPT-2 (left) and Llama-3-8b (right).

Figure 10: CATE/ITE empirical coverage (α “ 0.05) and interval width (in outcome standard deviation units) for
methods that provide intervals. Nominal coverage of 95% is indicated by the red line. Shown for datasets of size
10,000 generated by GPT-2 (left) and Llama-3-8b (right).

Figure 11: PEHE across all methods that provide point estimates of CATEs/ITEs, shown in standard deviation units
of the outcome ỹ. Results shown for datasets of size 10,000 generated by GPT-2 (left) and Llama-3-8b (right).

2113



Figure 12: PEHE across all methods that provide point estimates of CATEs/ITEs, shown in units of ITE standard
deviation. Results shown for datasets of size 10,000 generated by GPT-2 (left) and Llama-3-8b (right).

Figure 13: R2 values across all methods that provide point estimates of CATEs/ITEs for datasets of size 1,000
generated by GPT-2 (left) and Llama-3-8b (right).

Figure 14: CATE/ITE empirical coverage (α “ 0.05) and interval width (in outcome standard deviation units) for
methods that provide intervals. Nominal coverage of 95% is indicated by the red line. Shown for datasets of size
1,000 generated by GPT-2 (left) and Llama-3-8b (right).
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(a) (b)

Figure 15: Interval estimates from BART versus BART-ITE across two example datasets of size 1,000, (a) and (b).

denoted All Cov. in Table 1. The second setting
is with the variables U “ tũ1, ũ2, ũ3, ũ4u “ {age,
medical conditions, medication, menopausal
status} hidden, denoted Hidden. Table 1 shows
that ATE estimation is more or less challenging
depending on which language model is used. In
this case, Llama-3-8b produces ATEs that are more
challenging to estimate, with the exception of GPT-
2 for the doubly robust methods, whose R2 and
RMSE suffer significantly due to several large out-
lying estimates. Across all methods, performance
tends to drop significantly in the ‘Hidden’ setting,
suggesting that U are indeed hidden confounders.
Across methods, BART shows the strongest perfor-
mance in all settings in Table 1.

C.2 Comparison of dataset size 1,000 and
10,000

Table 2 and Figure 8 show that CATE and ATE esti-
mation remain difficult even after a tenfold increase
in dataset size (from N “ 1, 000 to N “ 10, 000),
especially in the Hidden U setting. Across esti-
mation methods, performance tends to increase as
sample size increases, especially if the method orig-
inally achieved R2 above zero with N “ 1, 000.
In other words, methods that do reasonably well
at N “ 1, 000 show improvement with more data,
as we would expect. However, several methods
struggle in both settings, even with ten times more
data. For example, TARNet, TNet, and CausalFor-
est still remain unstable and inaccurate in both the
All Covariates and the Hidden U settings across
both sample sizes. Overall, these results indicate
that CATE and ITE estimation in this case are not
challenging due only to small sample sizes. This is
useful to know, especially when we consider that
corresponding real-world use-cases often deal with
even smaller sample sizes.

Additional results for each dataset size are shown

individually in the following figures. Figures 9
and 10 show R2 and coverage results on datasets of
size 10,000. These correspond to the same figures
in the main text, but now showing both GPT-2 and
Llama-3-8b, allowing for comparison across mod-
els. Figure 11 shows the same setting using stan-
dardized Precision in Estimating Heterogeneous
Effects (PEHE) (Hill, 2011), which is the RMSE of
the CATE predictions across the different observed
values of x, i.e.,

PEHEj “
gffe 1

n

nÿ

i“1

pτ̂i ´ τiq2

for a dataset Dj “ tui,xi, ti, yiuni“1 where τ̂i is
the estimated ITE for unit i and τi is the true ITE.
We standardize PEHE using the empirical stan-
dard deviation σ̂j of the outcomes tyiuni“1 in each
dataset, i.e.,

(Standardized PEHE)j “
gffe 1

n ¨ σ̂2
j

nÿ

i“1

pτ̂i ´ τiq2.

Figure 12 shows the same metric standardized in-
stead using the (much smaller) standard deviation
of the ITE.

Results in the case of dataset size 1, 000 show
similar trends to those in the size 10, 000 setting.
Figure 13 shows R2 values clipped at zero across
all methods that provide point estimates for CATEs.
When all covariates are observed, BART does sig-
nificantly better explaining CATE variation, fol-
lowed by DML and DR with much lower averages,
much like the size 10,000 case. Similarly, CATE
estimation becomes much more challenging for all
methods with hidden U. The difference in effect
estimation difficulty between Llama-3-8b and GPT-
2 is also more noticeable for CATEs than it was for
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ATEs. Overall, some methods show more instabil-
ity in the dataset size 1,000 case than in the size
10,000 case, as expected with less data.

Figure 14 shows empirical coverage results in
the dataset size 1,000 case for all estimators that
provide intervals. Similar to the size 10,000 case,
empirical coverage is under nominal for all meth-
ods that target CATE in the setting with all covari-
ates. Hidden U generally increases uncertainty,
bringing the DR methods and LinearDML median
coverage near nominal. Interestingly, BART for
CATE achieves higher median coverage of the ITE
than BART-ITE, but with a much larger tail of poor
coverage. BART-ITE, by contrast, has much less
variable coverage in the ITE setting, but at the cost
of much wider intervals. Figure 15 shows intervals
for BART targeting the CATE versus BART-ITE
across two example datasets of size 1,000, demon-
strating that, as in the size 10,000 case, the tighter
intervals of BART targeting the CATE can be over-
confident with variable coverage, while the wider
intervals of BART-ITE are too wide to be useful.
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