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Abstract

Autoregressive neural language models (LMs)
generate a probability distribution over tokens
at each time step given a prompt. In this work,
we attempt to systematically understand the
probability distributions that LMs can produce,
showing that some distributions are signifi-
cantly harder to elicit than others. Specifically,
for any target next-token distribution over the
vocabulary, we attempt to find a prompt that
induces the LM to output a distribution as close
as possible to the target, using either soft (Li
and Liang, 2021) or hard (Wallace et al., 2019)
gradient-based prompt tuning. We find that (1)
in general, distributions with very low or very
high entropy are easier to approximate than
those with moderate entropy; (2) among distri-
butions with the same entropy, those containing
“outlier tokens” are easier to approximate; (3)
target distributions generated by LMs—even
LMs with different tokenizers—are easier to ap-
proximate than randomly chosen targets. These
results offer insights into the expressiveness of
LMs and the challenges of using them as prob-
ability distribution proposers.

1 Introduction

Pretrained language models (LMs) have acquired
extensive knowledge (Zhao et al., 2023) and shown
strong performance across various tasks (Kaplan
et al., 2020; Brown et al., 2020). Their impres-
sive generative capabilities rely heavily on algo-
rithms that determine the next token (Finlayson
et al., 2024a, inter alia). As a foundation, these
algorithms typically involve the softmax operation
(Bridle, 1989), which computes the probability dis-
tribution of next tokens using the product of hidden
states and token embeddings. However, such oper-
ation leads to the softmax bottleneck (Yang et al.,
2018), which restricts the output distribution to a
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Figure 1: The Kullback–Leibler divergence between
the target and approximated distributions for different
entropy levels (in bits), using soft prompt tuning (Li
and Liang, 2021) with different pretrained LMs as the
backbone. The shaded regions represent the standard
error bands.

low-dimensional subspace, thereby limiting LM ca-
pability to express certain probability distributions.
For example, Chang and McCallum (2022) found
that when predicting the next-word probabilities
given ambiguous contexts, GPT-2 (Radford et al.,
2019) is often incapable of assigning the highest
probabilities to nonsynonymous candidates. In an-
other line, Finlayson et al. (2024b) found that by
leveraging the limitations in LM expressiveness,
we can efficiently extract proprietary information
about API-protected LMs. These findings natu-
rally raise a research question: are there general
properties of the next-token probability distribu-
tion that can be easily elicited from LMs through
prompting?

To answer this question, we conduct a system-
atic analysis of the expressiveness of LMs, in terms
of approximating different target probability distri-
butions. Without changing the parameters of LMs,
we aim to find prompts that lead to the output of
a probability distribution as close as possible to a
target distribution. This design isolates the intrin-
sic expressivity of pretrained LMs, since we probe
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their behavior by varying only the prompts while
keeping model parameters fixed. Apparently, due
to inefficiency for enumerating the infinitely many
prompts as triggers for approximating the target dis-
tribution, we use modern optimization techniques.
Through either soft (Li and Liang, 2021) or hard
(Wallace et al., 2019)1 prompt tuning across dif-
ferent initializations, we measure the difficulty of
an approximation using the minimum Kullback–
Leibler (KL) divergence between the target and the
approximated distributions from different prompt
initializations.

We conduct experiments on multiple pretrained
LMs, including GPT-2 (Radford et al., 2019),
Llama3.2-1B (Dubey et al., 2024), Falcon-7B (Al-
mazrouei et al., 2023), and Llama3-8B (Dubey
et al., 2024). We identify that these models share
general properties for the next-token probability
distributions: First, as illustrated in Fig. 1, the diffi-
culty of approximating a random target distribution
is approximately a unimodal function of the target
entropy, where the approximation loss increases
with the entropy of the target distribution up to a
point, then decreases across all models. Second,
for the distributions with moderate entropy, the ex-
istence of outlier tokens (i.e., those receiving much
higher probability values than the other tokens)
makes the approximation easier. Finally and un-
surprisingly, LM-generated distributions are easier
to approximate regardless of the entropy values,
and can be effectively transferred across LMs. Our
results introduce novel evidence toward a better
understanding of the expressiveness of LMs, high-
lighting the opportunities and challenges in using
LMs as probability distribution proposers.

2 Related Work

Expressiveness of LMs. The output probability
distributions of LMs are restricted into a linear sub-
space of full output space because of softmax bot-
tleneck (Yang et al., 2018). A natural consequence
is that any collection of linearly independent LM
outputs can form a basis for this space that ex-
presses any probability distribution output by LMs
(Finlayson et al., 2024a; Finlayson et al., 2024b).
While it was previously believed that a large hid-
den state dimension would overcome the softmax
bottleneck in LMs, Chang and McCallum (2022)

1The key difference between soft and hard prompts is
that soft prompts can be continuous embeddings that do not
align to any token in the vocabulary, while hard prompts must
correspond to vocabulary entries.

found that linear dependencies, such as word anal-
ogy (Turney, 2008), in token embeddings (Mikolov
et al., 2013; Ethayarajh et al., 2019) restrict the
expressiveness of the output probability distribu-
tions. These findings motivate us to investigate the
properties of next token probability distributions to
better understand LM expressiveness, which, to the
best of our knowledge, has not been systematically
studied before.
Prompt tuning with frozen LMs. A large body
of previous research has demonstrated that prompt-
ing can effectively solve a wide range of tasks
(Brown et al., 2020; Schick and Schütze, 2021;
Gao et al., 2021; Sun et al., 2021; Dong et al.,
2024, inter alia). Among them, prompt tuning,
which learns the prompt parameters from down-
stream tasks while keeping the main LM param-
eters frozen, becomes a lightweight yet effective
technique to obtain task-specific prompts (cf. Liu
et al., 2023). There has been two major branches
of tuning methods.
• Hard prompt tuning, or discrete prompt tuning,

which uses the non-contextualized representation
of vocabulary tokens as prompts (Ebrahimi et al.,
2018; Jiang et al., 2021; Haviv et al., 2021, inter
alia). Among them, Wallace et al. (2019) pro-
posed a gradient-based search over token prefixes
to trigger certain output tokens.

• Soft prompt tuning, or continuous prompt tun-
ing, which finds a sequence of continuous em-
beddings as the prompt for downstream tasks,
while not requiring the prompts to correspond to
vocabulary tokens (Li and Liang, 2021; Qin and
Eisner, 2021; Liu et al., 2022, inter alia). These
soft prompts can be directly optimized through
gradient descent to the embedding space.

Neither branch has been used to study the expres-
siveness of LMs in eliciting different probability
distributions, which is the focus of our work. In
this work, we adapt the approaches of Wallace et al.
(2019) and Li and Liang (2021) to find prompts
that lead to specific probability distributions.

3 Problem Formulation

Consider a Transformer-based (Vaswani et al.,
2017) autoregressive language model MΦ (e.g.,
Llama3; Dubey et al., 2024) parametrized by Φ.
Let x = [x1, x2, ..., xn] ∈ Zn

≥0 be the input text
with n tokens. The language model MΦ first
converts x into non-contextualized token embed-
dings WΦ(x) = [wΦ(x1), . . . ,wΦ(xn)] ∈ Rn×d
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Figure 2: Illustration of the prompt tuning frameworks adapted in this work. For hard (Fig. 2a) and hybrid (Fig. 2c)
embeddings–based frameworks, we optimize the prefix embeddings from left to right; forthe soft embeddings-based
framework (Fig. 2b), we optimize the embeddings directly through gradient descent. Best viewed in color: the dark
colors represent the initial embeddings, and the light colors represent the optimized ones.

through a look-up table, where d is the embedding
size. The embeddings are then fed into the Trans-
former to produce the logits over the vocabulary
z = [z1, . . . , zn] ∈ R|V|, where |V| is the size of
the vocabulary V . The logits are later on normal-
ized with a softmax operator to produce the proba-
bility distribution q over the vocabulary, where for
v ∈ V , the probability of the next token being v
given the prefix x is given by:2

qv = softmax(z)v =
exp(zv)∑

v′∈V exp(zv′)
.

Here, q is essentially the output of the function (i.e.,
the language model) MΦ given the input x; that is,
we obtain the next-token distribution q ∈ R|V| by

q = MΦ(x).

We aim to find an input sequence x, where
q = MΦ(x) is close enough to an arbitrary tar-
get distribution p ∈ R|V|. Here, since we adopt
optimization techniques (Li and Liang, 2021; Wal-
lace et al., 2019) to find x, x can be viewed as
parameters Θ (Θ = x) optimized by the algorithm
(Fig. 2). The objective of the optimization prob-
lem is to minimize the KL divergence between the
target distribution p and the output distribution q:

min
Θ

LKL(p,q;Θ)

⇔min
Θ

∑

v∈V
p(v) log

p(v)

q(v;Θ,Φ)
.

Lower KL divergence indicates better approxima-
tion of the target distributions. Varying across

2With a slight abuse of notations, we use v to denote both
the token and the token index in the vocabulary.

random seeds, the minimum KL-divergence loss
LKL(p,q;Θ) gives an approximation on how dif-
ficult it is to elicit the target distribution p from the
LM MΦ—lower loss indicates easier elicitation.

4 Methods

In this section, we introduce our method to synthe-
size target probability distributions (§4.1) and the
prompt tuning frameworks (§4.2).

4.1 Target Distribution Construction

Our work requires constructing a probability dis-
tribution p over the vocabulary given a specified
entropy value. To achieve this, we start from a set
of random logits z ∈ R|V|, where V is the vocab-
ulary of the LM. The probability distribution p(v)
defined by the logits z is given by:

p(v; z) =
exp(zv)∑

v′∈V exp(zv′)
.

Given the desired target entropy h, we aim to find
a set of logits z such that the entropy of the distri-
bution p(v; z) is close to h within a small margin
ε(ε > 0), by minimizing the following loss with
gradient descent:

L(z;h) = ||H(p(·; z))− h||2 (1)

=

∣∣∣∣∣

∣∣∣∣∣−
(∑

v∈V
p(v; z) log p(v; z)

)
− h

∣∣∣∣∣

∣∣∣∣∣

2

,

where H(·) denotes the entropy of a probability
distribution. We use gradient descent to minimize
L to construct for target distribution p.

However, entropy is a lossy descriptor of a prob-
ability distribution. For example, in Fig. 3, the two
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distributions (one output by Llama3.2-1B (Dubey
et al., 2024) and the other by our search algorithm
based on Eq. (1)) have the same entropy yet are
distinct from each other sharply. Considering the
fact that LMs usually generate skewed distributions
with a few tokens receiving much higher probabil-
ity mass than the rest (Holtzman et al., 2020), we
define distributions with outliers, of which a large
amount of probability mass concentrates on a small
set of tokens. Formally, a distribution with k out-
liers satisfies:

∑

v∈Vo

p(v) ≥ m− δ, (2)

where Vo denotes the k(k ≪ |V|) pre-selected out-
lier tokens that receive distinctively larger proba-
bility mass than the rest; m is the theoretical upper
bound of the concentrated probability mass to k
tokens to ensure the feasibility of the entire dis-
tribution reaching the target entropy h—details of
calculating m from k, h, and |V| can be found in
App. A; δ is a small margin to ensure the feasibility
of the optimization process, which we set to 0.01 in
all experiments. Intuitively, Eq. (2) requires that a
small set of k tokens account for most of the proba-
bility mass, thereby capturing our notion of outlier
distributions. Here, m specifies the maximum fea-
sible cumulative mass these tokens can hold under
the entropy constraint, ensuring the construction
remains mathematically valid.

We add a regularization term to the loss function
in Eq. (1) to encourage increased probability mass
on the outlier tokens. To construct an outlier dis-
tribution, we optimize the following loss function
with gradient descent:

L′(z;h) = α · L(z;h)− β
∑

v∈Vo

p(v), (3)

where α and β are hyperparameters that balance
the two terms, and stop once Eq. (2) is satisfied.
We will compare the difficulty of approximating
the distributions generated by Eq. (1) and Eq. (3)
in our experiments.

4.2 Prompt Tuning Frameworks
Hard prompt tuning. Intuitively, we aim to find a
textual input that elicit the specified target probabil-
ity distributions. Following Wallace et al. (2019),
we use an iterative linear approximation of the gra-
dient of the KL divergence loss w.r.t. the prefix
embeddings Θ. We update the tokens in the prefix
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Figure 3: Two distributions, both with entropy 7.68 but
have distinctively different shapes. Upper: the output
probability distribution from prompting Llama3.2-1B
with ’I love’. Lower: The distribution from our search
algorithm following the objective of Eq. (1).

one by one from left to right, where each token xi
is updated to:

xi = argmin
x∈V

[WΦ(x)− θi]
⊺∇θi

LKL(Θ). (4)

Intuitively, at each step, we find an in-vocabulary
token x ∈ V that best linearly approximates the
gradient of the KL divergence loss w.r.t. the prefix
embedding θi. We repeat this iterative update until
the convergence of the loss, and obtain the hard
prompt tuning result

Θ∗
hard = [wΦ(x1),wΦ(x2), ...,wΦ(xn−1)] ,

where xi is the discrete token that appear in the
prefix at position i in the final step.

Soft prompt tuning. The power of hard prompts
is limited because they are restricted to vocabulary
entries. Following Li and Liang (2021), we directly
minimize the KL divergence loss w.r.t. the prefix
embeddings Θ in a continuous word vector space.

Θ∗
soft = argmin

Θ
LKL(p,q;Θ). (5)

We use AdamW (Loshchilov and Hutter, 2019) to
optimize this objective. We include soft prompts to
probe the upper bound of LM expressivity, since
they allow unconstrained optimization in the em-
bedding space; although they may not lie on the
natural input manifold, we aim to study theoretical
reachability rather than mimic typical usage.

Hybrid prompt tuning. To better understand the
effect of different tuning methods, we introduce a
hybrid tuning method that combines hard and soft
prompts, where Θ can be partitioned into two parts:
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Θh for hard prompts and Θs for soft prompts, with
some θ updated by hard prompts tuning and others
by soft prompts tuning. We also optimize the hy-
brid embeddings in a left-to-right manner, where
the hard embeddings are updated using Eq. (4),
with soft embeddings updated using Eq. (5).

We compare the above three strategies in approx-
imating target distributions. The general frame-
work of our tuning methods can be found in Fig. 2.

5 Experiments

To study the general property of the expressiveness
of an LM, we start by studying different probabil-
ity distributions of different entropy (§ 5.1). We
then analyze the LM approximation performance
on outlier distributions (§5.2). Finally, we inves-
tigate target probability distributions as the output
distribution of LM itself (§ 5.3), and analyze the
results for approximating the variations of such dis-
tributions (§5.4). We set up our experiments across
transformer-based LMs of different architectures
and sizes, including GPT-2 (Radford et al., 2019),
Llama3.2-1B (Dubey et al., 2024), Falcon-7B (Al-
mazrouei et al., 2023), and Llama3-8B (Dubey
et al., 2024). To mitigate the effect of randomness
brought by target distribution construction algo-
rithms in § 4.1, we obtain different distributions
regarding the same entropy value. For each dis-
tribution, we use a different initialization for the
prefix parameters. Detailed experiment setups can
be found in App. B for reference.

5.1 Approximation of Vanilla Distributions

We perform prompt tuning to approximate target
distributions constructed with Eq. (1), which we
will refer to as vanilla distributions. We investigate
the target entropy ranging from 0 to log |V| with a
step size 0.05, where |V| is the model’s vocabulary
size, and log |V| is the theoretical upper bound for
the vocabulary distribution.3

Fig. 1 presents the approximation loss of soft
prompt tuning, plotted against the target entropy
for different models. The approximation loss curve
exhibits a consistent pattern across all models: in-
creasing with target entropy up to a point, then
decreasing across all models, which roughly forms
a unimodal curve.

We then compare soft and hard prompt tuning
frameworks (§4.2) on vanilla target distributions

3The proof is detailed in App. A.
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(b) Hybrid prompt tuning.
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(c) Soft prompt tuning.

Figure 4: Approximation loss plotted against the tar-
get entropy for different prompt tuning frameworks on
Llama3.2-1B. For the distribution of each target entropy
we used 5 different prompt initializations, and we keep
prefix length to be 5.

(Fig. 4). As expected, soft prompts—being un-
constrained by the vocabulary—consistently yield
lower approximation losses than hard prompts. To
further explore this gap, we adopt hybrid prompt
tuning, where updates depend on the embedding
source. Increasing the number of soft tokens in the
prefix improves approximation, highlighting the
benefit of soft tuning. We also find that different
random initializations of prefix embeddings can
lead to large variance in performance. This effect
is especially pronounced in hybrid and soft prompt
tuning (Figs. 4b and 4c). Echoing findings in Zhao
et al. (2025), our results suggest that randomness
plays a systematic role in loss minimization.

However, even when using pure soft prompts
for these objectives, we still struggled to elicit cer-
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Figure 5: Approximation loss and the entropy for distri-
bution output by tuned prompt plotted against the target
entropy for soft prompt tuning on Llama3.2-1B. The
figure shows the mean minimum loss within different
initializations and corresponding entropy across distri-
butions with the same target entropy (lines) and the 95%
confidence interval (shaded region).

tain distributions. We present the result of a soft
prompt tuning study on Llama3.2-1B in Fig. 5. The
result shows systematic trends of target distribu-
tions regarding different ranges of entropy values.
At low entropy, we have near-zero losses on soft
prompt approximation, and the prompts tuned by
our framework output a distribution with aligned
entropy to the target. However, when the target
distribution has a larger entropy, the losses of our
training objective increase due to the failure of the
model to approximate a lower-entropy distribution
from the initializations—the entropy of the approx-
imated distribution grows to be larger than the tar-
get entropy. Such a phenomenon in approximation
loss is also observed for transformer-based models
from different series and sizes (Fig. 1). When the
parameters are randomly initialized, the approxi-
mation loss remains a unimodal curve with respect
to the target entropy (Fig. 6), indicating that pre-
training is not the cause of the unimodal difficulty
phenomenon.

5.2 Approximation of Outlier Distributions

In this section, we perform prompt tuning to ap-
proximate target distributions characterized by
outlier tokens, where these distributions are con-
structed according to the objective defined in
Eq. (3).

To isolate the effect of outlier tokens from token
identity or ordering, we construct five target distri-
butions for each configuration with fixed entropy
and outlier count. To account for variability from
prompt initialization, each experiment is repeated
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Figure 6: Approximation losses exhibit a consistent pat-
tern as shown in Fig. 1 for models randomly initialized
that excluded pretraining history. The orange-yellow
line is the randomly initiated models, while the blue
dash line corresponds to the pretrained models. The
x-axis in the subplot stands for target entropy.

with five random initializations, and we report the
minimum loss achieved. Final results are averaged
over these minima across all distributions for each
target configuration.

Since moderate-entropy distributions yield
higher approximation losses in the vanilla setting
(Fig. 5), we focus our analysis on this regime,
where approximation is most challenging. Our
results (Figs. 7a and 7b) show that distributions
with outlier tokens incur lower losses than vanilla
counterparts with similar entropy. This effect is
strongest when a single token dominates the proba-
bility mass. In such cases, the tuned prompts also
produce output distributions whose entropy better
matches the target. These findings suggest that the
presence of outliers in the target distribution may
facilitate more effective prompt tuning by the LM.

5.3 Approximation of LM-generated
Distributions

Building on the findings of Morris et al. (2024),
who demonstrate that input text can be largely re-
constructed from output distribution logits using a
trained inversion model, we hypothesize that LM-
generated distributions are intrinsically easier to
approximate than distributions we experimented
with in §5.1, irrespective of their entropy levels.

To evaluate this hypothesis, we conduct a com-
parative analysis between vanilla target distribu-
tions (Eq. (1)) and target distributions derived from
LM outputs. We conducted our experiments on
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(b) Corresponding mean entropy for shuffle soft prompt
approximation on outlier distributions and their 95% con-
fidence interval (shaded region).

Figure 7: Outlier distribution loss and corresponding
entropy of approximated distributions on Llama3.2-1B.

Llama3.2-1B. We construct target distributions by
randomly sampling a prompt—i.e., a sequence of
random token indices—and using the model’s next-
token output as the target distribution for evaluation.
We compute the entropy of each LM-generated out-
put distribution and use it as the target entropy in
our training objective, as defined in Eq. (1). For
each, we construct a corresponding vanilla next-
token distribution with matched entropy. To mit-
igate initialization variance, we tune 25 prompt
initializations per target and report the minimum
loss. Hard prompt tuning is evaluated on 100 such
distributions, each paired with a matched-entropy
vanilla distribution.

We present the results in Fig. 8. As shown in
Fig. 8a, we fit a regression line over the minimum
losses and their corresponding entropies across ini-
tializations. Hard prompt tuning on LM-generated
distributions consistently yields lower loss than on
vanilla ones, with a low R² value indicating weak
correlation between entropy and loss. Fig. 8b re-
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(a) Hard prompt tuning loss comparison between
Llama3.2-1B output distributions and matched-entropy
vanilla distributions.
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(b) The comparison in corresponding entropy of hard
prompt tuning between Llama3.2-1B output distributions
and matched-entropy vanilla distributions.

Figure 8: The comparison of approximation perfor-
mance across distribution pairs in §5.3 on Llama3.2-1B.

ports the entropy of the next-token distributions pro-
duced by tuned hard prompts for both types of tar-
gets. The approximated entropy closely aligns with
the target for LM-generated distributions, whereas
vanilla targets show larger deviations.

5.4 Approximation of Variations of
LM-Generated Distributions

To assess whether LM-generated distributions are
not only easier to approximate, as demonstrated in
§5.3, but also robust under distributional variations,
we extend our analysis to include shuffled LM-
generated distributions and distributions derived
from the outputs of other models.

We begin by evaluating how sensitive approxi-
mation performance is to token assignments in the
target distribution. To do so, we randomly shuffle
token indices in LM-generated distributions from
§5.3, preserving their original probabilities. These
are referred to as shuffled variants, with each distri-
bution shuffled five times to reduce randomness.

Following the prior setup, soft prompt tuning
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Figure 9: Soft prompt approximation loss is com-
pared across LM-generated, shuffled LM-generated, and
vanilla target distributions on Llama3.2-1B.
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Figure 10: Soft prompt tuning loss on migrated dis-
tributions from various source models is evaluated on
Llama3.2-1B.

is applied using five random initializations, and
the minimum loss is reported. Fig. 9 shows the
results for shuffled variants alongside original and
matched vanilla distributions. Notably, shuffled
variants still outperform vanilla ones—especially in
the moderate entropy regime where approximation
is harder (Fig. 5).

We further examine the transferability of LM-
generated distributions by testing whether out-
put probabilities can be effectively approximated
across models. A source LM generates target dis-
tributions using the method in §5.3, while a tuning
LM performs prompt tuning on these distributions.
The target distribution for the tuning LM is con-
structed by mapping shared tokens from the source
LM and renormalizing their probabilities to ensure
a valid distribution.

Soft prompt tuning is used to approximate the
migrated distributions from the source models, with
Llama3.2-1B as the tuning LM. Results in Fig. 10

show that, despite not being generated by the tun-
ing model, the migrated distributions achieve lower
approximation loss than matched-entropy vanilla
distributions. This suggests that, despite differ-
ences in tokenization and architecture, LM outputs
share underlying properties that support more ef-
fective approximation.

6 Conclusion and Discussion

In this work, we systematically study the expres-
siveness of LMs in approximating target next-
token probability distributions under prompt tuning
frameworks. We first analyze various prompt tun-
ing methods and find that continuous soft prompts
yield the best approximation performance. From an
information-theoretic perspective, we design target
distributions with varying entropy and observe that
LMs struggle most with those of moderate entropy.
Interestingly, the presence of outlier tokens—rare
tokens with notably high probabilities—makes ap-
proximation easier. Moreover, distributions gener-
ated by LMs themselves are generally easier to ap-
proximate, even under hard prompt tuning, despite
having moderate entropy. These distributions also
remain relatively easy to approximate when per-
turbed. Overall, our findings reveal general prop-
erties of LM expressiveness that can inform more
fine-grained future studies.

A natural hypothesis is that the difficulty LMs
face in approximating moderate-entropy distribu-
tions stems from their training objective: minimiz-
ing cross-entropy with a one-hot target encourages
low-entropy outputs. However, our experiments re-
ject this explanation—both randomly initialized
and pretrained models exhibit similar behavior.
Moreover, if the hypothesis were correct, approx-
imation loss would increase monotonically with
target entropy, which our results do not support.
We hypothesize that such particular difficulty for
approximating moderate-entropy distributions may
come from either the Transformer (Vaswani et al.,
2017) architecture or the softmax operator in the
decoding stage. We leave the investigation of the
root cause of this phenomenon for future work.

While language models are trained to predict the
next token, the probabilistic nature of the output dis-
tribution makes it naturally a distribution proposer,
from the perspectives of subjective randomness
(Bigelow et al., 2023) and computational creativ-
ity (Peeperkorn et al., 2024), among others. Our
findings also have implications for interpretability
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and control: understanding which distributions are
harder or easier to elicit can guide robust prompt de-
sign, distribution-aware decoding, and fine-grained
behavioral analysis (e.g., POS-specific in App. C).
Beyond prompting, such insights may support fail-
ure detection, model evaluation, and the develop-
ment of decoding strategies that explicitly account
for the reachable distribution space. Our work pro-
vides a first step to systematically analyze and un-
derstand the next-token distribution by LMs, and
we hope this perspective spurs further exploration
of LM expressivity and its applications.

Limitations

Our study could be extended in the following ways.
First, we depend on the investigation of different
target probability distributions entirely from the
perspective of entropy, which is still a minor step
compared to the whole picture of understanding
the expressiveness of LMs. Second, we notice that
the initialization of the prompt tuning actually mat-
ters in approximating certain distributions, which is
also worthy of research. Ultimately, the root cause
of the observed phenomenon remains unclear, war-
ranting further investigation to better understand
its underlying mechanisms. App. C presents a
case study on instruction-tuned variants and POS-
specific distributions. We hope this work motivates
a deeper exploration of LM distributional behavior
and guides the design of interpretable models.
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A Entropy

For a probability distribution p = (p1, p2, ..., pn),
the entropy for this probability distribution is de-
fined as:

H(p) = −
n∑

i=1

pi log(pi)

while pi represents the probability value of event i

and
n∑

i=1
pi = 1.

For given constraints that the sum of the prob-
ability value for each event is 1, the probability
distribution p that maximizes entropy is the uni-
form distribution. To prove this, we introduce a
Lagrange multiplier λ for this constraint and form
the Lagrange function:

L(p1, p2, ..., pn, λ) = −
n∑

i=1

pi log pi+λ(
n∑

i=1

pi−1)

To maximize L, we take partial derivative of L
with respect to each pi and set it equal to 0:

∂L
∂pi

= − log pi − 1 + λ = 0.

Since this must hold true for each pi, we con-
clude that each pi should be the same. To be more
specific, we can conclude that to take the maximum
value, pi must equal to c, where c is a constant. To
make this satisfy the constraints previously, we
have:

pi =
1

n
.

Therefore, the probability distribution that max-
imizes entropy is the uniform distribution, where
each pi =

1
n , and the maximum entropy for a dis-

tribution is log(n).
We now establish the detailed calculation for

value m defined as the upper boundary for proba-
bility mass concentrate on outlier tokens in Eq. (3).
Because of the linearity of entropy H(p), we take
the probability distribution of outlier tokens and the
rest into separate consideration. For k outlier to-
kens, the maximum entropy is reached when there
is uniform distribution for them. As we assume that
m probability mass has fallen on these tokens, the
maximum entropy for outlier tokens is −m log(mk ).
Similarly, for the rest tokens, the maximum entropy
is −(1−m) log(1−m

n−k ). So in case we desire to find
a probability distribution with the existence of k
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Figure 11: Approximation loss on vanilla distributions
with varying prefix lengths. While different prefix
lengths result in slight variations in approximation loss,
the overall trend remains consistent.

outliers to meet a specific entropy e, we must sat-
isfy the inequality:

−m log(
m

k
)− (1−m) log(

1−m

n− k
) ≥ e.

Also according to the definition of outliers, we
notice that k ≪ n. So given the outlier number k
fixed, the LHS of the inequality decreases as outlier
probability m increases. Also noticed that for a set
of small enough k, the most restrictive condition
is achieved when k = 1. Then, we change our
objective to solve the equation as:

−m log(m)− (1−m) log(
1−m

n− 1
) = e.

We will gradually find a value m that makes this
inequality hold as equality, and then round it down
to 0.01. In practice, we solve the above equation
regarding different target probability distributions
containing outliers with target entropy value e.

B Experiment Details

The objective of our research is to determine
whether, given a target distribution, it is possible
to identify a prompt embedding that adequately
approximates it. Since exhaustively enumerating
all possible prompt embeddings is computationally
infeasible, we instead employ modern optimization
techniques, such as gradient descent, to search for
an effective solution.

In our experiments, the prefix length is fixed at
5, and the learning rate is consistently set to 0.1
across all settings. The tuning process is conducted
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for a maximum of 500 epochs; however, early ter-
mination is applied if the approximation loss with
respect to the target distribution does not exhibit
improvement over 20 consecutive epochs. The
minimum approximation loss observed throughout
the training trajectory is recorded. The subsequent
sections provide a detailed overview of the experi-
mental setup.

B.1 Prefix Initialization

Li and Liang (2021) observed that prefix initializa-
tion has a significant impact in low-data regimes.
Given that our research aims to investigate the ease
of eliciting specific target distributions using mod-
ern optimization techniques, it is crucial to mini-
mize the influence of randomness introduced by
different initialization configurations. To this end,
we performed experiments using various initializa-
tion strategies by varying random seeds, thereby
reducing the variability attributable to prompt em-
bedding initialization.

We observed that the approximation loss varies
across different initializations, as illustrated in
Fig. 4. In the main body of this study, we report
the minimum approximation loss obtained from
five different initializations. While the absolute
approximation values differ depending on the ini-
tialization, we find that the overall trends observed
across the studied distributions remain consistent.

B.2 Prefix Length

A longer prefix introduces more learnable parame-
ters, which may potentially improve performance
in approximating target distributions. To investi-
gate this, we conducted an ablation study on prefix
length using the vanilla distributions, as shown
in § 5.1. We found that increasing the number
of tokens in the prefix—thus making it more ex-
pressive—does not alter the general trend. The
results of approximating distributions with varying
entropy under different prefix length configurations
are presented in Fig. 11.

C Future Directions

We provide a case study investigating how well
LMs approximate uniform distributions over to-
kens sharing the same part of speech. This illus-
trative example demonstrates the applicability of
our proposed framework (Fig. 2) for analyzing the
expressiveness of LMs. We envision that future
work can further build on this framework to ex-
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Figure 12: POS distribution of English tokens in the
vocabularies of investigated LMs.

plore model behaviors from new interpretability
perspectives.

We design a simple experiment to investigate the
difficulty of approximating uniform distributions
over tokens belonging to different parts of speech
(POS). Specifically, we select three LMs from two
distinct families and their instruction-tuned vari-
ants: Llama3.2-1B (Dubey et al., 2024), Qwen2.5-
0.5B, and Qwen2.5-1.5B (Yang et al., 2024). To
identify the POS tags of tokens from the model
vocabularies, we utilize ScispaCy (Neumann et al.,
2019) for tokenization and tagging. For simplicity,
we restrict our analysis to tokens that are assigned
a single, unambiguous POS tag. Fig. 12 shows the
distribution of the eight most common POS tags
across English tokens in the vocabularies of the
two model families.

We construct POS-wise uniform distributions by
randomly sampling 100 tokens for nouns, proper
nouns, verbs, and adjectives for 100 times, and cre-
ate a uniform distribution each time. Following
the same setup in App. B, we report the minimum
approximation loss across 5 different prompt ini-
tializations.

The experimental results are presented in Fig. 13.
We observe that across all three comparisons,
the instruction-tuned variants consistently exhibit
higher approximation loss than their base coun-
terparts. This suggests the presence of system-
atic distributional shifts introduced by instruction
tuning. Additionally, we find that all evaluated
LMs achieve lower approximation loss on adjec-
tives compared to other POS.

These consistent patterns across models from
different family suggest that applying our proposed
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Figure 13: The boxplot of approximation loss is plotted
for POS-wise uniform distributions on LMs from two
distinct families. We report the four most common POS
tags across English tokens in the vocabularies of the
two model families, with comparison between base and
instruction-tuned variants.

framework from a distributional perspective of-
fers a promising direction for systematically under-
standing LMs. We hope this work inspires further
research into the underlying distributional behav-
iors of LMs and informs future design of more
robust and interpretable systems.
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