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Abstract

The rapid advancement of Large Language
Models (LLMs) has enabled the generation of
highly realistic synthetic data. We identify a
new vulnerability, LLMs generating convincing
career trajectories in fake resumes and explore
effective detection methods. To address this
challenge, we construct a dataset of machine-
generated career trajectories using LLMs and
various methods, and demonstrate that conven-
tional text-based detectors perform poorly on
structured career data. We propose Career-
Scape, a novel heterogeneous, hierarchical
multi-layer graph framework that models ca-
reer entities and their relations in a unified
global graph built from genuine resumes. Un-
like conventional classifiers that treat each in-
stance independently, CareerScape employs
a structure-aware framework that augments
user-specific subgraphs with trusted neighbor-
hood information from a global graph, en-
abling the model to capture both global struc-
tural patterns and local inconsistencies indica-
tive of synthetic career paths. Experimental
results show that CareerScape outperforms
state-of-the-art baselines by 5.8-85.0% rela-
tively, highlighting the importance of structure-
aware detection for machine-generated content.
Our codebase is available at https://github.
com/mickeymst/careerscape.

1 Introduction

Large Language Models (LLMs) have revolution-
ized text generation, enabling the production of
highly realistic content across unstructured general
texts and structured formats such as JSON, CSV,
and tables (Li et al., 2024; Liu et al., 2024; Vi-
jayan, 2023; Elnashar et al., 2025). While these ad-
vancements drive progress in multiple fields (Tang
et al., 2023; Kumichev et al., 2024; Lee et al.,
2025a; Moore et al., 2023), they also cause novel
security threats (Das et al., 2025). One emerging
threat is the automatic generation of fake resumes,

which can infiltrate recruitment pipelines, manip-
ulate screening through data poisoning, and erode
trust in job platforms (Yamashita et al., 2024a).

Real-world incidents highlight this severity: over
1,000 non-existent SpaceX engineers were identi-
fied on LinkedIn1. With LLMs’ growing accessibil-
ity, malicious actors can easily fabricate plausible
career histories and mass-produce fake accounts for
fraudulent purposes. An April 2025 report shows
that “scammers leverage generative AI to fabricate
resumes, photo IDs, and employment histories,”
threatening both job seekers and employers2. Be-
yond inflating user numbers, fabricated career paths
can distort recommendation systems, reduce job
visibility for genuine candidates, and destabilize
labor markets. Such profiles are also exploited in
financial scams, directly harming job seekers and
employers.

Prior research on machine-generated text de-
tection has mainly focused on linguistic features,
text representations, and coherence-based analy-
sis (Jawahar et al., 2020; Sadasivan et al., 2023;
Mitchell et al., 2023; Macko et al., 2023; Lucas
et al., 2023; Venkatraman et al., 2024; Solaiman
et al., 2019). While effective for traditional textual
domains such as news articles and online reviews,
these methods fall short in settings where text can
be organized into structured representations, such
as resumes, where information is encoded through
entities. Unlike generic text, resumes contain in-
herent structured elements, such as career trajec-
tories and job roles, which can be systematically
represented as structured data (Qin et al., 2023).
When LLM-generated resumes are converted to
structured formats, conventional detectors lose ef-
fectiveness due to the loss of linguistic artifacts,
presenting a unique detection challenge.

To address this challenge, we reframe machine-

1http://tiny.cc/etri001
2http://tiny.cc/ktri001
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Figure 1: Motivation and overview of machine-generated career trajectory detection.

generated career trajectory detection as a struc-
tured fraud detection problem and propose Career-
Scape, a heterogeneous and hierarchical multi-
layered graph neural network framework that cap-
tures complex relationships and entity-level dynam-
ics in career data. In our approach, each user’s
career history is represented as a graph of job titles,
companies, and descriptions connected via mean-
ingful relations. By exploiting both intra-layer and
cross-layer relationships, CareerScape identifies
structural anomalies and semantic inconsistencies
unique to synthetic career paths. Importantly, Ca-
reerScape introduces a novel structure-based aug-
mentation paradigm for career data. We construct a
global heterogeneous graph from genuine resumes,
integrating career entities into a unified structural
space. Rather than using this global graph for repre-
sentation learning, we utilize its topology to expand
each local graph into a global-augmented subgraph
by incorporating trusted neighboring nodes and
edges. This context-aware approach allows each
career graph with realistic structural context, en-
abling CareerScape to expose subtle inconsisten-
cies in machine-generated trajectories that deviate
from real-world patterns, such as implausible title
transitions or company sequences. Such structural
augmentation is especially effective in the career
domain, where transitions tend to follow semanti-
cally coherent and domain-informed patterns.

To this end, we construct a comprehensive
dataset of machine-generated resumes using mul-
tiple generative strategies, and our experiments
show that CareerScape consistently outperforms
state-of-the-art text-based and graph-based detec-
tors. Our key contributions are: 1) We formalize
machine-generated career trajectory detection
as a structured fraud detection task, revealing
limitations of conventional text-only detectors; 2)
We propose CareerScape, a heterogeneous and
hierarchical multi-layered graph framework
that models career entities and their relations within
a global structure built from genuine career tra-
jectories; 3) We introduce a novel global-to-local
subgraph augmentation approach that expands

user-specific subgraphs from a global graph, en-
abling detection of subtle structural inconsistencies
in synthetic career paths; 4) We demonstrate the
effectiveness of CareerScape through extensive
experiments and ablation studies, contributing to
more secure and trustworthy online job platforms.

2 Related Work

Machine-Generated Text Detection. Detection of
machine-generated text (MGT) has gained promi-
nence with advancing Large Language Models
(LLMs) (Crothers et al., 2023). Approaches
evolved from perplexity-based methods identifying
fluency discrepancies (Abburi et al., 2023; Tang
et al., 2024) to neural classifiers (Solaiman et al.,
2019), coherence modeling (Wu et al., 2024b), ex-
ternal knowledge verification (Wang et al., 2024),
and psycholinguistic features (Venkatraman et al.,
2024). While effective for unstructured text, these
methods target linguistic patterns rather than struc-
tural inconsistencies, limiting their efficacy in do-
mains where text can be transformed into entity-
based representations, such as resumes.
Machine-Generated Profiles. AI-generated con-
tent poses significant security threats across vari-
ous domains, including online job platforms (Das
et al., 2025), with recent studies showing fake re-
sumes can manipulate job recommendation sys-
tems (Yamashita et al., 2024a). While previous
work has explored fake profile detection using ac-
count metadata, social signals, or textual features
(Chakraborty et al., 2022; Roy and Chahar, 2021;
Xiao et al., 2015; Yuan et al., 2019), our work
focuses specifically on career trajectories-central
to professional platforms such as LinkedIn. We
argue that LLM-generated plausible career paths
require structure-aware detection methods beyond
existing detectors. Graph structures have proven
effective in career trajectory modeling (Yamashita
et al., 2022; Lee et al., 2025b), highlighting the
need for detection methods that capture entity-level
and trajectory-level inconsistencies.
Graph-level Classification. Graph-based meth-
ods have been widely applied in fraud detection

20895



by leveraging relational structures. Heterogeneous
graph neural networks (Zhang et al., 2019) have
been applied to financial fraud (Wu et al., 2024a)
and fake news detection (Ren et al., 2020; Zeng
et al., 2022). While prior graph-based fraud detec-
tion approaches operate on isolated graphs, over-
looking globally shared structures, our method con-
structs a unified heterogeneous graph spanning all
resume entities. This enables global-augmented
subgraphs across users, effectively capturing both
structural and semantic inconsistencies in machine-
generated career trajectories.

3 Dataset Generation

To effectively train and evaluate our machine-
generated resume detection framework, we con-
struct a dataset of both real and machine-generated
resumes in a structured format centered on career
trajectories. Inspired by real-world online job plat-
forms such as LinkedIn, we focus on core com-
ponents typically emphasized in user profiles: job
titles, companies, and employment durations, moti-
vating our dataset design. We provide an example
of a LinkedIn profile to illustrate a typical career
section in Appendix B.

3.1 Real Resume Data
We curate real resumes from two datasets used in
career trajectory research (Yamashita et al., 2024a),
representing technology and business domains.
Each resume is parsed into structured entities in-
cluding job titles, companies, and employment du-
rations. To ensure industry-wide generalizability,
we combine both domains. For graph construction,
we retain resumes containing companies that ap-
pear more than three times, resulting in a dataset
of 4,555 verified genuine resumes. Expanding to
additional domains (e.g., healthcare and education)
remains an important direction for future work.

3.2 Threat Model
Our synthetic resume generation assumes the fol-
lowing threat model: 1) Malicious actors create
fake accounts with convincing career trajectories
for whatever purposes they intend (e.g., facilitate
scams and identity theft); 2) Creating multiple ac-
counts on professional platforms is easy and in-
expensive; 3) For credibility, attackers associate
trajectories with legitimate companies and create
plausible job titles and progression; 4) Attackers
have access to modern LLMs and sufficient prompt
engineering knowledge. This threat model reflects

real-world challenges where detecting synthetic
identities represents a critical security concern. Our
synthetic resume generation methods are designed
to simulate these adversarial capabilities.

3.3 Synthetic Resume Construction

We employ diverse generation methods to create
synthetic resumes, producing 1,000 examples for
each category, ensuring balanced representation
across generation strategies.
Rule-Based Generators. These methods manip-
ulate real resume data using predefined heuristics.
We implement four strategies: “Random” com-
bines randomly selected entities, creating syntacti-
cally valid but unrealistic progressions; “Popular”
assembles resumes using top ten percent entities
with log-normal distributed job durations (Meng
et al., 2019; Yamashita et al., 2024b); “Swap-
ping” randomly exchanges companies within real
resumes; and “Replacing” substitutes companies
with alternatives from other resumes.
LLM-Based Generators. We utilize the following
LLM-based generators in both zero-shot and few-
shot settings: GPT-4o (Hurst et al., 2024), LLaMA-
3 (Grattafiori et al., 2024), and Gemini-2.0 (Team
et al., 2023). The exact prompts are detailed in
Appendix C.
Agent-Based Generators. We employ an agent-
based generator that autonomously refines resumes
through iterative self-improvement. Prompts and
agent configurations are detailed in Appendix C.
Domain-Specific Generators. We also incorpo-
rate a state-of-the-art domain-specific generator,
FRANCIS (Yamashita et al., 2024a), which is a
data poisoning framework that generates realistic
resumes to manipulate job recommendation sys-
tems. FRANCIS optimizes resume content to evade
detection, providing an ideal benchmark for evalu-
ating robust fake resume detection methods.

3.4 Job Description Data

To obtain consistent and informative job descrip-
tions for each resume entry, we leverage JAMES
(Yamashita et al., 2023) to normalize job titles
into standardized ESCO categories3. We then re-
trieve corresponding descriptions from the official
ESCO job title description dataset. This establishes
a one-to-one mapping between normalized titles
and descriptions, enhancing semantic richness and

3https://esco.ec.europa.eu/en

20896

https://esco.ec.europa.eu/en


Figure 2: LLM-generated resume reality assessment.

enabling graph-based models to reason over stan-
dardized content.

3.5 Assessing LLM-Generated Resumes

Assessing qualities of the generated resumes with
human evaluators poses a few challenges: 1) show-
ing real resumes to human evaluators is not permit-
ted, as individuals can potentially be re-identified
from their unique career trajectories, and 2) the
use of the original real dataset is governed by an
MOU that prohibits sharing the data with individu-
als (i.e., human evaluators) not covered under the
agreement. To ensure compliance with IRB poli-
cies, we use LLM-based quality assessment instead
of human evaluation and perform a realism evalu-
ation using Claude-3.7, a strong LLM not used in
our generation step nor main experiments.

Setup. We randomly sample 100 resumes each
from GPT-4o, LLaMA-3, Gemini-2.0, Agent, and
our real dataset. We ask Claude-3.7 to assess re-
alism on a 1–5 scale, where 1 indicates clearly
artificial content and 5 indicates highly realistic,
human-authored content. The prompt (Appendix
D) avoids revealing the source and requests impar-
tial judgment.

Results. LLM-generated resume realism scores
are comparable to real resumes, with average dif-
ferences below 0.3 points. GPT-4o and LLaMA-3
achieve the highest scores, not statistically differ-
ent from real resumes. Figure 2 presents average
scores with standard deviations. These findings
suggest LLM-generated resumes demonstrate flu-
ency and realism on par with human-written ones,
reinforcing the validity of using these resumes as
surrogates and supporting their inclusion in our
generated dataset.

4 Problem Definition

Our goal is to develop a detection model that distin-
guishes between genuine and machine-generated

Table 1: Notation used throughout the paper.

Notation Description

Gu = (Vu, Eu) Structured subgraph representing the career trajec-
tory of user u

Vt,Vc,Vd Sets of job title, company, and job description
nodes

Vu ⊆ V Node set in user subgraph Gu

Eu ⊆ E Edge set in user subgraph Gu

ϕ : V → Tv Node-type mapping function (e.g., job title, com-
pany, description)

ψ : E → Te Edge-type mapping function (e.g., worked_at,
has_description)

Nr(v) Neighbors of node v under relation type r
h(l)

v ∈ Rd Embedding vector of node v at GNN layer l
duv ∈ Rdd Embedding for job duration on edge (u, v)

W (l)
r ∈ Rd×d Relation-specific transformation matrix at layer l

h̃v ∈ Rd Node embedding with type embedding added be-
fore encoder

zu ∈ Rd Aggregated representation of user subgraph Gu

ŷu ∈ [0, 1] Predicted probability that Gu is machine-
generated

yu ∈ {0, 1} Ground-truth label: 1 for synthetic, 0 for human-
authored

L Binary cross-entropy loss function for training

resumes. Let Gu = (Vu, Eu) denote a structured
subgraph representing user u’s career trajectory.
The node set Vu includes entities such as job ti-
tles, companies, and job descriptions, connected
through semantic and temporal relations that cap-
ture both flow and context of the career path.

Given this representation, the task is to deter-
mine whether a given career trajectory is machine-
generated. Formally, we aim to learn a function
fθ that maps the input subgraph Gu to a probabil-
ity score ŷu ∈ [0, 1], where the target label yu ∈
{0, 1} indicates whether the career trajectory is
synthetic (1) or human-authored (0): ŷu = fθ(Gu).
See Table 1 for a summary of the main mathemati-
cal notations. We also provide task motivation and
challenges of text-based detection in Appendix A.

5 The Proposed Model

CareerScape is designed to leverage the struc-
tured and relational characteristics inherent in ca-
reer data by representing each user’s career history
as a heterogeneous multi-layer graph composed of
job titles, companies, and job descriptions. Un-
like conventional graph classifiers that treat each
instance as an isolated graph, CareerScape intro-
duces a structure-aware, global-to-local modeling
paradigm. We first construct a unified global graph
using real resumes, capturing reliable structural
patterns among career entities. During classifi-
cation, each user-specific subgraph is expanded
into a global-augmented subgraph by incorporat-
ing trustworthy neighboring nodes and edges from
the global graph. This augmentation introduces re-
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Figure 3: Our proposed model, CareerScape’s architecture.

alistic contextual structure that helps identify subtle
anomalies in machine-generated trajectories. See
Figure 3 for the overview of CareerScape.

5.1 Key Novelty of CareerScape

CareerScape introduces the following key nov-
elty distinguishing from prior work: 1) Novel task
formulation: We address a new task setting where
each local graph shares common node entities but
exhibits unique structural patterns, enabling con-
struction of a global graph from real instances and
requiring structure-aware subgraph classification;
2) Global-to-local subgraph augmentation: In-
stead of treating each graph independently, Career-
Scape augments each subgraph with contextual
structure derived from a global graph constructed
solely from real resumes, enabling structure-aware
reasoning; 3) Multi-layer heterogeneous graph
representation: We model career trajectories us-
ing a rich heterogeneous graph that spans job titles,
companies, and descriptions, capturing both intra-
type and inter-type entity relations.

While prior work has focused on subgraph clas-
sification in homogeneous or locally sampled set-
tings (Zhang and Chen, 2018; Khoshraftar and An,
2024), few studies have addressed subgraph-level
classification within a globally constructed hetero-
geneous graph. Moreover, existing heterogeneous
GNNs typically focus on node- or edge-level tasks
(e.g., classification, prediction, recommendation).

CareerScape is the first to introduce structure-
driven subgraph augmentation over a global con-
structed heterogeneous graph, bridging local rea-
soning with global structural context in a novel
task setting. By leveraging this design, each re-
sume can incorporate complementary information

from others through the global graph, thereby com-
pensating for missing details and enabling more
accurate detection.

5.2 Heterogeneous Career Entities

We define a heterogeneous graph G = (V, E , ϕ, ψ),
where V is the set of nodes, E ⊆ V ×V is the set of
edges, ϕ : V → Tv maps each node to its type (job
title, company, or job description), and ψ : E → Te
maps each edge to a relation type.

The node set is composed of V = Vt ∪ Vc ∪ Vd,
where Vt, Vc, and Vd denote job title, company, and
job description nodes, respectively.

Each node v ∈ V is associated with an embed-
ding h

(0)
v ∈ Rd: job titles and companies are ini-

tialized as learnable embeddings, while job descrip-
tions are initialized using pre-trained JobBERT
(Zhang et al., 2022) embeddings followed by a
linear projection. Job durations, being continu-
ous values, are encoded as real-valued scalars and
mapped to Rdd via a linear layer and incorporated
into edge representations.

5.3 Multi-Layer Heterogeneous Graphs

The graph is hierarchically organized with both
intra-layer and cross-layer connections. The intra-
layer graphs include: (i) Job Title Graph Gt,
where edges represent job transitions; (ii) Com-
pany Graph Gc, capturing transitions between com-
panies; and (iii) Job Description Graph Gd, con-
structed using cosine similarity over JobBERT em-
beddings, Ed = {(u, v) | cos(hu,hv) ≥ τ},where
τ is a similarity threshold hyperparameter empiri-
cally set to 0.9. The cross-layer graphs include: (i)
Worked_at edges between job titles and companies,
and (ii) Has_description edges from job titles to
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job descriptions.

5.4 Model Architecture and Learning
Heterogeneous Graph Embedding. Each node
v is initialized with h

(0)
v . Our learning process

involves both intra-layer and cross-layer message
passing to capture the hierarchical structure of ca-
reer trajectories. For intra-layer message passing,
nodes aggregate information from neighbors of the
same type via relation-specific transformations. For
example, job titles learn from chronologically ad-
jacent job titles, capturing career progression pat-
terns. For cross-layer message passing, nodes ex-
change information across different entity types.
Job titles gather context from associated companies
and descriptions, while companies learn from their
connections to various job roles. This dual-level
message passing is formalized at layer l + 1 as:

h(l+1)
v = σ


∑

r∈Te

∑

u∈Nr(v)

1

|Nr(v)|
W (l)

r h(l)
u


 ,

where Nr(v) is the set of neighbors via relation
type r, W (l)

r is the relation-specific weight ma-
trix learned during training, and σ is ReLU ac-
tivation (Agarap, 2018). This allows the model
to jointly learn from both intra-layer patterns and
cross-layer relationships. Job duration information
is particularly important for career trajectory anal-
ysis. For worked_at relations, we incorporate du-
ration embeddings duv into edge-level messages:
m

(l)
uv = W

(l)
r

[
h
(l)
u ∥duv

]
, where ∥ denotes con-

catenation. This enables the model to distinguish
between short-term positions and long-term roles
when reasoning about career patterns.

After L layers of passing, the final node embed-
dings h(L)

v capture both local career dynamics and
global structural patterns, incorporating informa-
tion from all entity types and their relationships.
Subgraph Augmentation and Representation. A
key aspect of CareerScape is using the global
graph Gglobal solely for topological augmentation.
Prior to message passing, each user-specific sub-
graph Gu is expanded using neighboring nodes
from the global graph, enabling the model to reason
over contextualized structures that reflect realistic
career patterns. Specifically, we augment each user
subgraph Gu by including first-order neighbors of
its nodes within a predefined hop threshold in the
global graph. This expansion adds contextually
relevant entities, such as co-occurring job titles or

semantically related companies observed in real
trajectories, without learning on the global graph
itself. Message passing is then performed only
on the augmented subgraph, allowing the model
to aggregate signals from both the original career
path and surrounding entities that provide realistic
structural context.

For each augmented subgraph Gu, we collect the
final-layer embeddings {h(L)

v }v∈Vu . Type-specific
embeddings tv are added to each node embedding:
h̃v = h

(L)
v + tv. The resulting sequence H̃u is

processed by a self-attention-based subgraph en-
coder: H′

u = SubgraphEncoder(H̃u). We apply
global mean pooling to obtain the subgraph-level
representation: zu = 1

|Vu|
∑

v∈Vu
H′

u[v]. Finally, a
linear classification head with sigmoid activation
predicts the likelihood of being machine-generated:

ŷu = σ(w⊤zu + b), ŷu ∈ [0, 1].

5.5 Model Training and Optimization Details
We optimize CareerScape using a binary clas-
sification objective that distinguishes machine-
generated career trajectories from genuine ones.
Instead of applying an MLP to a pooled embed-
ding, we adopt a self-attention-based classifier that
takes node embeddings within the augmented user-
specific subgraph as input, enabling richer model-
ing of inter-node dependencies. The training objec-
tive minimizes the binary cross-entropy loss:

L = − 1

N

N∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

where yi ∈ {0, 1} is the ground-truth label and ŷi is
the predicted probability. Training uses Adam opti-
mizer (Kingma, 2014) with learning rate schedul-
ing and dropout for regularization. For robustness
to unseen entities, a single universal (UNK) embed-
ding is used for unknown companies. We use 128
as embedding dimension, 0.005 as initial learning
rate in the subgraph encoder. For augmentation, we
set the hop threshold to 2, and apply dropout with
rate 0.1. The model is trained for 100 epochs with
early stopping (patience=10).

6 Experiments

6.1 Evaluation Setup
We perform our evaluation on the dataset described
in Section 3, splitting it into 80% for training (with
20% of that reserved for internal validation) and
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Table 2: F1-Score for machine-generated career trajectory detection. We conducted t-tests at a 95% confidence
level. The superscript ∗ indicates statistically significant differences between our model and competitors (p < 0.05).

Detector

ML-based LLM-based (GPT-4o) MGT detectors Graph-based Multi-layer

Generator XGBoost LightGBM Zero-shot Few-shot GPTZero DetectGPT HAN GraphSAGE R-GNN CareerScape

Rule-based

Random 0.62 0.60 0.58 0.64 0.53 0.55 0.72 0.67 0.70 0.78∗

Popular 0.61 0.62 0.59 0.65 0.65 0.56 0.85 0.94 0.94 0.96∗

Swapping 0.62 0.62 0.57 0.57 0.58 0.56 0.61 0.64 0.65 0.69∗

Replacing 0.64 0.63 0.57 0.63 0.56 0.56 0.68 0.80 0.76 0.80

LLM-based
GPT-4o 0.67 0.67 0.41 0.52 0.46 0.39 0.75 0.82 0.81 0.85∗

LLaMA-3 0.70 0.69 0.40 0.52 0.40 0.41 0.78 0.81 0.80 0.84∗

Gemini-2.0 0.70 0.68 0.41 0.63 0.52 0.40 0.81 0.80 0.79 0.84∗

Agent-based Agent 0.62 0.63 0.39 0.43 0.62 0.38 0.75 0.78 0.80 0.82∗

Domain-specific FRANCIS 0.60 0.60 0.56 0.62 0.51 0.46 0.57 0.61 0.61 0.69∗

Combined Combined 0.60 0.62 0.51 0.61 0.54 0.49 0.78 0.80 0.80 0.86∗

20% for testing, where the global graph is con-
structed exclusively from training data and never
includes test data, preventing data leakage. Experi-
ments are performed separately for each generator
type, as well as on a “Combined” dataset, which
includes a balanced sample comprising 10% from
each generator type along with real resumes. To the
best of our knowledge, there is no public dataset
for detecting machine-generated career trajectories.
As a result, all experiments are carried out on our
constructed dataset.

6.2 Baseline Detectors

We compare against four categories of baselines:
ML-Based Detectors. We implement XGBoost
(Chen and Guestrin, 2016) and LightGBM (Ke
et al., 2017) as feature-based state-of-the-art ma-
chine learning baselines.
LLM-Based Detectors. Leveraging LLMs’ self-
detectability (Lucas et al., 2023), we use GPT-4o
as a detector in both zero-shot and few-shot set-
tings, converting structured career trajectories to
text using templates provided in Appendix C.3.
MGT Detectors. We employ GPTZero4 and De-
tectGPT (Mitchell et al., 2023) as state-of-the-art
MGT detectors via text templates (Appendix E).
Graph-Based Detectors. While our detection task
via graphs itself is new with no existing dedicated
models, we adopt HAN (Wang et al., 2019), Graph-
SAGE (Hamilton et al., 2017), and R-GNN (Wu
et al., 2020) as compatible graph-level classifica-
tion baselines.

6.3 Result and Key Findings

Table 2 shows micro F1-scores across different
generator types. CareerScape significantly out-
performs other baseline methods in most cate-

4https://gptzero.me/

gories (p < 0.05). Our experiments reveal sev-
eral key insights: 1) Superiority of structure-
aware detection: CareerScape achieves the high-
est performance (F1-score 0.86 on the combined
dataset), demonstrating the effectiveness of het-
erogeneous multi-layered graph representations in
capturing structural inconsistencies of fake trajec-
tories. 2) Limitations of feature-based models:
Traditional ML models (F1-score from 0.60 to
0.70) struggle with sophisticated generators, in-
cluding domain-specific generators and rule-based
generators, which highlights the limitations of
purely feature-based classification. 3) Weakness
of LLM-based detector: LLM-based detectors
perform poorly on LLM/Agent-generated resumes
(F1-score from 0.39 to 0.63), with GPT-4o zero-
shot detection showing F1-score as low as from
0.39 to 0.41, revealing a significant blind spot for
structured content detection such as career trajec-
tories. 4) Inconsistency in existing MGT detec-
tors: Existing MGT detectors’ performance varies
widely (F1-score from 0.38 to 0.65), with poor
results on LLaMA-3 and Gemini-2.0 content, in-
dicating overfitting to specific text generation pat-
terns. 5) Benefits of Graph-based models: Stan-
dard graph-based models outperform non-graph
approaches. Comparing CareerScape with the
graph-based baselines, CareerScape outperforms
them due to our novel global-to-local subgraph
augmentation. 6) Robustness to challenging gen-
eration methods: CareerScape maintains robust
performance against FRANCIS (F1-score 0.69), a
domain-specific generator designed to evade de-
tection. Moreover, the swapping-based generation
method proved surprisingly effective in creating
convincing fake trajectories, with most detectors
achieving F1-scores below 0.65. The swapping
approach poses a notable challenge by preserving
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(a) Embedding Size (b) Propagation Depth (Hops) (c) Few-shot Sample Count of GPT-4o

Figure 4: Impact of model configurations on detection performance.

nodes and altering only their order, making struc-
tural differences subtle and harder to detect. This
simple yet effective method may threaten job plat-
forms attempting to identify fake resumes. Despite
these challenges, CareerScape outperforms all
baselines, highlighting its ability to identify subtle
structural anomalies even when significant portions
of authentic career patterns are preserved.

7 Ablation Study

To gain deeper insights into CareerScape’s de-
signs, we conduct comprehensive ablation studies.

7.1 Model Configuration Ablation
We investigate how embedding size and hops af-
fect detection performance, and analyze GPT-4o’s
few-shot detection capabilities. Figure 4 presents
average F1 scores across four types of machine-
generated datasets for each setting. Figure 4a and
4b show that moderate configurations yield opti-
mal detection performance, suggesting a trade-off
between model complexity and effectiveness. Fig-
ure 4c indicates that increasing shot count improves
GPT-4o’s few-shot detection, though with vary-
ing effectiveness. Rule-based and domain-specific
datasets peak at F1-score 0.62 with 4 shots. In-
terestingly, GPT-4o shows particular weakness in
detecting LLM-based and agent-based generation
(F1-scores 0.56 and 0.43 respectively with 4 shots),
significantly lower than its performance on other
types. Further increasing shots would incur higher
computational costs without proportional gains,
while CareerScape outperforms these few-shot
approaches without requiring large prompts.

7.2 Impact of Structure-Driven Augmentation
To evaluate structure-driven augmentation’s contri-
bution and verify the inductive bias introduced by
our global graph, we test several simplified vari-
ants on the combined generation dataset and report
results in Figure 5. No-Aug removes structural aug-
mentation, using only the original user-specific sub-

Figure 5: Impact of augmentation.

graph. Rand-Aug augments each subgraph with
randomly sampled nodes from the global graph.
Mixed-Aug constructs the global graph using both
real and fake resumes, introducing noisy connec-
tions. Global-Emb replaces structure-based aug-
mentation with pretrained global node embeddings.

Our experiments reveal significant performance
differences. CareerScape achieves the highest F1-
score 0.86, demonstrating our structure-driven aug-
mentation’s effectiveness. Global-Emb performs
well (F1-score 0.84) but statistically lower than
CareerScape (p < 0.05), highlighting the advan-
tage of explicit structural augmentation over purely
embedding-based representations. Removing aug-
mentation (No-Aug, F1-score 0.81) or introducing
noise (Mixed-Aug, F1-score 0.80) substantially de-
grades performance. Random augmentation (Rand-
Aug, F1-score 0.82) offers some improvement but
still underperforms compared to CareerScape.
The clear performance hierarchy (CareerScape
> Global-Emb > Rand-Aug > Mixed-Aug ≈ No-
Aug) confirms that real-only, structure-driven aug-
mentation provides an effective inductive bias for
detecting machine-generated careers.

7.3 Graph-layer Ablation

We further perform a graph-layer ablation to eval-
uate the contribution of different components in
our heterogeneous multi-layer graph architecture,
using the combined dataset. Table 3 shows perfor-
mance under seven configurations, each removing
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Table 3: Impact of different graph layers.

# of Layers Graph Layers F1-Score

1 Job Title (JT) 0.73
1 Company (C) 0.68
1 Job Description (JD) 0.72

2 JT + C 0.75
2 JT + JD 0.79

3 JT + C + JD (i.e., all Intra-layers) 0.83
All JT + C + JD + Cross-layers (i.e., CareerScape) 0.86

one or more structural elements of the full model.
The first group uses only single intra-layer graphs
(i.e., job titles, companies, or job descriptions). The
second group combines two intra-layers. The third
group integrates all three intra-layer graphs, while
the final configuration (All) includes both intra-
layer graphs and cross-layer connections. The
results demonstrate each graph component con-
tributes meaningfully to the overall performance,
with statistically significant differences observed
between groups with different numbers of layers
(p < 0.01). The progression from single-layer
to multi-layer configurations shows consistent im-
provement, with an average increase of 0.13 in F1-
score from single-layer to the full model. The inclu-
sion of cross-layer relations and the semantically
rich job description graph leads to substantial gains.
It also shows that job titles are particularly informa-
tive for detection, outperforming companies, as un-
usual role progressions (e.g., CTO→Sales→SDE)
create more readily detectable anomalies than com-
pany movements alone. Even the model only using
a single layer performs competitively against ML-
based and text-based baselines, highlighting the
strength of our structured representation.

8 Conclusion

In this paper, we formalized machine-generated
career trajectory detection as a structured fraud de-
tection task and proposed CareerScape, a multi-
layer heterogeneous graph framework with global-
to-local subgraph augmentation that effectively cap-
tures structural patterns and local inconsistencies.
Our findings emphasize the importance of structure-
aware modeling in detecting synthetic structured
data generated by LLMs. This work contributes
to building more secure online job platforms, with
future work focusing on model robustness against
adversarially crafted fake resumes.

Limitations

While CareerScape achieves strong performance
in detecting machine-generated career trajectories,

several limitations remain. First, our dataset is lim-
ited to the technology and business domains, and
future work should expand to other industries for
broader applicability and generalizability of our
findings. Second, as LLMs continue to advance
rapidly, newer generative techniques may produce
more sophisticated fake career trajectories, requir-
ing continual updates to detection models. Finally,
our approach relies on the availability of structured
and sufficiently detailed resume data. In cases
where online job platform profiles are extremely
sparse or lack key entities (e.g., job titles and com-
panies), the model’s ability to capture meaningful
patterns may be reduced.

Ethical Considerations

This work on detecting machine-generated career
trajectories raises several ethical considerations.
Our goal aligns with efforts in fake news detection,
human-AI content differentiation, and social media
bot detection, focusing on identifying fabricated
content while respecting authentic diversity. We
acknowledge the inherent sensitivity of resume ver-
ification and emphasize that our goal is not to flag
non-linear or unconventional career paths as fraud-
ulent. Our focus is on detecting maliciously fabri-
cated contents that threaten job platform integrity.
All resume data used in this study are anonymized
or synthetically generated, with no personally iden-
tifiable information involved. Due to the sensitive
nature, we have limited our public release to in-
clude only LLM-generated datasets. While target-
ing algorithmically mass-generated fake profiles,
we acknowledge potential dual-use concerns that
merit careful consideration. We explicitly caution
against misappropriation for problematic applica-
tions such as employee surveillance or discrimi-
natory candidate filtering, and strongly advocate
for implementing frameworks incorporating trans-
parency, fairness, and meaningful human oversight
when deploying detection systems within a job
platform’s security contexts. Finally, we call for
broader community engagement to ensure fairness,
accountability, and the responsible use of AI in
employment ecosystems.

Acknowledgments

This work was in part supported by NSF awards
#1934782 and #2131144, and the 2021 seed fund-
ing from the Center for Socially Responsible Arti-
ficial Intelligence (CSRAI) at Penn State.

20902



References
Harika Abburi, Kalyani Roy, Michael Suesserman, Nir-

mala Pudota, Balaji Veeramani, Edward Bowen, and
Sanmitra Bhattacharya. 2023. A simple yet efficient
ensemble approach for ai-generated text detection.
arXiv preprint arXiv:2311.03084.

Abien Fred Agarap. 2018. Deep learning using rectified
linear units (relu). arXiv preprint arXiv:1803.08375.

Partha Chakraborty, Mahim Musharof Shazan,
Mahamudul Nahid, Md Kaysar Ahmed, and
Prince Chandra Talukder. 2022. Fake profile detec-
tion using machine learning techniques. Journal of
Computer and Communications, 10(10):74–87.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794.

Evan N Crothers, Nathalie Japkowicz, and Herna L Vik-
tor. 2023. Machine-generated text: A comprehensive
survey of threat models and detection methods. IEEE
Access, 11:70977–71002.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu.
2025. Security and privacy challenges of large lan-
guage models: A survey. ACM Computing Surveys,
57(6):1–39.

Ashraf Elnashar, Jules White, and Douglas C Schmidt.
2025. Enhancing structured data generation with gpt-
4o evaluating prompt efficiency across prompt styles.
Frontiers in Artificial Intelligence, 8:1558938.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ganesh Jawahar, Muhammad Abdul-Mageed, and
Laks VS Lakshmanan. 2020. Automatic detection
of machine generated text: A critical survey. arXiv
preprint arXiv:2011.01314.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information
processing systems, 30.

Shima Khoshraftar and Aijun An. 2024. A survey
on graph representation learning methods. ACM
Transactions on Intelligent Systems and Technology,
15(1):1–55.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily
Goncharov, Galina Zubkova, Nikolai Zenovkin,
Aleksei Goncharov, and Andrey Savchenko. 2024.
Medsyn: Llm-based synthetic medical text gener-
ation framework. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 215–230. Springer.

Jean Lee, Nicholas Stevens, and Soyeon Caren Han.
2025a. Large language models in finance (finllms).
Neural Computing and Applications, pages 1–15.

Yeon-Chang Lee, JaeHyun Lee, Michiharu Yamashita,
Dongwon Lee, and Sang-Wook Kim. 2025b. Caper:
Enhancing career trajectory prediction using tempo-
ral knowledge graph and ternary relationship. In
Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V.1, page
647–658.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024. Pre-trained language mod-
els for text generation: A survey. ACM Computing
Surveys, 56(9):1–39.

Yu Liu, Duantengchuan Li, Kaili Wang, Zhuoran Xiong,
Fobo Shi, Jian Wang, Bing Li, and Bo Hang. 2024.
Are llms good at structured outputs? a benchmark for
evaluating structured output capabilities in llms. In-
formation Processing & Management, 61(5):103809.

Jason Lucas, Adaku Uchendu, Michiharu Yamashita,
Jooyoung Lee, Shaurya Rohatgi, and Dongwon Lee.
2023. Fighting fire with fire: The dual role of llms in
crafting and detecting elusive disinformation. arXiv
preprint arXiv:2310.15515.

Dominik Macko, Robert Moro, Adaku Uchendu, Ja-
son Samuel Lucas, Michiharu Yamashita, Matúš
Pikuliak, Ivan Srba, Thai Le, Dongwon Lee, Jakub
Simko, et al. 2023. Multitude: Large-scale multi-
lingual machine-generated text detection benchmark.
arXiv preprint arXiv:2310.13606.

Qingxin Meng, Hengshu Zhu, Keli Xiao, Le Zhang,
and Hui Xiong. 2019. A hierarchical career-path-
aware neural network for job mobility prediction. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 14–24.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectgpt: zero-shot machine-generated text detection
using probability curvature. In Proceedings of the
40th International Conference on Machine Learning,
pages 24950–24962.

20903



Steven Moore, Richard Tong, Anjali Singh, Zitao Liu,
Xiangen Hu, Yu Lu, Joleen Liang, Chen Cao, Hassan
Khosravi, Paul Denny, et al. 2023. Empowering edu-
cation with llms-the next-gen interface and content
generation. In International Conference on Artificial
Intelligence in Education, pages 32–37. Springer.

Chuan Qin, Le Zhang, Yihang Cheng, Rui Zha,
Dazhong Shen, Qi Zhang, Xi Chen, Ying Sun, Chen
Zhu, Hengshu Zhu, et al. 2023. A comprehensive
survey of artificial intelligence techniques for talent
analytics. arXiv preprint arXiv:2307.03195.

Yuxiang Ren, Bo Wang, Jiawei Zhang, and Yi Chang.
2020. Adversarial active learning based heteroge-
neous graph neural network for fake news detection.
In 2020 IEEE international conference on data min-
ing (ICDM), pages 452–461. IEEE.

Pradeep Kumar Roy and Shivam Chahar. 2021. Fake
profile detection on social networking websites: a
comprehensive review. IEEE Transactions on Artifi-
cial Intelligence, 1(3):271–285.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 2024.
The science of detecting llm-generated text. Commu-
nications of the ACM, 67(4):50–59.

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and
Xia Hu. 2023. Does synthetic data generation of
llms help clinical text mining? arXiv preprint
arXiv:2303.04360.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Saranya Venkatraman, Adaku Uchendu, and Dongwon
Lee. 2024. Gpt-who: An information density-based
machine-generated text detector. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 103–115.

Aishwarya Vijayan. 2023. A prompt engineering ap-
proach for structured data extraction from unstruc-
tured text using conversational llms. In Proceedings
of the 2023 6th International Conference on Algo-
rithms, Computing and Artificial Intelligence, pages
183–189.

Quan Wang, Licheng Zhang, Zikang Guo, and Zhen-
dong Mao. 2024. Ideate: detecting ai-generated text
using internal and external factual structures. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 8556–
8568.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous
graph attention network. In The world wide web
conference, pages 2022–2032.

Bin Wu, Kuo-Ming Chao, and Yinsheng Li. 2024a. Het-
erogeneous graph neural networks for fraud detection
and explanation in supply chain finance. Information
Systems, 121:102335.

Junchao Wu, Runzhe Zhan, Derek Wong, Shu Yang,
Xinyi Yang, Yulin Yuan, and Lidia Chao. 2024b. De-
tectrl: Benchmarking llm-generated text detection in
real-world scenarios. Advances in Neural Informa-
tion Processing Systems, 37:100369–100401.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S Yu. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning sys-
tems, 32(1):4–24.

Cao Xiao, David Mandell Freeman, and Theodore Hwa.
2015. Detecting clusters of fake accounts in on-
line social networks. In Proceedings of the 8th
ACM Workshop on Artificial Intelligence and Secu-
rity, pages 91–101.

Michiharu Yamashita, Yunqi Li, Thanh Tran, Yongfeng
Zhang, and Dongwon Lee. 2022. Looking further
into the future: Career pathway prediction. WSDM
Computational Jobs Marketplace.

Michiharu Yamashita, Jia Tracy Shen, Thanh Tran,
Hamoon Ekhtiari, and Dongwon Lee. 2023. James:
Normalizing job titles with multi-aspect graph em-
beddings and reasoning. In 2023 IEEE 10th Inter-
national Conference on Data Science and Advanced
Analytics (DSAA), pages 1–10. IEEE.

Michiharu Yamashita, Thanh Tran, and Dongwon Lee.
2024a. Fake resume attacks: Data poisoning on on-
line job platforms. In Proceedings of the ACM Web
Conference 2024, pages 1734–1745.

Michiharu Yamashita, Thanh Tran, and Dongwon Lee.
2024b. Openresume: Advancing career trajectory
modeling with anonymized and synthetic resume
datasets. In 2024 IEEE International Conference
on Big Data (BigData), pages 6697–6706. IEEE.

Dong Yuan, Yuanli Miao, Neil Zhenqiang Gong, Zheng
Yang, Qi Li, Dawn Song, Qian Wang, and Xiao Liang.
2019. Detecting fake accounts in online social net-
works at the time of registrations. In Proceedings of
the 2019 ACM SIGSAC conference on computer and
communications security, pages 1423–1438.

20904



Zhi Zeng, Xiang Li, and Ying Sha. 2022. Heteroge-
neous propagation graph representation learning for
fake news detection. In 2022 IEEE 24th Int Conf on
High Performance Computing & Communications;
8th Int Conf on Data Science & Systems; 20th Int
Conf on Smart City; 8th Int Conf on Dependability
in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), pages 456–463.
IEEE.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram
Swami, and Nitesh V Chawla. 2019. Heterogeneous
graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 793–803.

Mike Zhang, Kristian Jensen, Sif Sonniks, and Barbara
Plank. 2022. Skillspan: Hard and soft skill extraction
from english job postings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4962–4984.

Muhan Zhang and Yixin Chen. 2018. Link prediction
based on graph neural networks. Advances in neural
information processing systems, 31.

20905



A Motivation and Challenges

A.1 Task-Specific Motivation
Career trajectories offer a unique structure-rich do-
main where individual instances, while diverse,
share a high degree of node vocabulary and struc-
tural regularity. This makes them especially
amenable to structure-based augmentation. Real
career paths often exhibit semantically coherent
transitions (e.g., promotions, lateral moves within
an industry), whereas machine-generated fakes of-
ten violate such patterns. By constructing a global
graph from real data, CareerScape injects trusted
contextual structure into each subgraph, enabling it
to better capture these inconsistencies. This design
is particularly well-suited for detecting anomalies
in career data, where deviations from real-world
transitions can be subtle yet critical.

A.2 Challenges of Text-Based Detection
While prior work focuses on detecting AI-
generated content through surface-level text fea-
tures, these methods are insufficient in structured
scenarios. Once resume content is parsed and rep-
resented as entities and relations (i.e., job titles and
companies), linguistic cues become unavailable.
Synthetic resumes created by LLMs can mimic
realistic entity sequences, making it difficult for
text-based detectors to capture deeper inconsisten-
cies in structure or semantics.

This motivates the need for structure-aware mod-
els that can reason over entity-level interactions
and the dynamics of career trajectories. Our objec-
tive is to build a robust and generalizable detection
framework that leverages the heterogeneous and
layered nature of structured resume data to uncover
subtle artifacts indicative of synthetic generation.

B Career Experience Section in LinkedIn

Inspired by real-world online job platforms such as
LinkedIn, we focus on core components typically
emphasized in user profiles: job titles, company
names, employment durations, and job descriptions.
Figure 6 illustrates a typical career section from
a LinkedIn profile, motivating the design of our
dataset. Based on this example, we can construct a
corresponding career trajectory graph, as shown in
7.

B.1 Illustrative Examples
At a high level, our task aims to capture the distinc-
tion between realistic human career trajectories

Figure 6: LinkedIn profile example.

Figure 7: Graph illustration example of career trajectory.

and artificially generated ones. Intuitively, genuine
career paths often reflect plausible role progres-
sions, reasonable durations, and coherent transi-
tions across companies and positions. In contrast,
machine-generated trajectories may display unreal-
istic or repetitive patterns that deviate from natural
career development. We illustrate this distinction
with intuitive examples below.

Genuine example: Software Engineer at Stripe
(14 months) → Senior SWE at Meta (28 months)
→ Tech Lead at Google (8 months)
Synthetic example 1: Software Engineer at
Google (24 months) → Senior SWE at Google (36
months) → Tech Lead at Amazon (36 months) →
Engineering Manager at Amazon (24 months) →
Director of Engineering at Salesforce (24 months)
Synthetic example 2: Software Engineer at Ope-
nAI (12 months) → Cashier at Costco (12 months)
→ Engineering Manager at Amazon (12 months)
Synthetic example 3: Software Engineer at Mi-
crosoft (9 months) → Software Engineer at Google
(14 months) → Software Engineer at Microsoft
(13 months) → Software Engineer at Google (14
months) → Software Engineer at Microsoft (21
months) → Software Engineer at Google (12
months)

These synthetic trajectories exhibit unnatural
patterns, such as implausible career transitions
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(e.g., SWE → Cashier → EM) or artificial timing
regularities (e.g., repeated multiples of 12-month
durations).

C Prompt Settings

C.1 LLM-Based Generators

You are an expert career counselor generating realis-
tic synthetic resume data for LLM benchmarking.
Generate a realistic, US-based career path in the
technology and business sectors. Each career path
should contain at least 5 job entries (i.e., more than
4), and each entry must include the following fields:

- Job Title
- Company Name (must be a real-world company)
- Start Date (e.g., "Mar 2017")
- End Date (e.g., "May 2019")
- Job Duration (months) (e.g., "26")

Ensure each career path follows a realistic progres-
sion. Include career changes, promotions, and indus-
try shifts where appropriate.

C.2 Agent-Based Generators

The Agent-Based Generator is a multi-agent frame-
work designed to produce high-quality and real-
istic synthetic career trajectories. It leverages an
iterative conversation between two large language
model (LLM) agents: the Generator Agent and
the Critic Agent. Together, they simulate a human-
like process of resume drafting and peer review,
enabling the generation of believable and coherent
career paths across the technology and business
sectors. In our implementation, we employ two
independent instances of GPT-4o, assigning one as
the Generator and the other as the Critic. We se-
lect GPT-4o as the Critic given its stronger reason-
ing abilities in career planning and self-correction.
This configuration not only improves generation
quality but also reflects realistic adversarial scenar-
ios, as malicious actors may exploit state-of-the-art
LLMs such as GPT-4o to fabricate convincing re-
sumes.

C.2.1 System Flow

The generation process consists of an iterative loop
involving the following steps:

1. The Generator Agent produces an initial
draft of a career trajectory, following speci-
fied structural and domain constraints.

2. The Critic Agent evaluates the trajectory,
identifies unrealistic elements, and provides
both a realism score (1–5) and concrete sug-
gestions for improvement.

3. The Generator Agent revises the trajectory
according to the Critic’s feedback and pro-
duces an updated version.

4. Steps 2 and 3 are repeated until either: the
realism score reaches a threshold, or the max-
imum number of review rounds is reached.

We set 4.0 as the realism score threshold and
four as the maximum number of review rounds so
that Generator Agent can create career trajectories
up to five times.

C.2.2 Job Entry Requirements

Each final career trajectory must contain at least 5
job entries, and each entry must include: Job Title,
Company Name, Start Date, End Date, and Job
Duration (months).

This loop-based interaction reflects real-world
processes of drafting and revision, enabling the
Generator Agent to incorporate critical feedback
iteratively. The final output is more nuanced, realis-
tic, and diverse compared to single-pass generation
methods.

Generator Agent Prompt (Initial)

You are an expert career counselor generating realis-
tic synthetic resume data for LLM benchmarking.
Generate a realistic, US-based career path in the
technology and business sectors. Each career path
should contain at least 5 job entries (i.e., more than
4), and each entry must include the following fields:

- Job Title
- Company Name (must be a real-world company)
- Start Date (e.g., "Mar 2017")
- End Date (e.g., "May 2019")
- Job Duration (months) (e.g., "26")

Ensure each career path follows a realistic progres-
sion. Include career changes, promotions, and indus-
try shifts where appropriate.
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Critic Agent Prompt

You are a hiring manager reviewing a career
trajectory. Your task is to critically evaluate the
realism of the career path.

For each job entry, check for:
- Plausibility of job titles and promotions
- Consistency with known real-world company hiring
practices
- Realistic time spans and durations
- Logical career progression and industry transitions

Then respond with:
1. A realism score from 1 (not realistic) to 5 (very
realistic)
2. Bullet-pointed feedback on unrealistic or implausi-
ble aspects
3. Specific suggestions for how the Generator Agent
could improve the trajectory

Generator Agent Prompt (Revision Round)

You previously generated a career trajectory, and
received the following critique:
Feedback: [Critic Feedback]
Realism Score: [Insert Score]

Now revise the career trajectory to address the
feedback. Ensure that your updated trajectory is
more realistic and aligned with real-world career
progression patterns. Maintain at least 5 job entries,
and include the following for each:

- Job Title
- Company Name (real-world company)
- Start Date
- End Date
- Job Duration (months)

C.3 LLM-Based Detectors

C.3.1 Zero-shot

You are an expert career counselor. Below is a career
trajectory with multiple job entries. Your task is to
determine whether this career history is likely to be
real (written by a human) or synthetic (generated by
an AI or a machine).

Please reason step-by-step considering the following
aspects:
- Plausibility of job title transitions
- Realism of company-to-company moves
- Length and variation of job durations
- Presence of career gaps, promotions, or lateral shifts

At the end, just give a final answer: “Real” or “Fake”.

Career Trajectory:
{career_trajectory}

Answer: [Real or Fake]

C.3.2 Few-shot
We use 4 shots as the default setting.

You are an expert career counselor. Your task is to
determine whether a given career trajectory is real
(written by a human) or fake (generated by an AI or
a machine).

Please consider the following aspects while making
your decision:
- Plausibility of job title transitions
- Realism of company-to-company moves
- Length and variation of job durations
- Presence of career gaps, promotions, or lateral shifts

Below are several labeled examples. Use them to
guide your judgment.

Example 1:
{example_career_trajectory_1}
Answer: Real

Example 2:
{example_career_trajectory_2}
Answer: Fake
...
Example N:
{example_career_trajectory_N}
Answer: Real

—
Now evaluate the following career trajectory using
the same criteria. Just give a final answer: “Real” or
“Fake”

Career Trajectory:
{career_trajectory}

Answer: [Real or Fake]

D Realism Assessment

You are an expert in career trajectory evaluation.
Attached is a CSV file containing a resume. A
resume consists of a sequence of job entries with
columns for job_title, company, and duration (in
months).

Your task is to assess the realism of the resume on a
scale from 1 to 5, where:
- 1 = Clearly artificial or unrealistic
- 2 = Somewhat artificial
- 3 = Neutral or uncertain
- 4 = Somewhat realistic
- 5 = Highly realistic and human-like

Please focus only on how plausible and coherent
the career path sounds overall. Do not try to guess
whether it was created by a human or a machine.

E Template for Conversion from Career
Trajectory to Text

To enable LLM-based classification, we convert
structured career trajectories into a natural lan-
guage format using the following template. Each
job entry is represented as a sentence describing
the role, company, and duration, and all entries are
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concatenated in reverse chronological order (from
most recent to oldest):

"I have worked as a [Job Title]
at [Company Name] for [Duration]
months."

For example, a career trajectory consisting of
three positions is converted as follows:

“I have worked as a Software Engineer
at Google for 24 months. Before that, I
was a Research Intern at OpenAI for 6
months. Prior to that, I worked as a Data
Analyst at IBM for 18 months.”

We apply this conversion consistently across all
data samples to ensure uniformity for LLM evalua-
tion. Additional formatting details such as joining
phrases (e.g., “Before that”, “Prior to that”) help
preserve the temporal order and improve the flu-
ency of the resulting text.

F Dataset Description

F.1 Data Availability
Due to the sensitive nature of career data, we only
share the LLM-generated portion of our dataset,
comprising 4,000 synthetic career trajectories of
GPT-4o, LLaMA-3, Gemini-2.0, and Agent.

F.2 Dataset Structure Comparison
Figure 8 illustrates the key structural characteristics
across different generator types. The radar chart vi-
sualizes key structural characteristics including job
density, duration patterns, diversity, and transitions.

Figure 8: Generated dataset structure comparison across
different generator types.

20909


