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Abstract

Temporal evolution attribute graph prediction,
a key task in graph machine learning, aims
to forecast the dynamic evolution of node at-
tributes over time. While recent advances in
Large Language Models (LLMs) have enabled
their use in enhancing node representations
for integration with Graph Neural Networks
(GNNgs), their potential to directly perform
GNN-like aggregation and interaction remains
underexplored. Furthermore, traditional ap-
proaches to initializing attribute embeddings
often disregard structural semantics, limiting
the provision of rich prior knowledge to GNNs.
Current methods also primarily focus on 1-hop
neighborhood aggregation, lacking the capa-
bility to capture complex structural interac-
tions. To address these limitations, we pro-
pose a novel prediction framework that inte-
grates structural information into attribute em-
beddings through the introduction of an at-
tribute embedding loss. We design specialized
prompts to enable LLMs to perform GNN-like
aggregation and incorporate a relation-aware
Graph Convolutional Network to effectively
capture long-range and complex structural de-
pendencies. Extensive experiments on multiple
real-world datasets validate the effectiveness
of our approach, demonstrating significant im-
provements in predictive performance over ex-
isting methods.

1 Introduction

In real-world scenarios, it is essential to predict the
temporal changes of a specific entity’s attributes,
such as fault detection, weather forecasting, and
trade analysis. In most cases, entities exist within
groups, and the interactions between individuals
and groups serve as key factors in understand-
ing the dynamics of attributes. These scenarios
are thus often modeled as temporal evolution at-
tribute graphs. For instance, in a trade graph,
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nodes represent countries, while attributes corre-
spond to the inherent assets of those countries. Re-
search on temporal evolution attribute graph predic-
tion has evolved from data-level approaches (Liu
et al., 2011; Jin et al., 2023; Salamanis et al., 2015;
Flunkert et al., 2017) to graph-structured method-
ologies (Jin et al., 2020), with methods transition-
ing from traditional graph neural networks (GNNs)
to hybrid techniques that leverage large language
models (LLMs) for enhanced performance.

As shown in Figure 1, recent methods treat
LLMs and GNNss in isolation, applying them to sep-
arate stages of temporal evolution attribute graph
prediction. LLMs are designed to enhance the
initial node representations through attribute text,
while GNNs capture the structural features of the
graph. Although (Yang et al., 2021) and (Zhao
et al., 2022) attempt to iteratively enhance each
other by layering GNN and LLM, the two models
still operate independently. This paper aims to ex-
plore whether it is possible to design a GNN-like
aggregation method for LLMs, enabling simultane-
ous understanding of attributes and aggregation of
graph structure within the LLM framework.

Additionally, recent methods generate initial at-
tribute embeddings with weak semantic meaning,
failing to account for the topological semantics
inherent in the nodes. This neglect of the seman-
tic content of attribute embeddings can make it
difficult for subsequent modules, such as GNNs,
to effectively recognize and differentiate between
nodes. This issue becomes especially pronounced
when node attributes are sparse or when there is low
distinguishability between attributes, significantly
increasing the difficulty for the model to understand
nodes. For newly added nodes in the graph, which
lack historical data, the model must rely on embed-
dings with strong representational power to inform
link prediction and attribute change. Therefore, en-
hancing the semantic richness of initial attribute
embeddings is crucial for improving the overall
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Figure 1: Isolation of LLM and GNN in temporal evo-
lution attribute graph prediction

performance of the model, which is a key focus of
this paper.

Moreover, recent approaches in the aggregation
process are limited to considering only one-hop
neighborhoods, lacking the ability to capture com-
plex structural interactions beyond a limited hop.
This limitation makes it difficult for the model
to gather complete node interaction information,
hindering its understanding of the graph structure.
Moreover, any bias in this understanding can am-
plify errors in weight parameters, and in multi-step
prediction scenarios, these errors will be further
magnified, affecting the accuracy of attribute pre-
dictions.

We propose LGA, a LLM-GNN Aggregation
model for temporal evolution attribute graph pre-
diction. To implement a GNN-like aggregation
method based on LLMs, we design prompts that de-
scribe node neighborhood information in the form
of links while constraining the LLM to output re-
sults according to the priority of neighbors. To
integrate node topological features into attribute
embeddings, we introduce an attribute embedding
loss based on cross-entropy to minimize the dis-
tance between the topological space and the pre-
embedding space. Additionally, to capture complex
structural interactions beyond limited hops, we in-
corporate a relation-aware Graph Convolutional
Network (R-GCN), enabling long-range neighbor-
hood aggregation through multi-layer information
propagation. Our main contributions are as follows:

® We propose LGA, a LLM-GNN aggregation
model for temporal evolution attribute graph
prediction, aimed at enhancing the accuracy
of numerical attribute prediction.

® We implemented a GNN-like aggregation pro-
cess based on a LLM by designing tailored
prompts, introduced an attribute embedding
loss to address the issue of weak semantic
representation in attribute embeddings, and in-
corporated an R-GCN module to capture long-
range structural interactions between nodes,
thereby reducing model interpretation bias.

® We evaluate the prediction accuracy of our
model, LGA, using real-world datasets from
five different domains. The results of multiple
experiments confirm the effectiveness of our
model over other approaches.

2 Related work
2.1 Attribute Sequence Prediction

Attribute sequence prediction relies on time series
prediction methods to model and directly predict ac-
tual value data (attributes). With the development
of deep learning, several approaches employing
deep learning, such as GRU (Chung et al., 2014),
the CNN-like WaveNet algorithm, the attention-
based Transformer (Vaswani et al., 2017) and the
Informer and TFT algorithms, have high learning
freedom and can self-design loss functions for end-
to-end training. These algorithms use attribute val-
ues to generate adaptive embeddings, learn tempo-
ral evolution trends, and finally decode the updated
attribute embeddings and return prediction values.

2.2 Attribute Graph Prediction

The traditional prediction method based on graph
sequence data directly concatenates entities and at-
tributes, and connects them in the form of triplets
(h,r,t), ultimately decoding the attribute informa-
tion. (Maetal., 2019; Tresp et al., 2017; Han et al.,
2021) achieve entity representation on dynamic
knowledge graphs by studying temporal features.
(Han et al., 2020) rigorously defines forecasting
task on tKGs. For example, the diffusion convo-
lutional RNN (DCRNN) model (Andreoletti et al.,
2019) used bidirectional random walks and infor-
mation decoding to obtain structural information
and time information, respectively but it cannot be
applied to dynamic graphs and multiple relation-
ship graphs that evolve over time. As research has
progressed, the RGNMF-AN model (Nasiri et al.,
2023) was used to observe the hidden potential con-
tained in attributes and model attribute information
for direct graph link prediction. However, simul-
taneously predicting the topological and attribute
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information of nodes remains a challenge. DART-
NET (Garg et al., 2020) was used to conduct at-
tribute mapping prediction at unknown time points,
construct a new timestamp graph structure and per-
form attribute generation through operations such
as average pooling and GRUs. An improved Deep-
Walk (Berahmand et al., 2021) algorithm was de-
veloped based on the idea that structural similarity
and attribute similarity are completely independent
issues. However, this approach neglects the se-
mantic impacts of the same edges, resulting in at-
tribute embedding and structural detachment. FC-
STGNN (Wang et al., 2024) models and learns
the correlation between attributes as additional in-
formation for prediction, expanding the model’s
perspective and achieving considerable results.

2.3 Research on LLMs in Temporal Evolution
Attribute Graphs

The current focus of work (Zhang et al., 2023) on
expressing large language models in graph struc-
tures is mostly on traditional graph tasks such as
link prediction, loop detection, and topology sort-
ing. (You et al., 2024) pointed out that the existing
fusion methods of LLM and GNN only integrate
the two into different stages, such as (Huang et al.,
2024). (Wang et al., 2023) proposed the NLGraph
as a universal paradigm for solving graph tasks.
However, the graph size is small and there is no
research on temporal attribute prediction related
issues. TAPE (He et al., 2023) studied the semantic
enhancement of LLM on text attribute graphs and
applied it in conjunction with GNN for node clas-
sification tasks. Although the effect is excellent, it
is difficult to transfer to nontext attribute graphs.
LLMA4TS (Chang et al., 2023) studied the solving
ability of LLM in multivariate time series predic-
tion, but it was not conducted in the context of time
series diagrams.

3 Methodology

In this section, we first define the symbols needed
for to elaborate and describe the integral model.
Then, we elaborate on the functional principles and
implementation details of each module within our
LGA model.

3.1 Overview of Symbols and Models

The temporal evolution attribute graph consists
of a series of tuples, represented as G, =
{(hv T, tv a’27 CLZ, 7—)17 s (hu T, ta a;—” a’;frv T)n},

where h denotes the head node, ¢ denotes the tail

node, r represents the relationship category, and
7 represents the timestamp. a; and af represent
the attribute information of the head node and
tail node, respectively. It is important to note
that the attributes here are numerical rather than
textual descriptions. In summary, G, represents
the attribute graph at time 7 consisting of n tuples,
while the sequence of attribute graphs required
for prediction is denoted as G = {G1, Go, ..., G, }.
To learn the representations of the attribute
graph-related information contained in the model,
we define a learnable entity embedding matrix
as F; and a relationship embedding matrix as
R.. We initialize the embedding matrices for all
nodes and relationship categories using Xavier
Uniform, denoted as E. and R, and update them
continuously during the training process.

As depicted in Fig. 2, our LGA framework con-
sists of three stages in sequence: the initialization
embedding stage, the neighborhood aggregation
stage, and the prediction stage. In the initializa-
tion embedding stage, we introduce a loss function
to align the embedding space with the topological
space, effectively reducing the distance between
them. In the neighborhood aggregation stage, we
deploy the R-GCN module to capture long-distance
complex neighborhood interactions. Additionally,
we design prompts that describe node neighbor-
hoods in the form of links, guiding the LLM
to generate aggregation-focused outputs, thereby
enabling a GNN-like aggregation method using
LLMs. Finally, the results from both aggregation
modules are concatenated to form the complete ag-
gregation sequence, which is then used by the GRU
to capture temporal features.

3.2 LGA: Our Framework
3.2.1 Initialization Embedding Stage

To generate reasonable expressions for attribute
embeddings, we generate attribute embeddings
through fully connected layers to facilitate fusion
and generate complete node information:

a; =o(W,-ayp). (1)

Here, aj, € R?*! denotes the attribute value of
node h at timestamp 7, aj € R? represents the
comprehensive embeddings of all the attributes,
W, € RV*4 denotes the learnable parameter matrix
and o(-) represents the non-linear rectified linear
unit (ReLU).

We then add a loss function to narrow the at-
tribute embeddings of the nodes that are close
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Figure 2: Framework of LGA. The framework consists of three stages: initialization embedding stage, neighborhood
aggregation stage, and the prediction stage. The content below each stage represents the modules we have designed

to overcome challenges.

to each other and to expand the embeddings of
the nodes that are far away. Inspired by the
DEAL (Hao et al., 2020) model, we modify and set
the loss as follows:

|Hi|
1
L= @(Z w(h, tr)p(cos(an, ay, ))
0
|Hz| @
+ p(—cos(ap,ar.)),
0

where |H| = |H;| + |Ha| is the total number of
nodes selected, | H1| denotes the number of nodes
with links, | H2| denotes the quantity of nodes with-
out links. a;, denotes the nodes that are linked to
ap and a;, denotes the nodes that are not linked
to ay. cos is a cosine similarity function that mea-
sures the similarity between attribute embeddings,
assigning larger values to more similar embeddings.
w is a distance-based distinction function that as-
signs different weights to links based on the number
of hops:

A
W(h, tk) — edis(h,tk) , (3)

where A is a hyperparameter and dis represents
the direct hop count between h and t;. We use ¢
to compensate for the lack of regularization in the
attribute embedding loss:

o(x) = ilog(l + et 4)

where v and b are loss margin parameters that can
adjust the magnitude of regularization.

3.2.2 Neighborhood Aggregation Stage

Long Distance Interaction Capture Module In
the neighborhood aggregation stage, to capture
the complete interactions of nodes from complex
neighborhoods and expand our model’s cognitive
scope, we introduce the R-GCN (Schlichtkrull
et al., 2018) module for multi-hop information
propagation. The R-GCN module separately as-
sign weight matrices for relationship types and tail
node types to enhance the flexibility of the model’s
aggregation process. Additionally, to reduce the
cognitive noise in the R-GCN layer’s aggregation
of node and attribute embeddings, we use two sep-
arate sets of R-GCNss to collect information from
node embeddings and attribute embeddings, respec-
tively:

Z Z 7W + W() ())’
rE€R JENT Ciyr
(5
S;Ll:_‘l) ) + W (l)S( ))7
TER]ENT

(0)
where A’ )T € R? and A(lH) € R? are the re-
sults of - layer and [ 4 1- layer attribute aggregation
respectively at time 7 and the input is attribute
embedding ag ) Correspondingly, Ss(l and Sgﬂ)
represent the results of node aggregation used for
link prediction, with the input being node embed-
ding et(Jl,). cir 1s a normalization constant and N,
denotes the neighbor set of node i with r € R.

W,ﬂ(l) and W,: ® represent edge-specific weight ma-
trices. Wt(l) and W, ) indicate the types of special
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relationship self-loop matrices for each node.

LLM Aggregation Module To achieve GNN-
like aggregation based on LLMs, we design
prompts that describe node neighborhood infor-
mation in the form of links, allowing the LLM to
perform importance ranking. This approach effec-
tively leverages the external knowledge and contex-
tual learning capabilities of the LLM. The prompt
template is shown in Figure 4.

Our prompt template consists of five parts. First,
it provides a description of the temporal evolution
attribute graph, specifying the format of neighbor-
hood inputs and clarifying the meaning of variables
at each position. The second part instructs the LLM
on the task it needs to solve, namely, to prioritize
and sort the link identifiers across all neighbor-
hoods and return the results in a list format. The
third part includes the identifiers of the nodes to
be aggregated, along with all their links at the cur-
rent timestamp. Next, we inform the LLLM of the
factors to consider when sorting the links, such as
the differences in attributes. Finally, the format
constraints for the result are provided, specifying
the contents to be included in the returned list.

After obtaining the link bias list, we concate-
nate the node embeddings, attribute embeddings,
and corresponding relation embeddings for all tail
nodes in the neighborhood, reorder them according
to the list indices, and then compute the weighted
average to obtain the aggregated embedding:

SV (N —i)[aT;ef;r]]
Ly, = ~ : .
Zi:l(N - Z)

Here, a] and e] represent the attribute embedding
and node embedding of the i-th tail node, respec-
tively, while r] denotes the relation embedding cor-
responding to the link. NV represents the number of
neighbors, where higher-ranked neighbors receive
greater weights. It is important to note that for
each node to be predicted, the link rankings for all
known temporal attribute graphs must be obtained
through prompt templates. Finally, the aggregated
embeddings are combined into an aggregated se-
quence for decoding by subsequent modules.

(7

3.2.3 The Prediction Stage

After obtaining the results from the two aggrega-
tion modules above, we concatenate them to form
the aggregated input sequence for each target node,
which is then fed into the GRU to capture temporal

dependencies and generate the predicted embed-
ding:

TA;L,T = GRUatt([Ah,T§ Lh,7'§ eh]7 TAh,f—l)?

®)
;= GRUnode([Sh,T; €h; rh,t]v TSh,T—l )

©)
Here, T Ay, € R34 is the attribute prediction
embedding at timestamp 7. To predict attributes
over multiple time steps, we need to predict the
topological information of the attribute graph for
future timestamps as auxiliary input. Therefore,
Ts, . € R3? represents the node embedding infor-
mation used for topological prediction. ry, ; repre-
sents the relationship embedding associated with
the link between the head node h and the tail node
t.

Finally, we concatenate the predicted attribute
embedding at the future timestamp 7 + 1 with the
node embedding of the head node &, and decode
it through a fully connected layer to obtain the
predicted attribute values:

Ts

h,

al ! = Waulen; Tay i) +bate. (10)

Here, W is a learnable weight matrix, and b,
is the bias matrix.

For the prediction of graph structures, we in-
put the node embeddings, relationship embeddings,
and time-dependent representations of the points
between the nodes to be predicted into the fully
connected layer. We select the entity with the high-
est matching degree from the set as the most likely
candidate to form a connection:

try1 = Wstruc[eh; Ipt; TShJ—J’,I:I + bstruc. (11)

Here, W g4, is the learnable weight matrix for the
fully connected layer, and bg;.,. is the bias matrix.

3.2.4 Parameter Learning

We set three loss functions for our LGA framework:

L=Ly+ Nqst + MLstruc- (12)

Where L, represents the attribute embedding loss
as indicated in Eq (2), L4 is the MSE loss that
measures the attribute accuracy, and L4y is the
cross-entropy loss function that measures the cor-
rectness of candidate node prediction. A and y are
hyperparameters that control the weights of losses.

N

1 I\
Latt = N ;(aﬁi - ah:) )
1=

(13)
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N N
£struc = Z Z Yhit; log (phivtj)'

i=1 j=1

(14)

Here, a;i is the predicted value of the head node
and a;; is the ground truth. yp, ¢, is the true la-
bel and pp, ¢; is the predicted probability of link
existence.

4 Experiments

We evaluated the performance of our LGA frame-
work on the temporal evolution attribute graph
prediction task using five real-world open-source
datasets from different fields. The LLM we have
chosen is Qwen2-7b, which has been pre-trained
on graph data. All experiments in this study were
conducted on a Tesla A6000 GPU with 48GB of
VRAM.

Dataset | #Train  #Valid #Test  #Nodes #Rel #Attribute
CAC 2070 388 508 90 1 1
MTG 270,362 39,654 74,730 44 90 2
NBA 145,876 76,200 42,702 3,859 1 35

ATG 463,188 57,898 57,900 58 178 1
AGG 3,879,878 554,268 1,108,538 6,635 246 1

Table 1: Indicator statistics for the five utilized datasets

4.1 Experimental Setup
4.1.1 Datasets

Considering the influence of graph complexity,
number of node attributes and types of relation-
ships, we select five datasets from the real world to
verify the predictive ability of the model in different
scenarios: CAC!, MTG?, NBA?, ATG* and AGG.
The detailed description of the dataset is shown in
Appendix A.1 and the specific data of each dataset
is shown in Table 1.

4.1.2 Baseline Methods

We compare LGA with two types of models:
one that utilizes non-graph-structured assistance
and another that uses graph-structured assistance.
Among the non-graph structure-assisted models,
we choose the ARIMA model, the vector autore-
gressive model (VAR) and historical average model,
which are based on mathematical models; and
the Seq2Seq model, which is predicted using a
GRU. Among the graph structure-assisted mod-
els, we use the HyTE (Dasgupta et al., 2018), TA-
DistMult (Garcia-Duran et al., 2018), ConvE (Shi

"https://www.aminer.cn/
“https://www.imf.org
*https://www.basketball-reference.com
*https://www.imf.org

and Zhao, 2022), RE-NET (Jin et al., 2020), the
DARTNET model (Garg et al., 2020) and FC-
STGNN (Wang et al., 2024).

4.1.3 Evaluation Metrics

Temporal evolution attribute graph prediction fo-
cuses on predicting the attribute values of nodes at
future timestamps. To evaluate the accuracy, we
use MSE loss to measure the error between the
predicted node attributes and the actual attributes.
Throughout the training phase of our LGA model,
we carefully adjusted the loss proportions in the
three components and fine-tuned the dropout pa-
rameter to enhance the model’s generalization per-
formance. Finally, we compared our model with
other models using the optimal configuration.

4.2 Main Results

In Table 2, we present the performance of our
model across five datasets. Our findings highlight
the superior performance of our model compared
to those that do not incorporate graph structure as
auxiliary information, demonstrating that the inter-
actions between nodes in the topology influence
their own attributes. Furthermore, when compared
to models that treat graph structure as auxiliary in-
formation, our model achieves higher attribute pre-
diction accuracy, indicating that it better captures
the intrinsic semantics of attributes and reduces
noise in neighborhood extraction. In contrast, sim-
ple node embedding and attribute embedding pre-
dictions based on concatenation struggle to capture
more effective information. Lastly, a comparison
with FC-STGNN shows that our model also pos-
sesses the capability to understand the interactions
between attributes.

4.3 Study on the Relationship Between
Attributes and Topology

To verify the relationship between node attribute
differences and inter-node hop distances, we con-
ducted experiments using the CAC and MTG
datasets with three hops. We systematically enu-
merated all node pairs within one-hop, two-hop,
and three-hop neighborhoods in the graph and quan-
tified their attribute differences using Euclidean
distance measurements. To accurately capture the
changes in MTG, we utilize the last three digits
of attribute differentials for visualization purposes.
The experimental results which are shown in Fig-
ure 3 indicate that the difference in node attributes
exhibits positive (or negative) linear relationship

20935



Method ATG CAC MTG AGG NBA
107 @™ aoth  athH a0
= Historic Average 1.636 4.540 14.930 600.000 -
§ VAR 3.961 6.423 9.490 300.000 -
P ARIMA 1.463 4.245 2.860 51.240 -
= Seq2Seq model 1.323 4.554 2.975 28.000 -
HyTE + 1-layer GRU 4.041 40.234 37.170 7.430 -
HyTE + 2-layer GRU 1.531 40.885 17.410 2.070 -
TA-Distmult + 1-layer GRU 0.847 3.584 16.880 3.250 -
= TA-Distmult + 2-layer GRU 0.796 3.432 9.770 7.030 -
= RENet (mean) + 1-layer GRU 0.793 4.073 5.020 203.320 7.870
& RENet (mean) + 2-layer GRU 0.857 3.865 4.348 200.220 -
= RENet (RGCN) + 1-layer GRU 0.620 3.718 5.170 203.120 5.425
e RENet (RGCN) + 2-layer GRU 0.550 3.984 12.700 201.560 -
ConvE + 1-layer GRU (Shi and Zhao, 2022) 0.763 3.899 7.240 202.580 -
ConvE + 2-layer GRU (Shi and Zhao, 2022) 0.728 4.321 9.460 206.640 -
DARTNET (Garg et al., 2020) 0.115 3.423 0.496 0.848 9.205
FC-STGNN (Wang et al., 2024) 0.892 5.565 0.958 1.324 8.937
LGA(ours) 0.079 1.934 0.480 0.160 5.048

Table 2: Temporal evolution attribute graph prediction results of all models. Bold formatting indicates the best
results, and underlined formatting denotes the second-best results.
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Figure 3: The connection between node attribute differ-
ences and inter-node hop distances

with inter-node hop distances. Therefore, incorpo-
rating the topology of nodes as semantic informa-
tion into the attribute embeddings can enhance the
representational power of the attributes.

4.4 Study on the GNN-based Prediction
Performance of LLM

In this experiment, we examine the aggregation
performance of LLMs in temporally evolving at-
tributed graphs and their compatibility with various
models by integrating a GNN-style aggregation
module from LLMs into baseline approaches that
partially leverage graph structures as auxiliary in-
formation. The experimental results are shown in
Table 3.

Experimental results demonstrate that the LLM-
based aggregation module can more accurately cap-
ture relationships between adjacent nodes, compre-
hend the temporal evolution of node attributes, and
consequently enhance the prediction accuracy of

node attributes.

Dataset CAC NBA ATG AGG MTG

(1072 (1073 (107%) (10~%) (107
DARTNET 3.423 9205 0.115 0.848 0.496
DARTNET + LLM 2.443 6.837 0.103 0.530 0.190
RE-NET(mean) 3.865 7.870 0.857 200.22 4.348
RE-NET(mean) + LLM | 3.485 7.750 0.305 0.740 1.970
RE-NET(RGCN) 3718 5.425 0.620 203.12 5.170
RE-NET(RGCN) + LLM | 2.647 5.098 0.134 0.161 1.860
FC-STGNN 5.811 8937 0.111 0.912 0.998
FC-STGNN + LLM 5.653 8.546 0.226 0.811 0.951

Table 3: Study on the GNN-based Prediction Perfor-
mance of LLM

4.5 Time Complexity Analysis

The main time cost of LGA lies in the usage of
R-GCN and LLM. Therefore, we conducted the
following time complexity analysis based on these
two components. We first define the following pa-
rameters for our dataset and model architecture: N:
Number of nodes in the dataset; E,,q.: Average
number of neighbors per node; n: Historical time
length; L rgon: Number of layers in the R-GCN;
drrm: Hidden dimension of the LLM; Ly
Number of layers in the LLM. For each node at-
tribute prediction step, the time complexity of the
R-GCN aggregation is O(n-Lrgon-IN). Since the
LLM does not participate directly in training, we
perform LLM-based aggregation during the data
preprocessing stage and cache the results for train-
ing. Consequently, the time complexity of LLM
aggregationis O(Lrra -dra - N - E2, ). Thus,

n
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the overall time complexity is: O(n- Lrgon - N +
Ly -droyv - N - E,rzwde).GiVeIl that n, Lrgon,
Lrry, and dppps are predefined constants, our
model’s time complexity scales primarily with the
graph size N and its sparsity E,,pqe-

At the same time, we calculated the time propor-
tion of the R-GCN and LLM processing processes
in a single epoch through experiments, as shown in
Table 4. Among the four evaluated datasets—AGG,
NBA, CAC, and MTG—the sparsity decreases in
the order of AGG (sparsest), NBA, CAC, and MTG
(densest), while the scale increases from MTG
(smallest) to CAC, AGG, and NBA (largest). Ex-
perimental results demonstrate that (1) larger at-
tribute graphs allocate a greater time proportion to
R-GCN processing, and (2) sparser graphs exhibit
higher LLM aggregation overhead, though absolute
runtime remains significant. Nevertheless, the pro-
posed method effectively balances computational
demands, maintaining manageable complexity de-
spite jointly employing LLM and R-GCN.

Dataset | total w/o LLM w/o RGCN
(/s) (/s) (/s)
CAC 249 40(-83.9%) 215(-13.7%)
AGG 3649 124(-96.6%) 3616(-13.7%)
NBA 39627 5386(-86.4%)  39149(-1.2%)
MTG 38399 21811(-43.2%) 32013(-16.6%)

Table 4: Time Complexity Analysis

CAC NBA ATG AGG MTG
(1072) (1072) (1073 (10~%H (1074

Dataset

W/o AttLoss 2.186 7.770 0.090 12.628 0.510
W/o LLM 2.731 8468 0.095 0.540 1.822
‘W/o Long-distance Capture | 2.132  8.032 0.112 0.840 1.370

LGA 1.934 5.048 0.079 0.160 0.480

Table 5: Performance of ablation study

4.6 Ablation Study

To substantiate the effectiveness of each module,
we conducted ablation experiments, systematically
breaking down and analyzing our proposed solu-
tion. As shown in Table 5, the optimal result is the
sum of all the components. From one perspective,
the most significant decline in prediction accuracy
observed after removing the LLM module under-
scores its crucial role as an information aggregation
method in the model’s prediction process. From an-
other perspective, the structural semantic enhance-
ment of attributes and the long-range interaction
capture module provide additional insights from

both structural and temporal dimensions, playing a
secondary yet indispensable role.

5 Conclusion

This paper presents LGA, a novel model for tem-
poral evolution attribute graph prediction that en-
hances accuracy and stability. Specifically, we en-
rich the semantic meaning of the initial attribute
embeddings by constructing an attribute embed-
ding loss, providing the model with topological
semantics as prior knowledge. By incorporating
the long-distance interactive capture module, we
account for multi-hop interactions in complex struc-
tures, while separately considering the differences
between node and attribute embeddings through
two distinct sets of modules. Finally, we design
prompts to perform GNN-style aggregation based
on LLMes, filling a gap in the field. Comprehensive
experiments across multiple datasets show LGA
significantly outperforms baseline models.

6 Limitations

Our model utilizes a GNN module for information
aggregation, which causes the training time and
GPU memory usage to increase as the graph size
grows. And the embedding stage’s training time
accelerates dramatically with graph complexity due
to the combinatorial explosion of node interactions.
Additionally, as the historical time length increases,
the model requires more GPU memory. In sum-
mary, our next research direction is to adapt LGA
for larger-scale attribute graphs while minimizing
computational resource consumption.
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A Supplementary Experimental Setup
A.1 Datasets

In this section, we will provide a detailed descrip-
tion of the meanings of the nodes, edges, and at-
tributes of the datasets we are using:

CAC Coauthorship-Citation(CAC): CAC repre-
sents the citation information of papers between au-
thors. Among them, nodes represent authors, edges
represent collaborative relationships between au-
thors, and attributes represent the number of times
authors are cited each year.

MTG Multiattributed Trade Graph(MTG): MTG
represents the international trade situation. Among
them, nodes represent countries, edges represent ex-
port trade orders, and attributes represent monthly
net export price index and international reserve
asset value.

NBA NBA represents the team formation status
between players. Among them, nodes represent dif-
ferent players, edges represent team relationships
between players, and attributes represent informa-
tion such as player scores, teams, ages, and posi-
tions.

AGG Attributed GDELT Graph (AGG): AGG
represents Global Database of Events, Language,
and Tone (GDELT). Among them, nodes represent
countries, edges represent events, and attributes
represent the currency exchange rate.

ATG Attributed Trade Graph (ATG): ATG repre-
sents the export trade between countries. Among
them, nodes represent countries, edges represent
export trade orders, and attributes represent the
currency exchange rate.

B Supplementary Experiments

B.1 Study on Long Distance Interactive
Capture

In this experiment, we conducted a comparative
analysis using the inclusion of a long-range neigh-
borhood interaction capture module as a bench-
mark, aiming to investigate the impact of long-
range interactions and individual modeling of rela-
tionship categories on prediction performance. The
results are shown in Table 7. The experimental
results show that the long distance interactive cap-
ture module can improve the completeness of the
model’s acquisition of neighborhood knowledge,
thereby enhancing prediction accuracy.

B.2 Study on Attribute Graph Link
Prediction

In the task of predicting temporal attributes, mod-
eling structural information for attribute prediction
can significantly enhance the accuracy of attribute
predictions. Therefore, as a secondary focus, we
executed experiments to assess the graph structure
prediction accuracy against the DARTNET model
within the context of the temporal attribute pre-
diction task. This was performed on the CAC,
ATG, and MTG datasets to evaluate the model’s
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6\

Graph Description:

Question Description:

and return the connection_ids in the form of a list.
Neighborhood Description:

1:[001[0.1, 0.2] [0.3, 0.4]]
2:[012[0.1,0.2] [0.5, 0.6]]

The Main Consideration:

reflect the priority of the connections.
Format Constraints:

You can use the following format:
[connection_id_1, connection_id_2, connection_id_3, ...]

The given time evolution attribute graph is represented by individual connections in the format of:

{connection_id}: [{subject} {relationship} {object} [attributies_subject] [attributies_object]].
The {subject} and {object} are the subjective and objective nodes, represented in numerical form. {Relationship} represents the category of the
relationship between two nodes. [attributies_subject] and [attributies_object] represent the attribute information of {subject} and {object} respectively.

If you must predict the attribute values of node {node_idx} at future timestamps, please sort the connections below according to the priority you consider

Here are the given connections, subject node are always node {node_idx}:

You need to sort the connections based on the difference between the attributes of object and node {node_idx}. The difference in attribute values may

Please strictly follow the above demands for output and object must appear in the {object} of the above connections.

Output:
[1,3,2,4,6,5,..] )
-/
Figure 4: The prompt template collects the semantic information of neighborhood events
Dataset CAC ATG MTG
MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10
DARTNET |53.64 46.69 5693 6536 [91.55 88.09 93.87 97.82 |85.86 80.26 89.79 95.44
LGA |54.16 47.29 5542 69.28 |92.78 89.86 94.71 98.11 |89.35 8331 94.77 98.98

Table 6: Performance of attribute graph structure prediction study on CAC, ATG and MTG datasets

Dataset CAC ATG MTG

‘(10—4) o~ @o—3)
Origin 3.423 0.115 0.496
W.Long-distance Capture | 2.443 0.090 0.195

Table 7: Study on long distance interactive capture

capability to generate structural auxiliary informa-
tion. We use the mean reciprocal rank (MRR) and
Hits@1/3/10 as performance metrics for structural
prediction. As depicted in Table 6, LGA can ac-
curately predict graph structures and offer more
valuable neighborhood information.

B.3 Time Step Study

Our model can predict multiple future time steps
through continuous prediction, and to verify the
effectiveness of its multistep prediction ability, we
predict the attribute prediction errors for 1, 2, and 5
consecutive unknown time steps and use the CAC,
ATG, MTG, and NBA for experiments.

Fig. 5 shows that our LGA model yields varying
degrees of improvement over the baseline in terms

of the stability of its multitimestamp predictions.

On the small-scale CAC dataset, the loss increases

rapidly because the model does not learn complete
information, but its increase is smaller than that of
the baseline. On the larger ATG and MTG datasets,
the increase rate of the prediction loss induced by
our model after 2 timestamps significantly slows,
and it even exhibits negative growth on the MTG
data, which is sufficient to illustrate the multitimes-
tamp prediction stability advantage of LGA.

Multiple Timestamp Prediction Results

CAC Dataset ATG Dataset

0.6

5 LGA LGA
DARTNET DARTNET
2 0 04
P g
prr prr
2 2
2 02
1
0 0.0
1 2 3 4 5 1 2 3 4 5
MTG Dataset NBA Dataset
06
LGA 025 LGA
DARTNET DARTNET
04 FC-STGNN ., 020 FC-STGNN
& 8
= o015
prr w
2 2
02 0.10
0.05
0.0 0.00
1 2 3 4 5 1 2 3 4 5

Figure 5: The multiple timestamp prediction results
obtained from the tested models
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B.4 Prompt Sensitivity Experiment

The problem-solving capability of LLMs is highly
dependent on the quality of prompt template de-
sign. Creating superior prompt templates can en-
hance the model’s comprehension ability and sta-
bility. Therefore, in this experiment using the CAC
dataset, we focused on two components that most
significantly impact LLM performance - Question
Description and Format Constraints - by modify-
ing their prompt wording to investigate the model’s
sensitivity to different prompt formulations.

First, regarding the Question Description com-
ponent of the prompt template, we modified it to:
"Now you should predict the attributes of subject
node node_idx. By analyzing the provided connec-
tions, identify the most relevant relationships to the
subject node and rank them by importance (high-
est priority first)." In attribute prediction experi-
ments, this modification resulted in an MSE loss of
2.216, representing a 14.6% performance degrada-
tion compared to the original result of 1.934, indi-
cating lower adaptability of the modified template
to the LLM.

Next, we examined the role of Format Con-
straints in the prompt template. The experiment
attempted to remove the constraint phrase "Please
strictly follow the above demands for output" that
forces the LLLM to return results in a specific for-
mat. However, during testing, we observed that
the LLM returned unstructured intermediate rea-
soning outputs in some aggregation scenarios. This
anomalous behavior directly disrupted subsequent
data aggregation processes, demonstrating the irre-
placeable role of Format Constraints in regulating
LLM output formats.

In conclusion, through experimental validation
of different prompt templates, we demonstrate that
the prompt template proposed in this study delivers
optimal performance.

B.5 Embedding Effectiveness Evaluation

To evaluate the effectiveness of attribute embed-
ding, we conducted a focused analysis on node 79
and its neighborhood (nodes [53, 78, 48]) at times-
tamp 2003 in the CAC dataset. In the baseline
model without attribute embedding, the Euclidean
distances between node 79’s feature representation
(transformed through the connection layer) and its
neighbors were [0.0038,0.3920, 0.3413]. After im-
plementing attribute embedding, these distances
reduced significantly to [0.0015,0.1526, 0.1345].

This quantitative improvement demonstrates that
the attribute embedding loss function effectively en-
hances feature similarity between connected nodes
in the embedding space.
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