
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 20910–20915
November 4-9, 2025 ©2025 Association for Computational Linguistics

GAP: a Global Adaptive Pruning Method for Large Language Models

Zhihua Ban*†, Haotian Ma*,
Siheng Zhang, Shengyu Liu, Xichen Chen, Ming Yang

CVTE Research
zhihua.ban@gmail.com, mahaotian@cvte.com,

{zhangsiheng,liushengyu,chenxichen,yangming}@cvte.com

Abstract

The deployment of Large Language Models
(LLMs) faces significant challenges due to high
computational costs, driving the demand for ef-
fective pruning techniques. Existing structured
pruning methods employ uniform compression
rates across network layers, neglecting the vary-
ing importance of different network depths. To
address this limitation, we propose a novel op-
timization framework that directly minimizes
global capability loss through layer-adaptive
pruning rates. The framework formulates the
pruning task as a combinatorial optimization
problem constrained by a total parameter bud-
get, and an efficient dynamic programming so-
lution is derived to determine optimal layer-
wise compression rates. Experiments demon-
strate that, when tuning is not included, our ap-
proach achieves comparable performance with
state-of-the-art methods at high pruning rates
(37-50% reduction), and shows significant ad-
vantages at low pruning rates (13-25% reduc-
tion). When tuning is included, our method
achieves the best performance among the com-
pared methods.

1 Introduction

Large Language Models (LLMs) have achieved
superior performance in a wide range of do-
mains(Brown et al., 2020; Achiam et al., 2023;
Zhao et al., 2023). However, the significant in-
crease in both inference latency and memory cost
still restricts its further applications, raising the
demand for model compression techniques (quanti-
zation, pruning, distillation, etc. (Zhu et al., 2023;
Tang et al., 2025)).

Structured pruning (Cheng et al., 2023) involves
removing contiguous or complete structural units,
such as filters, channels, or network layers, from
the model. This facilitates straightforward imple-
mentation across diverse computing chips, which

* Both authors contributed equally to this research.
† Corresponding author.

0 5 10 15 20 25 30
Layer ID

5.9

6.0

6.1

6.2

6.3

6.4

PP
L

Sparsity: 0%
Sparsity: 30%
Sparsity: 40%

Figure 1: PPL comparison on WikiText-2 (Merity et al.,
2017) test set for LLM-Pruner method with identical
pruning rate applied to different layers while others
remain unpruned, using the LLaMA2-7B (Touvron et al.,
2023) model.

motivates our focus on structured pruning in this
work.

Although existing methods have achieved
promising results, they still fall short in terms of
accuracy loss after pruning. LLM-Pruner (Ma
et al., 2023) achieves structured pruning by rank-
ing the importance of coupled structures and em-
ploys LoRA fine-tuning to compensate for the accu-
racy loss caused by pruning. To avoid fine-tuning,
SliceGPT (Ashkboos et al., 2024) applies orthogo-
nal matrix transformations to each weight matrix
and removes slices of the transformed matrices.
However, both methods adopt a uniform pruning
rate, which does not account for the varying abil-
ities of the weights at different depths. As shown
in Figure 1, layers at different depths contribute
differently to the model’s ability, as measured by
PPL. This has also been empirically demonstrated
in FLAP (An et al., 2023), where adaptive pruning
rates are shown to be more likely to achieve better
accuracy.

FLAP achieves adaptive pruning by formulat-
ing a structured importance metric that quantifies
the recoverability of output features when remov-
ing weight columns, standardizing these scores

20910



across layers to dynamically determine pruning
ratios. In LLM-Streamline (Chen et al., 2025), lay-
ers with high similarity are identified as redundant
and pruned, while a lightweight network is trained
via hidden state distillation to replace these pruned
layers, ensuring minimal performance degradation.
Although abilities in different depths are consid-
ered in both FLAP and LLM-Streamline, their prun-
ing decisions fundamentally rely on localized layer-
wise metrics. In this work, a novel framework is
proposed to directly optimize the model’s end-to-
end performance after pruning, unlocking the room
for further improvement in pruning accuracy.

As the main contributions of this work, we pro-
pose an optimization model that considers the end-
to-end capability loss of the model after pruning.
To solve this global optimization model, an efficient
algorithm is derived by approximating the computa-
tion of the loss function. Experiments demonstrate
that our method enhances pruning accuracy at var-
ious pruning rates, which is good news for LLM
applications.

2 Method

We argue that neural network modules at vary-
ing depths contribute differently to the capabilities
of LLMs. Therefore, we assign each module a
set of selectable retained parameter counts Mi,ti ,
where i ∈ {1, . . . , N} denotes the i-th module of
an LLM, and N is the total number of modules.
For instance, in LLaMA2-7B, each decoder layer
is considered as a module, then N corresponds
to the number of decoder layers. The pruning
rates available for the i-th module are denoted by
ti ∈ {ri,1, ri,2, . . . , ri,Ki}, where Ki is the num-
ber of different pruning rates for the i-th module.
Specifically, we set ri,1 = 0%, which means that
Mi,1 is the original parameter count of the i-th mod-
ule. The optimization objective is to identify the
optimal combination of retained parameter counts,
subject to a constraint on the total retained parame-
ters, as formalized below.

M∗ = {M∗
1 , . . . ,M

∗
N} (1)

= argmin J(M1,t1 , . . . ,MN,tN ), (2)

s.t.
N∑

i=1

Mi,ti ∈ [ML,MU ]. (3)

Here, {M∗
1 , . . . ,M

∗
N} denotes the optimal combi-

nation of the retained parameter counts, with M∗
i

indicating the retained parameter count selected

for the i-th module in this combination. ML and
MU represent the lower and upper bounds of the
desired total retained parameter range, respectively.
J(·) denotes the loss function corresponding to any
given combination of retained parameters. The loss
is calculated by first determining the optimal logit
path of the original model on a calibration set, and
then subtracting the sum of logits of the pruned
model on the same path from the sum of logits of
the original model on that path.

If each module has K selectable retained param-
eter counts, directly enumerating all combinations
that satisfy the constraints would result in a num-
ber of combinations on the order of O(KN ). For
instance, when K = 10 and N = 32, this num-
ber becomes prohibitively large, rendering direct
solution infeasible.

In AWQ (Lin et al., 2024), the selection of quan-
tization parameters for each module is independent
and has achieved state-of-the-art results. Inspired
by this, we assume that the loss function satisfies
the following equation.

J(M1,t1 , . . . ,MN,tN ) =
N∑

i=1

Ji(Mi,ti) , (4)

where

Ji(Mi,ti) = J(M1,1, . . . ,Mi−1,1,

Mi,ti ,Mi+1,1, . . . ,MN,1).
(5)

In other words, the loss of the retained parameter
count combination {M1,t1 , . . . ,MN,tN } is equal
to the sum of N independent losses. Specifically,
the i-th independent loss corresponds to the sce-
nario where only the i-th module is pruned to
Mi,ti , while all other modules remain unpruned
(i.e., Mj,tj = Mj,1 for i ̸= j).

Let Ci(Ri) denote the minimum loss when the
first i modules are pruned and the remaining N − i
modules are not pruned, given that the total number
of retained parameters in the first i modules is Ri.
Then,

Ci(Ri) = min





i∑

j=1

Jj(Mj,tj )

∣∣∣∣Ri =
i∑

j=1

Mj,tj





= min

{
Ci−1(Ri−1) + Ji(Mi,ti)

∣∣∣ Ri =

Ri−1 +Mi,ti

}
,

(6)

20911



Algorithm 1 The Proposed Adaptive Pruning Algorithm
1: Assign an appropriate set of retained parameter counts to each module.
2: for each Mi,ti do
3: Perform pruning on a validation set using LLM-Pruner (Ma et al., 2023) without tuning.
4: Compute Ji(Mi,ti) using Equation 5.
5: end for
6: Initialize C1(R1) according to Equation 7.
7: for i = 2 to N do
8: for each Ri−1 do
9: for each Mi,ti do

10: if Ci−1(Ri−1) + Ji(Mi,ti) < Ci(Ri) then
11: Update Ci(Ri) = Ci−1(Ri−1) + Ji(Mi,ti).
12: Update the optimal combination for Ri to Ri−1 and Mi,ti .
13: end if
14: end for
15: end for
16: end for
17: Determine R∗

N and M∗ according to Equation 8.

where
C1(R1) = J1(R1) ,

R1 ∈
{
M1,t1 | t1 ∈ {r1,1, . . . , r1,K1}

}
.

(7)

Clearly, the combination of retained parameter
counts corresponding to R∗

N is the optimal solu-
tion M∗, where

R∗
N =argmin{CN (RN ) |

ML ≤ RN ≤ MU}
(8)

By reasonably partitioning an LLM, the same
set of K retained parameter counts can be assigned
to each module, excluding the LM head and word
embeddings. The number of possible values for
RN does not exceed the number of combinations
of placing N identical balls into K distinct bins,
given by

(
N+K−1
K−1

)
. Therefore, even if we com-

pute all possible RN values, the time complexity
will not exceed O

((
N+K−1
K−1

)
NK

)
. This complex-

ity is significantly lower than the aforementioned
exponential time complexity. For example, when
N = 32 and K = 10, running the solution pro-
gram on a 2.5 GHz CPU yields results with only a
few seconds of delay.

Setting each linear layer of an LLM as a mod-
ule incurs a high computational cost, especially
for calculating Ji(Mi,ti). Consequently, we des-
ignate each decoder layer as a basic module. For
each Mi,ti , the retained parameters is determined
by LLM-Pruner (Ma et al., 2023) without perform-
ing the tuning step. The overall procedure of our
algorithm is depicted in Algorithm 1.

3 Experiments1

The effectiveness of our algorithm is demon-
strated on LLaMA2-{7B,13B} (Touvron et al.,
2023), LLaMA3.1-8B (Grattafiori et al., 2024)
and Qwen2.5-{7B,14B} (Qwen et al., 2025),
and is benchmarked against state-of-the-art open-
source pruning algorithms. These include meth-
ods without tuning, DS (Dumitru et al., 2024),
FLAP (An et al., 2023) and SliceGPT (Ashkboos
et al., 2024), as well as methods with tuning,
LLM-Streamline (Chen et al., 2025) and LLM-
Pruner (Ma et al., 2023). For fair comparison, all
methods use the same calibration set, which con-
sists of 128 samples, each with a length of 2048
tokens, randomly selected from WikiText-2 (Mer-
ity et al., 2017). Methods that require tuning are
fine-tuned on Alpaca (Taori et al., 2023).

The performance of all compared algorithms
is evaluated on the WikiText-2 test set using
perplexity (PPL) as the metric. Additionally,
the algorithms are assessed on seven zero-shot
tasks through the lm-eval-harness (Gao et al.,
2024), including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-
easy (Clark et al., 2018), ARC-challenge (Clark
et al., 2018), and OpenbookQA (Mihaylov et al.,

1All datasets, models, and other artifacts used in this study
are publicly available and can be freely used for academic
purposes. We have ensured that our use of these resources
complies with their respective licenses and terms of use.

20912



2018). The average accuracy across these tasks is
reported for each method.

For each module i ∈ {1, . . . , N}, we define a set
of K = 10 pruning rate options, {ri,1, . . . , ri,K},
as {0%, 10%, . . . , 90%}. As metioned in secion 2,
the search complexity for finding all CN (RN ) is at
most O

((
N+K−1
K−1

)
NK

)
. By merging redundant

search paths, the effective search space is made
significantly smaller than this upper bound. Table 1
summarizes this effective space, along with the cor-
responding time and memory requirements, with
all experiments run on a 2.45GHz CPU.

Model
Effective Search Search Time Search Memory

Space Size (×103) (ms) (KiB)
LLaMA2-7B 45 20 200
LLaMA2-13B 71 32 250

Table 1: Resources required by the search procedure
across models.

Rate Method
LLaMA2-7B LLaMA2-13B LLaMA3.1-8B

PPL ↓ Acc ↑ PPL ↓ Acc ↑ PPL ↓ Acc ↑
0% Dense 5.47 64.71 4.88 67.74 6.22 69.12

13%

DS 7.34 53.98 6.41 58.74 10.28 50.66
LLM-Pruner 6.99 56.85 5.49 63.62 8.37 60.04

SliceGPT 7.25 54.02 6.38 60.68 11.92 49.30
FLAP 6.39 59.78 5.75 62.05 7.96 58.70
Ours 6.36 62.63 5.32 66.12 8.24 65.12

25%

DS 9.71 48.86 8.22 52.33 14.42 44.82
LLM-Pruner 16.65 42.47 8.91 53.71 34.17 48.14

SliceGPT 9.5 48.75 8.18 51.30 26.71 41.54
FLAP 8.75 52.36 7.6 57.51 12.37 49.56
Ours 8.37 57.16 6.99 63.41 11.62 54.07

37%

DS 14.65 43.69 11.87 47.50 21.94 41.08
LLM-Pruner 45.26 39.11 31.11 40.65 148.41 42.32

SliceGPT 15.72 42.84 12.35 45.49 39.78 39.31
FLAP 13.77 48.70 10.5 52.59 19.13 45.03
Ours 13.17 48.69 9.48 55.87 19.46 48.90

50%

DS 25.46 40.38 20.14 42.16 35.15 39.22
LLM-Pruner 367.33 37.76 708.4 38.49 295.15 37.67

SliceGPT 27.46 39.64 22.59 40.72 67.26 37.81
FLAP 31.56 44.44 16.08 49.52 78.03 40.12
ours 30.62 43.53 14.69 48.22 58.11 41.64

Table 2: Performance of LLaMA models pruned by
different methods without tuning. Bold values highlight
the best performance.

As shown in Table 2, our method achieves the
best PPL on WikiText-2. On zero-shot tasks, our
method exhibits comparable performance to the
second-best FLAP method at high pruning rates
but outperforms almost all others at low pruning
rates. Specifically, at a 25% pruning rate for zero-
short tasks, our method incurs a loss of approx-
imately 11.7% for the 7B model and 6.4% for
the 13B model. In contrast, FLAP experiences
a loss of 19.1% for the 7B model and 15.1% for
the 13B model. This indicates that our method’s
performance is nearly twice that of the second-best

method. Evidently, if a smaller loss in accuracy
is desired in exchange for a low pruning rate, our
method is a better choice.

Rate Method
LLaMA2-7B LLaMA2-13B LLaMA3.1-8B

PPL ↓ Acc ↑ PPL ↓ Acc ↑ PPL ↓ Acc ↑
0% Dense 5.47 64.71 4.88 67.74 6.26 69.12

13%
LLM-Pruner* 6.57 61.37 5.40 65.28 8.24 64.22
StreamLine* 7.24 63.88 5.93 68.12 9.94 68.80

ours* 6.36 64.00 5.36 67.72 8.02 66.32

25%
LLM-Pruner* 8.5 55.80 7.21 61.37 15.16 53.86
StreamLine* 11.99 58.35 7.74 64.22 14.47 58.02

ours* 7.99 62.40 6.62 65.76 10.75 60.75

37%
LLM-Pruner* 16.91 54.24 11.62 61.15 22.75 47.94
StreamLine* 11.09 51.56 17.18 51.97 24.22 58.02

ours* 9.94 55.97 7.69 62.26 13.80 57.25

50%
LLM-Pruner* 173.51 39.89 277.27 39.87 34.17 44.11
StreamLine* 40.57 40.57 19.46 51.80 41.86 45.20

ours* 13.8 49.47 10.09 55.40 20.40 52.18

Table 3: Performance of LLaMA models pruned by
different methods with tuning. Bold values highlight
the best performance. The asterisk (*) denotes that the
method needs tuning.

Our experiments show that LLM-Pruner with
full-parameter tuning outperforms its LoRA-tuned
version from the original paper. For fair compari-
son, both LLM-Pruner* and our method (ours* in
Table 3) employ full-parameter tuning. As shown
in Table 3, our method achieves the best perfor-
mance on both WikiText-2 and zero-shot tasks
across all tested pruning rates. Notably, the per-
formance loss of our pruned model relative to the
dense model, averaging 3.2% for the 7B and 13B
models, is approximately half that of the second-
best method, which averages 7.5% for the 7B
and 13B models, at a 25% pruning rate for zero-
shot tasks. This further confirms that our method
achieves superior accuracy particularly at a lower
pruning rate.

In addition, we evaluate two Qwen variants. Ta-
ble 4 shows that our method attains the highest
accuracy under low sparsity and matches the best-
reported results under high pruning ratios. As
shown in Table 5, our method outperforms nearly
all tuning-based competitors.

4 Conclusion

This work addresses the critical challenge of pre-
serving model capabilities during LLM pruning
through layer-adaptive pruning rates. We formu-
late structured pruning as a combinatorial optimiza-
tion problem that explicitly minimizes global ca-
pability loss under parameter budget constraints.
By establishing a dynamic programming frame-
work, our method efficiently determines the op-
timal layer-wise pruning rates. Experiments on

20913



Rate Method
Qwen2.5-7B Qwen2.5-14B

PPL ↓ Acc ↑ PPL ↓ Acc ↑
0% Dense 6.83 69.90 5.28 72.46

13%
LLM-Pruner 7.87 66.35 6.62 70.05

FLAP 7.79 68.98 6.84 66.54
Ours 7.74 66.93 6.36 71.88

25%
LLM-Pruner 9.20 60.63 8.77 64.35

FLAP 9.93 54.88 9.22 57.73
Ours 9.05 60.95 8.63 65.05

37%
LLM-Pruner 12.77 49.90 13.51 54.27

FLAP 14.37 49.05 21.16 43.82
Ours 15.88 53.35 14.69 54.07

50%
LLM-Pruner 23.85 43.40 34.70 42.24

FLAP 28.92 14.94 4942.58 37.95
Ours 24.61 42.45 33.11 43.34

Table 4: Performance of Qwen models pruned by dif-
ferent methods without tuning. Bold values highlight
the best performance.

Rate Method
Qwen2.5-7B Qwen2.5-14B

PPL ↓ Acc ↑ PPL ↓ Acc ↑
0% Dense 6.83 69.90 5.28 72.46

13%
LLM-Pruner* 7.86 68.44 6.57 71.69
StreamLine* 8.37 65.79 7.5 69.19

Ours* 7.74 70.52 6.22 72.21

25%
LLM-Pruner* 9.05 62.77 8.77 64.35
StreamLine* 10.92 58.47 9.78 62.36

Ours* 8.91 65.64 8.11 66.54

37%
LLM-Pruner* 11.09 57.77 10.75 60.21
StreamLine* 13.17 55.69 14.92 54.62

Ours* 12.37 59.66 10.58 60.93

50%
LLM-Pruner* 14.69 51.72 16.91 51.71
StreamLine* 34.17 46.06 30.62 47.5

Ours* 14.29 51.74 15.88 52.78

Table 5: Performance of Qwen models pruned by differ-
ent methods with tuning. Bold values highlight the best
performance. The asterisk (*) denotes that the method
needs tuning.

LLaMA and Qwen models demonstrate that our
method achieves comparable performance with
state-of-the-art approaches at high pruning rates
(37-50% reduction), and significantly outperforms
existing methods at low pruning rates (13-25% re-
duction), particularly for zero-shot tasks compared
to the second-best approach. These results high-
light the effectiveness of end-to-end consideration
of accuracy loss and adaptive pruning rate assign-
ment for different modules in LLM compression.

Limitations

Our method inherits the strength of structured
pruning methods and hence is friendly for imple-
mentation on computing chips. Despite achiev-
ing promising results in structured pruning, our

method still has room for improvement in terms
of accuracy compared to other model compression
techniques, such as unstructured pruning and quan-
tization methods. We plan to explore distillation
methods to transfer the knowledge from the orig-
inal model to the pruned model, thereby further
improving the accuracy of the pruned model.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jin-
qiao Wang. 2023. Fluctuation-based adaptive struc-
tured pruning for large language models. Preprint,
arXiv:2312.11983.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang,
Cuiping Li, and Hong Chen. 2025. Streamlining
redundant layers to compress large language models.
Preprint, arXiv:2403.19135.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng
Shi. 2023. A survey on deep neural network prun-
ing:taxonomy, comparison, analysis, and recommen-
dations. arXiv preprint arXiv:2308.06767.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind

20914

https://arxiv.org/abs/2312.11983
https://arxiv.org/abs/2312.11983
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/2403.19135
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300


Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Razvan-Gabriel Dumitru, Paul-Ioan Clotan, Vikas
Yadav, Darius Peteleaza, and Mihai Surdeanu.
2024. Change is the only constant: Dynamic
llm slicing based on layer redundancy. Preprint,
arXiv:2411.03513.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for llm
compression and acceleration. In MLSys.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Shengkun Tang, Oliver Sieberling, Eldar Kurtic,
Zhiqiang Shen, and Dan Alistarh. 2025. Darwinlm:
Evolutionary structured pruning of large language
models. Preprint, arXiv:2502.07780.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2023. A survey on model compression for
large language models. Transactions of the Associa-
tion for Computational Linguistics, 12:1556–1577.

20915

https://arxiv.org/abs/2411.03513
https://arxiv.org/abs/2411.03513
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

